FCC CFR47 PART 15 SUBPART E CERTIFICATION

TEST REPORT

FOR

PHILIPS COMPONENTS

802.11 COMBO MINI PCI WLAN CARD

MODEL NUMBER: PH11107-E

BRAND NAME: PHILIPS

FCC ID: PUBWCM1008

REPORT NUMBER: 02U1529-2

ISSUE DATE: OCTOBER 22, 2002

Prepared for

PHILIPS COMPONENTS 1000 WEST MAUDE AVE SUNNYVALE, CA 94085 USA

Prepared by

COMPLIANCE CERTIFICATION SERVICES 561F MONTEREY ROAD, MORGAN HILL, CA 95037, USA

TEL: (408) 463-0885 FAX: (408) 463-0888

TABLE OF CONTENTS

1. TE	ST RESULT CERTIFICATION	3
2. EU	T DESCRIPTION	4
3. TE	ST METHODOLOGY	5
4. FA	CILITIES AND ACCREDITATION	5
4.1.	FACILITIES AND EQUIPMENT	5
4.2.	LABORATORY ACCREDITATIONS AND LISTINGS	5
4.3.	TABLE OF ACCREDITATIONS AND LISTINGS	6
5. CA	ALIBRATION AND UNCERTAINTY	7
5.1.	MEASURING INSTRUMENT CALIBRATION	7
5.2.	MEASUREMENT UNCERTAINTY	7
5.3.	TEST AND MEASUREMENT EQUIPMENT	8
6. SE	TUP OF EQUIPMENT UNDER TEST	9
7. AF	PPLICABLE RULES	12
8. TE	ST SETUP, PROCEDURE AND RESULT	
8.1.	UNDESIRABLE EMISSIONS – RADIATED MEASUREMENTS	16
8.2.	POWER LINE CONDUCTED EMISSIONS	29
83	SETUP PHOTOS	31

DATE: OCTOBER 22, 2002 FCC ID: PUBWCM1008

1. TEST RESULT CERTIFICATION

COMPANY NAME: PHILIPS COMPONENTS.

1000 WEST MAUDE AVE SUNNYVALE, CA 94085 USA

EUT DESCRIPTION: 802.11 COMBO MINI PCI WLAN CARD

MODEL NUMBER: PH11107-E

DATE TESTED: OCTOBER 9 – OCTOBER 16, 2002

TYPE OF EQUIPMENT	INTENTIONAL RADIATOR
EQUIPMENT TYPE	5.15 – 5.35 GHz TRANSCEIVER *
MEASUREMENT PROCEDURE	ANSI 63.4 / 1992, TIA/EIA 603
PROCEDURE	CERTIFICATION
FCC RULE	CFR 47 PART 15.E

Only the radiated spurious emissions and AC mains conducted emissions in the 5.2 GHz band are documented in this report; other requirements (antenna port conducted measurements) and bands of operation (2.4 GHz and 5.8 GHz) are documented in separate reports. Subject to this scope, Compliance Certification Services, Inc. tested the above equipment for compliance with the requirements as set forth in CFR 47, PART 15, Subpart E. The equipment in the configuration described in this report, shows the measured emission levels emanating from the equipment do not exceed the specified limit.

Note: This document reports conditions under which testing was conducted and results of tests performed. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document.

Approved & Released For CCS By:

Tested By:

m +6

MIKE HECKROTTE CHIEF ENGINEER COMPLIANCE CERTIFICATION SERVICES VAN LEE
EMC ENGINEER
COMPLIANCE CEPTI

COMPLIANCE CERTIFICATION SERVICES

2. EUT DESCRIPTION

The Philips PH11107 is a high performance 802.11a/b WLAN client product intended for a laptop application. It operates in the 2.4 – 2.4835 GHz, 5.15 - 5.35 GHz and 5.725 - 5.850 GHz bands. The product uses two Dual Band Inverted F type antennas for diversity operation. Each antenna is mounted in the LCD display of the laptop. The Main antenna has a gain of +0.46 dBi in the 2.4 GHz band, +2.98 dBi in the 5.2 GHz band, and -0.49 dBi in the 5.8 GHz band. The Auxilliary antenna has a gain of -1.06 dBi in the 2.4 GHz band, +1.96dBi in the 5.2 GHz band, and -0.12 dBi in the 5.8 GHz band.

DATE: OCTOBER 22, 2002

FCC ID: PUBWCM1008

For test purposes, the EUT is installed on a cardbus adapter, which is subsequently installed in a laptop computer equipped with a cardbus slot and the appropriate radio testing software. The antennas are mounted in a separate LCD display of the same type that is intended for use in the final end product application.

3. TEST METHODOLOGY

Conducted and radiated testing were performed according to the procedures documented on chapter 13 of ANSI C63.4 and FCC CFR 47 2.1046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055, 2.1057, and 15.407.

DATE: OCTOBER 22, 2002

FCC ID: PUBWCM1008

4. FACILITIES AND ACCREDITATION

4.1. FACILITIES AND EQUIPMENT

The open area test sites and conducted measurement facilities used to collect the radiated data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

Receiving equipment (i.e., receiver, analyzer, quasi-peak adapter, pre-selector) and LISNs conform to CISPR specifications for "Radio Interference Measuring Apparatus and Measurement Methods," Publication 16.

