Radioframe Networks, Inc.

MC-Series iDEN Microcell High Power

March 6, 2007

Report No. RAFN0073

Report Prepared By

www.nwemc.com 1-888-EMI-CERT

© 2006 Northwest EMC, Inc

22975 NW Evergreen Parkway Suite 400 Hillsboro, Oregon 97124

Certificate of Test

Issue Date: March 6, 2007 Radioframe Networks, Inc.

Model: MC-Series iDEN Microcell High Power

Emissions						
Test Description	Specification	Test Method	Pass	Fail		
Radiated Emissions	FCC 15.109:2006	ANSI C63.4:2003				
Conducted Emissions	FCC 15.107:2006	ANSI C63.4:2003				
Frequency Stability	FCC 90I:2005	ANSI/TIA/EIA-603-B:2002				
Field Strength of Spurious Radiation	FCC 90I:2005	ANSI/TIA/EIA-603-B:2002				
Emission Mask	FCC 90I:2005	ANSI/TIA/EIA-603-B:2002				
Output Power	FCC 90I:2005	ANSI/TIA/EIA-603-B:2002				
Spurious Emissions at Antenna Terminal	FCC 90I:2005	ANSI/TIA/EIA-603-B:2002				

Modifications made to the product

See the Modifications section of this report

Test Facility

The measurement facility used to collect the data is located at:

Northwest EMC, Inc.

22975 NW Evergreen Parkway, Suite 400; Hillsboro, OR 97124

Phone: (503) 844-4066

Fax: 844-3826

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada.

Approved By:

Donald Facteau, IS Manager

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested, the specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision History

Revision 05/05/03

Revision Number	Description	Date	Page Number
00	None		

Revision 03/18/05

Accreditations and Authorizations

FCC: Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP: Northwest EMC, Inc. is accredited under the United States Department of Commerce, National Institute of Standards and Technology, and National Voluntary Laboratory Accreditation Program for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 89/336/EEC, ANSI C63.4, MIL-STD 461E, DO-160D and SAE J1113. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada.

NVLAP LAB CODE 200630-0 NVLAP LAB CODE 200676-0

Industry Canada: Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS 212, Issue 1 (Provisional) and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements.

CAB: Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement.

TÜV Product Service: Included in TUV Product Service Group's Listing of Recognized Laboratories. It qualifies in connection with the TUV Certification after Recognition of Agent's Testing Program for the product categories and/or standards shown in TUV's current Listing of CARAT Laboratories, available from TUV. A certificate was issued to represent that this laboratory continues to meet TUV's CARAT Program requirements. Certificate No. USA0401C.

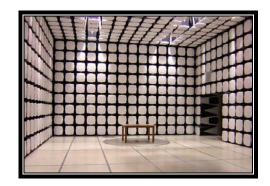
TUV Rheinland: Authorized to carryout EMC tests by order and under supervision of TÜV Rheinland. This authorization is based on "Conditions for EMC-Subcontractors" of November 1992.

NEMKO: Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119).

Australia/New Zealand: The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body (NVLAP).

VCCI: Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (*Registration Numbers. - Hillsboro: C-1071, R-1025, and R-2318, Irvine: C-2094 and R-1943, Sultan: R-871, C-1784 and R-1761).*

BSMI: Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement. License No.SL2-IN-E-1017.


GOST: Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

SCOPE

For details on the Scopes of our Accreditations, please visit: http://www.nwemc.com/scope.asp

California – Orange County Facility Labs OC01 – OC13

41 Tesla Ave. Irvine, CA 92618 (888) 364-2378 Fax: (503) 844-3826

Oregon – Evergreen Facility Labs EV01 – EV11

22975 NW Evergreen Pkwy. Suite 400 Hillsboro, OR 97124 (503) 844-4066 Fax: (503) 844-3826

Washington – Sultan Facility Labs SU01 – SU07

14128 339th Ave. SE Sultan, WA 98294 (888) 364-2378

Rev 11/17/06

Party Requesting the Test

Company Name:	Radioframe Networks, Inc.
Address:	9461 Willows Road NE, Suite 100
City, State, Zip:	Redmond, WA 98052
Test Requested By:	Dean Busch
Model:	MC-Series iDEN Microcell High Power
First Date of Test:	March 21, 2006
Last Date of Test:	March 6, 2007
Receipt Date of Samples:	March 21, 2006
Equipment Design Stage:	Preproduction
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test

Functional Description of the EUT (Equipment Under Test):

Dual band operation: 851.0125 to 868.9875, 935.01875 to 939.98125. The RadioFrame MC-Series is used in locations where cellular coverage and capacity can be a challenge, such as NASCAR events, hotels, convention centers, manufacturing facilities, sports stadiums and more, including macro coverage.

Testing Objective:

FCC Certification of higher power microcell basestation. Radio blade portion has been previously tested and certified in other lower powered basestation configurations. This configuration uses a higher power amplifier.

Configurations

Revision 9/21/05

CONFIGURATION 1 RAFN0067/RAFN00073

Software/Firmware Running during test	
Description	Version
System Manager	

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
EUT	Radioframe Networks, Inc.	MC-Series iDEN Microcell High Power	Engineering Unit

Remote Equipment Outside of Test Setup Boundary						
Description Manufacturer Model/Part Number Serial Number						
DC Power Supply	Electronics Measurements, Inc.	TCR	95F-0824			
IC Simulator	Radioframe Networks, Inc.	ASY-0550-05	02103250121			
Site Controller	Motorola	X516	CAF030LTCY			

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC (x2)	No	30 ft.	No	EUT	Power Supply
Ethernet (x2)	No	50 ft.	No	EUT	IC Simulator
BNC	Yes	30 ft.	No	EUT	Site Controller
BNC	Yes	10 ft.	No	IC Simulator	Site Controller
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

CONFIGURATION 2 RAFN0067

Software/Firmware Running during test	
Description	Version
System Manager	

EUT					
Description	Manufacturer	Model/Part Number	Serial Number		
EUT	Radioframe Networks, Inc.	MC-Series iDEN Microcell High Power	Engineering Unit		

Remote Equipment Outside of Test Setup Boundary					
Description Manufacturer Model/Part Number Serial Number					
DC Power Supply	Electronics Measurements, Inc.	TCR	95F-0824		
IC Simulator	Radioframe Networks, Inc.	ASY-0550-05	02103250121		
Site Controller	Motorola	X516	CAF030LTCY		

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC (x2)	No	30 ft.	No	EUT	Power Supply
BNC	Yes	30 ft.	No	EUT	Site Controller
BNC	Yes	10 ft.	No	IC Simulator	Site Controller
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Dual Directional Coupler	Amplifier Research	DC7154	IRD	2/23/2006	13
Spectrum Analyzer	Agilent	E4407B	AAU	9/20/2006	12

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

Configuration: The peak measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The occupied bandwidth / emission mask was measured with the EUT set to low; medium, and high transmit frequencies. At each channel, measurements were made at low, mid, and high power output settings

FCC Interpretation Regarding Emission Mask and 90.691

----Original Message---From: Andrew Leimer [mailto:ALEIMER@fcc.gov] Sent: Wednesday, May 14, 2003 12:21 PM
To: rwacs@att.net
Subject: Re: Part 90 rules

Hello Dean,

How are you doing? I have not heard from you in a while! The following explanation is from the archives. The basic question was if emissions mask g would ever be used. I hope it answers your question:

I found that footnote 3 was added to Section 90.210 as a result of the First R&O, Eighth R&O and 2nd FNPRM in PR Docket 93-144 (FCC 95-501), adopted 12/15/95. Footnote 3 initially said "Equipment in this band licensed to EA systems shall comply with the emission mask provisions of Section 90.691." Note here that this R&O dealt principally with the upper 200 MHz SMR channels

which were auctioned in contiguous segments/blocks. Consequently, providing more flexibility in the emission mask that required protection of the "outer"

channels in those blocks and to any interior channels in those blocks used by incumbents made sense.

When the Commission subsequently dealt with auctioning the lower 80 channels (non-contiguous channels in each block) and the General Category channels (contiguously allocated channels by block for auction purposes but originally

allocated on a single channel basis for site-specific licensing purposes), the

consideration of emission mask caused footnote 3 to be modified as it exists today. Specifically, the Second R&O in PR Docket 93-144 (FCC 97-223), adopted

6/23/97 @ para 80 reasons that applying the same emission mask standards to the lower 230 channels (lower 80 channels and 150 General Category channels) as to the upper 200 channels facilitates the use of common equipment and the combining of all such channels. It further states that Section 90.691 (the emission mask) would apply to "outer" channels used by a licensee "that create out-of-band emissions that affect another licensee". The MO&O on reconsideration of the 800 MHz 1st R&O (FCC

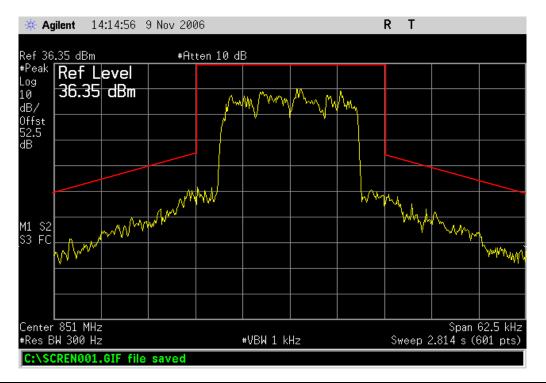
out-or-pand emissions that affect another licensee". The MOWO on reconsideration of the 800 MHz 1st κ (FCC 97-224, adopted 6/23/97) at para 76 agreed with Erricson's recommendation to expand the emission mask provision

of Section 90.691 to "non-EA 800 MHz Part 90 CMRS systems". The decision was

based ostensibly on extending the flexibility of the 90.691 emission mask to incumbent licensees (non-EA licensees or non-auction winners) and to those non-SMR channels used by CMRS operators. The paragraph closes by stating that

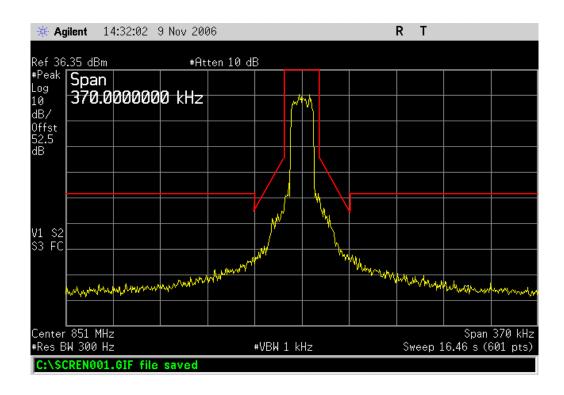
neither Ericsson or Motorola believe that such relaxation will increase the amount of interference to adjacent channel licensees.

You'll note that there is some similarity between emission mask G (applicable


to equipment without audio low pass filters) under Section 90.210 and the emission mask required by Section 90.691. It is my interpretation that footnote 3 under Section 90.210 (the applicability of the emission mask under

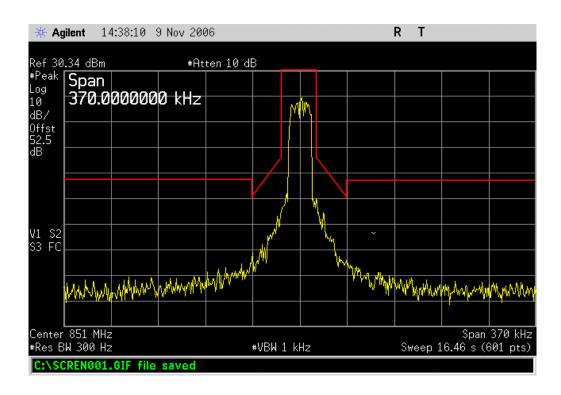
Section 90.691) was intended principally for Part 90 CMRS systems in the 800 MHz band to provide flexbility and consistency to those operators. As Section

90.210 is written, however, I don't see how we could legally prevent any 800 MHz licensee from using the more flexibile emission mask under Section 90.691.

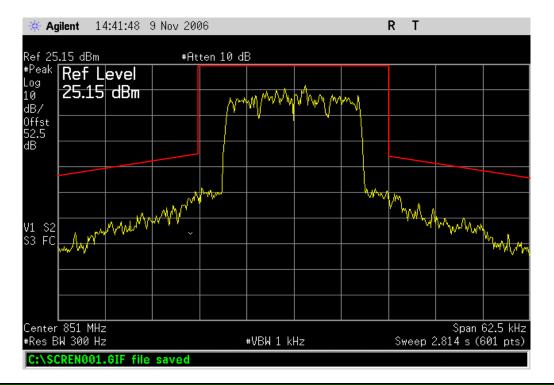

NORTHWEST		EMICCIONI MACI	•		XIMIT 2006.08.25
EMC		EMISSION MASK			
EUT	: MC-Series iDEN Microcell High F	Power		Work Order: RAFN00	067
	r: Engineering unit			Date: 11/09/06	
	r: Radioframe Networks, Inc.			Temperature: 21°C	
Attendees	s: Erin Duleba			Humidity: 38%	
Project	t: None			Barometric Pres.: 30.11	
	/: Holly Ashkannejhad	Power: -48		Job Site: EV06	
TEST SPECIFICAT	TIONS	Tes	t Method		
FCC 901:2005		AN	SI/TIA/EIA-603-B:2002		
COMMENTS					
	alled as will be used in typical inst	allations			
Ground Strap mist	alled as will be used in typical illst	allations.			
DEVIATIONS FRO	M TEST STANDARD				
			`		
Configuration #	1	Signature Holy Aligh	'		
J		Signature House			
			Value	Limit	Results
Low Channel	11: 1 5				
	High Power		NI/A	See Table	Pass
	< 37.5 kHz Fc > 37.5 kHz Fc		N/A N/A	See Table	Pass Pass
	Mid Power		N/A	See Table	F455
	< 37.5 kHz Fc		N/A	See Table	Pass
	> 37.5 kHz Fc		N/A	See Table	Pass
	Low Power		19/5	Occ Table	1 433
	< 37.5 kHz Fc		N/A	See Table	Pass
	> 37.5 kHz Fc		N/A	See Table	Pass
Mid Channel			·		
	High Power				
	< 37.5 kHz Fc		N/A	See Table	Pass
	> 37.5 kHz Fc		N/A	See Table	Pass
	Mid Power				
	< 37.5 kHz Fc		N/A	See Table	Pass
	> 37.5 kHz Fc		N/A	See Table	Pass
	Low Power				_
	< 37.5 kHz Fc		N/A	See Table	Pass
11: 1 01 1	> 37.5 kHz Fc		N/A	See Table	Pass
High Channel	Lligh Dawer				
	High Power < 37.5 kHz Fc		NI/A	See Table	Pass
	< 37.5 kHz Fc > 37.5 kHz Fc		N/A N/A	See Table	Pass Pass
	Mid Power		N/A	See Table	F d 5 5
	< 37.5 kHz Fc		N/A	See Table	Pass
	> 37.5 kHz Fc		N/A	See Table	Pass
	Low Power		13/73	Joo Tubio	1 400
	< 37.5 kHz Fc		N/A	See Table	Pass
	> 37.5 kHz Fc		N/A	See Table	Pass

Low Channel, High Power, > 37.5 kHz Fc

Result: Pass Value: N/A Limit: See Table

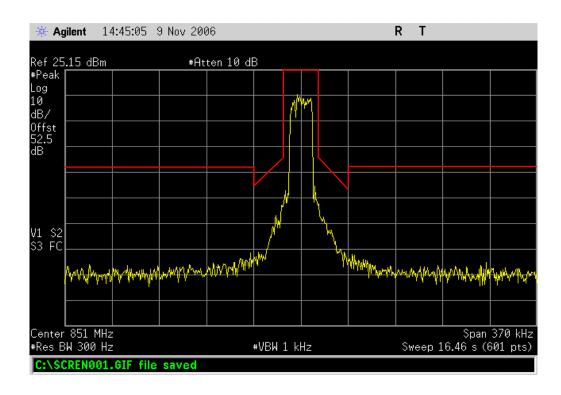

Low Channel, Mid Power, < 37.5 kHz Fc

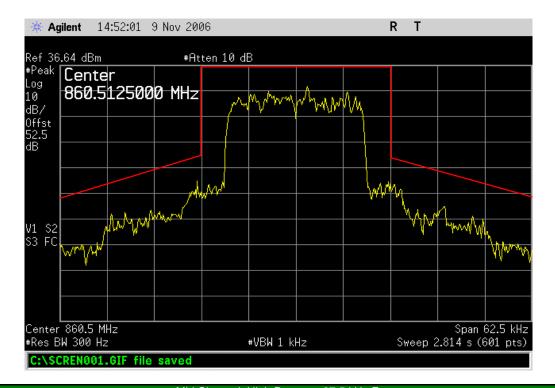
Result: Pass Value: N/A Limit: See Table



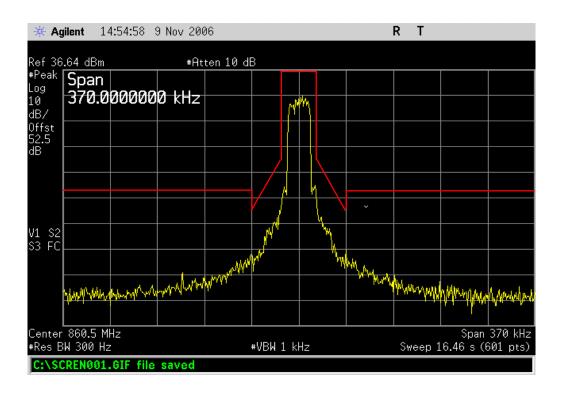
Low Channel, Mid Power, > 37.5 kHz Fc

Result: Pass Value: N/A Limit: See Table

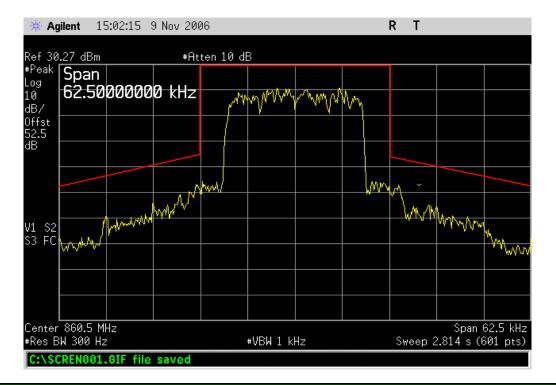



Low Channel, Low Power, > 37.5 kHz Fc

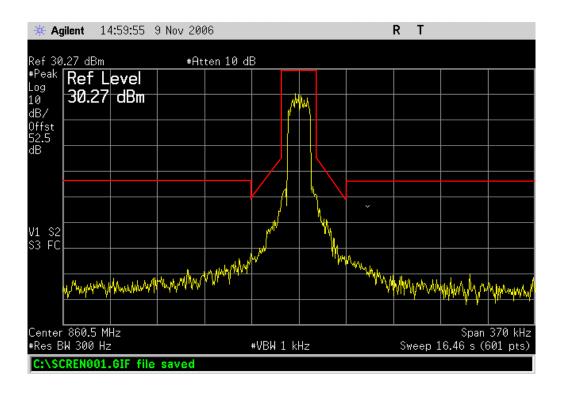
Result: Pass Value: N/A Limit: See Table


Mid Channel, High Power, < 37.5 kHz Fc

Result: Pass Value: N/A Limit: See Table


Mid Channel, High Power, > 37.5 kHz Fc

Result: Pass Value: N/A Limit: See Table

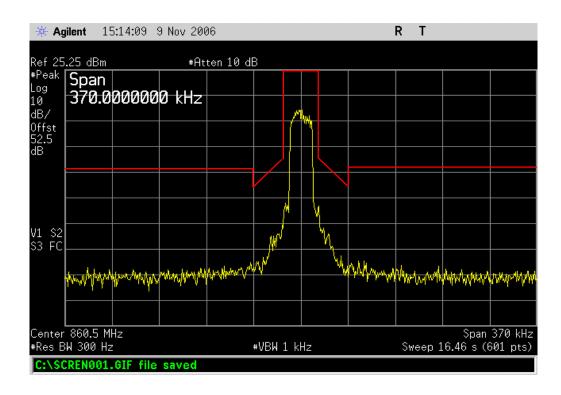

Mid Channel, Mid Power, < 37.5 kHz Fc

Result: Pass Value: N/A Limit: See Table



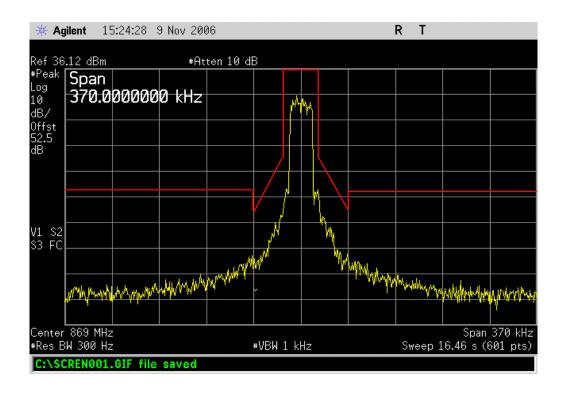
Mid Channel, Mid Power, > 37.5 kHz Fc

Result: Pass Value: N/A Limit: See Table

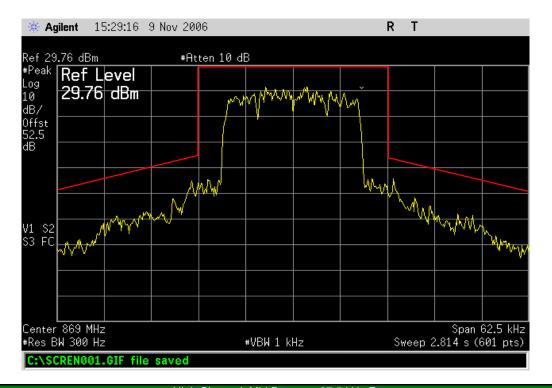


Mid Channel, Low Power, > 37.5 kHz Fc

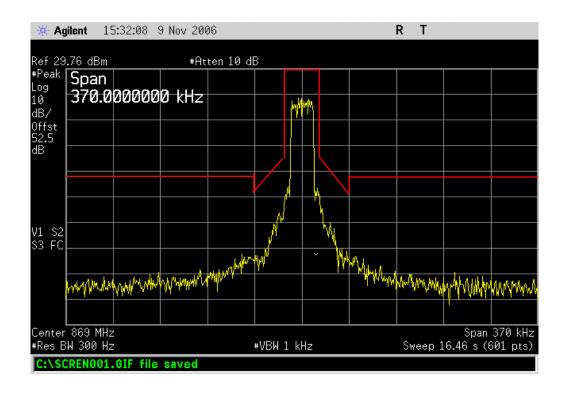
Result: Pass Value: N/A Limit: See Table


