

SAR Evaluation Report

in accordance with the requirements of FCC Report and Order: ET Docket 93-62, and OET Bulletin 65 Supplement C

for

Notebook PC

Model: TravelMate C300

FCC ID: PU5MS2140AB

Prepared for

Wistron Corporation 21F, 88, Sec. 1, Hsin Tai Wu Rd., Hsichih, Taipei Hsien 221, Taiwan, R. O. C.

Prepared by

Compliance Certification Services Inc. No. 81-1, Lane 210, Bade Rd. 2, Luchu Hsiang, Taoyuan Hsien, (338) Taiwan, R.O.C. TEL: 886-3-324-0332 FAX: 886-3-324-5235

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document.

CERTIFICATE OF COMPLIANCE (SAR EVALUATION)

Dates of Tests: December 29-30, 2003

Applicant:	Wistron Corporation 21F, 88, Sec. 1, Hsin Tai Wu Rd., Hsichih, Taipei Hsien 221, Taiwan, R. O. C.			
Model Number:	TravelMate C300			
FCC ID:	PU5MS2140AB			
Device Category:	PORTABLE DEVICES			
Exposure Category:	GENERAL POPULATION/UNCONTROLLED EXPOSURE			

Test Sample is a:	Production unit			
Modulation type:	802.11a Orthogonal Frequency Division Multiplexing (OFDM)			
Tx Frequency:	5180 MHz to 5320 MHz (UNII-1 & UNII-2)			
Max. O/P Power: (Conducted/Peak)	UNII-1 & 2: 16.57 dBm			
Max. SAR (1g):	UNII-1 & 2:1.41 W/kg			
Application Type:	Certification			
FCC Rule Part(s):	15E			

Note: This Report is only applicable for 802.11a

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE Std. C95.1-1992 and had been tested in accordance with the measurement procedures specified in FCC OET 65 Supplement C (released on 6/29/2001 see Test Report).

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Approved by:

Jonson Lee / Director Compliance Certification Services Inc.

Reviewed by:

Chang For evn

James Lee / Senior engineer Compliance Certification Services Inc.

TABLE OF CONTENTS

	4
2. REQUIREMENTS FOR COMPLIANCE TESTING DEFINED BY THE FCC	5
3. DOSIMETRIC ASSESSMENT SYSTEM	5
3.1. MEASUREMENT SYSTEM DIAGRAM	6
3.2. SYSTEM COMPONENTS	
DASY4 Measurement Server	
Data Acquisition Electronics (DAE)	7
SAM Phantom (V4.0) Device Holder for SAM Twin Phantom	8 o
System Validation Kits	
4. EVALUATION PROCEDURES	
5. MEASUREMENT UNCERTAINTY	12
6. EXPOSURE LIMIT	13
6. EXPOSURE LIMIT7. MEASUREMENT RESULTS	
	14
7. MEASUREMENT RESULTS	14 14
7. MEASUREMENT RESULTS	14 14 15
 7. MEASUREMENT RESULTS 7.1. SYSTEM PERFORMANCE CHECK	14 14 15 16
 7. MEASUREMENT RESULTS	14 14 15 16
 7. MEASUREMENT RESULTS	14 15 16 17
 7. MEASUREMENT RESULTS	14 15 16 17

1. EUT DESCRIPTION

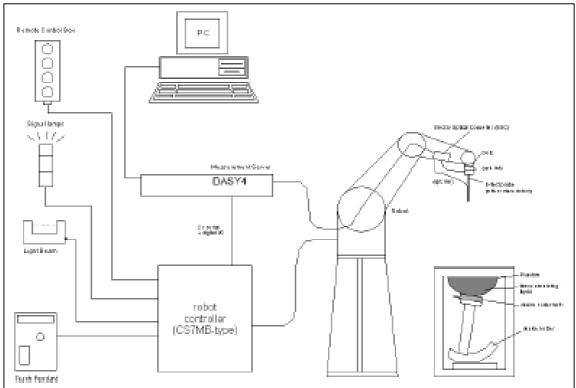
Applicant:	Wistron Corporation 21F, 88, Sec. 1, Hsin Tai Wu Rd., Hsichih, Taipei Hsien 221, Taiwan, R. O. C.
Model Number:	TravelMate C300
FCC ID:	PU5MS2140AB
Device Category:	PORTABLE DEVICES
Exposure Category:	GENERAL POPULATION/UNCONTROLLED EXPOSURE