4.2. LABORATORY ACCREDITATIONS AND LISTINGS

The test facilities used to perform radiated and conducted emissions tests are accredited by National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code: 200065-0 to perform Electromagnetic Interference tests according to FCC PART 15 AND CISPR 22 requirements. No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government. In addition, the test facilities are listed with Federal Communications Commission (reference no: 31040/SIT (1300B3) and 31040/SIT (1300F2)).

4.3. TABLE OF ACCREDITATIONS AND LISTINGS

Country	Agency	Scope of Accreditation	Logo
USA	NVLAP*	FCC Part 15, CISPR 22, AS/NZS 3548,IEC 61000-4-2, IEC 61000-4-3, IEC 61000-4-4, IEC	nvlag
		61000-4-5, IEC 61000-4-6, IEC 61000-4-8, IEC 61000-4-11, CNS 13438	200065-0
USA	FCC	3/10 meter Open Area Test Sites to perform FCC Part 15/18 measurements	FC 1300
Japan	VCCI	CISPR 22 Two OATS and one conducted Site	VCCI R-1014, R-619, C-640
Norway	NEMKO	EN50081-1, EN50081-2, EN50082-1, EN50082-2, IEC61000-6-1, IEC61000-6-2, EN50083-2, EN50091-2, EN50130-4, EN55011, EN55013, EN55014-1, EN55104, EN55015, EN61547, EN55022, EN55024, EN61000-3-2, EN61000-3-3, EN60945, EN61326-1	N _{ELA 117}
Norway	NEMKO	EN60601-1-2 and IEC 60601-1-2, the Collateral Standards for Electro-Medical Products. MDD, 93/42/EEC, AIMD 90/385/EEC	N _{ELA-171}
Taiwan	BSMI	CNS 13438	点 SL2-IN-E-1012
Canada	Industry Canada	RSS210 Low Power Transmitter and Receiver	Canada IC2324 A,B,C, and F

^{*} No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government.

5. CALIBRATION AND UNCERTAINTY

5.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

DATE: OCTOBER 22, 2002

FCC ID: PUBWCM1008

5.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Radiated Emission					
30MHz – 200 MHz	+/- 3.3dB				
200MHz – 1000MHz	+4.5/-2.9dB				
1000MHz – 2000MHz	+4.6/-2.2dB				
Power Line Conducted Emission					
150kHz – 30MHz	+/-2.9				

Any results falling within the above values are deemed to be marginal.

5.3. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

DATE: OCTOBER 22, 2002

FCC ID: PUBWCM1008

TEST AND MEASUREMENT EQUIPMENT LIST							
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due Date			
Spectrum Analyzer	HP	8566B	3014A06685	6/1/03			
Spectrum Display	HP	85662A	2152A03066	6/1/03			
Quasi-Peak Detector	HP	85650A	3145A01654	6/1/03			
Preamplifier	HP	8447D	2944A06833	8/10/02			
Log Periodic Antenna	EMCO	3146	9107-3163	3/30/03			
Biconical Antenna	Eaton	94455-1	1197	3/30/03			
LISN	F.C.C.	LISN-50/250-25-2	2023	8/2/02			
EMI Test Receiver	Rohde & Schwarz	ESHS 20	827129/006	4/17/03			
Spectrum Analyzer	HP	8593EM	3710A00205	6/11/03			
Preamplifier (1 - 26.5GHz)	MITEQ	NSP2600-44	646456	4/26/03			
Horn Antenna (1 - 18GHz)	EMCO	3115	6717	1/31/03			
Horn Antenna (18 – 26.5GHz)	ARA	3115	6717	1/31/03			
High Pass Filter (7.6GHz)	FSY Microwave	FM-7600-9SS	002	N.C.R.			
External Mixer (26.5 – 40 GHz)	HP	11970A	3008A04190	10/15/05			
Horn Antenna (26.5 – 40 GHz)	Dico	1149	2	N.C.R.			

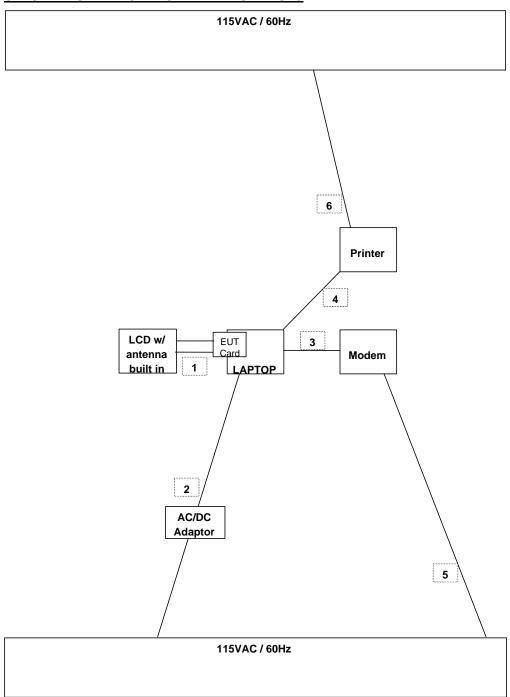
6. SETUP OF EQUIPMENT UNDER TEST

SUPPORT EQUIPMENT

Device Type	Manufacturer	Model	Serial Number	FCC ID
Laptop	IBM	2366-21U	78-CRG63	DoC
AC Power Adapter	IBM	02K6746	N/A	DoC
Laptop	DELL	PPL	0001421C-12800-87L-0963	DoC
AC Power Adapter	DELL	AA20031	N/A	DoC
Printer	HP	2225C	2541S41679	BS46XU2225
Modem	ACEEX	1414	9013538	DoC