High Channel, High Power, < 37.5 kHz Fc

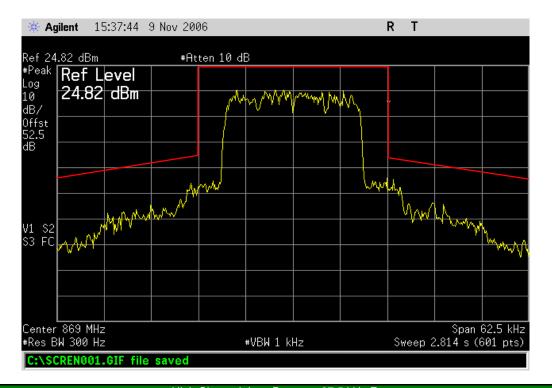
Result: Pass Value: N/A Limit: See Table


High Channel, High Power, > 37.5 kHz Fc

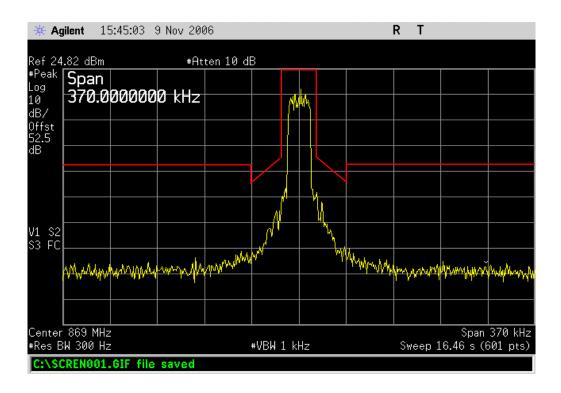
Result: Pass Value: N/A Limit: See Table


High Channel, Mid Power, < 37.5 kHz Fc

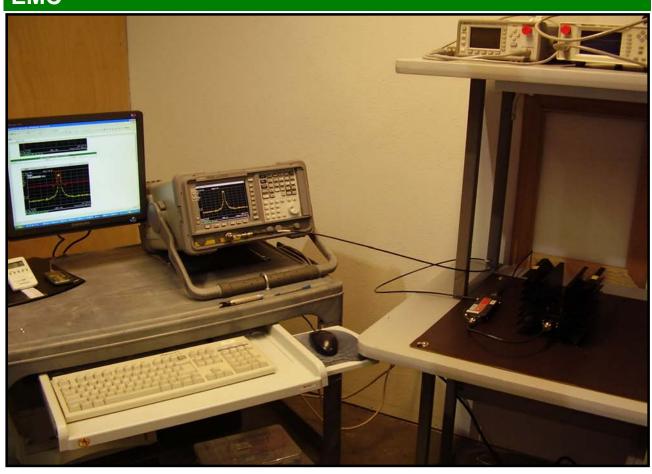
Result: Pass Value: N/A Limit: See Table


High Channel, Mid Power, > 37.5 kHz Fc

Result: Pass Value: N/A Limit: See Table


High Channel, Low Power, < 37.5 kHz Fc

Result: Pass Value: N/A Limit: See Table



High Channel, Low Power, > 37.5 kHz Fc

Result: Pass Value: N/A Limit: See Table

Frequency	Output Power	Power (P)	Attenuation for th	ne range 12.5 k⊢ (dBc)	Attenuation >37.5 kHz from fc (dBc)			
(MHz)	(dBm)	Watts	50 + (10*log P)	116*log f = 12.5 kHz	(f/6.1) f = 37.5 kHz	80	43 + (10*log P)	80
	36.35	4.32E+00	56.4	36.14	91.49	80	49.4	80
851.0125	30.34	1.08E+00	50.3	36.14	91.49	80	43.3	80
	25.15	3.27E-01	45.2	36.14	91.49	80	38.2	80
860.5125	36.64	4.61E+00	56.6	36.14	91.49	80	49.6	80
	30.27	1.06E+00	50.3	36.14	91.49	80	43.3	80
	25.25	3.35E-01	45.3	36.14	91.49	80	38.3	80
868.9875	36.12	4.09E+00	56.1	36.14	91.49	80	49.1	80
	29.76	9.46E-01	49.8	36.14	91.49	80	42.8	80
	24.82	3.03E-01	44.8	36.14	91.49	80	37.8	80

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Dual Directional Coupler	Amplifier Research	DC7154	IRD	2/23/2006	13
Spectrum Analyzer	Agilent	E4407B	AAU	9/20/2006	12
Attenuator	Coaxicom	66702 5910-6	ATZ	2/23/2007	13
Attenuator	Inmet	2N100W-30dB		NCR	
Attenuator	Inmet	2N200W-30dB		NCR	

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

Configuration: The peak measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The occupied bandwidth / emission mask was measured with the EUT set to low; medium, and high transmit frequencies. At each channel, measurements were made at low, mid, and high power output settings

FCC Interpretation Regarding Emission Mask and 90.691

From: Andrew Leimer [mailto:ALEIMER@fcc.gov] Sent: Wednesday, May 14, 2003 12:21 PM

To: rwacs@att.net

Subject: Re: Part 90 rules

Hello Dean,

How are you doing? I have not heard from you in a while! The following explanation is from the archives. The basic question was if emissions mask g would ever be used. I hope it answers your question:

I found that footnote 3 was added to Section 90.210 as a result of the First R&O, Eighth R&O and 2nd FNPRM in PR Docket 93-144 (FCC 95-501), adopted 12/15/95. Footnote 3 initially said "Equipment in this band licensed to EA systems shall comply with the emission mask provisions of Section 90.691." Note here that this R&O dealt principally with the upper 200 MHz SMR channels

which were auctioned in contiguous segments/blocks. Consequently, providing more flexibility in the emission mask that required protection of the "outer"

channels in those blocks and to any interior channels in those blocks used by incumbents made sense.

When the Commission subsequently dealt with auctioning the lower 80 channels (non-contiguous channels in each block) and the General Category channels (contiguously allocated channels by block for auction purposes but originally

allocated on a single channel basis for site-specific licensing purposes), the

consideration of emission mask caused footnote 3 to be modified as it exists today. Specifically, the Second R&O in PR Docket 93-144 (FCC 97-223), adopted

6/23/97 @ para 80 reasons that applying the same emission mask standards to the lower 230 channels (lower 80 channels and 150 General Category channels) as to the upper 200 channels facilitates the use of common equipment and the combining of all such channels. It further states that Section 90.691 (the emission mask) would apply to "outer" channels used by a licensee "that create

out-of-band emissions that affect another licensee". The MO&O on reconsideration of the 800 MHz 1st R&O (FCC 97-224, adopted 6/23/97) at para 76 agreed with Erricson's recommendation to expand the emission mask provision

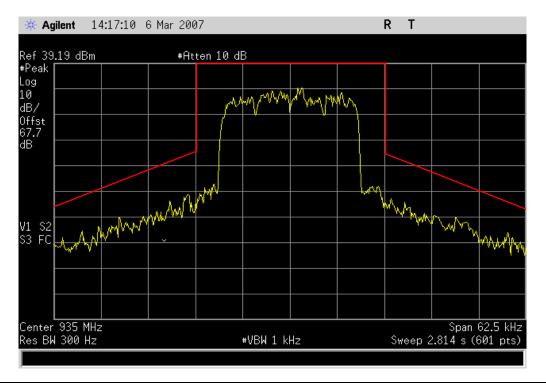
of Section 90.691 to "non-EA 800 MHz Part 90 CMRS systems". The decision was

based ostensibly on extending the flexibility of the 90.691 emission mask to incumbent licensees (non-EA licensees or non-auction winners) and to those non-SMR channels used by CMRS operators. The paragraph closes by stating that

neither Ericsson or Motorola believe that such relaxation will increase the amount of interference to adjacent channel licensees.

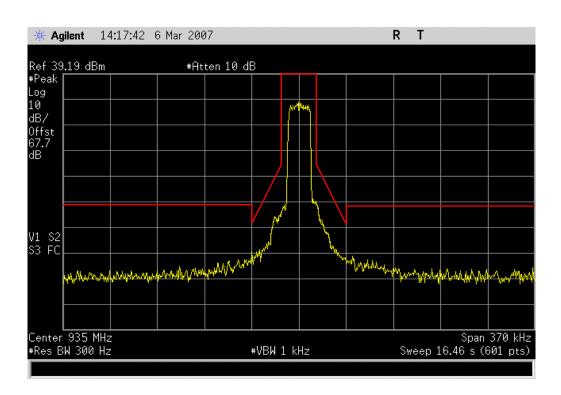
You'll note that there is some similarity between emission mask G (applicable

to equipment without audio low pass filters) under Section 90.210 and the emission mask required by Section 90.691. It is my interpretation that footnote 3 under Section 90.210 (the applicability of the emission mask

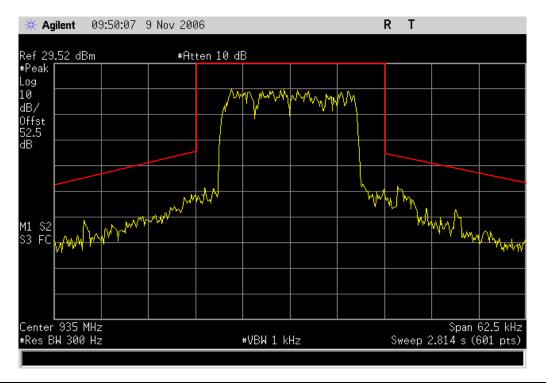

Section 90.691) was intended principally for Part 90 CMRS systems in the 800 MHz band to provide flexbility and consistency to those operators. As Section 90.210 is written, however, I don't see how we could legally prevent any 800 MHz licensee from using the more

flexibile emission mask under Section 90.691.

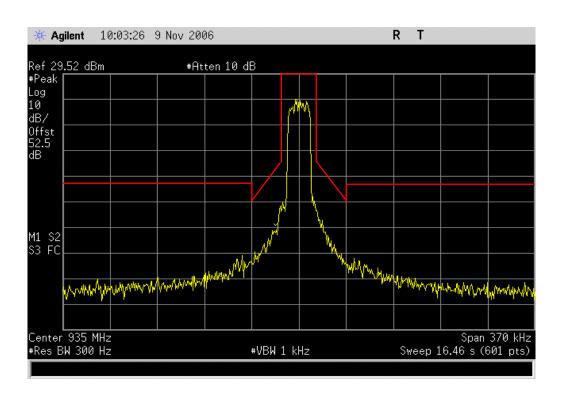
NORTHWEST		ENGOLONI MA	014		XMit 2006.08.25
EMC		EMISSION MA	SK		
	Γ: MC-Series iDEN Microcell High Po	wer		Work Order: RAFN00	67/R A FN0073
	r: Engineering unit	WO.		Date: 11/9/200	
	r: Radioframe Networks, Inc.			Temperature: 21°C	
Attendees	s: Erin Duleba			Humidity: 38%	
Projec	t: None			Barometric Pres.: 30.11	
Tested by	y: Greg Kiemel	Power:	-48VDC	Job Site: EV06/Of	fsite
TEST SPECIFICA	TIONS		Test Method		
FCC 90I:2005			ANSI/TIA/EIA-603-B-2002		
COMMENTS					
	talled as will be used in typical install	lations.			
DEVIATIONS FRO	OM TEST STANDARD				
Configuration #	1	AMU.Kip			
		Signature			
			Value	Limit	Results
Low Channel					
	High Power				
	< 37.5 kHz Fc		N/A	See Table	Pass
	> 37.5 kHz Fc		N/A	See Table	Pass
	Mid Power		N1/A	0 T-bl-	D
	< 37.5 kHz Fc		N/A	See Table	Pass
	> 37.5 kHz Fc		N/A	See Table	Pass
	< 37.5 kHz Fc		N/A	See Table	Pass
	> 37.5 kHz Fc		N/A N/A	See Table	Pass
Mid Channel	> 37.3 KHZ 1 C		IV/A	See Table	газэ
WIIG OTIGITIES	High Power				
	< 37.5 kHz Fc		N/A	See Table	
	> 37.5 kHz Fc		N/A	See Table	Pass
	Mid Power				
	< 37.5 kHz Fc		N/A	See Table	Pass
	> 37.5 kHz Fc		N/A	See Table	Pass
	Low Power				
	< 37.5 kHz Fc		N/A	See Table	Pass
	> 37.5 kHz Fc		N/A	See Table	Pass
High Channel					
	High Power				
	< 37.5 kHz Fc		N/A	See Table	
	> 37.5 kHz Fc		N/A	See Table	Pass
	Mid Power				
	< 37.5 kHz Fc		N/A	See Table	Pass
	> 37.5 kHz Fc		N/A	See Table	Pass
	Low Power				
	< 37.5 kHz Fc		N/A	See Table	Pass
	> 37.5 kHz Fc		N/A	See Table	Pass


Low Channel, High Power, < 37.5 kHz Fc

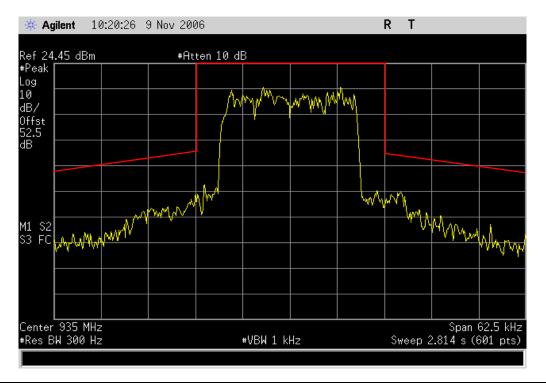
Result: Pass Value: N/A Limit: See Table


Low Channel, High Power, > 37.5 kHz Fc

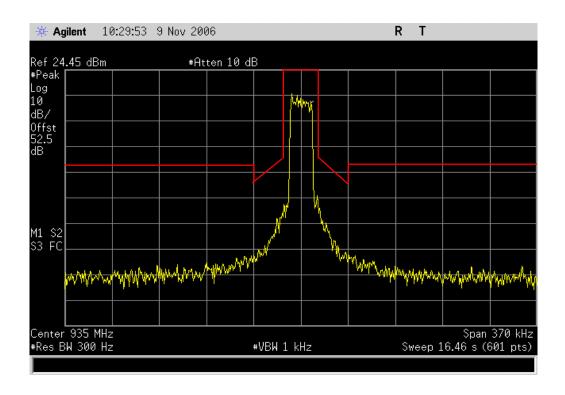
Result: Pass Value: N/A Limit: See Table


Low Channel, Mid Power, < 37.5 kHz Fc

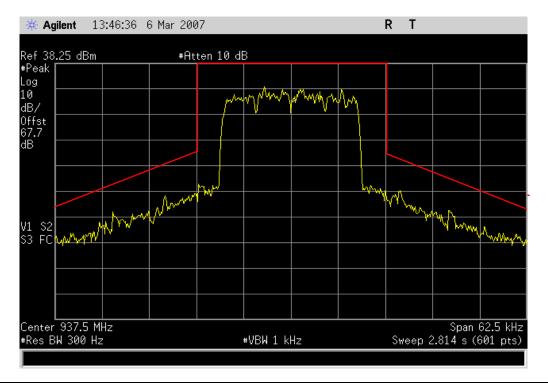
Result: Pass Value: N/A Limit: See Table


Low Channel, Mid Power, > 37.5 kHz Fc

Result: Pass Value: N/A Limit: See Table

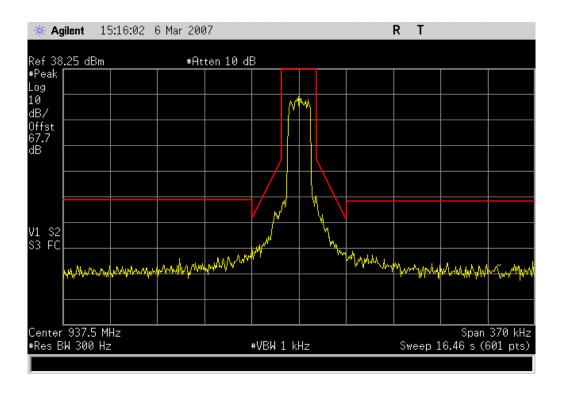

Low Channel, Low Power, < 37.5 kHz Fc

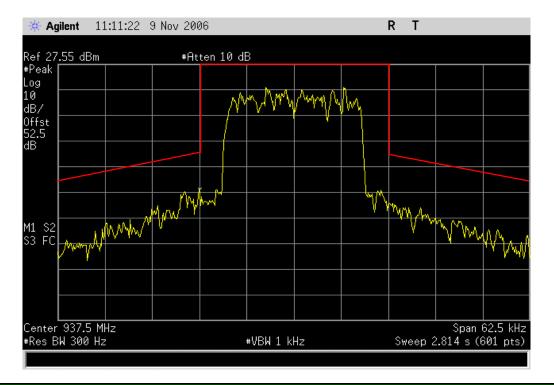
Result: Pass Value: N/A Limit: See Table



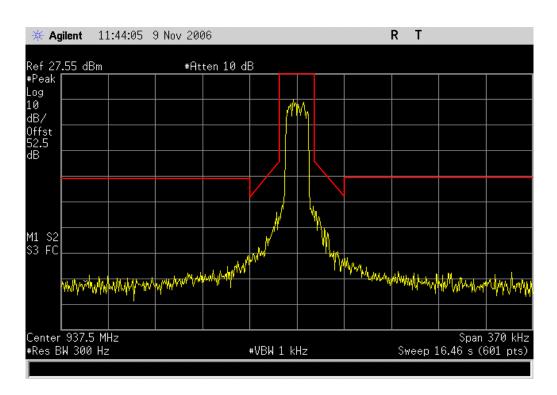
Low Channel, Low Power, > 37.5 kHz Fc

Result: Pass Value: N/A Limit: See Table

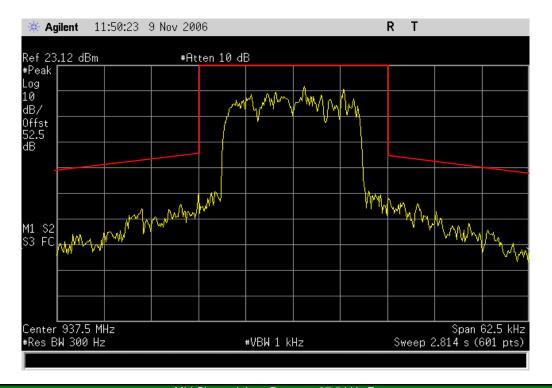



Mid Channel, High Power, > 37.5 kHz Fc

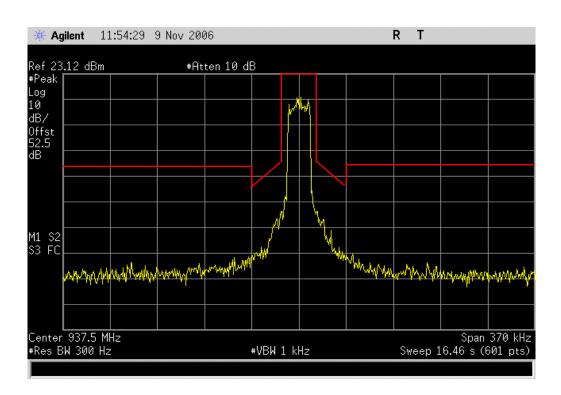
Result: Pass Value: N/A Limit: See Table


Mid Channel, Mid Power, < 37.5 kHz Fc

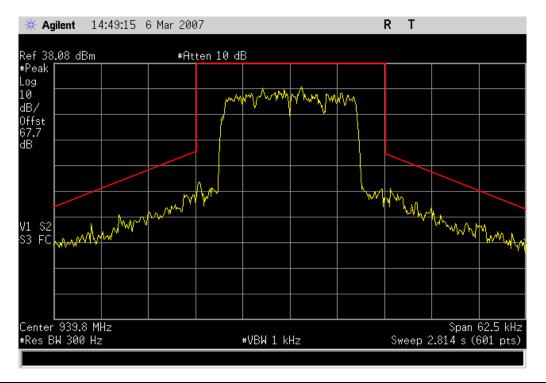
Result: Pass Value: N/A Limit: See Table


