EXHIBIT 10

GENERAL MEASUREMENT INFORMATION

This exhibit describes the test equipment used to perform the measurements required to obtain a Certification grant of equipment authorization, presents a general measurement set-up, and discusses the amplitude calibration performed to ensure accurate results for measurements of RF output power, occupied bandwidth, conducted spurious emissions, and frequency stability. A description of the measurement of field strength of radiated emissions and equipment used is detailed in Exhibit 14.

The primary test equipment used for all but measurements of field strength of radiated emissions is described in the following list. Details, including serial numbers and calibration dates, are presented in Table E10.1:

- HP437B Average Power Meter with HP8481A Power Sensor (for calibrations)
- HP83752A Signal Generator (for calibrations)
- HP8563E Spectrum Analyzer, with High Stability Time Base and Frequency Counter Options
- Rohde and Shwarz CMD-55 Digital Radio Test Set
- Personal Computer (Dell) to acquire (using HP VEE), process and present results

Table E10.1. Test equipment used to perform required measurements.

Make	Model	Serial Number	Asset	Last Cal	Cal Due
HP	437B	3125U23747	15505	16MAY01	16MAY02
HP	8481A	3318A98542	15506	09MAY01	09MAY02
HP	8563E	3626A05388	15502	22MAR00	22MAR02
HP	83752A	3610A00851	15583	16MAY01	16MAY03
FLUKE	79	61200710	A00161	29MAY01	29MAY02
EXTECH TEMP	40132K	93104162	A01597	26APR01	26APR02
SENSE					
RHOHDE&	CMD 55	0E11400	15444	06OCT00	06OCT01
SHWARZ					
THERMOTRON	S1.2 TEMP	18890	16021	NA	NA
	CHAMBER				
INMET	18S100W-20	20 dB	NA	NA	NA
		ATTEN			
NARDA	4326B-2	POWER	NA	NA	NA
		DIVIDER			
LAMBDA	LLS7040	DC SUPPLY	A00167	NA	NA

General Measurement Set-up

A composite diagram representing the equipment set-up used during measurements of RF output power, occupied bandwidth, conducted spurious emissions (including emissions bandwidth), and frequency stability is presented as Figure E10.1. The RF port of the Core Engine is connected to both an HP8563E Spectrum Analyzer and the R&S CMD55 Digital Radio Test Set. The 20 dB pad prevents the Core Engine RF output from overloading the front-end of the HP8563E Spectrum Analyzer.

Measurements of RF output power, occupied and emissions bandwidth, and conducted emissions were performed using the HP8563E. The R&S CMD55 was used to configure and control the Core Engine for all measurements (to select transmit channel, RF output power level, and so forth). Also during frequency stability measurements a Lambda DC supply was used to vary the DC input level to the Core Engine during measurements of frequency stability.

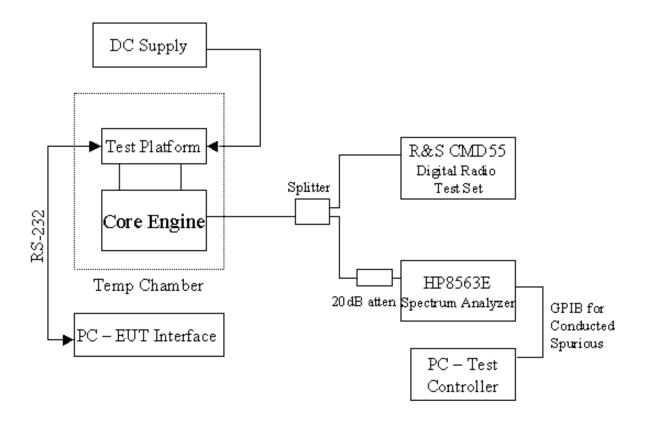


Figure E10.1. General Measurement Set-up (for all but radiated spurious emissions).

Xircom, Inc. Exhibit 10 FCC ID: PUKGEM3501 Page 3 of 3

Amplitude Calibration of the Measurement System

Because measurements of peak output power (§ 2.1046) and conducted spurious emissions (§ 2.1051) are made absolutely, characterization of diagnostic system signal path (RF cables, splitter, attenuator) loss between the RF output connector of the Core Engine and the input port of the HP8563E Spectrum Analyzer is necessary prior to making these measurements. For output power measurements, this loss was characterized at the center frequency of each channel at which these measurements were made. In the case of conducted spurious emissions, losses were measured at the center of each span throughout the frequency ranges given in Table E10.2. Separate calibrations were performed for correcting measurements made beyond the lower and upper edge of each of the six PCS license blocks (A – F). Measured path loss data was stored and used to correct all subsequent output power and conducted spurious emissions measurements.

Table E10.2. Diagnostic system loss measurements—frequency ranges and spans.

Frequency Range	Span		
10 MHz – 1810 MHz	300 MHz		
1810 MHz – 5 MHz below license lower edge	35 to 95 MHz (block dependent)		
5 MHz below to 5 MHz beyond license edge	1 MHz		
5 MHz beyond license edge – 2000 MHz	130 – 85 MHz (block dependent)		
2000 MHz – 20 GHz	300 MHz		