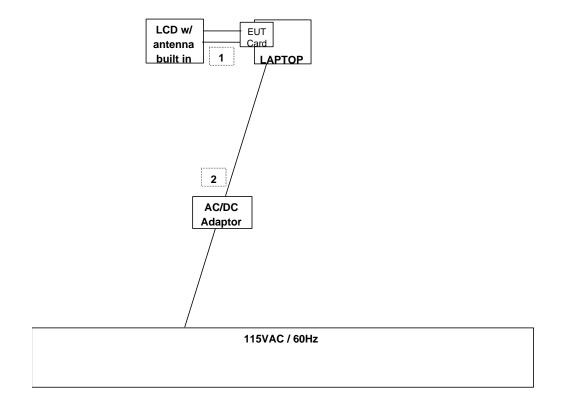
DATE: OCTOBER 22, 2002

FCC ID: PUBWCM1008


I/O CABLES

Cable No.	Port	# of Identical	Connector Type	Cable Type	Cable Length	Remarks
		Ports			•	
1	Antenna	2	UFL	Coaxial	0.1 m	
2	AC	1	US115	Unshielded	2 m	Integral with AC Adapter
3	Serial	1	Mini DIN	Shielded	2 m	
4	Parallel	1	DB25	Shielded	2 m	
5	AC	1	US115	Unshielded	2 m	
6	AC	1	US115	Unshielded	2 m	

TEST SETUP


The EUT is installed into a laptop computer during the test.

SETUP DIAGRAM FOR DIGITAL DEVICE TESTS

Page 10 of 33

SETUP DIAGRAM FOR TRANSMITTER TESTS

Page 11 of 33

7. APPLICABLE RULES

§15.407(b)- UNDESIRABLE EMISSION LIMITS

(1 & 2) For transmitters operating in the 5.15-5.35 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27dBm / MHz.

DATE: OCTOBER 22, 2002

FCC ID: PUBWCM1008

- (5) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in §15.207.
- (6) The provisions of §15.205 apply to intentional radiators operating under this section.

§15.407(f)- RADIO FREQUENCY EXPOSURE

U-NII devices are subject to the radio frequency radiation exposure requirements specified in §1.1307(b), §2.1091 and §2.1093 of this chapter, as appropriate. All equipment shall be considered to operate in a "general population/uncontrolled" environment. Applications for equipment authorization of devices operating under this section must contain a statement confirming compliance with these requirements for both fundamental emissions and unwanted emissions. Technical information showing the basis for this statement must be submitted to the Commission upon request.

§15.205- RESTRICTED BANDS OF OPERATIONS

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)
13.36 - 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

² Above 38.6

§15.207- CONDUCTED LIMITS

(a) For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 450 kHz to 30 MHz shall not exceed 250 microvolts. Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminals.

FCC PART 15.207

FREQUENCY RANGE	FIELD STRENGTH	FIELD STRENGTH	
	(Microvolts)	(dBuV)/QP	
450kHz-30MHz	250	48	

§15.209- RADIATED EMISSION LIMITS; GENERAL REQUIREMENTS

(a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

(b) In the emission table above, the tighter limit applies at the band edges.

FCC PART 15.209

MEASURING DISTANCE OF 3 METER							
FREQUENCY RANGE	FREQUENCY RANGE FIELD STRENGTH FIELD STRENGTH						
(MHz)	(Microvolts/m)	(dBuV/m)					
30-88	100	40					
88-216	150	43.5					
216-960	200	46					
Above 960	500	54					

Page 14 of 33

DOCUMENT NO: CCSUP4031A TEL: (408) 463-0885 FAX: (408) 463-0888

DATE: OCTOBER 22, 2002

FCC ID: PUBWCM1008

This report shall not be reproduced except in full, without the written approval of CCS. This document may be altered or revised by Compliance Certification Services personnel only, and shall be noted in the revision section of the document.

CONDUCTED AND RADIATED EMISSION LIMITS; ALTERNATIVE REQUIREMENTS

For the digital device radiated emissions and AC mains conducted emissions, CISPR 22 (EN 55022) Class B limits may be applied in leiu of the §15.207 and §15.209 limits specified above. For the purposes of this report, these alternative CISPR limits are used.

DATE: OCTOBER 22, 2002

FCC ID: PUBWCM1008

8. TEST SETUP, PROCEDURE AND RESULT

8.1. UNDESIRABLE EMISSIONS – RADIATED MEASUREMENTS

DATE: OCTOBER 22, 2002

FCC ID: PUBWCM1008

TEST SETUP

For measurements of the EUT as a digital device, the EUT and all other support equipment were placed on a wooden table 80 cm above the ground plane. For measurements of the EUT as a transmitter, the EUT and the laptop were placed on the wooden table. The antenna to EUT distance is 3 meters for measurements below 1 GHz and 1 meter for measurements above 1 GHz. The EUT is configured in accordance with Section 8 of ANSI C63.4/1992.

The EUT is set to transmit in a continuous mode.

TEST PROCEDURE

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The spectrum from 30 MHz to 40 GHz is investigated.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The frequency span is set small enough to easily differentiate between broadcast stations, intermittent ambient signals and EUT emissions. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the suspected signal. Measurements were made with the antenna polarized in both the vertical and the horizontal positions.