Mid Channel, Mid Power, > 37.5 kHz Fc

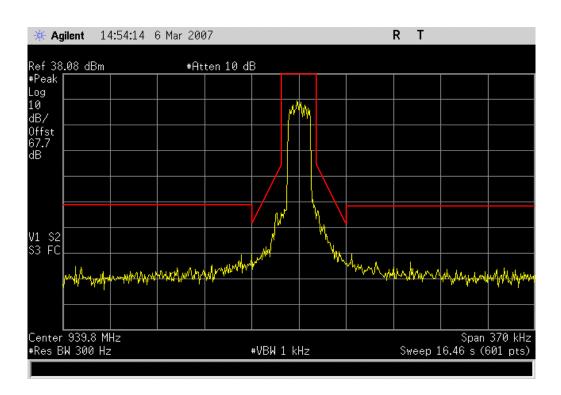
Result: Pass Value: N/A Limit: See Table


Mid Channel, Low Power, < 37.5 kHz Fc

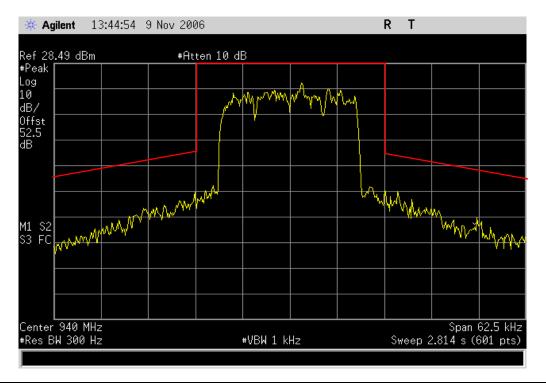
Result: Pass Value: N/A Limit: See Table


Mid Channel, Low Power, > 37.5 kHz Fc

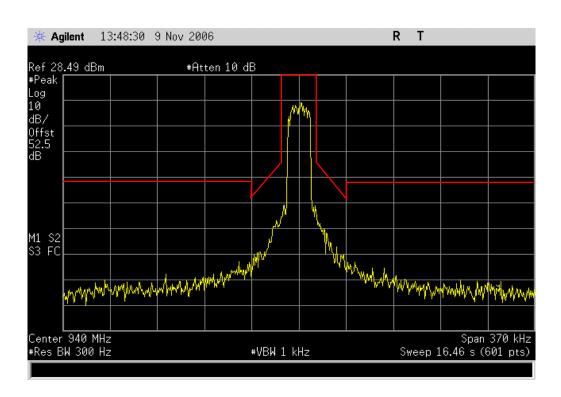
Result: Pass Value: N/A Limit: See Table


High Channel, High Power, < 37.5 kHz Fc

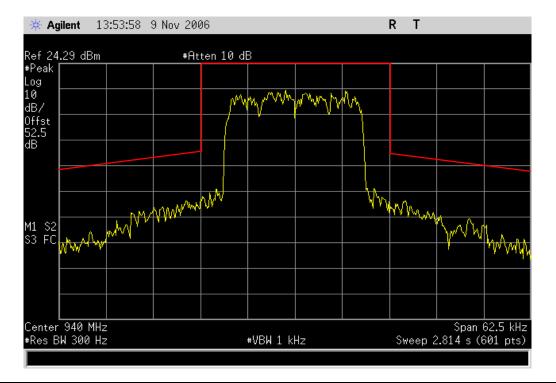
Result: Value: N/A Limit: See Table


High Channel, High Power, > 37.5 kHz Fc

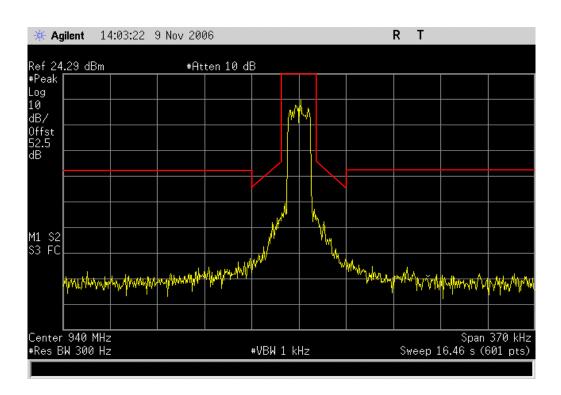
Result: Pass Value: N/A Limit: See Table


High Channel, Mid Power, < 37.5 kHz Fc

Result: Pass Value: N/A Limit: See Table


High Channel, Mid Power, > 37.5 kHz Fc

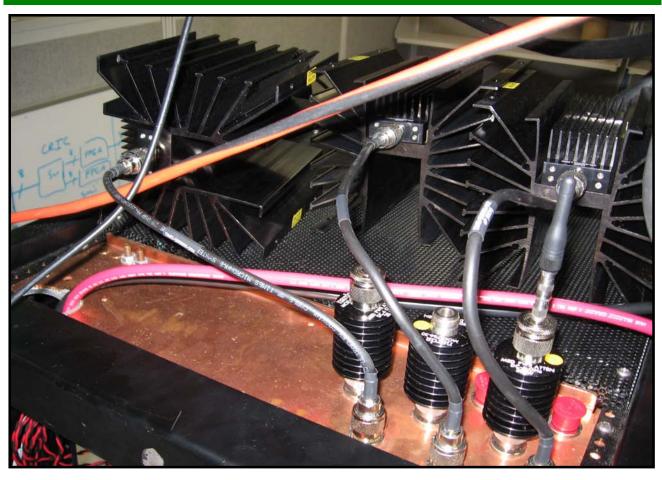
Result: Pass Value: N/A Limit: See Table


High Channel, Low Power, < 37.5 kHz Fc

Result: Pass Value: N/A Limit: See Table


High Channel, Low Power, > 37.5 kHz Fc

Result: Pass Value: N/A Limit: See Table



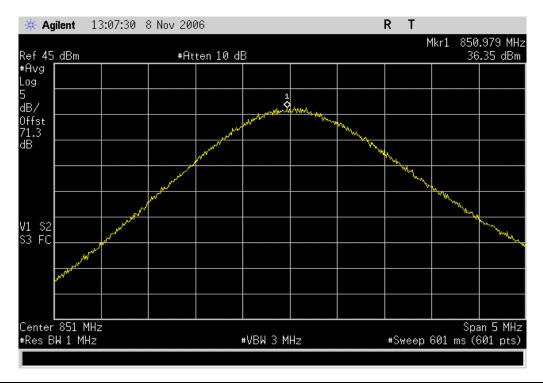
Frequency	Output Power	Power (P)	Attenuation for the range 12.5 kHz to 37.5 kHz from fc (dBc)				Attenuation >37.5 kHz from fc (dBc)	
(MHz)	(dBm)	Watts	50 + (10*log P)	116*log f = 12.5 kHz	g(f/6.1) f = 37.5 kHz	80	43 + (10*log P)	80
	39.19	8.30E+00	59.2	36.14	91.49	80	52.2	80
935.01875	25.52	3.56E-01	45.5	36.14	91.49	80	38.5	80
	19.62	9.16E-02	39.6	36.14	91.49	80	32.6	80
937.49375	38.25	6.68E+00	58.3	36.14	91.49	80	51.3	80
	25.04	3.19E-01	45.0	36.14	91.49	80	38.0	80
	18.62	7.28E-02	38.6	36.14	91.49	80	31.6	80
939.98175	38.05	6.38E+00	58.1	36.14	91.49	80	51.1	80
	25.60	3.63E-01	45.6	36.14	91.49	80	38.6	80
	18.80	7.59E-02	38.8	36.14	91.49	80	31.8	80

EMC

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

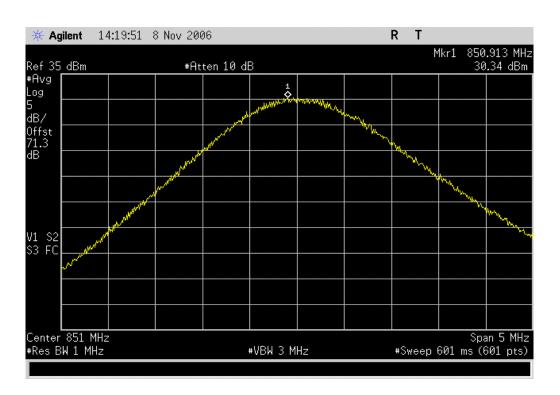
TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4407B	AAU	9/20/2006	12
Dual Directional Coupler	Amplifier Research	DC7154	IRD	2/23/2006	13
Power Sensor	Gigatronics	80701A	SPL	9/19/2006	12
Power Meter	Gigatronics	8651A	SPM	9/19/2006	12
Signal Generator	Hewlett-Packard	8648D	TGC	1/27/2006	13

MEASUREMENT UNCERTAINTY

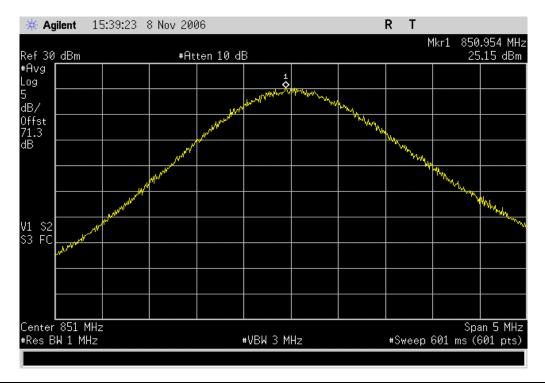

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

The output power was measured with the EUT set to low, medium, and high transmit frequencies within the allowable band, and three power levels (lowest, mid, and highest available). The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer through a directional coupler and attenuator to prevent analyzer overload. The measurement was made with an RMS average detector.

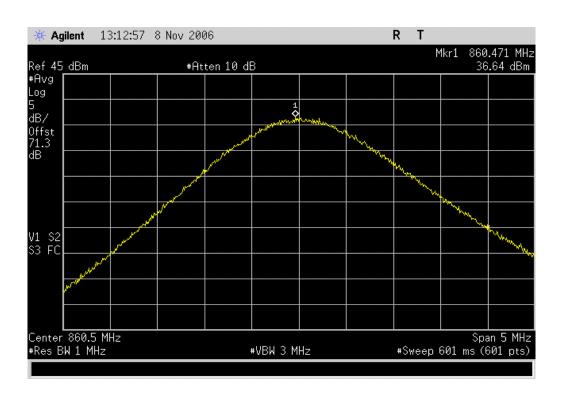

NORTHWEST				_			XMit 2006.08.25
EMC		OUTPU	JT POW	ER			
	: MC-Series iDEN Microce	Il High Dower			Work	Order: RAFN0067	
	: Engineering unit	ii riigii rowei			VVOIR	Date: 11/08/06	
	: Radioframe Networks, In	C.			Tempe	erature: 22°C	
	: Erin Duleba	<u>. </u>				midity: 43%	
Project						Pres.: 29.98	
	: Rod Peloquin		Power:	-48VDC		b Site: EV06	
TEST SPECIFICAT				Test Method			
FCC 901:2005				ANSI/TIA/EIA-603-B:200	2		
COMMENTS							
800 Band							
DEVIATIONS FRO	M TEST STANDARD						
		10	100	-			
Configuration #	1	Moeling	Le Releng				
		Signature					
				V	alue	Limit	Results
Low Channel							
	High Power				35 dBm	N/A	Pass
	Mid Power				84 dBm	N/A	Pass
	Low Power			25.1	5 dBm	N/A	Pass
Mid Channel							_
	High Power				64 dBm	N/A	Pass
	Mid Power				27 dBm	N/A	Pass
	Low Power			25.2	25 dBm	N/A	Pass
High Channel							
	High Power				2 dBm	N/A	Pass
	Mid Power				76 dBm	N/A	Pass
	Low Power			24.8	32 dBm	N/A	Pass

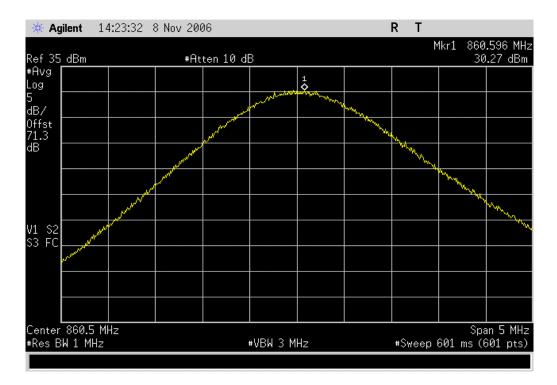
Low Channel, High Power				
Result: Pass	Value: 36.35 dBm	Limit:	N/A	



Low Channel, Mid Power

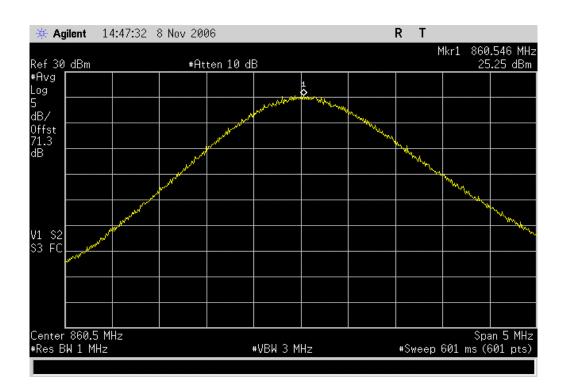
Result: Pass Value: 30.34 dBm Limit: N/A

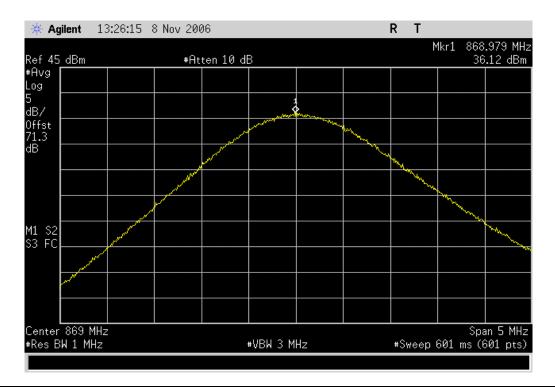




Mid Channel, High Power

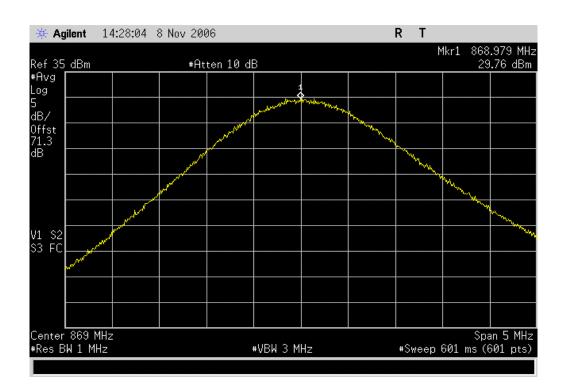
Result: Pass Value: 36.64 dBm Limit: N/A

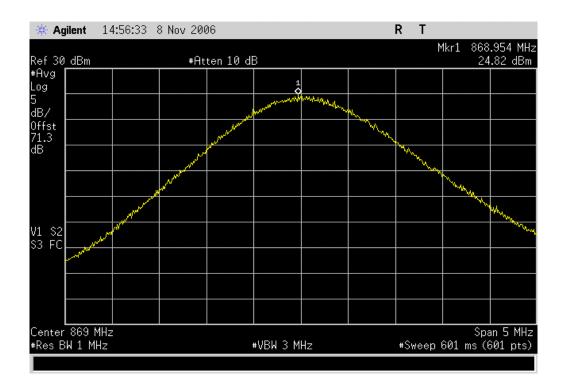


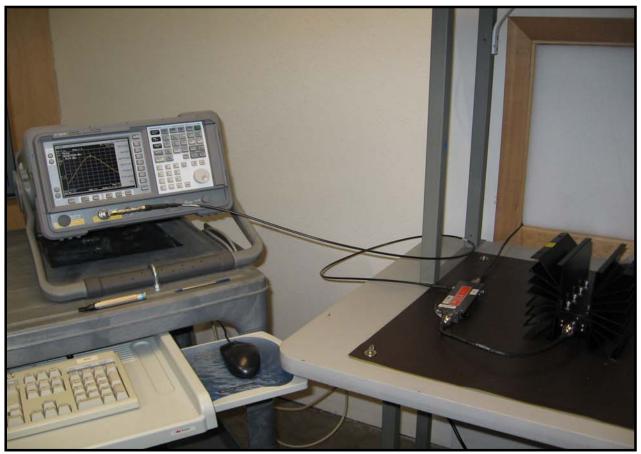


Mid Channel, Low Power

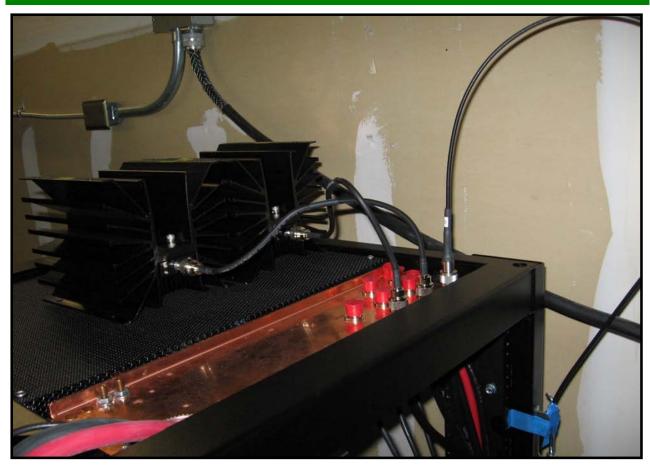
Result: Pass Value: 25.25 dBm Limit: N/A






High Channel, Mid Power

Result: Pass Value: 29.76 dBm Limit: N/A

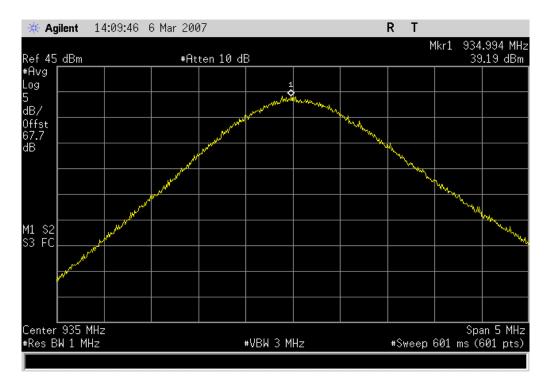


High Channel, Low Power					
Result: Pass	Value: 24.82 dBm	Limit:	N/A		

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

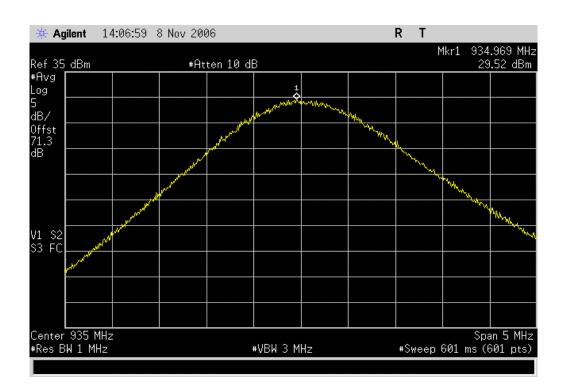
TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4407B	AAU	9/20/2006	12
Dual Directional Coupler	Amplifier Research	DC7154	IRD	2/23/2006	13
Power Sensor	Gigatronics	80701A	SPL	9/19/2006	12
Power Meter	Gigatronics	8651A	SPM	9/19/2006	12
Signal Generator	Hewlett-Packard	8648D	TGC	1/27/2006	13
Attenuator	Inmet	2N100W-30dB		NCR	
Attenuator	Inmet	2N200W-30dB		NCR	
Attenuator	Coaxicom	66702 5910-6	ATZ	2/23/2007	13

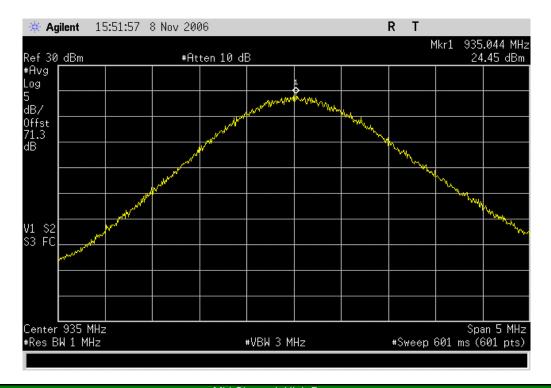
MEASUREMENT UNCERTAINTY


Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

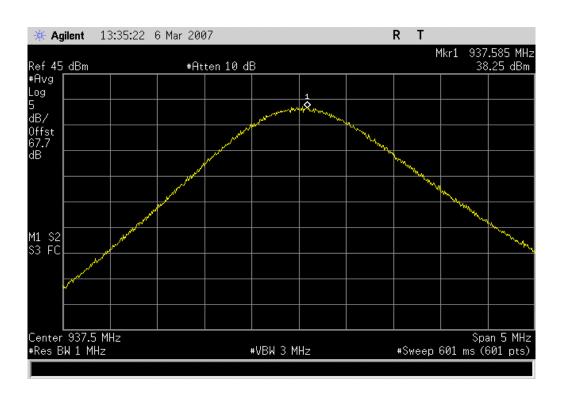
TEST DESCRIPTION

The output power was measured with the EUT set to low, medium, and high transmit frequencies within the allowable band, and three power levels (lowest, mid, and highest available). The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer through a directional coupler and attenuator to prevent analyzer overload. The measurement was made with an RMS average detector.


