

CALIBRATION DATA – PART 2 FOR RFI TEST REPORT SERIAL NO: RFI/SARB2/RP70438JD10A

Test Of: Intel Corporation. Pro/Wireless GPRS 3110 PC Card

To: OET Bulletin 65 Supplement C: (2001-01)

Radio Frequency Investigation Ltd, Ewhurst Park, Ramsdell, Basingstoke, Hampshire, RG26 5RQ, ENGLAND. Tel: +44 (0) 1256 851193 Fax: +44 (0) 1256 851192 Registered in England, No. 211 7901. Registered Office: Ewhurst Park, Ramsdell, Basingstoke, Hampshire RG26 5RQ

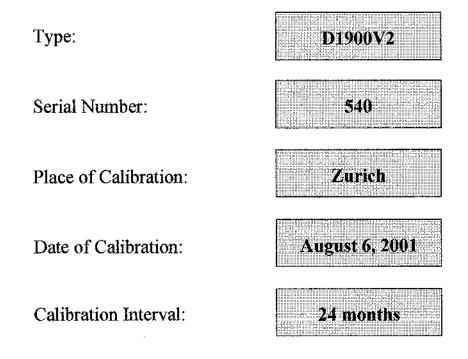
RADIO FREQUENCY INVESTIGATION LTD.

Calibration Data S.No. RFI/SARB2/RP70438JD10A Issue Date: 22 January 2003

Operations Department

Test Of:Intel Corporation.
Pro/Wireless GPRS 3110 PC CardTo:OET Bulletin 65 Supplement C: (2001-01)

Calibration Data


This section contains the calibration data and certificates.

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Calibration Certificate

1900 MHz System Validation Dipole

Schmid & Partner Engineering AG hereby certifies, that this device has been calibrated on the date indicated above. The calibration was performed in accordance with specifications and procedures of Schmid & Partner Engineering AG.

Wherever applicable, the standards used in the calibration process are traceable to international standards. In all other cases the standards of the Laboratory for EMF and Microwave Electronics at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland have been applied.

Calibrated by:

Show Keja NB5

Approved by:

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

DASY3

Dipole Validation Kit

Type: D1900V2 Serial: 540

Manufactured: July 26, 2001 Calibrated: August 6, 2001

1. Measurement Conditions

The measurements were performed in the flat section of the new generic twin phantom filled with brain simulating sugar solution of the following electrical parameters at 1900 MHz:

Relative permitivity	39.5	± 5%
Conductivity	1.47 mho/m	$\pm 10\%$

The DASY3 System (Software version 3.1c) with a dosimetric E-field probe ET3DV6 (SN:1507, conversion factor 5.57 at 1800 MHz) was used for the measurements.

The dipole feedpoint was positioned below the center marking and oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10mm from dipole center to the solution surface. The included distance holder was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 5x5x7 fine cube was chosen for cube integration. Probe isotropy errors were cancelled by measuring the SAR with normal and 90° turned probe orientations and averaging.

The dipole input power (forward power) was $250 \text{mW} \pm 3 \%$. The results are normalized to 1W input power.

2. SAR Measurement

Standard SAR-measurements were performed with the head phantom according to the measurement conditions described in section 1. The results (see figure) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values are:

averaged over 1 cm^3 (1 g) of tissue:	42.4 mW/g
averaged over 10 cm ³ (10 g) of tissue:	21.5 mW/g

Note: If the liquid parameters for validation are slightly different from the ones used for initial calibration, the SAR-values will be different as well. The estimated sensitivities of SAR-values and penetration depths to the liquid parameters are listed in the DASY Application Note 4: 'SAR Sensitivities'.

3. Dipole Impedance and Return Loss

The impedance was measured at the SMA-connector with a network analyzer and numerically transformed to the dipole feedpoint. The transformation parameters from the SMA-connector to the dipole feedpoint are:

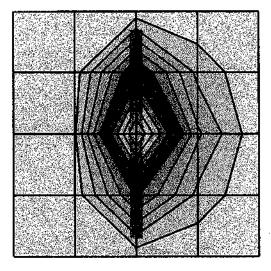
Electrical delay:	1.214 ns	(one direction)
Transmission factor:	0.997	(voltage transmission, one direction)

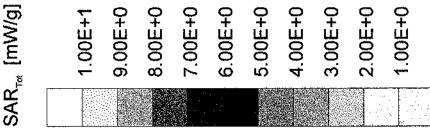
The dipole was positioned at the flat phantom sections according to section 1 and the distance holder was in place during impedance measurements.

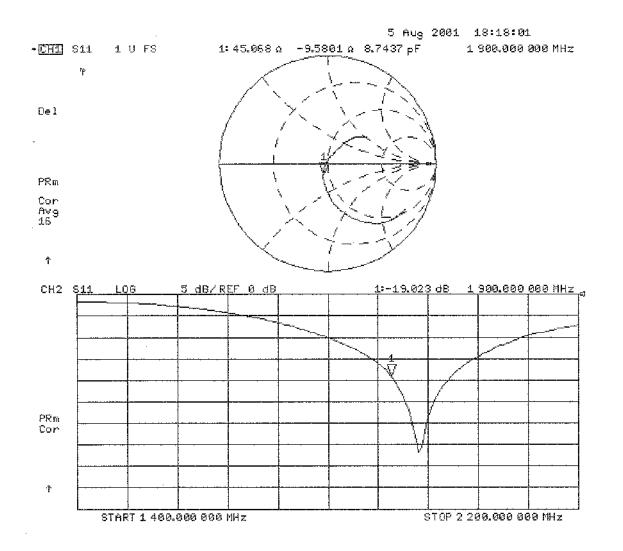
Feedpoint impedance at 1900 MHz:	$\operatorname{Re}\{Z\} = 45.1 \Omega$
	Im $\{Z\} = -9.6 \Omega$
Return Loss at 1900 MHz	- 19.0 dB

4. Handling

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.


Do not apply excessive force to the dipole arms, because they might bend. If the dipole arms have to be bent back, take care to release stress to the soldered connections near the feedpoint; they might come off.


After prolonged use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.



Validation Dipole D1900V2 SN:540, d = 10 mm

Cubes (2): Peak: 20.4 mW/g ± 0.01 dB, SAR (1g): 10.6 mW/g ± 0.02 dB, SAR (10g): 5.38 mW/g ± 0.04 dB, (Worst-case extrapolation) Penetration depth: 7.9 (7.4, 8.9) [mm] Frequency: 1900 MHz; Anterna Input Power: 250 [mW] SAM Phantom; Flat - SAM Section; Grid Spacing: Dx = 20.0, Dy = 20.0, Dz = 10.0 Probe: ET3DV6 - SN1507; ConvF(5.57,5.57,5.57) at 1800 MHz; IEEE1528 1900 MHz ; σ = 1.47 mho/m ε_r = 39.5 ρ = 1.00 g/cm³ Powerdrift: -0.06 dB

÷