SYSTEM NOISE FLOOR FOR HARMONIC AND SPURIOUS MEASUREMENTS

Compliance Certification Services

Worst Case Radiated Emissions System Noise Floor

Each band below corresponds to each horn antenna band
Uses the lowest gain preamplifier; actual preamp used may have higher gain
Uses the longest typical cable configuration; actual cables used may have less loss
Noise floor field strength results are compared to the FCC 15.205 Restricted Band limit

Specification Distance: 3 meters

Орссп	ication D	istanc e .	3	meters					
Freq	SA	AF	Distance	Distance	Preamp	Cable	Field	Limit	Margin
GHz	dBuV	dB/m	m	dB	dB	dB	dBuV/m	dBuV/m	dB
1 to 18	GHz ban	d							
RBW =	1 MHz, p	eak dete	ection						
18	41.9	47.8	1	-9.5	32.6	13.5	61.06	74	-12.94
RBW =	1 MHz, a	verage (detection						
18	28.7	47.8	1	-9.5	32.6	13.5	47.86	54	-6.14
18 to 26	GHz ba	nd							
RBW =	1 MHz, p	eak dete	ection						
26	44.6	33.4	1	-9.5	35.0	19.5	52.96	74	-21.04
RBW =	1 MHz, a	verage (detection						
26	32.4	33.4	1	-9.5	35.0	19.5	40.76	54	-13.24
26 to 40	GHz ba	nd							
Externa	l mixer is	used fo	r this band						
Preamp	lifier is ir	ternal to	Spectrum	Analyzer, v	vith gain fac	ctor built int	o firmware		
Antenna	Antenna is mounted directly on exte			rnal mixer,	therefore c	able = 0 df	3		
RBW =	1 MHz, p	eak dete	ection						
40	39.2	44.5	0.3	-20.0	0.0	0	63.70	74	-10.30
RBW =	1 MHz, a	verage (detection						
40	27.2	44.5	0.3	-20.0	0.0	0	51.70	54	-2.30

SAMPLE CALCULATIONS

Given

$$E = \sqrt{(30 * P * G)} / d$$

where

E = Field Strength in Volts / meter

P = Power in watts

G = Numeric antenna gain

d = distance in meters

Rearranging terms yields:

$$P * G = (d * E) ^ 2 / 30$$

Converting to the logarithmic form and changing to units of mW and uV/m, using:

$$P(mW) = P(W) / 1000$$
 and $E(uV/m) = E(V/m) / 1000000$

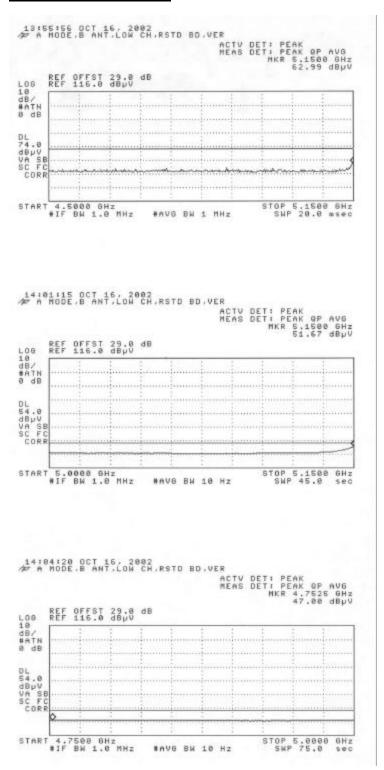
yields

$$10 \log (P * G) = 10 \log (d ^ 2) + 10 \log (E ^ 2) - 10 \log (30) - 10 \log (10 ^ 9)$$
$$= 20 \log (d) + 20 \log (E) - 104.77$$