NORTHWEST							XMit 2006.08.25
		OUTPU	T POW	ER			
EMC							
	MC-Series iDEN Microce	ll High Power			V	Work Order: RAFN00	
	: Engineering unit					Date: 11/8/200	6 & 3/6/2007
	Radioframe Networks, In	c.			Te	emperature: 22°C	
	: Erin Duleba				_	Humidity: 43%	
Project					Baron	netric Pres.: 29.98	
	Rod Peloquin		Power:	-48VDC		Job Site: EV06/ O	ffsite
TEST SPECIFICAT	TONS			Test Method			
FCC 901:2005				ANSI/TIA/EIA-603-B:200	12		
COMMENTS							
900 Band							
DEVIATIONS FRO	M TEST STANDARD						
		R-0.	Le Reling				
Configuration #	1	The state of the s	in seeing				
		Signature					
							5 "
l Ob l				v	/alue	Limit	Results
Low Channel	High Power			20.4	19 dBm	N/A	Pass
	Mid Power				19 dBm	N/A N/A	
	Low Power				o∠ aBm 45 dBm	N/A N/A	Pass Pass
Mid Channel	Low Power			24.4	45 UDIII	IN/A	Pass
Mid Channel	High Davis			20.4	25 dBm	N/A	Pass
	High Power						
	Mid Power				55 dBm	N/A	Pass
Link Ohanaal	Low Power			23.7	12 dBm	N/A	Pass
High Channel	11: 1 5			20.4	20. ID	N 1/A	
	High Power				08 dBm	N/A	Pass
	Mid Power				49 dBm	N/A	Pass
	Low Power			24.2	29 dBm	N/A	Pass


Low Channel, Mid Power

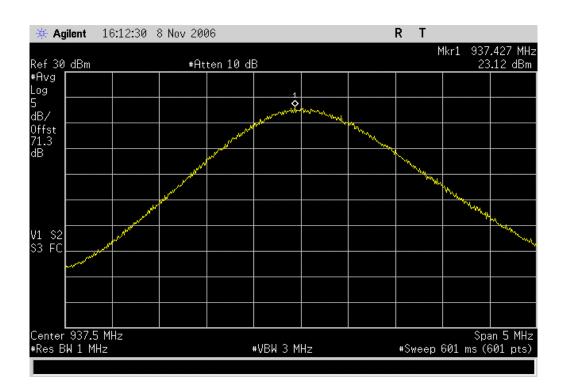
Result: Pass Value: 29.52 dBm Limit: N/A

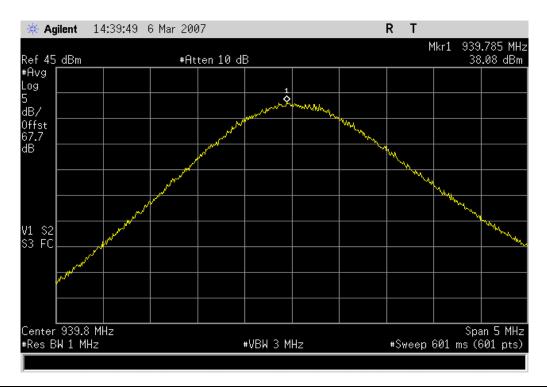

Low Channel, Low Power

Result: Pass Value: 24.45 dBm Limit: N/A

Mid Channel, High Power

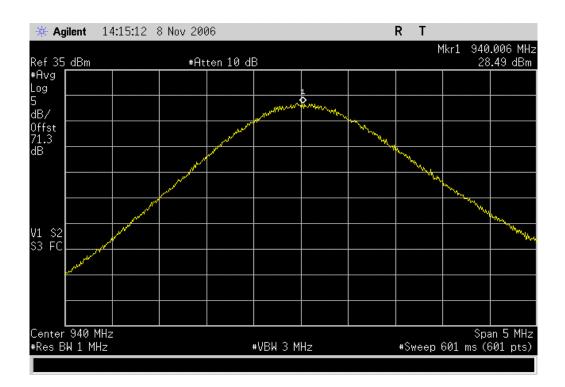
Result: Pass Value: 38.25 dBm Limit: N/A

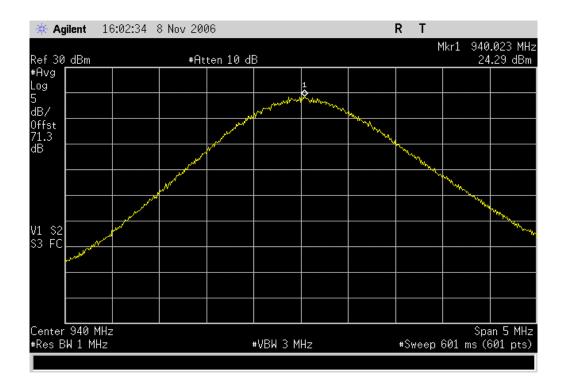


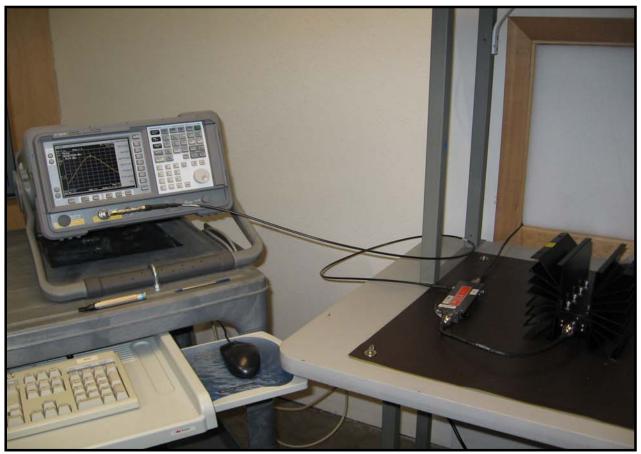


Mid Channel, Low Power

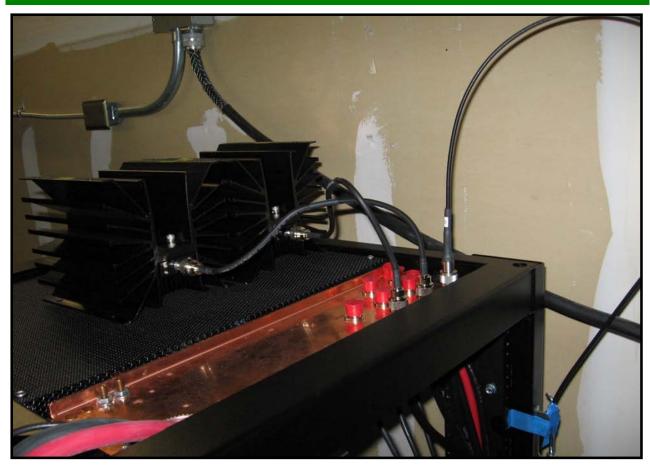
Result: Pass Value: 23.12 dBm Limit: N/A



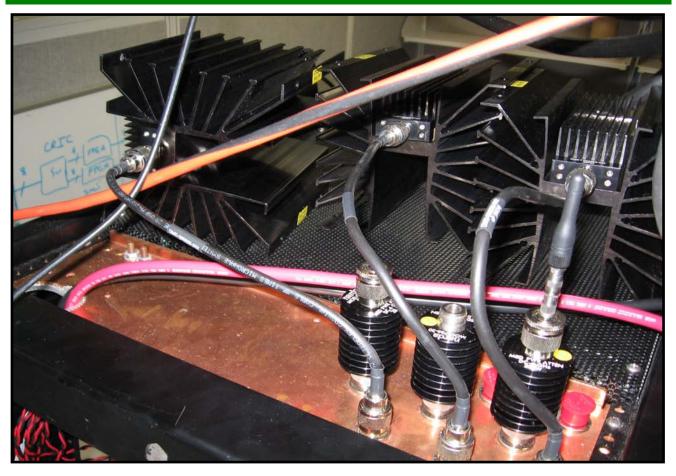



High Channel, Mid Power

Result: Pass Value: 28.49 dBm Limit: N/A



High Channel, Low Power					
Result: Pass	Value: 24.29 dBm	Limit:	N/A		



Frequency Stability

Revision 10/1/03

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:

Single channels within the center of the allowable 800MHz and 900MHz bands

Operating Modes Investigated:

Typical

Data Rates Investigated:

96 kBps at 64-QAM

Output Power Setting(s) Investigated:

Maximum ~ 14 dBm

Power Input Settings Investigated:

-48Vdc

Software\Firmware Applied During Test						
Exercise software Vx Works Version N/A						
Description						
The system was tested using standard operating production software to exercise the functions of the						
device during the testing.						

EUT and Peripherals			
Description	Manufacturer	Model/Part Number	Serial Number
EUT- Multi-Channel RadioBlade (MCRB	Radioframe Networks, Inc.	176-0860-00	14106110148
EUT- Multi-Channel RadioBlade (MCRB	Radioframe Networks, Inc.	176-0860-00	14106110160
EUT- Multi-Channel RadioBlade (MCRB	Radioframe Networks, Inc.	176-0860-00	14106110151
EUT- Multi-Channel RadioBlade (MCRB	Radioframe Networks, Inc.	176-0860-00	14106110146
EUT- Multi-Channel RadioBlade (MCRB	Radioframe Networks, Inc.	176-0860-00	14106110173
EUT- Multi-Channel RadioBlade (MCRB	Radioframe Networks, Inc.	176-0860-00	14106110174
MC-15 SERIES DUAL BAND SYSTEM (3 SE	Radioframe Networks, Inc.	176-7970-xx	14106050325
FRU, DUAL BAND RF SHELF	Radioframe Networks, Inc.	176-0970-xx	14105510109
FRU, DUAL BAND RF SHELF	Radioframe Networks, Inc.	176-0970-xx	14105510110
FRU, DUAL BAND RF SHELF	Radioframe Networks, Inc.	176-0970-xx	14105510113
RadioBlade Shelf (RBS)	Radioframe Networks, Inc.	176-0535-xx	14106030127
MC-15 BTS Interface Chassis (BIC)	Radioframe Networks, Inc.	176-0900-xx	14106050474
MC Common RadioFrame Interface Card	Radioframe Networks, Inc.	176-7540-xx	041053919XV
MC Common RadioFrame Interface Card	Radioframe Networks, Inc.	176-7540-xx	041053919W3
Base Processing Card (BPC)	Radioframe Networks, Inc.	176-7570-xx	04105411HGM
Base Processing Card (BPC)	Radioframe Networks, Inc.	176-7570-xx	04105401GP1
Base Processing Card (BPC)	Radioframe Networks, Inc.	176-7570-xx	04105421JKZ
MC-15 Airlink Interface Chassis (Al	Radioframe Networks, Inc.	176-0800-xx	14106050522
BPC W/ LC SPAM	Radioframe Networks, Inc.	176-7565-xx	04105411HC0
SPAM	Radioframe Networks, Inc.	176-7510-xx	Unknown
SPAM	Radioframe Networks, Inc.	176-7510-xx	Unknown
BPC W/ LC SPAM	Radioframe Networks, Inc.	176-7565-xx	04105411HJX
SPAM	Radioframe Networks, Inc.	176-7510-xx	Unknown
SPAM	Radioframe Networks, Inc.	176-7510-xx	Unknown
BPC W/ LC SPAM	Radioframe Networks, Inc.	176-7565-xx	04105411HLH
SPAM	Radioframe Networks, Inc.	176-7510-xx	Unknown
SPAM	Radioframe Networks, Inc.	176-7510-xx	Unknown
Ethernet Rear Transition Module (ER	Radioframe Networks, Inc.	176-7562-xx	14105320204
Ethernet Rear Transition Module (ER	Radioframe Networks, Inc.	176-7562-xx	14105320203
Coaxial RMII Transceiver Card (CRTC	Radioframe Networks, Inc.	176-0820-xx	14105480250

Remote Equipment Outside of Test Setup Boundary							
Description	Manufacturer	Model/Part Number	Serial Number				
Site Simulator	Radioframe Networks, Inc.	N/a	N/a				
Site Controller	Motorola, Inc.	CCN1008N	CAF030LTC4				
GPS Antenna	Hewlett-Packard	8532A	901				
DC Power Supply	Electronic Measurements, Inc.	EMS 60-33	20K11738				

Equipment isolated from the EUT so as not to contribute to the measurement result is considered to be outside the test setup boundary

Frequency Stability

Revision 10/1/03

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Power	No	8.0	No	MC-15 SERIES DUAL BAND SYSTEM	DC Supply
BNC	Yes	30.0	No	ERTM	Site Simulator
BNC	Yes	30.0	No	Site Controller	Site Simulator
BNC	Yes	3.0	No	GPS Antenna	Site Controller
Ethernet	No	3.0	No	Site Controller	ERTM

Measurement Equipment					
Description	Manufacturer	Model	Identifier	Last Cal	Interval
Spectrum Analyzer	Hewlett-Packard	8593E	AAN	01/25/2006	13 mo
Multimeter	Tektronix	DMM912	MMH	12/08/2005	13 mo
DC Power Supply	Sorensen	DCR60-45B	TPB	NCR	NA
Chamber, Temp./Humidity Chamber	Cincinnati Sub Zero (CSZ)	ZH-32-2-2-H/AC	TBA	08/24/2005	12 mo
Chamber Temp. & Humidity Controller	ESZ / Eurotherm	Dimension II	TBC	08/24/2005	12 mo

Test Description

Requirement: Per 47 CFR 15.255, the frequency stability shall be measured with variation of ambient temperature and primary supply voltage. A spectrum analyzer or frequency counter can be used to measure the frequency stability. If using a spectrum analyzer, it must have a precision frequency reference that exceeds the stability requirement of the transmitter. A temperature / humidity chamber is required.

Configuration:

Variation of Supply Voltage

The primary supply voltage was varied from 85% to 115% of nominal. The EUT can only be operated from the public AC mains, so an DC lab supply was used to vary the supply voltage from 115% to 85% -48V DC.

Variation of Ambient Temperature

Using a temperature chamber, the transmit frequency was recorded at the extremes of the specified temperature range (-20° to +50° C) and at 10°C intervals.

Measurements were made at the single transmit frequency. The antenna is integral to the EUT, so a radiated measurement was made using a spectrum analyzer and a near field probe. The spectrum analyzer is equipped with a precision frequency reference that exceeds the stability requirement of the EUT.

EMC FREQUENCY STABILITY						Rev BETA 01/30/01	
EUT:	MC-Series			Work Order:			
Serial Number:	Various			Date:	03/21/06		
Customer:	Radioframe Networks, Inc.			Temperature:	21°C		
Attendees:	Dean Busch Tested by: Rod Pelqouin			Humidity:			
Customer Ref. No.:	None	Power:	-48 Vdc	Job Site:	Off-site		
TEST SPECIFICATION							
Specification:	FCC 90I Year: 2005	Method:	ANSI/TIA/EIA-603-B	Year:	2002		
SAMPLE CALCULATION	ons .						
Transmitting mid band	EUT OPERATING MODES Transmitting mid band DEVIATIONS FROM TEST STANDARD None						
RESULTS	ability of 1 part per million (ppm) for variations of temperatu	11 7 6 7	V STADILITY				
RESULTS MINIMUM FREQUENCY STABILITY Pass 0.3 ppm							
Morly le Relings Tested By:							
DESCRIPTION OF TES	DESCRIPTION OF TEST						
	Frequency Stability						

Frequency Stability with Variation of Ambient Temperature (Primary Supply = 48 Vdc)

Temp	Assigned Frequency	Measured Frequency	Tolerance	Specification
(°C)	(MHz)	(MHz)	(ppm)	(ppm)
50	860.55000	860.550037	0.04	1
40	860.55000	860.550062	0.07	1
30	860.55000	860.550037	0.04	1
20	860.55000	860.550037	0.04	1
10	860.55000	860.550250	0.29	1
0	860.55000	860.550037	0.04	1
-10	860.55000	860.550049	0.06	1
-20	860.55000	860.550049	0.06	1
-30	860.55000	860.550049	0.06	1

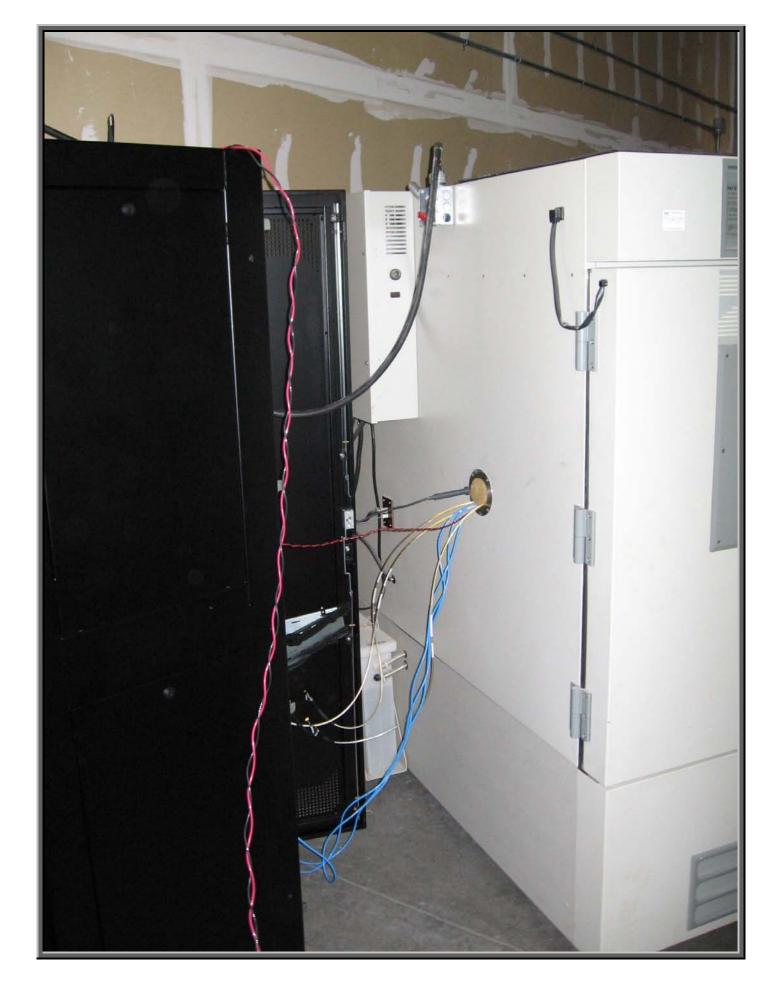
Frequency Stability with Variation of Primary Supply Voltage (Ambient Temperature = 20°C)

Voltage (Vdc)	Assigned Frequency (MHz)	Measured Frequency (MHz)	Tolerance (ppm)	Specification (ppm)
55.2 (115%)	860.55000	860.550062	0.07	1
52.8 (110%)	860.55000	860.550037	0.04	1
50.4 (105%)	860.55000	860.550050	0.06	1
48 (100%)	860.55000	860.550037	0.04	1
45.6 (95%)	860.55000	860.550050	0.06	1
43.2 (90%)	860.55000	860.550000	0.00	1
40.8 (85%)	860.55000	860.55000	0.00	1

EIVIC 1 TEQUE TO 1 STABILITY 01/2000						Rev BETA 01/30/01	
EUT:	MC-Series				Work Order:	RAFN0060	
Serial Number:	Various				Date:	03/21/06	
Customer:	Customer: Radioframe Networks, Inc.						
Attendees:	Dean Busch	Rod Pelqouin	Humidity:	32%			
Customer Ref. No.:	None		Power:	-48 Vdc	Job Site:	EV06 & EV09	
TEST SPECIFICATIONS	5						
Specification:	FCC 90I	Year: 2005	Method:	ANSI/TIA/EIA-603-B	Year:	2002	
SAMPLE CALCULATIO	NS						
EUT OPERATING MOD Transmitting mid 900M DEVIATIONS FROM TE None REQUIREMENTS	REQUIREMENTS						
RESULTS	Minimum frequency stability of 1 part per million (ppm) for variations of temperature and supply voltage (DC) RESULTS MINIMUM FREQUENCY STABILITY						
Pass							
Tested By:							
DESCRIPTION OF TEST	T						
		Frequenc	y Stability				

Frequency Stability with Variation of Ambient Temperature (Primary Supply = -48 Vdc)

Temp	Assigned Frequency	Measured Frequency	Tolerance	Specification
(°C)	(MHz)	(MHz)	(ppm)	(ppm)
50	937.46875	937.468775	0.03	1
40	937.46875	937.468800	0.05	1
30	937.46875	937.468800	0.05	1
20	937.46875	937.468787	0.04	1
10	937.46875	937.468763	0.01	1
0	937.46875	937.468787	0.04	1
-10	937.46875	937.468763	0.01	1
-20	937.46875	937.468763	0.01	1
-30	937.46875	937.468775	0.03	1


Frequency Stability with Variation of Primary Supply Voltage (Ambient Temperature = 20°C)

Voltage (Vdc)	Assigned Frequency (MHz)	Measured Frequency (MHz)	Tolerance (ppm)	Specification (ppm)
55.2 (115%)	937.46875	937.468738	0.01	1
52.8 (110%)	937.46875	937.468763	0.01	1
50.4 (105%)	937.46875	937.468763	0.01	1
48 (100%)	937.46875	937.468775	0.03	1
45.6 (95%)	937.46875	937.468775	0.03	1
43.2 (90%)	937.46875	937.468775	0.03	1
40.8 (85%)	937.46875	937.468775	0.03	N/A

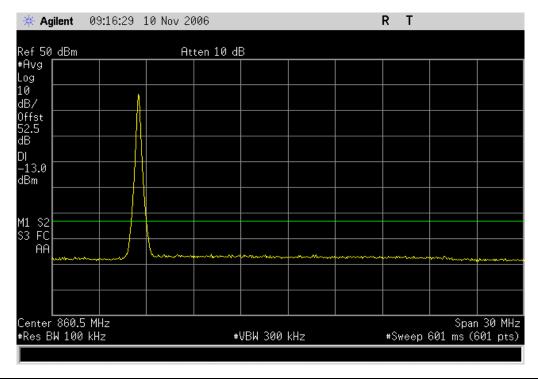
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT						
Description	Manufacturer	Model	ID	Last Cal.	Interval	
Dual Directional Coupler	Amplifier Research	DC7154	IRD	2/23/2006	13	
Spectrum Analyzer	Agilent	E4407B	AAU	9/20/2006	12	

MEASUREMENT UNCERTAINTY

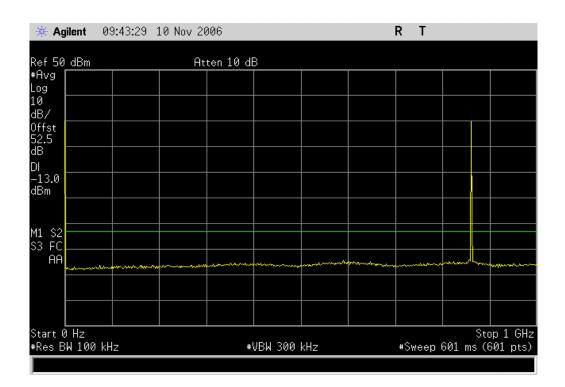
Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

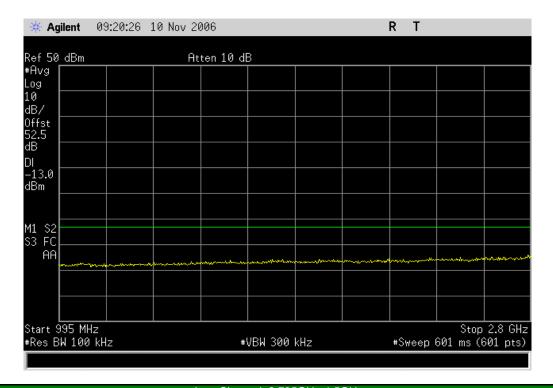

A spectrum analyzer was used to scan from 0 to 9 GHz. A 100 kHz resolution bandwidth was used. No video filtering was employed. A directional coupler was used on the RF input of the spectrum analyzer.

Testing also included the three carrier intermodulation test specified by the FCC. Two modulated carriers near the start of the operational band are transmitting at full power, and one near the opposite end of the band is also transmitting at full power.

EMC	SPURIOUS EMIS	SSIONS AT ANTENNA TERM	IINALS	7000 2000.00.20
EUT	: MC-Series iDEN Microcell High Power		Work Order: RAFN0	067
	r: Engineering unit		Date: 11/10/0	6
	r: Radioframe Networks, Inc.		Temperature: 22°C	
	Erin Duleba		Humidity: 34%	
	t: None		Barometric Pres.: 29.89	
	/: Greg Kiemel	Power: -48VDC	Job Site: EV06	
TEST SPECIFICAT	HONS	Test Method		
FCC 90I:2005		ANSI/TIA/EIA-603-B:2002	:	
COMMENTS				
800 MHz band				
DEVIATIONS FRO	DM TEST STANDARD			
		atus ADV. K.P		
Configuration #	1 Sign	ature		
		Va	ulue Limit	Results
Low Channel				
	In Band	<-25 dBm	≤-13 dBm	Pass
	0-1GHz	<-25 dBm	≤-13 dBm	Pass
	995MHz-2.8GHz	<-25 dBm	≤-13 dBm	Pass
	2.795GHz-4.5GHz	<-25 dBm	≤-13 dBm	Pass
	4.495GHz-6GHz	<-25 dBm	≤-13 dBm	Pass
	5.995GHz-7.5GHz 7.495GHz-9GHz	<-25 dBm <-25 dBm	≤-13 dBm	Pass Pass
Mid Channel	7.493GHZ-9GHZ	<-25 UBIII	≤-13 dBm	Pass
Mild Charmer	In Band	<-25 dBm	≤-13 dBm	Pass
	0-1GHz	<-25 dBm	≤-13 dBm	Pass
	995MHz-2.8GHz	<-25 dBm	≤-13 dBm	Pass
	2.795GHz-4.5GHz	<-25 dBm	≤-13 dBm	Pass
	4.495GHz-6GHz	<-25 dBm	≤-13 dBm	Pass
	5.995GHz-7.5GHz	<-25 dBm	≤-13 dBm	Pass
	7.495GHz-9GHz	<-25 dBm	≤-13 dBm	Pass
High Channel				
	In Band	<-25 dBm	≤-13 dBm	Pass
	0-1GHz	<-25 dBm	≤-13 dBm	Pass
	995MHz-2.8GHz	<-25 dBm	≤-13 dBm	Pass
	2.795GHz-4.5GHz	<-25 dBm	≤-13 dBm	Pass
	4.495GHz-6GHz	<-25 dBm	≤-13 dBm	Pass
	5.995GHz-7.5GHz	<-25 dBm	≤-13 dBm	Pass
	7.495GHz-9GHz	<-25 dBm	≤-13 dBm	Pass
3 Channel Intermod				
	In Band	<-25 dBm	≤-13 dBm	Pass
	0-1GHz	<-25 dBm	≤-13 dBm	Pass
	995MHz-2.8GHz	<-25 dBm	≤-13 dBm	Pass
	2.795GHz-4.5GHz	<-25 dBm	≤-13 dBm	Pass
	4.495GHz-6GHz 5.995GHz-7.5GHz	<-25 dBm <-25 dBm	≤-13 dBm ≤-13 dBm	Pass Pass
	5.995Gnz-7.5Gnz 7.495GHz-9GHz	<-25 dBm	≤-13 dBm	Pass
	1TOOOT 12-OOI 12	~-20 ubiii	⊒- 10 UDIII	1 433

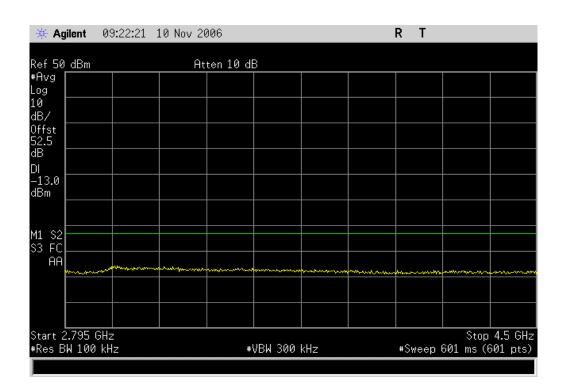

Low Channel, In Band

Result: Pass Value: <-25 dBm Limit: ≤-13 dBm

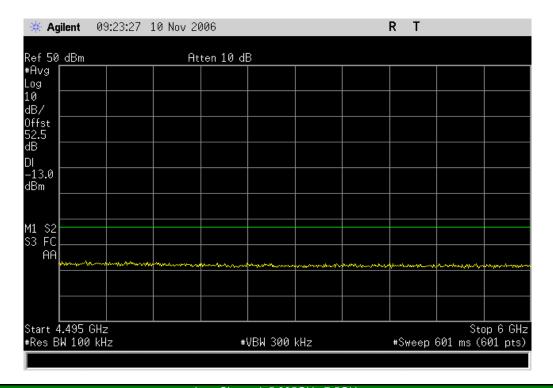


Low Channel, 0-1GHz

Result: Pass Value: <-25 dBm Limit: ≤-13 dBm

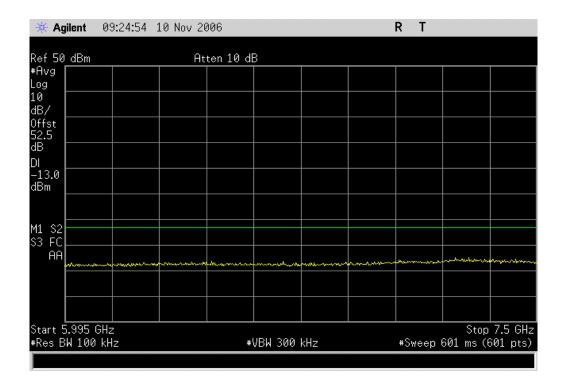


	Low Channel, 995MHz-2.8GHz		
Result: Pass	Value: <-25 dBm	Limit:	≤-13 dBm

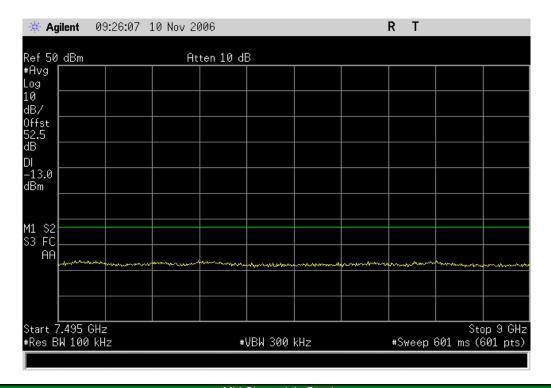


 Low Channel, 2.795GHz-4.5GHz

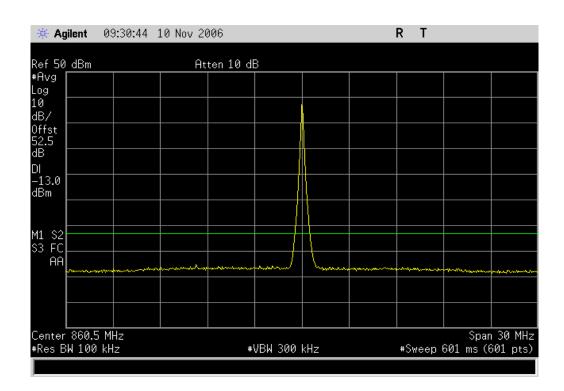
 Result: Pass
 Value: <-25 dBm</th>
 Limit: ≤-13 dBm



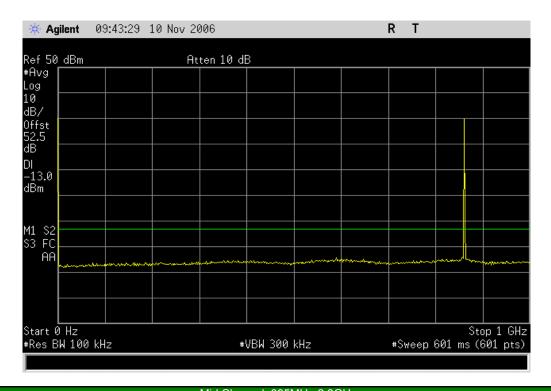
	Low Channel, 4.495GHz-6GHz	
Result: Pass	Value: <-25 dBm	Limit: ≤-13 dBm



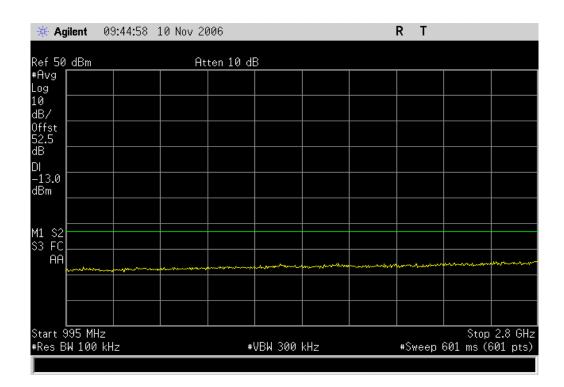
 Low Channel, 5.995GHz-7.5GHz


 Result: Pass
 Value: <-25 dBm</th>
 Limit: ≤-13 dBm

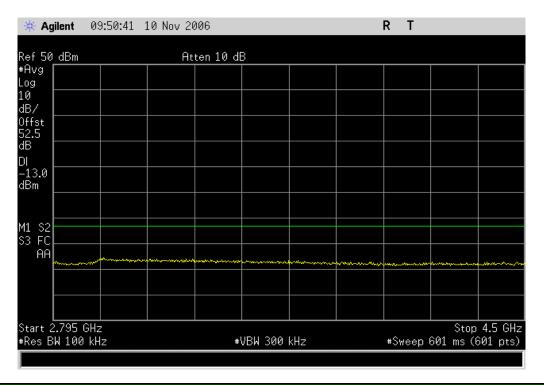
	Low Channel, 7.495GHz-9GHz		
Result: Pass	Value: <-25 dBm	Limit:	≤-13 dBm



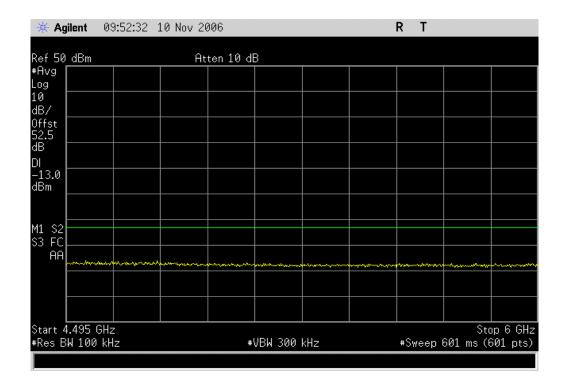
Mid Channel, In BandResult: PassValue: <-25 dBm</th>Limit: ≤-13 dBm


Mid Channel, 0-1GHz

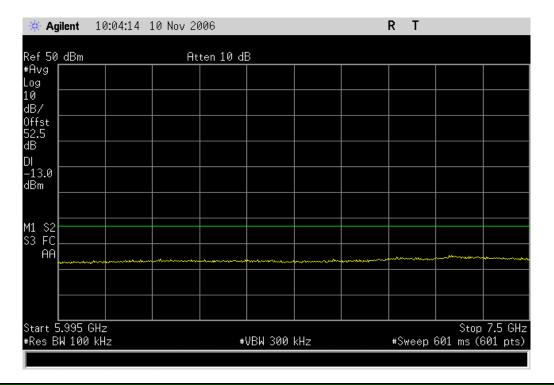
Result: Pass Value: <-25 dBm Limit: ≤-13 dBm


 Mid Channel, 995MHz-2.8GHz

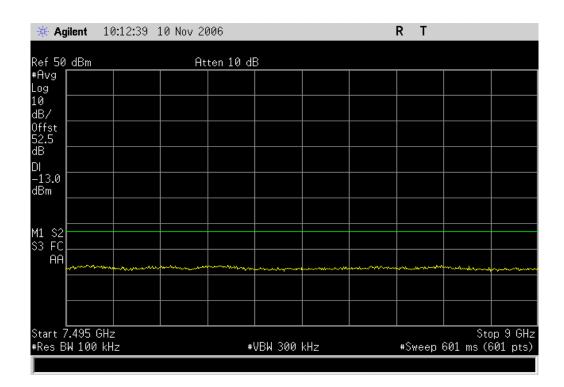
 Result: Pass
 Value: <-25 dBm</th>
 Limit: ≤-13 dBm


Mid Channel, 2.795GHz-4.5GHz

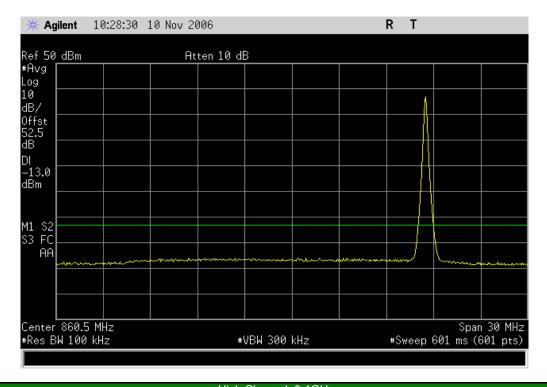
Result: Pass Value: <-25 dBm Limit: ≤-13 dBm


Mid Channel, 4.495GHz-6GHz

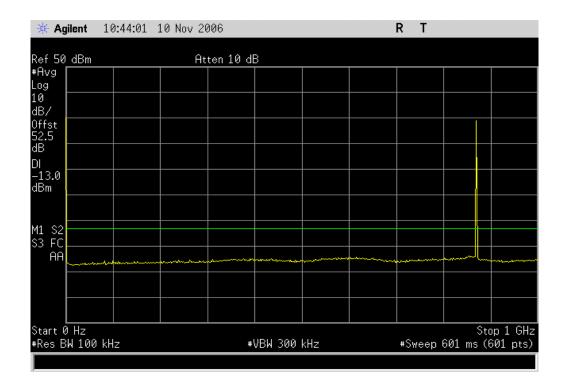
Result: Pass Value: <-25 dBm Limit: ≤-13 dBm


Mid Channel, 5.995GHz-7.5GHz

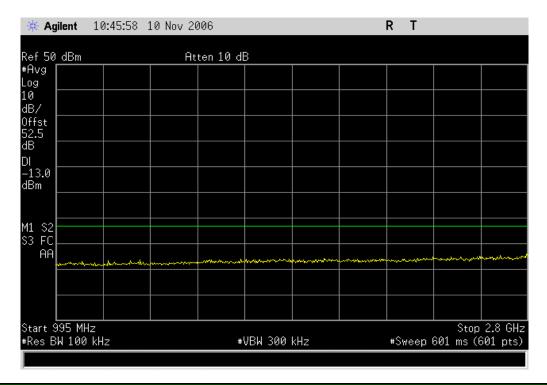
Result: Pass Value: <-25 dBm Limit: ≤-13 dBm


Mid Channel, 7.495GHz-9GHz

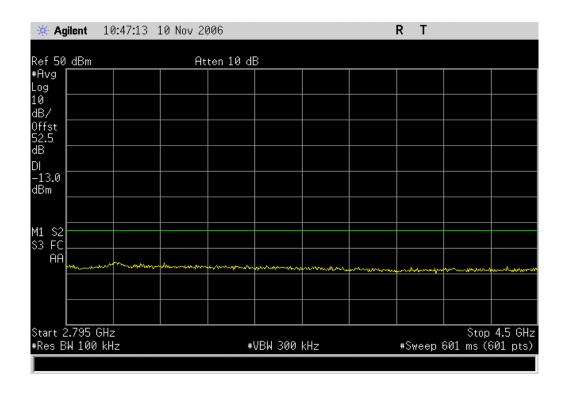
Result: Pass Value: <-25 dBm Limit: ≤-13 dBm


High Channel, In Band

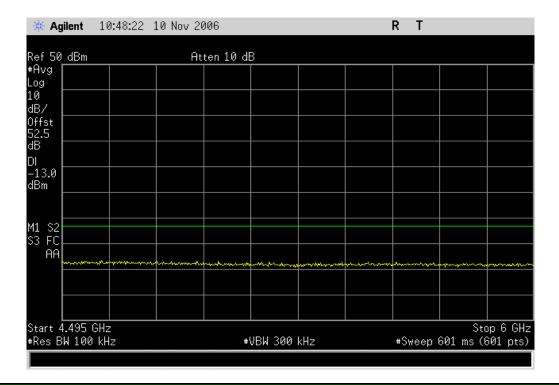
Result: Pass Value: <-25 dBm Limit: ≤-13 dBm


High Channel, 0-1GHz

Result: Pass Value: <-25 dBm Limit: ≤-13 dBm

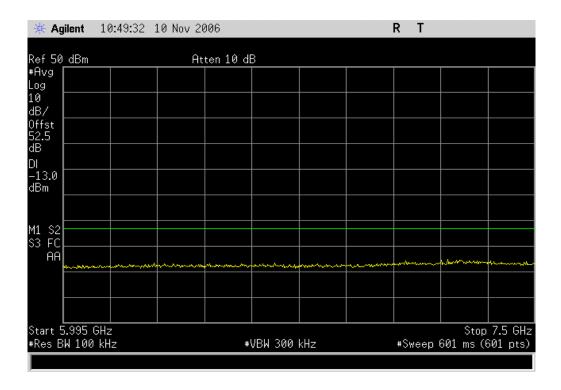

High Channel, 995MHz-2.8GHz

Result: Pass Value: <-25 dBm Limit: ≤-13 dBm

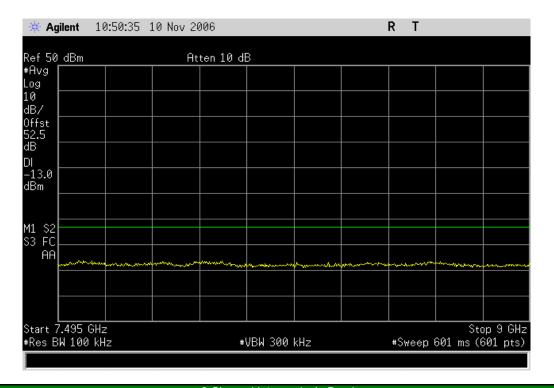


High Channel, 2.795GHz-4.5GHz

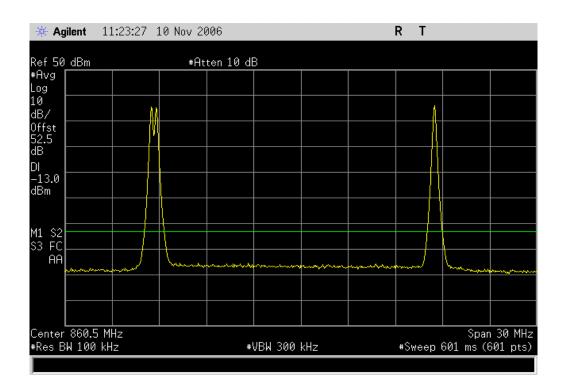
Result: Pass Value: <-25 dBm Limit: ≤-13 dBm