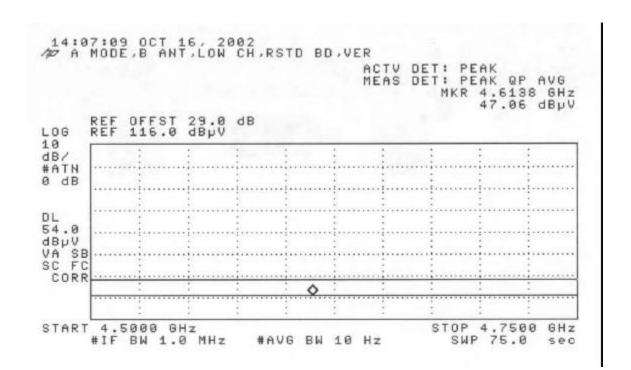
DATE: OCTOBER 22, 2002

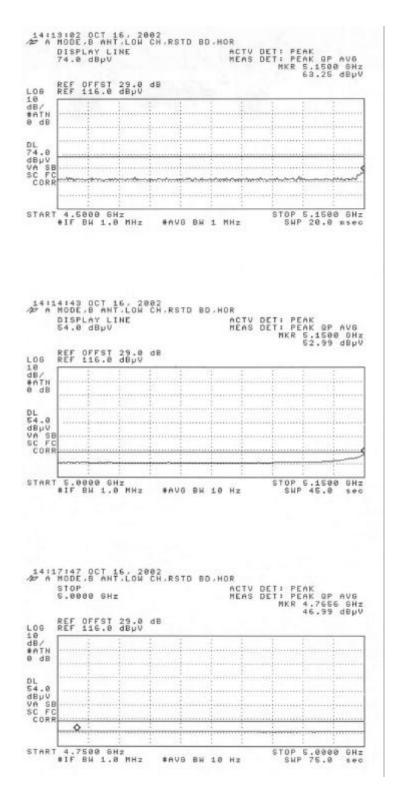
FCC ID: PUBWCM1008

In this logarithmic form

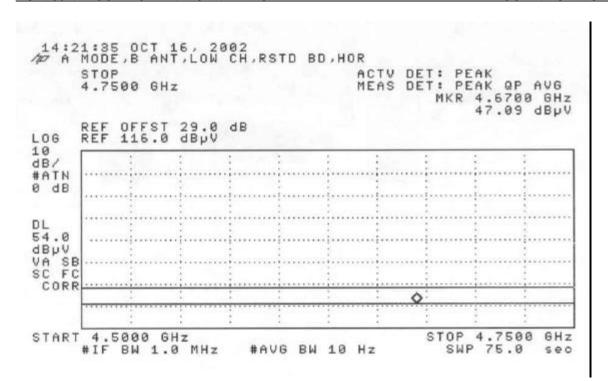

Since EIRP = P * G, then at a specification distance of 3 meters, the EIRP in terms of field strength is:

$$EIRP (dBm) = P * G (dBm) = E (dBuV/m) - 95.2$$

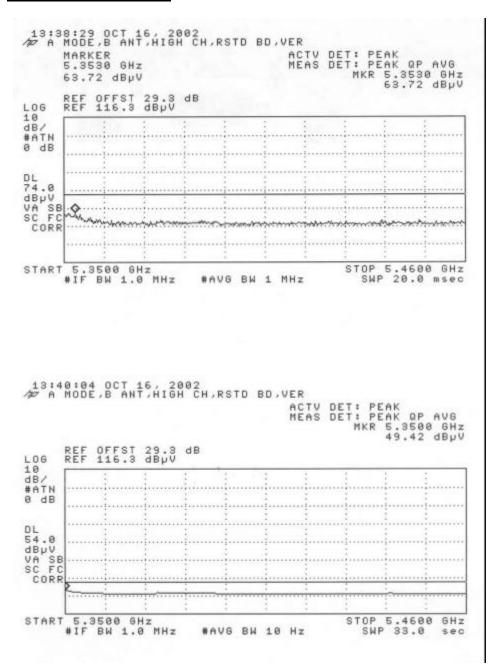

TEST RESULTS

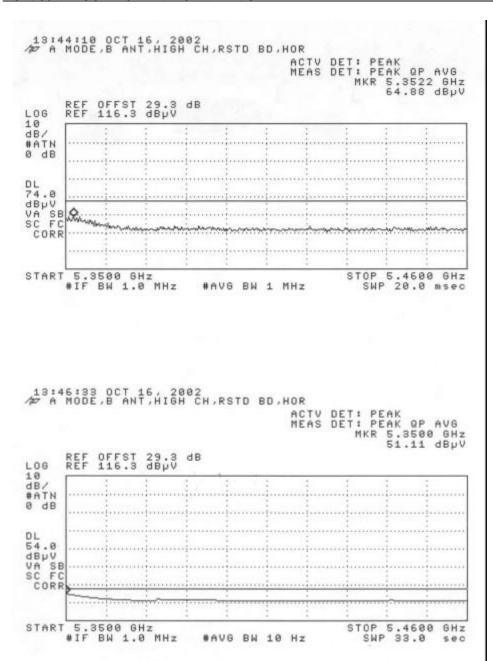

No non-compliance noted:

RESTRICTED BAND LOW



Page 19 of 33




Page 21 of 33

RESTRICTED BAND HIGH

Page 23 of 33

Page 24 of 33

FUNDAMENTAL, HARMONIC AND SPURIOUS RADIATED EMISSIONS

					.	. =						
					Radiated Emissions							
		Pi	roject Nu		02U1529							
				Date:	10/09/02							
			Test Eng	jineer:	Van Lee							
			Com	npany:	Philips							
		EU			_	Combo Mi	ini PCI	WLAN C	ard			
		Test	Configu	ration:	EUT / A	ntennas /	Laptop	/ AC Ad	apter			
						nt Tx, Low						
						, -						
R	Reference Distance: 3.0			meters		EIRP C	onversio	n Factor:	-95.2			
	A	ctual D	istance:	1.0	meters	_						
Freq	Pol	Det	SA	Dist	AF	Preamp	Filter	Cable	Field	EIRP	Limit	Margin
GHz	V/H		dBuV	dB	dB/m	dB	dB	dB	dBuV/m	dBm		dB
		I	dBuV	dB	dB/m	dB	dB	dB	dBuV/m	dBm		dB
Fundam		l Peak								dBm		dB
Fundam 5.180	enta	Peak	77.3	-9.5	34.7	0.0 0.0	0.0	3.8	106.3	dBm		dB
Fundam 5.180 5.180	enta V		77.3 67.0	-9.5 -9.5		0.0		3.8 3.8	106.3 96.0	dBm		dB
Fundam 5.180 5.180 5.180	enta V V	Peak Avg Peak	77.3 67.0 82.7	-9.5 -9.5 -9.5	34.7 34.7 34.7	0.0	0.0 0.0 0.0	3.8 3.8 3.8	106.3 96.0 111.7	dBm		dB
Fundam 5.180 5.180 5.180 5.180	enta V V H H	Peak Avg Peak Avg	77.3 67.0 82.7 72.3	-9.5 -9.5	34.7 34.7	0.0 0.0 0.0	0.0	3.8 3.8	106.3 96.0	dBm		dB
Fundam 5.180 5.180 5.180	enta V V H H	Peak Avg Peak Avg	77.3 67.0 82.7 72.3	-9.5 -9.5 -9.5	34.7 34.7 34.7	0.0 0.0 0.0	0.0 0.0 0.0	3.8 3.8 3.8	106.3 96.0 111.7	-30.7	-27.0	-3.7
5.180 5.180 5.180 5.180 5.180 Harmon	enta V V H H ics a	Peak Avg Peak Avg nd Spu	77.3 67.0 82.7 72.3 ırious	-9.5 -9.5 -9.5 -9.5	34.7 34.7 34.7 34.7	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	3.8 3.8 3.8 3.8	106.3 96.0 111.7 101.3		-27.0 -27.0	
Fundam 5.180 5.180 5.180 5.180 Harmon 6.216	enta V V H H ics a V	Peak Avg Peak Avg nd Spu Peak	77.3 67.0 82.7 72.3 urious 67.9	-9.5 -9.5 -9.5 -9.5	34.7 34.7 34.7 34.7 35.4 35.4	0.0 0.0 0.0 0.0 36.5	0.0 0.0 0.0 0.0	3.8 3.8 3.8 3.8 6.3 6.3	106.3 96.0 111.7 101.3	-30.7		-3.7 -3.8
Fundam 5.180 5.180 5.180 5.180 Harmon 6.216	enta V V H H ics a V	Peak Avg Peak Avg nd Spu Peak Peak	77.3 67.0 82.7 72.3 urious 67.9 67.8	-9.5 -9.5 -9.5 -9.5 -9.5	34.7 34.7 34.7 34.7 35.4 35.4 38.9	0.0 0.0 0.0 0.0 36.5 36.5 35.7	0.0 0.0 0.0 0.0 1.0	3.8 3.8 3.8 3.8 6.3 6.3	106.3 96.0 111.7 101.3 64.5 64.4	-30.7 -30.8	-27.0	-3.7 -3.8
Fundam 5.180 5.180 5.180 5.180 Harmon 6.216 6.216 10.360	enta V V H H ics a V H	Peak Avg Peak Avg nd Spu Peak Peak Peak	77.3 67.0 82.7 72.3 Irious 67.9 67.8 53.6	-9.5 -9.5 -9.5 -9.5 -9.5 -9.5	34.7 34.7 34.7 34.7 35.4 35.4 38.9	0.0 0.0 0.0 0.0 36.5 36.5 35.7	0.0 0.0 0.0 0.0 1.0 1.0	3.8 3.8 3.8 3.8 6.3 6.3 8.2	106.3 96.0 111.7 101.3 64.5 64.4 56.5	-30.7 -30.8 -38.7	-27.0 -27.0	-3.7 -3.8 -11.7