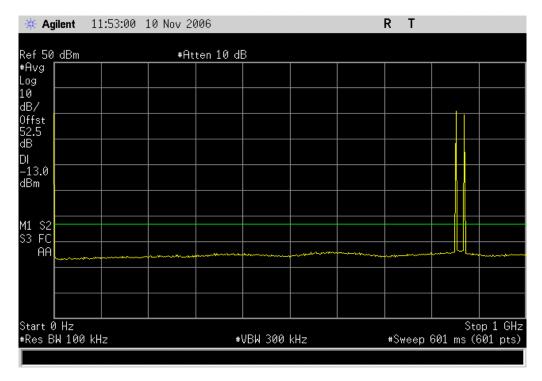
	High Channel, 4.495GHz-6GHz		
Result: Pass	Value: <-25 dBm	Limit:	≤-13 dBm


High Channel, 5.995GHz-7.5GHz

Result: Pass Value: <-25 dBm Limit: ≤-13 dBm

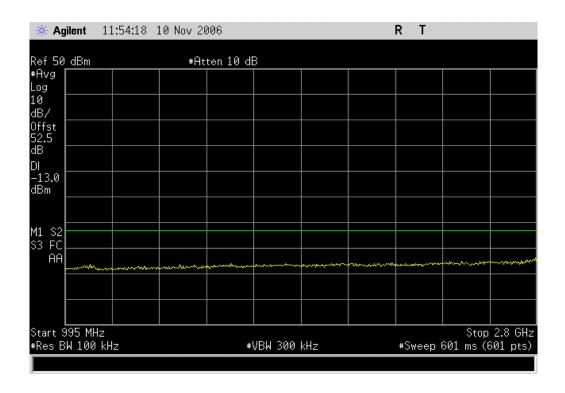

High Channel, 7.495GHz-9GHz

Result: Pass Value: <-25 dBm Limit: ≤-13 dBm

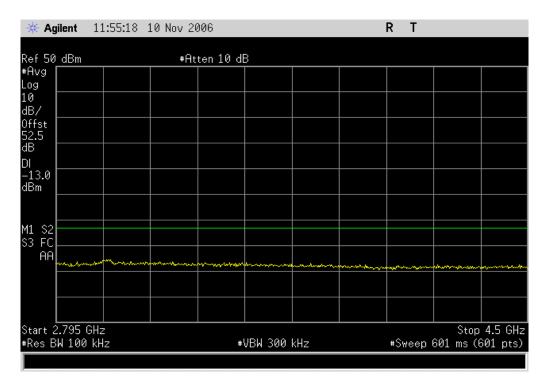


 3 Channel Intermods, In Band

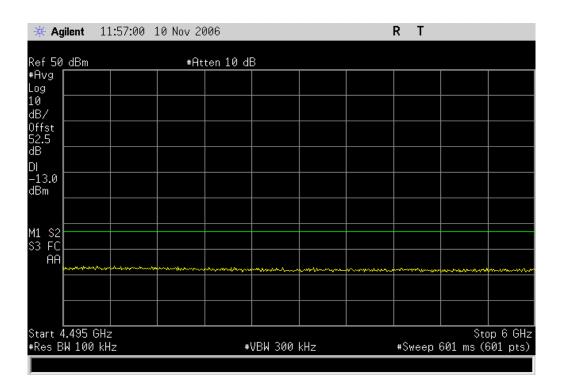
 Result: Pass
 Value: <-25 dBm</th>
 Limit: ≤-13 dBm



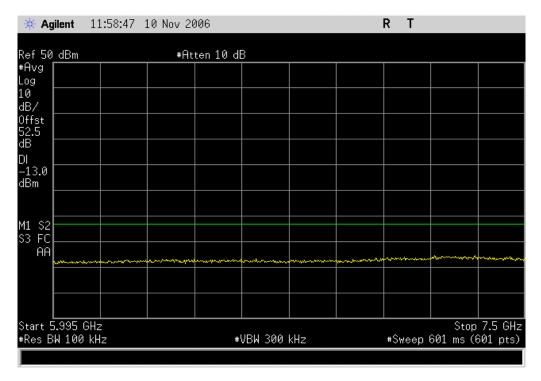
	3 Channel Intermods, 0-1GHz	:
Result: Pass	Value: <-25 dBm	Limit: ≤-13 dBm


3 Channel Intermods, 995MHz-2.8GHz

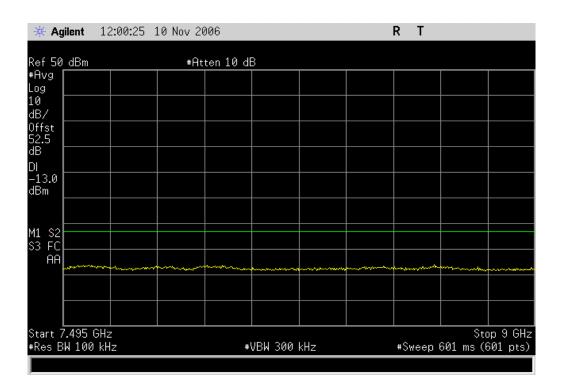
Result: Pass Value: <-25 dBm Limit: ≤-13 dBm


3 Channel Intermods, 2.795GHz-4.5GHz

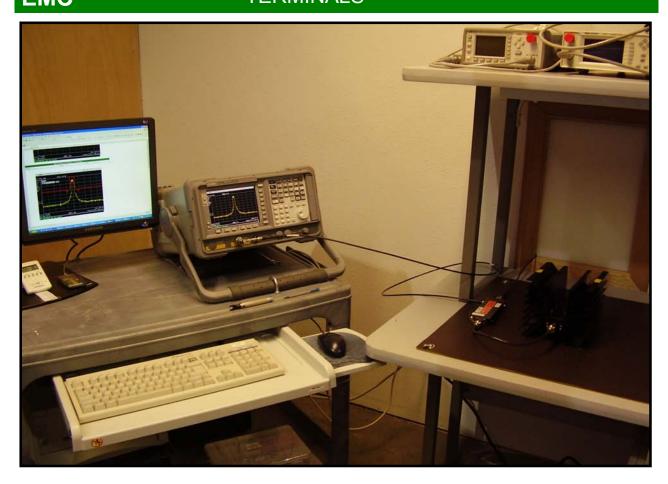
Result: Pass Value: <-25 dBm Limit: ≤-13 dBm


3 Channel Intermods, 4.495GHz-6GHz

Result: Pass Value: <-25 dBm Limit: ≤-13 dBm


3 Channel Intermods, 5.995GHz-7.5GHz

Result: Pass Value: <-25 dBm Limit: ≤-13 dBm



3 Channel Intermods, 7.495GHz-9GHz

Result: Pass Value: <-25 dBm Limit: ≤-13 dBm

XMit 2006.08.25

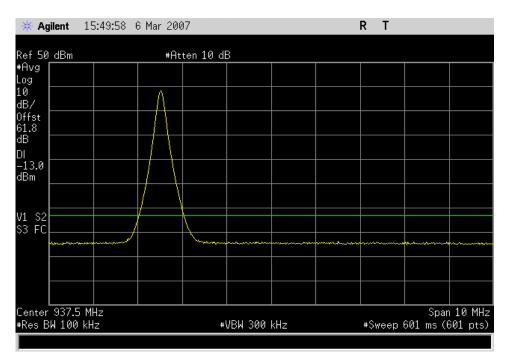
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Dual Directional Coupler	Amplifier Research	DC7154	IRD	2/23/2006	13
Spectrum Analyzer	Agilent	E4407B	AAU	9/20/2006	12
Attenuator	Inmet	2N100W-30dB		NCR	
Attenuator	Inmet	2N200W-30dB		NCR	

MEASUREMENT UNCERTAINTY

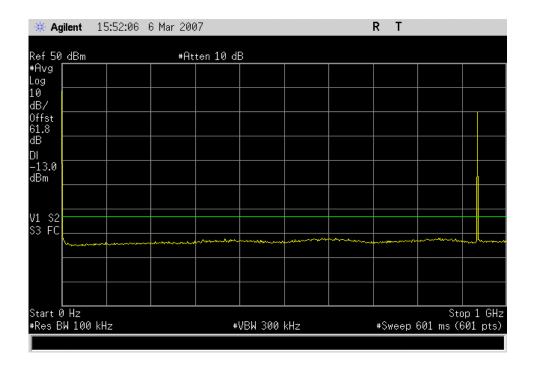
Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

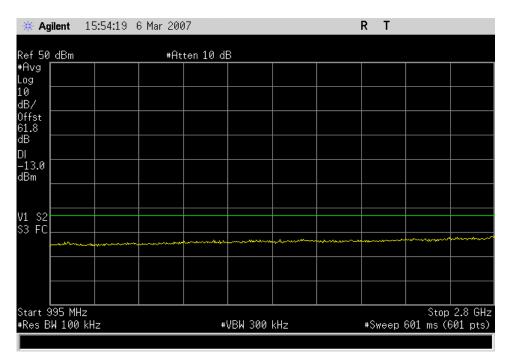

A spectrum analyzer was used to scan from 0 to 9.5 GHz. A 100 kHz resolution bandwidth was used. No video filtering was employed. A directional coupler was used on the RF input of the spectrum analyzer.

Testing also included the three carrier intermodulation test specified by the FCC. Two modulated carriers near the start of the operational band are transmitting at full power, and one near the opposite end of the band is also transmitting at full power.

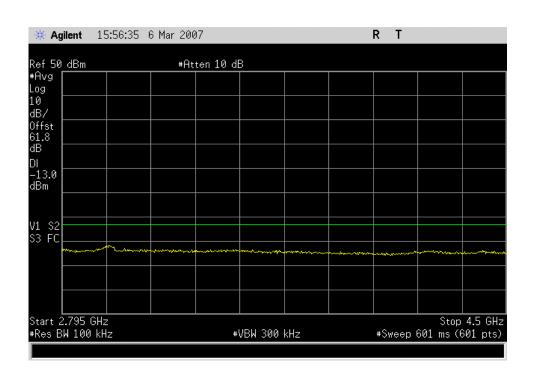
NORTHWEST	0011				XMit 2006.08.25
EMC	SPU	RIOUS EMISSIONS AT ANTI	ENNA LEKMINALS	5	
	: MC-Series iDEN Microcell	High Power		Work Order: RAFN00	067/RAFN0073
	: Engineering unit				006 & 3/6/2007
	: Radioframe Networks, Inc	Ç		Temperature: 22°C	
Attendees	: Erin Duleba			Humidity: 34%	
Project	:: None			Barometric Pres.: 29.89	
	: Greg Kiemel	Power:	-48VDC	Job Site: EV06/O	ffsite
TEST SPECIFICAT	TIONS		Test Method		
FCC 901:2005			ANSI/TIA/EIA-603-B:2002		
COMMENTS					
900 MHz Band					
DEVIATIONS FRO	M TEST STANDARD				
		Signature A. K.			
Configuration #	1	And C. R.			
		Signature VV			
1 01 1			Value	Limit	Results
Low Channel	In Band		< -20 dBm	≤ -13 dBm	Pass
	0-1GHz		< -20 dBm	≤ -13 dBm	Pass
	995MHz-2.8GHz		< -20 dBm	≤ -13 dBm	Pass
	2.795GHz-4.5GHz		< -20 dBm	≤ -13 dBm	Pass
	4.495GHz-6GHz		< -20 dBm	≤ -13 dBm	Pass
	5.995GHz-7.5GHz		< -20 dBm	≤ -13 dBm	Pass
	7.495 GHz-9.5 GHz		< -20 dBm	≤ -13 dBm	Pass
Mid Channel					
	In Band		< -20 dBm	≤ -13 dBm	Pass
	0-1GHz		< -20 dBm	≤ -13 dBm	Pass
	995MHz-2.8GHz		< -20 dBm	≤ -13 dBm	Pass
	2.795GHz-4.5GHz		< -20 dBm	≤ -13 dBm	Pass
	4.495GHz-6GHz		< -20 dBm	≤ -13 dBm	Pass
	5.995GHz-7.5GHz		< -20 dBm	≤ -13 dBm	Pass
High Channal	7.495 GHz-9.5 GHz		< -20 dBm	≤ -13 dBm	Pass
High Channel	In Band		< -20 dBm	≤ -13 dBm	Pass
	0-1GHz		< -20 dBm	≤ -13 dBm	Pass
	995MHz-2.8GHz		< -20 dBm	≤ -13 dBm	Pass
	2.795GHz-4.5GHz		< -20 dBm	≤ -13 dBm	Pass
	4.495GHz-6GHz		< -20 dBm	≤ -13 dBm	Pass
	5.995GHz-7.5GHz		< -20 dBm	≤ -13 dBm	Pass
	7.495 GHz-9.5 GHz		< -20 dBm	≤ -13 dBm	Pass
3 Channel Intermod	ds				
	In Band		<-25 dBm	≤-13 dBm	Pass
	0-1GHz		<-25 dBm	≤-13 dBm	Pass
	995MHz-2.8GHz		<-25 dBm	≤-13 dBm	Pass
	2.795GHz-4.5GHz		<-25 dBm	≤-13 dBm	Pass
	4.495GHz-6GHz		<-25 dBm	≤-13 dBm	Pass
	5.995GHz-7.5GHz		<-25 dBm	≤-13 dBm	Pass
	7.495 GHz-9.5 GHz		<-25 dBm	≤-13 dBm	Pass


 Low Channel, In Band

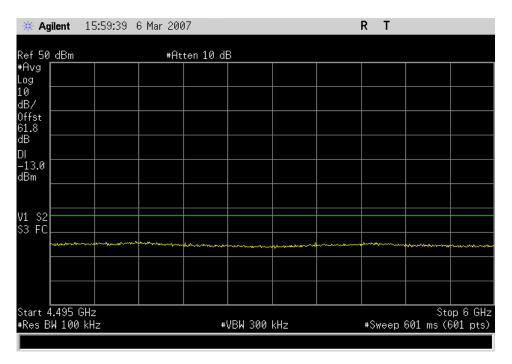
 Result: Pass
 Value: < -20 dBm</th>
 Limit: ≤ -13 dBm


 Low Channel, 0-1GHz

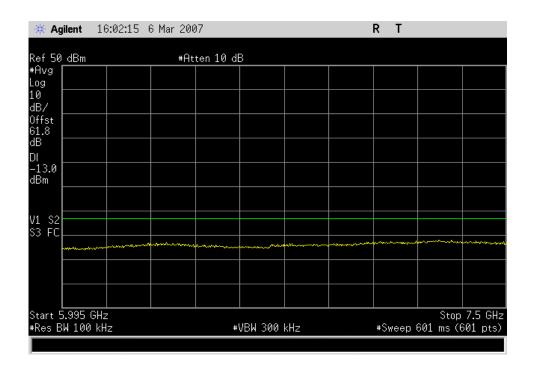
 Result: Pass
 Value: < -20 dBm</th>
 Limit: ≤ -13 dBm


 Low Channel, 995MHz-2.8GHz

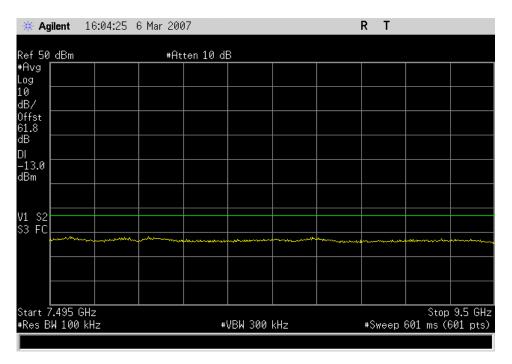
 Result: Pass
 Value: < -20 dBm</th>
 Limit: ≤ -13 dBm


 Low Channel, 2.795GHz-4.5GHz

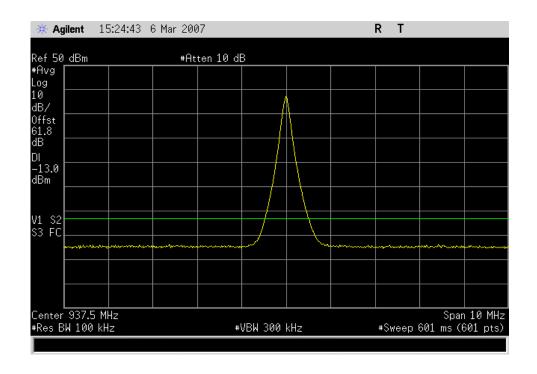
 Result: Pass
 Value: < -20 dBm</th>
 Limit: ≤ -13 dBm


 Low Channel, 4.495GHz-6GHz

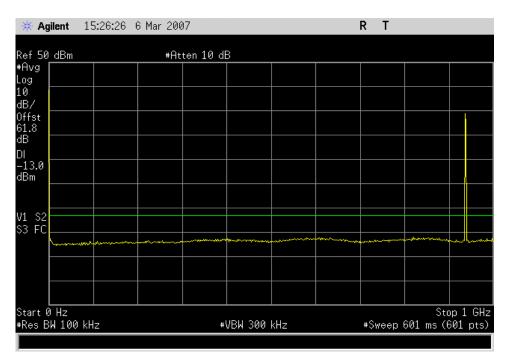
 Result: Pass
 Value: < -20 dBm</th>
 Limit: ≤ -13 dBm


 Low Channel, 5.995GHz-7.5GHz

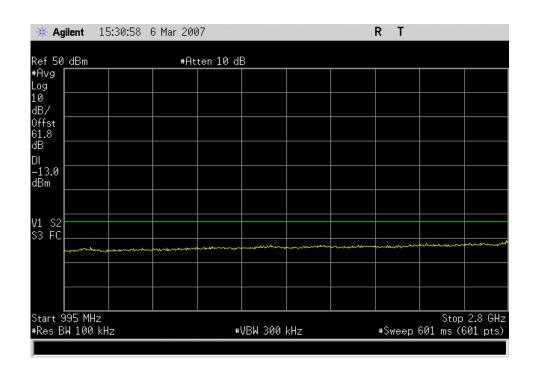
 Result: Pass
 Value: < -20 dBm</th>
 Limit: ≤ -13 dBm


 Low Channel, 7.495GHz-9.5GHz

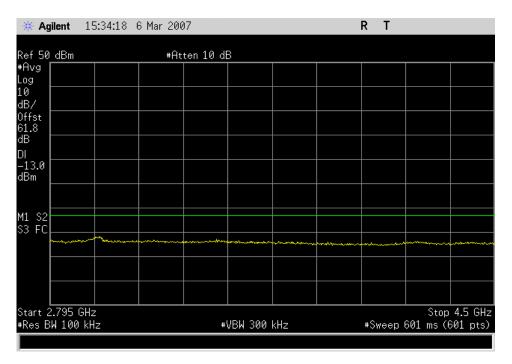
 Result: Pass
 Value: < -20 dBm</th>
 Limit: ≤ -13 dBm


 Mid Channel, In Band

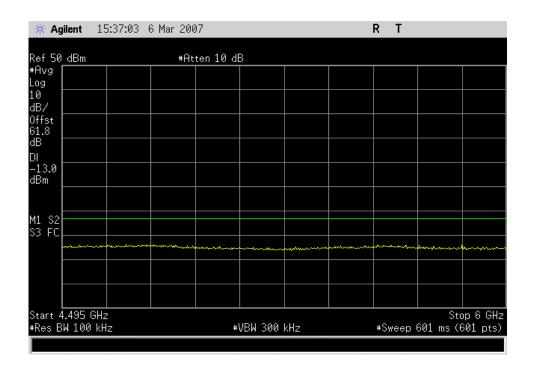
 Result: Pass
 Value: < -20 dBm</th>
 Limit: ≤ -13 dBm


Mid Channel, 0-1GHz

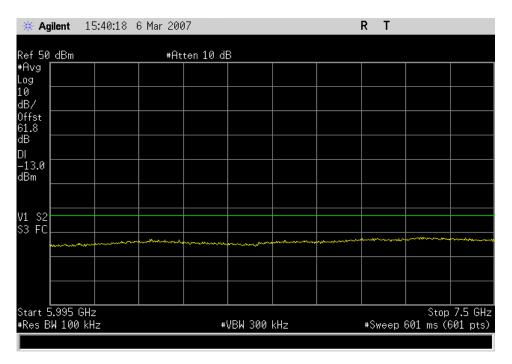
Result: Pass Value: < -20 dBm Limit: ≤ -13 dBm