		_			Radiated Emissions							
			-				ns					
		P	roject Nu									
				Date:	10/09/02							
	Test Engineer:		Van Lee									
			Com	npany:	Philips							
		EU				Combo Mi	ini PCI	WLAN C	ard			
		Test	Configu	ration:	EUT / A	ntennas /	Laptop	/ AC Ad	apter			
			_			ıt Tx, High	-					
						· , <u>J</u>						
R	efer	ence D	istance:	3.0	meters		EIRP C	onversio	n Factor:	-95.2		
				1.0	meters Cable Length: 14.0 feet							
Freq	Pol	Det	SA	Dist	AF	Preamp			Field	EIRP	Limit	Margin
-	1//11		-IDV		dD/m	-				dBm		dB
GHz	V/H		dBuV	dB	dB/m	dB	dB	dB	dBuV/m	abili		uБ
			авич	ав	ab/m	ав	ав	ав	abuv/m	иыш		uБ
Fundam	enta	l								аын		иь
Fundam 5.320	enta V	l Peak	75.7	-9.5	35.0	0.0	0.0	3.8	104.9	аын		иь
Fundam 5.320 5.320	enta V V	l Peak Avg	75.7 67.2	-9.5 -9.5	35.0 35.0	0.0	0.0	3.8 3.8	104.9 96.4	аып		ив
Fundam 5.320 5.320 5.320	enta V V H	l Peak Avg Peak	75.7 67.2 74.5	-9.5 -9.5 -9.5	35.0 35.0 35.0	0.0 0.0 0.0	0.0 0.0 0.0	3.8 3.8 3.8	104.9 96.4 103.7	ФШ		ив
Fundam 5.320 5.320 5.320 5.320	enta V V H H	Peak Avg Peak Avg	75.7 67.2 74.5 67.1	-9.5 -9.5	35.0 35.0	0.0	0.0	3.8 3.8 3.8	104.9 96.4	ФШ		ив
Fundam 5.320 5.320 5.320 5.320 Harmon	enta V V H H	l Peak Avg Peak Avg nd Spu	75.7 67.2 74.5 67.1 urious	-9.5 -9.5 -9.5	35.0 35.0 35.0 35.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	3.8 3.8 3.8 3.8	104.9 96.4 103.7 96.3			
Fundam 5.320 5.320 5.320 5.320 Harmon 6.408	v V V H H ics a	Peak Avg Peak Avg nd Spu	75.7 67.2 74.5 67.1 urious 43.2	-9.5 -9.5 -9.5 -9.5	35.0 35.0 35.0 35.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	3.8 3.8 3.8 3.8	104.9 96.4 103.7 96.3 40.0	-55.2	-27.0	-28.2
Fundam 5.320 5.320 5.320 5.320 Harmon 6.408 6.408	enta V V H H	l Peak Avg Peak Avg nd Spu Peak Peak	75.7 67.2 74.5 67.1 urious 43.2 40.6	-9.5 -9.5 -9.5 -9.5 -9.5	35.0 35.0 35.0 35.0 35.5 35.5	0.0 0.0 0.0 0.0 36.5 36.5	0.0 0.0 0.0 0.0 1.0	3.8 3.8 3.8 3.8 6.4 6.4	104.9 96.4 103.7 96.3 40.0 37.4		-27.0 -27.0	-28.2 -30.8
Fundam 5.320 5.320 5.320 5.320 Harmon 6.408	v V V H H ics a	Peak Avg Peak Avg nd Spu	75.7 67.2 74.5 67.1 urious 43.2	-9.5 -9.5 -9.5 -9.5	35.0 35.0 35.0 35.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	3.8 3.8 3.8 3.8 6.4 6.4	104.9 96.4 103.7 96.3 40.0	-55.2		-28.2 -30.8
Fundam 5.320 5.320 5.320 5.320 Harmon 6.408 6.408	enta V V H H ics a V	l Peak Avg Peak Avg nd Spu Peak Peak	75.7 67.2 74.5 67.1 urious 43.2 40.6	-9.5 -9.5 -9.5 -9.5 -9.5	35.0 35.0 35.0 35.0 35.5 35.5	0.0 0.0 0.0 0.0 36.5 36.5	0.0 0.0 0.0 0.0 1.0	3.8 3.8 3.8 3.8 6.4 6.4 8.3	104.9 96.4 103.7 96.3 40.0 37.4	-55.2	-27.0	-28.2 -30.8
Fundam 5.320 5.320 5.320 5.320 Harmon 6.408 6.408 10.640	enta V V H H ics a V V	Peak Avg Peak Avg nd Spu Peak Peak Peak	75.7 67.2 74.5 67.1 Irious 43.2 40.6 57.8	-9.5 -9.5 -9.5 -9.5 -9.5 -9.5	35.0 35.0 35.0 35.0 35.5 35.5 38.9	0.0 0.0 0.0 0.0 36.5 36.5 35.7	0.0 0.0 0.0 0.0 1.0 1.0	3.8 3.8 3.8 3.8 6.4 6.4 8.3 8.3	104.9 96.4 103.7 96.3 40.0 37.4 60.8	-55.2	-27.0 74.0	-28.2 -30.8 -13.2 -6.1
Fundam 5.320 5.320 5.320 5.320 Harmon 6.408 10.640 10.640	enta V V H H ics a V H V V	Peak Avg Peak Avg nd Spu Peak Peak Peak Avg	75.7 67.2 74.5 67.1 urious 43.2 40.6 57.8 44.9	-9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5	35.0 35.0 35.0 35.0 35.5 35.5 38.9 38.9	0.0 0.0 0.0 0.0 36.5 36.5 35.7 35.7	0.0 0.0 0.0 0.0 1.0 1.0 1.0	3.8 3.8 3.8 3.8 6.4 6.4 8.3 8.3	104.9 96.4 103.7 96.3 40.0 37.4 60.8 47.9	-55.2	-27.0 74.0 54.0	-28.2 -30.8 -13.2
Fundam 5.320 5.320 5.320 5.320 Harmon 6.408 6.408 10.640 10.640	enta V V H H ics a V H V V	Peak Avg Peak Avg nd Spu Peak Peak Avg Peak Avg Peak	75.7 67.2 74.5 67.1 urious 43.2 40.6 57.8 44.9 53.1	-9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5	35.0 35.0 35.0 35.0 35.5 35.5 38.9 38.9 38.9	0.0 0.0 0.0 0.0 36.5 36.5 35.7 35.7 35.7	0.0 0.0 0.0 0.0 1.0 1.0 1.0	3.8 3.8 3.8 3.8 6.4 6.4 8.3 8.3	104.9 96.4 103.7 96.3 40.0 37.4 60.8 47.9 56.1	-55.2	-27.0 74.0 54.0 74.0	-28.2 -30.8 -13.2 -6.1 -17.9

		-	Test Eng	jineer:	Van Lee)						
			Com	npany:	Philips							
	EUT Description:					Combo Mi	ini PCI	WLAN C	ard			
	Test Configuration:					ntennas /	Laptop	/ AC Ad	apter			
		Mode	e of Ope	ration:	Constar	nt Tx, High	<u>Chanr</u>	nel 5320	MHz			
F	Refer	ence D	istance:	3.0	meters		EIRP C	onversio	n Factor:	-95.2		
	Actual Distance: 1.0			1.0	meters	Cable L	_ength:	14.0	feet			
Freq	Pol	Det	SA	Dist	AF	Preamp	Filter	Cable	Field	EIRP	Limit	Margin
GHz	V/H		dBuV	dB	dB/m	dB	dB	dB	dBuV/m	dBm		dB
Fundam	nenta	l										
5.320	V	Peak	75.7	-9.5	35.0	0.0	0.0	3.8	104.9			
5.320	V	Avg	67.2	-9.5	35.0	0.0	0.0	3.8	96.4			
5.320	Н	Peak	74.5	-9.5	35.0	0.0	0.0	3.8	103.7			
5.320	Н	Avg	67.1	-9.5	35.0	0.0	0.0	3.8	96.3			
Harmon	ics a	nd Spu	ırious									
	V	Peak	43.2	-9.5	35.5	36.5	1.0	6.4	40.0	-55.2	-27.0	-28.2
6.408											~- ~	20.0
6.408 6.408		Peak	40.6	-9.5	35.5	36.5	1.0	6.4	37.4	-57.8	-27.0	-30.0
	Н		40.6 57.8	-9.5 -9.5	35.5 38.9	36.5 35.7		6.4 8.3	37.4 60.8	-57.8	-27.0 74.0	
6.408	H V	Peak			38.9					-57.8		-30.8 -13.2 -6.1
6.408 10.640	H V V	Peak Peak	57.8	-9.5	38.9	35.7	1.0 1.0	8.3	60.8	-57.8	74.0	-13.2
6.408 10.640 10.640	H V V H	Peak Peak Avg	57.8 44.9	-9.5 -9.5	38.9 38.9 38.9	35.7 35.7	1.0 1.0	8.3 8.3	60.8 47.9	-57.8	74.0 54.0	-13.2 -6.1