 Mid Channel, 995MHz-2.8GHz

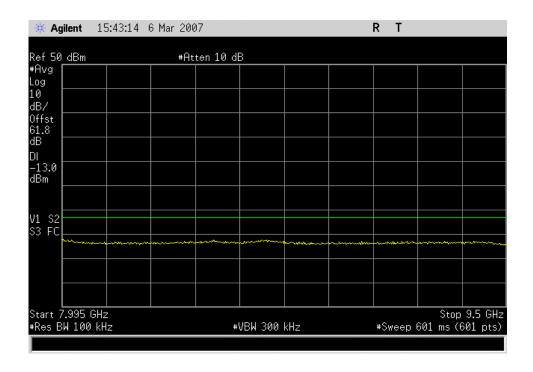
 Result: Pass
 Value: < -20 dBm</th>
 Limit: ≤ -13 dBm


 Mid Channel, 2.795GHz-4.5GHz

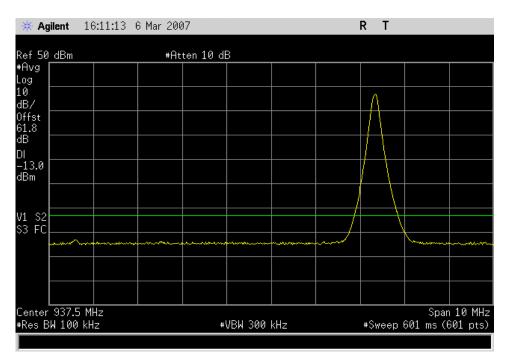
 Result: Pass
 Value: < -20 dBm</th>
 Limit: ≤ -13 dBm


 Mid Channel, 4.495GHz-6GHz

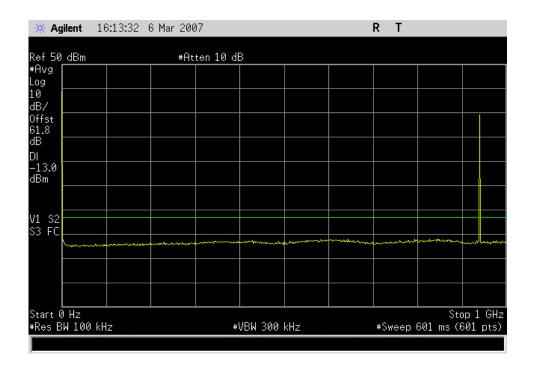
 Result: Pass
 Value: < -20 dBm</th>
 Limit: ≤ -13 dBm


 Mid Channel, 5.995GHz-7.5GHz

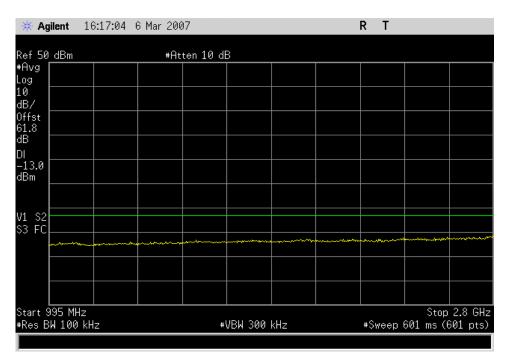
 Result: Pass
 Value: < -20 dBm</th>
 Limit: ≤ -13 dBm


 Mid Channel, 7.495GHz-9.5GHz

 Result: Pass
 Value: < -20 dBm</th>
 Limit: ≤ -13 dBm


High Channel, In Band

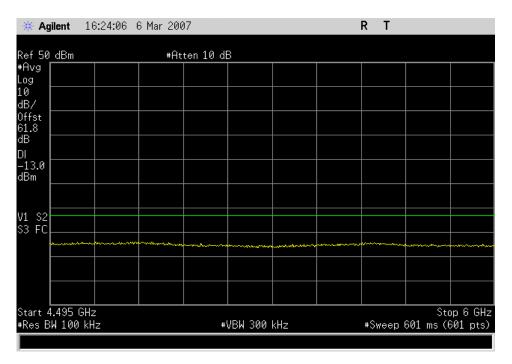
Result: Pass Value: < -20 dBm Limit: ≤ -13 dBm


 High Channel, 0-1GHz

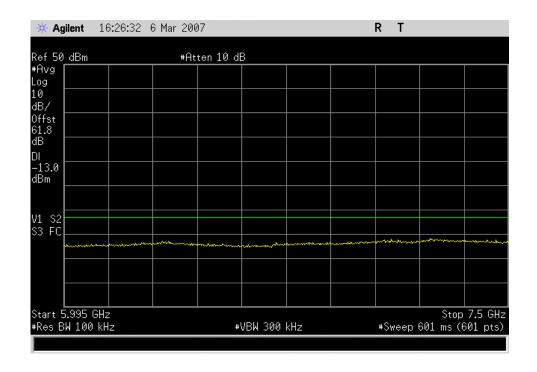
 Result:
 Pass
 Value:
 < -20 dBm</th>
 Limit:
 ≤ -13 dBm

 High Channel, 995MHz-2.8GHz

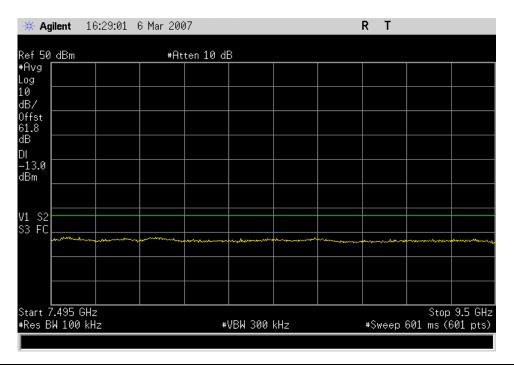
 Result: Pass
 Value: < -20 dBm</th>
 Limit: ≤ -13 dBm


 High Channel, 2.795GHz-4.5GHz

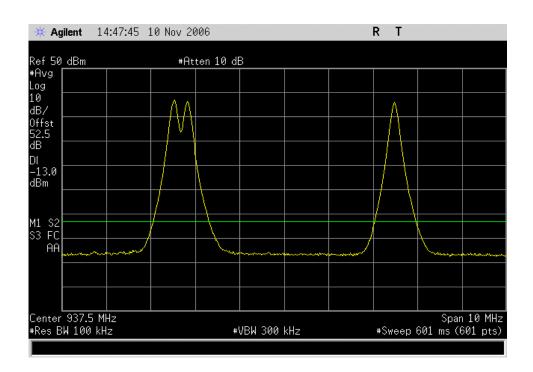
 Result:
 Pass
 Value:
 < -20 dBm</th>
 Limit:
 ≤ -13 dBm


High Channel, 4.495GHz-6GHz

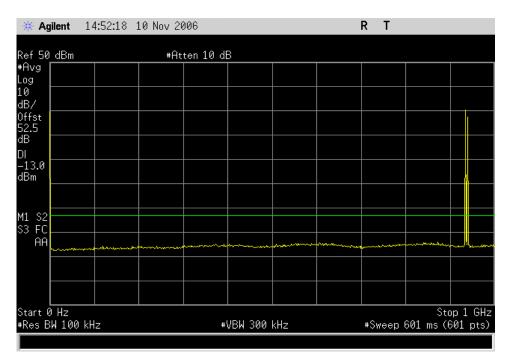
Result: Pass Value: < -20 dBm Limit: ≤ -13 dBm


 High Channel, 5.995GHz-7.5GHz

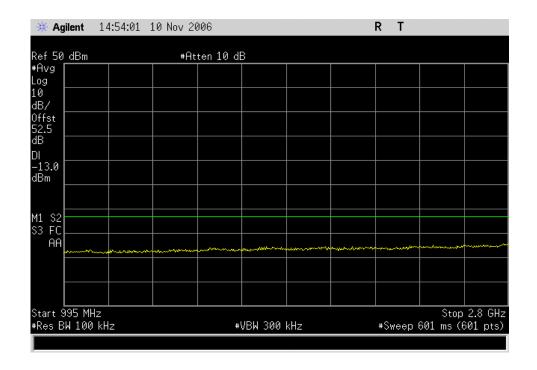
 Result:
 Pass
 Value:
 < -20 dBm</th>
 Limit:
 ≤ -13 dBm


 High Channel, 7.495GHz-9.5GHz

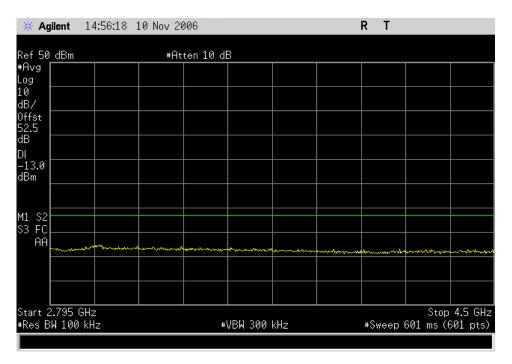
 Result: Pass
 Value: < -20 dBm</th>
 Limit: ≤ -13 dBm


3 Channel Intermods, In Band

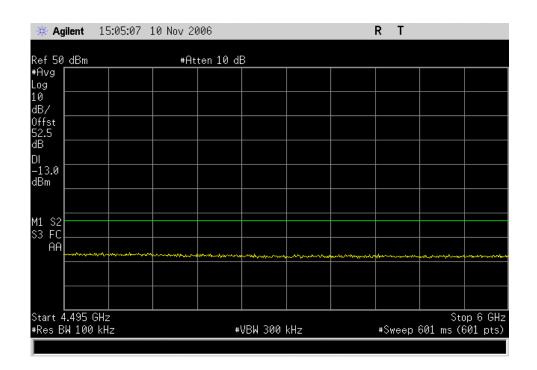
Result: Pass Value: <-25 dBm Limit: ≤-13 dBm


3 Channel Intermods, 0-1GHz

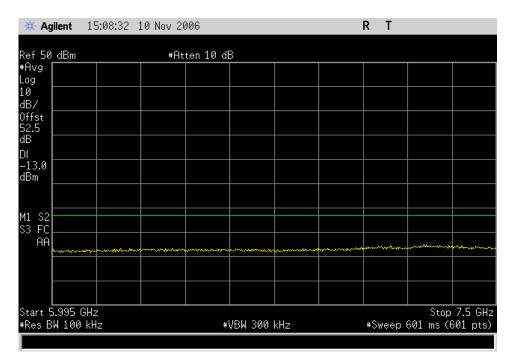
Result: Pass Value: <-25 dBm Limit: ≤-13 dBm


3 Channel Intermods, 995MHz-2.8GHz

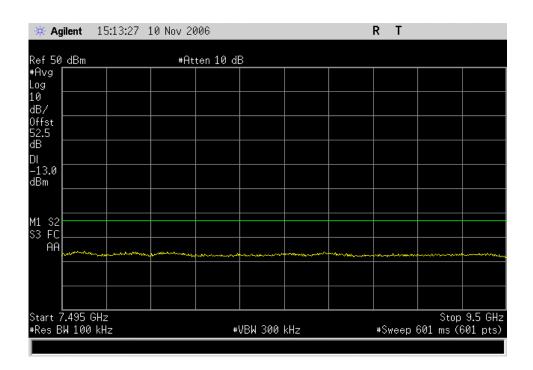
Result: Pass Value: <-25 dBm Limit: ≤-13 dBm

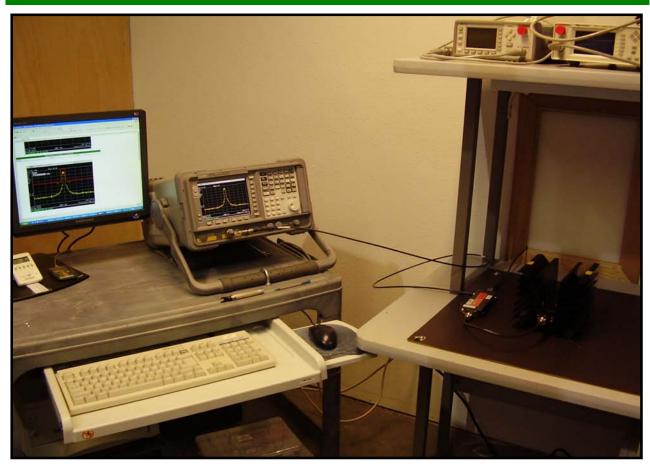

3 Channel Intermods, 2.795GHz-4.5GHz

Result: Pass Value: <-25 dBm Limit: ≤-13 dBm


3 Channel Intermods, 4.495GHz-6GHz

Result: Pass Value: <-25 dBm Limit: ≤-13 dBm




3 Channel Intermods, 5.995GHz-7.5GHz

Result: Pass Value: <-25 dBm Limit: ≤-13 dBm

3 Channel Intermods, 7.495 GHz-9.5 GHz **Result:** Pass **Value:** <-25 dBm **Limit:** ≤-13 dBm

Field Strength of Spurious Radiation

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Transmitting typical sector configuration, 800 and 900MHz bands

POWER SETTINGS INVESTIGATED

-48Vdc

FREQUENCY RANGE INV	/ESTIGATED		
Start Frequency	30 MHz	Stop Frequency	10 GHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
EV01 cables g,h,j			EVB	7/6/2006	13
EV01 cables c,g, h			EVA	7/6/2006	13
High Pass Filter 1.2 - 18 GHz	Micro-Tronics	HPM50108	HFV	11/28/2005	13
Pre-Amplifier	Miteq	AMF-4D-010100-24-10P	APW	7/6/2006	13
Pre-Amplifier	Miteq	AM-1616-1000	AOL	7/6/2006	13
Antenna, Horn	EMCO	3115	AHC	8/24/2006	12
Antenna, Biconilog	EMCO	3141	AXE	12/28/2005	24
Signal Generator	Hewlett Packard	8341B	TGN	1/26/2006	13
Antenna, Horn	EMCO	3115	AHJ	5/20/2005	24
Spectrum Analyzer	Agilent	E4446A	AAT	4/4/2006	12

Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

Per 2.1053 and 90.691, the Field Strength of Spurious Radiation was measured in the far-field at an FCC Listed OATS up to 10 GHz. Spectrum analyzer, signal generator, and linearly polarized antennas were used to measure radiated harmonics and spurious emissions. The orientation of the EUT and measurement antenna were manipulated to maximize the level of emissions. The EUT was configured to transmit at the highest output power into a dummy load at low, mid, and high frequencies for both the 800MHz and 900MHz bands.

For licensed transmitters, the FCC references TIA/EIA-603 as the measurement procedure standard. TIA/EIA-603 Section 2.2.12 describes a method for measuring radiated spurious emissions that utilizes an antenna substitution method:

At an approved test site, the transmitter is place on a remotely controlled turntable, and the measurement antenna is placed 3 meters from the transmitter. The turntable azimuth is varied to maximize the level of spurious emissions. The height of the measurement antenna is also varied from 1 to 4 meters. The amplitude and frequency of the highest emissions are noted. The transmitter is then replaced with a ½ wave dipole that is successively tuned to each of the highest spurious emissions. A signal generator is connected to the dipole (horn antenna for frequencies above 1 GHz), and its output is adjusted to match the level previously noted for each frequency. The output of the signal generator is recorded, and by factoring in the cable loss to the dipole antenna and its gain; the power (dBm) into an ideal ½ wave dipole antenna is determined for each radiated spurious emission.

For the purposes of preliminary measurements, the field strength of the spurious emissions can be measured and compared with a 3 meter limit. The 3 meter limit was calculated to be 82.5 dBuV/m at 3 meters. The final measurements must be made utilizing the substitution method described above.

EMC Field Strength of Spurious Radiation								
EUT:	MC-Series iDEN Microcell High Power			Work Order:	RAFN0067			
Serial Number:	Engineering unit			Date:	11/07/06			
Customer:	Radioframe Networks, Inc.	Temperature:	22					
Attendees:	Erin Duleba			Humidity:	52%			
Project:	None			Barometric Pres.:	29.86			
Tested by:	Holly Ashkannejhad	-48VDC	Job Site:	EV01				
TEST SPECIFICATI	ONS		Test Method					
FCC 901:2005			ANSI/TIA/EIA-603-B:2	2002				

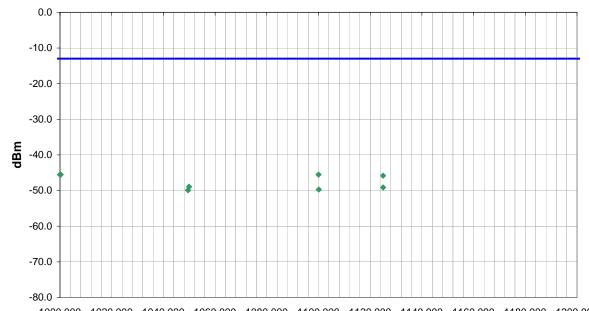
	м				

Test Distance (m) 3 Antenna Height(s) (m) 1 - 4

COMMENTS

Antenna ports terminated.

EUT OPERATING MODES


Transmitting typical sector configuration, 800 and 900MHz bands DEVIATIONS FROM TEST STANDARD

No deviations.

Run #	2
Configuration #	1
Descrite	Dace

NVLAP Lab Code 200630-0

Signature Holy Aling

 $1000.000 \quad 1020.000 \quad 1040.000 \quad 1060.000 \quad 1080.000 \quad 1100.000 \quad 1120.000 \quad 1140.000 \quad 1160.000 \quad 1180.000 \quad 1200.000 \quad 1000.000 \quad 1000.000$ MHz

									Compared to	i
Freq	Azimuth	Height		Polarity	Detector	EIRP	EIRP	Spec. Limit	Spec.	l
(MHz)	(degrees)	(meters)				(Watts)	(dBm)	(dBm)	(dB)	ĺ
1000.000	189.0	1.0		V-Horn	PK	2.80E-08	-45.5	-13.0	-32.5	
1000.284	171.0	2.3		H-Horn	PK	2.80E-08	-45.5	-13.0	-32.5	
1100.010	202.0	1.0		V-Horn	PK	2.80E-08	-45.5	-13.0	-32.5	
1124.967	126.0	1.0		V-Horn	PK	2.61E-08	-45.8	-13.0	-32.8	
1049.917	171.0	1.0		V-Horn	PK	1.28E-08	-48.9	-13.0	-35.9	
1124.981	147.0	1.0		H-Horn	PK	1.22E-08	-49.1	-13.0	-36.1	
1100.097	82.0	1.9		H-Horn	PK	1.06E-08	-49.7	-13.0	-36.7	
1049.557	130.0	1.0		H-Horn	PK	1.02E-08	-49.9	-13.0	-36.9	

Field Strength of Spurious Radiation EMC EUT: MC-Series iDEN Microcell High Power Work Order: RAFN0067 Date: 11/07/06 Serial Number: Engineering unit Customer: Radioframe Networks, Inc. Temperature: 22 Attendees: Erin Duleba Humidity: 52% Project: None Barometric Pres.: 29.86 Tested by: Holly Ashkannejhad Power: -48VDC Job Site: EV01 **TEST SPECIFICATIONS** Test Meth FCC 901:2005 ANSI/TIA/EIA-603-B:2002 TEST PARAMETERS Antenna Height(s) (m) Test Distance (m) 3 1 - 4 COMMENTS Antenna ports terminated. EUT OPERATING MODES Transmitting typical sector configuration, 800 and 900MHz bands DEVIATIONS FROM TEST STANDARD No deviations. Signature Holy Saling Run# Configuration # 1 Results Pass NVLAP Lab Code 200630-0 0.0 -10.0 -20.0 -30.0 \$ **40.0** • -50.0 -60.0 -70.0 -80.0 1200.000 2200.000 3200.000 4200.000 5200.000 6200.000 7200.000 8200.000 MHz Compared to Azimuth Polarity EIRP EIRP Spec. Limit Frea Height Detector Spec. (Watts) (dBm) (dBm) (degrees) (meters) (dB) (MHz) 6.27E-07 H-Horn PK 3422.678 144.0 1.0 -32.0 -13.0 -19.0 1875.977 90.0 1.0 H-Horn PK 4.65E-07 -33.3 -13.0 -20.3 1876.163 158.0 1.0 V-Horn 2.55E-07 -35.9 -13.0 -22.9 1879.629 229.0 1.0 H-Horn 1.77E-07 -37.5 -13.0 -24.5 V-Horn 8.07E-08 -40.9 -27.9 1879.589 161.0 1.0 -13.0 3422.304 113.0 1.0 V-Horn PΚ 5.09E-08 -42.9 -13.0 -29.9 V-Horn PK 2 08F-08 -46.8 1466,459 342 0 1.0 -13.0 -33.8 1.89E-08 3201.633 110.0 1.5 V-Horn PK -47.2 -13.0 -34.24853.050 152.0 1.0 H-Horn PΚ 1.57E-08 -48.0 -13.0 -35.0

4853.283

3201.966

1719.723

1466.519

1720.037

169.0

342.0

130.0

3.0

177.0

1.0

1.0

1.0

1.0

1.1

V-Horn

H-Horn

H-Horn

H-Horn

V-Horn

PΚ

PΚ

1.40E-08

9.49E-09

8.65E-09

5.21E-09

4.44E-09

-48.5

-50.2

-50.6

-52.8

-53.5

-13.0

-13.0

-13.0

-13.0

-13.0

-35.5

-37.2

-37.6

-39.8

-40.5

Field Strength of Spurious Radiation

Field Strength of Spurious Radiation

RADIATED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Typical operating mode with transceivers disabled and preamps on.