DIGITAL DEVICE RADIATED EMISSIONS

FCC, VCCI, CISPR, CE, AUSTEL, NZ UL, CSA, TUV, BSMI, DHHS, NVLAP

561F MONTEREY ROAD, SAN JOSE, CA 95037-9001 PHONE: (408) 463-0885 FAX: (408) 463-0888

Company: PHILIPS COMPONENTS

Project #:

Report #:

Date& Time:

Test Engr:

02U1529-1

021015B1

10/15/02 3:53 PM

Thanh Nguyen

 EUT Description:
 802.11 Combo MiniPCI WLAN Card

 Test Configuration:
 EUT, LapTop, Printer, Modem, Antenna

Type of Test: EN55022 Class B, FCC Class B

Mode of Operation: Normal Continous TX

<< Main Sheet

Freq.	Reading	AF	Closs	Pre-amp	Level	Limit	Margin	Pol	Az	Height	Mark
(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	EN_B	(dB)	(H/V)	(Deg)	(Meter)	(P/Q/A)
33.00	32.90	15.74	1.60	28.52	21.72	30.00	-8.28	10mV	180.00	1.00	Р
844.15	29.20	19.98	7.63	28.45	28.35	37.00	-8.65	10mV	0.00	1.00	Р
754.14	28.60	19.32	7.16	28.74	26.33	37.00	-10.67	10mV	180.00	1.00	Р
62.64	38.90	5.65	2.06	28.47	18.13	30.00	-11.87	10mV	180.00	1.00	Р
116.02	32.20	11.54	2.71	28.41	18.04	30.00	-11.96	10mV	0.00	1.00	Р
582.33	28.30	18.46	6.17	28.91	24.03	37.00	-12.97	10mV	180.00	1.00	Р
6 Worst	Data										

8.2. POWER LINE CONDUCTED EMISSIONS

TEST SETUP

The EUT is placed on a wooden table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane on the floor.

DATE: OCTOBER 22, 2002

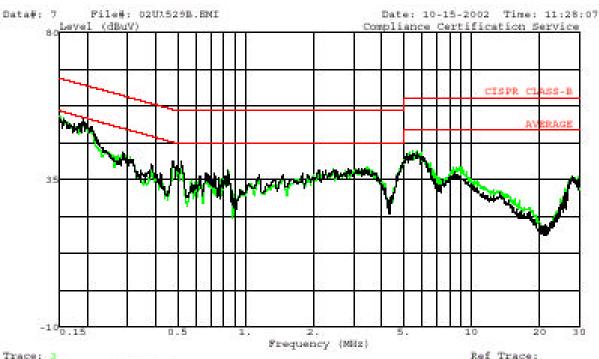
FCC ID: PUBWCM1008

The EUT is set to transmit in a continuous mode.

TEST PROCEDURE

The resolution bandwidth is set to 10 kHz for both peak detection and quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

Line conducted data is recorded for both NEUTRAL and HOT lines.


RESULTS

No non-compliance noted:

	CONDUCTED EMISSIONS DATA												
Freq.		Reading		Closs	Limit	EN B	Marg	Remark					
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV (dB)	L1/L2				
0.15	54.46			0.00	66.00	56.00	-11.54	-1.54	L1				
0.19	51.90			0.00	64.86	54.86	-12.96	-2.96	L1				
5.74	43.66			0.00	60.00	50.00	-16.34	-6.34	L1				
0.19	53.64			0.00	64.86	54.86	-11.22	-1.22	L2				
0.15	53.44			0.00	66.00	56.00	-12.56	-2.56	L2				
5.74	43.44			0.00	60.00	50.00	-16.56	-6.56	L2				
6 Worst I	 Data 												

561F Monterey Road, San Jose, CA 95037 USA Tel: (408) 463-0885 Fax: (408) 463-0888

Trace: 3 Project #

3 0201529-1

Test Engineer : Thanh Nguyen Company.

: Philips Components : 802.11 Combo MiniPCI WLAW Card EUT Model Name : Number PM11107-X (X is A,B,C,DsE) Test Config. : EUT and Support Equipments

Test of Target: FCC Class B

Mode of Op. : Normal Continuous Transmit

: 120VAC & 60Mm

: PEAK Line 1 (GREEN), Line 2 (Black)

8.3. SETUP PHOTOS

TRANSMITTER RADIATED RF MEASUREMENT SETUP

Page 31 of 33

DIGITAL DEVICE RADIATED EMISSIONS MEASUREMENT SETUP

Page 32 of 33

POWERLINE CONDUCTED EMISSIONS MEASUREMENT SETUP

END OF REPORT

Page 33 of 33