POWER SETTINGS INVESTIGATED

-48VDC

FREQUENCY RANGE IN	/ESTIGATED		
Start Frequency	30 MHz	Stop Frequency	10 GHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
EV01 cables g,h,j			EVB	7/6/2006	13
EV01 cables c,g, h			EVA	7/6/2006	13
Spectrum Analyzer	Agilent	E4446A	AAT	4/4/2006	12
Pre-Amplifier	Miteq	AMF-4D-010100-24-10P	APW	7/6/2006	13
Pre-Amplifier	Miteq	AM-1616-1000	AOL	7/6/2006	13
Antenna, Biconilog	EMCO	3141	AXE	12/28/2005	24
Antenna, Horn	EMCO	3115	AHC	8/30/2005	12

MEASUREMENT BANDWIDTHS									
	Frequency Range	Peak Data	Quasi-Peak Data	Average Data					
	(MHz)	(kHz)	(kHz)	(kHz)					
	0.01 - 0.15	1.0	0.2	0.2					
	0.15 - 30.0	10.0	9.0	9.0					
	30.0 - 1000	100.0	120.0	120.0					
	Above 1000	1000.0	N/A	1000.0					
	Measurements were made u	sing the bandwidths and dete	ctors specified. No video filte	er was used.					

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

Using the mode of operation and configuration noted within this report, a final radiated emissions test was performed. The frequency range investigated (scanned), is also noted in this report. Radiated emissions measurements were made at the EUT azimuth and antenna height such that the maximum radiated emissions level will be detected. This requires the use of a turntable and an antenna positioner. The preferred method of a continuous azimuth search is utilized for frequency scans of the EUT field strength with both polarities of the measuring antenna. A calibrated, linearly polarized antenna was positioned at the specified distance from the periphery of the EUT.

Tests were made with the antenna positioned in both the horizontal and vertical planes of polarization. The antenna was varied in height above the conducting ground plane to obtain the maximum signal strength. Though specified in the report, the measurement distance shall be 3 meters or 10 meters. At any measurement distance, the antenna height was varied from 1 meter to 4 meters. These height scans apply for both horizontal and vertical polarization, except that for vertical polarization the minimum height of the center of the antenna shall be increased so that the lowest point of the bottom of the antenna clears the ground surface by at least 25 cm.

NORTHWEST RADIATED EMISSIONS DATA SHEET **EMC** EUT: MC-Series iDEN Microcell High Power Work Order: RAFN0067 Date: 11/07/06 Serial Number: Engineering unit Customer: Radioframe Networks, Inc. Temperature: 22 Attendees: Erin Duleba Humidity: 52% Project: None Barometric Pres.: 29.86 Tested by: Holly Ashkannejhad Power: -48VDC Job Site: EV01 est Met FCC 15.109:2006 ANSI C63.4:2003 TEST PARAMETERS Test Distance (m) 3 Antenna Height(s) (m) 1 - 4 COMMENTS EUT in typical configuration with antenna ports terminated. Ground strap installed as will be used in typical installations. EUT OPERATING MODES Typical operating mode with transceivers disabled and preamps on. DEVIATIONS FROM TEST STANDARD No deviations. Signature Holy Aligh Run# Configuration # 2 Results Pass NVLAP Lab Code 200630-0 80.0 70.0 60.0 50.0 \$ dBuV/m 40.0 • 30.0 20.0 10.0 0.0 10.000 100.000 1000.000 MHz External Distance compared to Amplitude Azimuth Heiaht Distance Polarity Adjusted Spec. Limit Frea Factor Detector Attenuation Adjustmen Spec. (dBuV) (dB) (meters) (dB) dBuV/m dBuV/m (dB) (degrees) (meters) (dB) (MHz) H-Bilog ΩP 500.042 48.3 6.0 117.0 1.0 3.0 0.0 0.0 54.3 56.9 -2.6 QΡ 120.045 56.2 -6.5 265.0 1.0 3.0 0.0 H-Bilog 0.0 49.7 54.0 -4.3 500.042 45.8 6.0 64.0 1.2 3.0 0.0 V-Bilog QP 0.0 51.8 56.9 -5.1 400.021 47.3 4.2 259.0 1.8 3.0 0.0 V-Bilog QΡ 0.0 51.5 56.9 -5.4 QΡ 47.7 150.020 53.1 -5.4 17.0 1.0 3.0 0.0 H-Bilog 0.0 54.0 -6.3 H-Bilog 575.005 7.9 265.0 1.0 3.0 QΡ 0.0 50.5 56.9 -6.4 42.6 0.0 H-Bilog ΩP 700.067 40.0 10.5 75.0 1.5 3.0 0.0 0.0 50.5 56.9 -64 V-Bilog ΩP 193.255 50.0 -3.0 292.0 1.7 3.0 0.0 0.0 47.0 54.0 -7.0 150.017 52.3 -5.4 119.0 2.2 3.0 0.0 V-Bilog QP 0.0 46.9 54.0 -7.1 450.005 44.8 4.9 128.0 1.0 3.0 0.0 H-Bilog QP 0.0 49.7 56.9 -7.2 120.046 53.2 -6.5 83.0 3.0 3.0 V-Bilog QP 0.0 46.7 54.0 -7.3 0.0 QΡ 450.012 44.6 4.9 174.0 1.0 3.0 0.0 V-Bilog 0.0 49.5 56.9 -7.4 V-Bilog 350.031 46.4 2.5 36.0 1.0 3.0 0.0 QΡ 0.0 48.9 56.9 -8.0 H-Bilog QΡ 360.136 45.8 128.0 48.6 56.9 2.8 1.2 3.0 0.0 0.0 -8.3 V-Bilog 250 008 49 1 -0.7 131 0 ΩP 48 4 56.9 -8.5 17 3.0 0.0 0.0 QP 300.003 47.7 0.4 164.0 1.8 3.0 0.0 H-Bilog 0.0 48.1 56.9 -8.8 193.253 47.9 -3.0 135.0 1.0 3.0 0.0 H-Bilog QP 0.0 44.9 54.0 -9.1 400.024 43.4 4.2 90.0 1.0 3.0 0.0 H-Bilog QP 0.0 47.6 56.9 -9.3 350.014 45.0 2.5 280.0 H-Bilog QP 47.5 -9.4 1.0 3.0 0.0 0.0 56.9

H-Bilog

V-Bilog

QΡ

QΡ

0.0

0.0

56.9

56.9

46.9

46.1

-10.0

-10.8

250.008

575.004

47.6

38.2

-0.7

7.9

37.0

169.0

1.0

1.0

3.0

3.0

0.0

0.0

						External			Distance			Compared to
Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)
197.755	45.4	-2.4	132.0	1.2	3.0	0.0	V-Bilog	QP	0.0	43.0	54.0	-11.0
525.011	37.9	7.1	269.0	1.0	3.0	0.0	H-Bilog	QP	0.0	45.0	56.9	-11.9
700.037	34.1	10.5	127.0	1.8	3.0	0.0	V-Bilog	QP	0.0	44.6	56.9	-12.3
565.045	36.5	7.5	117.0	1.5	3.0	0.0	H-Bilog	QP	0.0	44.0	56.9	-12.9
555.007	36.5	7.4	141.0	1.2	3.0	0.0	V-Bilog	QP	0.0	43.9	56.9	-13.0
45.006	39.4	-3.3	153.0	1.0	3.0	0.0	V-Bilog	QP	0.0	36.1	49.5	-13.4
181.246	44.6	-4.2	91.0	3.0	3.0	0.0	H-Bilog	QP	0.0	40.4	54.0	-13.6
50.009	39.6	-4.7	221.0	1.8	3.0	0.0	V-Bilog	QP	0.0	34.9	49.5	-14.6
875.016	27.7	12.4	241.0	1.3	3.0	0.0	V-Bilog	QP	0.0	40.1	56.9	-16.8
70.005	39.4	-7.7	164.0	1.7	3.0	0.0	V-Bilog	QP	0.0	31.7	49.5	-17.8
55.002	35.5	-5.5	76.0	3.5	3.0	0.0	H-Bilog	QP	0.0	30.0	49.5	-19.5

NORTHWEST RADIATED EMISSIONS DATA SHEET **EMC** EUT: MC-Series iDEN Microcell High Power Work Order: RAFN0067 Date: 11/07/06 Serial Number: Engineering unit Customer: Radioframe Networks, Inc. Temperature: 22 Attendees: Erin Duleba Humidity: 52% Project: None Barometric Pres.: 29.86 Tested by: Holly Ashkannejhad Power: -48VDC Job Site: EV01 **TEST SPECIFICATIONS** est Meth FCC 901:2005 ANSI C63.4:2003 TEST PARAMETERS Test Distance (m) 3 Antenna Height(s) (m) 1 - 4 COMMENTS EUT in typical configuration with antenna ports terminated. Ground strap installed as will be used in typical installations. EUT OPERATING MODES Typical operating mode with transceivers disabled and preamps on. **DEVIATIONS FROM TEST STANDARD** No deviations. Signature Holy Aligh Run# 3 Configuration # 2 Results Pass NVLAP Lab Code 200630-0 80.0 70.0 60.0 50.0 dBuV/m 40.0 • 30.0 20.0 10.0 0.0 1000.000 2000.000 3000.000 4000.000 5000.000 6000.000 7000.000 8000.000 9000.000 10000.000 MHz External Distance Compared to Amplitude Azimuth Distance Polarity Adjusted Spec. Limit Frea Factor Height Detector Attenuation Adjustmen Spec. (meters) (dB) dBuV/m dBuV/m (dBuV) (dB) (degrees) (meters) (dB) (dB) (MHz) V-Horn 4853,449 36.4 8.5 172.0 1.2 3.0 0.0 ΑV 0.0 44 9 60.0 -15.1 1466.606 44.6 -2.5 348.0 1.0 3.0 0.0 V-Horn ΑV 0.0 42.1 60.0 -17.9 1125.043 44.7 -3.6 182.0 1.0 3.0 0.0 V-Horn ΑV 0.0 41.1 60.0 -18.9 4853.449 32.4 159.0 1.0 3.0 H-Horn ΑV 0.0 40.9 60.0 -19.1 8.5 0.0 V-Horn 1375.122 43.4 -3.0 184.0 1.0 3.0 0.0 ΑV 0.0 40.4 60.0 -19.6 1500.201 41.3 -2.5 343.0 3.0 V-Horn ΑV 0.0 38.8 60.0 -21.2 1.0 0.0 1375 028 41 2 -3.0162 0 12 3.0 0.0 H-Horn ΑV 0.0 38.2 60.0 -21 8 1500.185 40.0 -2.5 204.0 1.0 3.0 0.0 H-Horn ΑV 0.0 37.5 60.0 -22 5 1125.168 40.6 -3.6 256.0 2.0 3.0 0.0 H-Horn ΑV 0.0 37.0 60.0 -23.0 1125.216 55.4 -3.6 182.0 1.0 3.0 0.0 V-Horn PΚ 0.0 51.8 80.0 -28.2 4853.679 42.0 172.0 1.2 3.0 V-Horn PΚ 50.5 80.0 -29.5 8.5 0.0 0.0 1374.871 53.3 -3.0 184.0 1.0 3.0 0.0 V-Horn PΚ 0.0 50.3 80.0 -29.7 1466.581 32.5 -2.5 7.0 1.0 3.0 0.0 H-Horn ΑV 0.0 30.0 60.0 -30.0 1466.542 348.0 V-Horn PΚ 80.0 -30.7 51.8 -2.5 1.0 3.0 0.0 0.0 49.3 1374 861 162 0 H-Horn PK 48 8 80.0 -31 2 51.8 -3.012 3.0 0.0 0.0 4853.233 40.0 8.5 159.0 1.0 3.0 0.0 H-Horn PK 0.0 48.5 80.0 -31.51500.328 49.2 -2.5 204.0 1.0 3.0 0.0 H-Horn PΚ 0.0 46.7 0.08 -33.3

1499.995

1125.349

1466.422

48.0

47.4

43.1

-2.5

-3.6

-2.5

343.0

256.0

7.0

1.0

2.0

1.0

3.0

3.0

3.0

0.0

0.0

0.0

V-Horn

H-Horn

H-Horn

PΚ

PK

PΚ

0.0

0.0

0.0

45.5

43.8

40.6

0.08

80.0

80.0

-34.5

-36.2

-39.4

Radiated Emissions

Radiated Emissions

Radiated Emissions

CONDUCTED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

BCU and LNAs operating only

POWER SETTINGS INVESTIGATED

-48VDC

SAMPLE CALCULATIONS

 $Conducted \ Emissions: \ Adjuste \underline{\underline{\underline{Level}}} = \underline{\underline{Measured}} \ \underline{\underline{\underline{Level}}} + \underline{\underline{Transducer}} \ Factor + \underline{Cable} \ Attenuation \ Factor + \underline{External} \ Attenuator \ Factor + \underline{\underline{Level}} \ Factor +$

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4446A	AAT	4/4/2006	12
LISN	Solar	9233-50-TS-50-N	LIH	4/21/2006	13
LISN	Solar	9233-50-TS-50-N	LII	4/21/2006	13
High Pass Filter	TTE	H97-100K-50-720B	HFX	8/22/2006	13
Attenuator	Tektronix	011-0059-02	ATC	12/19/2005	13
EV01 cables g,h,e,f			EVC	3/17/2006	13

Frequency Ra	ange Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	5 1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 100	0 1000.0	N/A	1000.0

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

Using the mode of operation and configuration noted within this report, conducted emissions tests were performed. The frequency range investigated (scanned), is also noted in this report. Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network. Equipment is tested with power cords that are normally used or that have electrical or shielding characteristics that are the same as those cords normally used. Typically those measurements are made using a LISN (Line Impedance Stabilization Network), the 50 Ω measuring port is terminated by a 50 Ω EMI meter or a 50 Ω resistive load. All 50 Ω measuring ports of the LISN are terminated by 50 Ω .

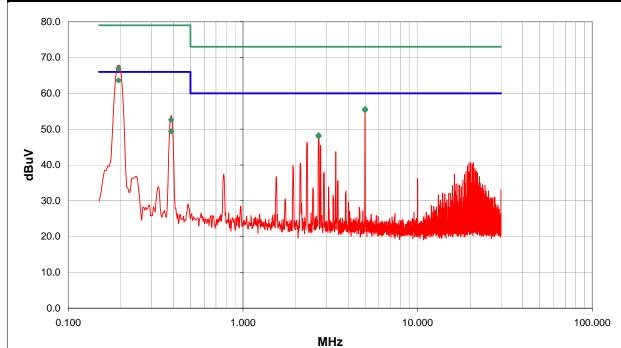
NORTHWEST **CONDUCTED EMISSIONS DATA SHEET EMC** EUT: MC-Series iDEN Microcell High Power Serial Number: Engineering unit Work Order: RAFN0067 Date: 11/08/06 Customer: Radioframe Networks, Inc. Temperature: 22 Attendees: Erin Duleba Humidity: 52% Project: None Tested by: Rod Peloquin TEST SPECIFICATIONS Barometric Pres.: 29.86 Power: -48VDC Job Site: EV01 Test Method FCC 15.107:2006 ANSI C63.4:2003

TEST PARAMETERS

Cable or Line Tested Negative

COMMENTS

Ground strap installed as will be used in typical installations.


EUT OPERATING MODES

BCU and LNAs operating only DEVIATIONS FROM TEST STANDARD

No deviations.

Run #	1
Configuration #	1
Daguita	Dace

Rolly la Reley Signature

NVLAP Lab Code 200630-0

	Freq	Amplitude		Transducer	Cable	External Attenuation	Detector	Adjusted	Spec. Limit	Compared to Spec.
	MHz)	(dBuV)		(dB)	(dB)	(dB)	(blank equal peaks	dBuV	dBuV	(dB)
,		/		(.=)	(/	(=/	[PK] from scan)			(.=)
	0.194	42.5	ı	1.1	0.0	20.0	AV	63.6	66.0	-2.4
	5.000	34.3		0.5	0.8	20.0	AV	55.6	60.0	-4.4
2	2.706	27.3		0.5	0.5	20.0	AV	48.3	60.0	-11.7
(0.194	45.8		1.1	0.0	20.0	QP	66.9	79.0	-12.1
(0.388	28.5		0.9	0.0	20.0	AV	49.4	66.0	-16.6
	5.000	34.0		0.5	0.8	20.0	QP	55.3	73.0	-17.7
2	2.706	27.0		0.5	0.5	20.0	QP	48.0	73.0	-25.0
(0.388	31.7		0.9	0.0	20.0	QP	52.6	79.0	-26.4
	5.001	34.6		0.5	8.0	20.0		55.9	60.0	-4.1
2	2.708	27.5		0.5	0.5	20.0		48.5	60.0	-11.5
(0.387	32.7		0.9	0.2	20.0		53.8	66.0	-12.2
2	2.326	25.4		0.5	0.5	20.0		46.4	60.0	-13.6
2	2.781	24.4		0.5	0.6	20.0		45.5	60.0	-14.5
3	3.397	22.6		0.5	0.6	20.0		43.7	60.0	-16.3
2	20.099	18.7		0.5	1.5	20.0		40.7	60.0	-19.3
2	0.875	18.6		0.5	1.5	20.0		40.6	60.0	-19.4
1	9.713	18.6		0.5	1.5	20.0		40.6	60.0	-19.4
2	2.129	19.5		0.5	0.5	20.0		40.5	60.0	-19.5
2	20.489	18.3		0.5	1.5	20.0		40.3	60.0	-19.7

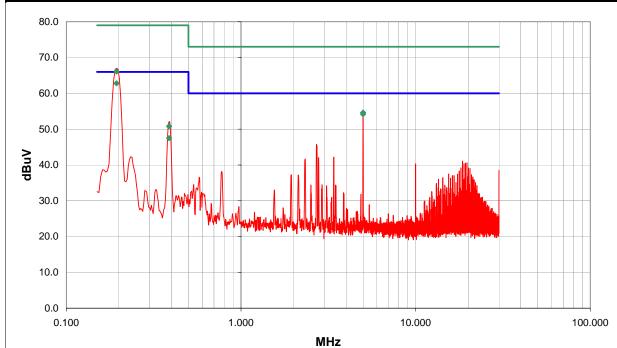
NORTHWEST **CONDUCTED EMISSIONS DATA SHEET EMC** EUT: MC-Series iDEN Microcell High Power Serial Number: Engineering unit Work Order: RAFN0067 Date: 11/08/06 Customer: Radioframe Networks, Inc. Temperature: 22 Attendees: Erin Duleba Humidity: 52% Project: None Tested by: Rod Peloquin TEST SPECIFICATIONS Barometric Pres.: 29.86 Power: -48VDC Job Site: EV01 Test Method FCC 15.107:2006 ANSI C63.4:2003 TEST PARAMETERS

Cable or Line Tested Positive

COMMENTS

Ground strap installed as will be used in typical installations.

EUT OPERATING MODES


BCU and LNAs operating only DEVIATIONS FROM TEST STANDARD

No deviations.

Run #	2
Configuration #	1
Daguita	Dace

Signature

Rocky Le Felin

NVLAP Lab Code 200630-0

-		A 15- 1		0.11	External				Compared to
	eq	Amplitude	Transducer	Cable	Attenuation	Detector (blank equal peaks	Adjusted	Spec. Limit	Spec.
(MI	Hz)	(dBuV)	(dB)	(dB)	(dB)	[PK] from scan)	dBuV	dBuV	(dB)
0.1	94	41.7	1.1	0.0	20.0	AV	62.8	66.0	-3.2
5.0	000	33.3	0.5	8.0	20.0	AV	54.6	60.0	-5.4
0.1	194	45.0	1.1	0.0	20.0	QP	66.1	79.0	-12.9
0.3	387	26.6	0.9	0.0	20.0	AV	47.5	66.0	-18.5
5.0	000	32.9	0.5	8.0	20.0	QP	54.2	73.0	-18.8
0.3	387	29.9	0.9	0.0	20.0	QP	50.8	79.0	-28.2
5.0	001	33.7	0.5	8.0	20.0		55.0	60.0	-5.0
0.3	387	31.0	0.9	0.2	20.0		52.1	66.0	-13.9
2.7	708	24.7	0.5	0.5	20.0		45.7	60.0	-14.3
3.4	101	21.1	0.5	0.6	20.0		42.2	60.0	-17.8
2.7	781	21.0	0.5	0.6	20.0		42.1	60.0	-17.9
2.3	329	20.7	0.5	0.5	20.0		41.7	60.0	-18.3
18.	550	19.2	0.5	1.4	20.0		41.1	60.0	-18.9
19.7	709	18.6	0.5	1.5	20.0		40.6	60.0	-19.4
19.3	323	18.6	0.5	1.5	20.0		40.5	60.0	-19.5
18.9	936	18.4	0.5	1.5	20.0		40.3	60.0	-19.7
10.0	000	18.8	0.5	1.0	20.0		40.3	60.0	-19.7
18.1	160	17.3	0.5	1.4	20.0		39.2	60.0	-20.8
20.0	095	17.2	0.5	1.5	20.0		39.2	60.0	-20.8

Conducted Emissions

Conducted Emissions