Test Sample is a:	Production unit
Modulation type:	802.11a Orthogonal Frequency Division Multiplexing (OFDM)
Tx Frequency:	5180 MHz to 5320 MHz (UNII-1 & UNII-2)
Max. O/P Power: (Conducted/Peak)	UNII-1 & 2: 16.57 dBm
Max. SAR (1g):	UNII-1 & 2:1.41 W/kg
Application Type:	Certification
FCC Rule Part(s):	15E

Antennas:

Main/Aux: PIFA

2. REQUIREMENTS FOR COMPLIANCE TESTING DEFINED BY THE FCC


The US Federal Communications Commission has released the report and order "Guidelines for Evaluating the Environmental Effects of RF Radiation", ET Docket No. 93-62 in August 1996 [1]. The order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 mW/g for an uncontrolled environment and 8.0 mW/g for an occupational/controlled environment as recommended by the ANSI/IEEE standard C95.1-1992 [6]. According to the Supplement C of OET Bulletin 65 "Evaluating Compliance with FCC Guide-lines for Human Exposure to Radio frequency Electromagnetic Fields", released on Jun 29, 2001 by the FCC, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling.

3. DOSIMETRIC ASSESSMENT SYSTEM

These measurements were performed with the automated near-field scanning system DASY4 from Schmid & Partner Engineering AG (SPEAG). The system is based on a high precision robot (working range greater than 0.9 m) which positions the probes with a positional repeatability of better than \pm 0.02 mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines to the data acquisition unit. The SAR measurements were conducted with the dosimetric probe ES3DV2-SN: 3021 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe has been calibrated according to the procedure with accuracy of better than \pm 10%. The spherical isotropy was evaluated with the procedure and found to be better than \pm 0.25 dB. The phantom used was the SAM Twin Phantom as described in FCC supplement C, IEEE P1528 and EN50361.

3.1. MEASUREMENT SYSTEM DIAGRAM

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (St^{*}aubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY4 software.
- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing validating the proper functioning of the system.

3.2. System Components

DASY4 Measurement Server

The DASY4 measurement server is based on a PC/104 CPU board with a 166MHz low-power Pentium, 32MB chip disk and 64MB RAM. The necessary circuits for communication with either the DAE3 electronic box as well as the 16-bit AD-converter system for optical detection and digital I/O interface are contained on the DASY4 I/O-board, which is directly connected to the PC/104 bus of the CPU board. The measurement server performs all real-time data evaluation for field measurements and surface detection, controls robot movements and

handles safety operation. The PC-operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with two expansion slots which are reserved for future applications. Please note that the expansion slots do not have a standardized pinout and therefore only the expansion cards provided by SPEAG can be inserted. Expansion cards from any other supplier could seriously damage the measurement server. Calibration: No calibration required.

Data Acquisition Electronics (DAE)

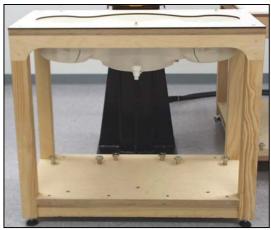
The data acquisition electronics (DAE3) consists of a highly sensitive electrometer grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision

detection. The input impedance of the DAE3 box is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

ES3DV2 Isotropic E-Field Probe for Dosimetric Measurements

Construction:	Symmetrical design with triangular core Interleaved sensors Built-in shielding against static charges			
Calibration:	PEEK enclosure material (resistant to organic solvents, e.g., glycolether) Basic Broad Band Calibration in air: 10-2500 MHz. Conversion Factors (CF) for HSL 900 and HSL 1800 CF-Calibration for other liquids and frequencies upon request.			
Frequency:	10 MHz to > 6 GHz; Linearity: ± 0.2 dB			
Directivity:	± 0.2 dB in HSL (rotation around probe axis);			
·	± 0.3 dB in tissue material (rotation normal to probe axis)			
Dynamic Range:	$5 \mu\text{W/g}$ to > 100 mW/g; Linearity: ± 0.2 dB			
Dimensions:	Overall length: 330 mm (Tip: 20 mm)			
	Tip diameter: 3.9 mm (Body: 12 mm)			
	Distance from probe tip to dipole centers: 2.7 mm			
Application:	General dosimetry up to 6 GHz			
	Dosimetry in strong gradient fields			
	Compliance tests of mobile phones			

Interior of probe



Isotropic E-Field Probe

SAM Phantom (V4.0)

The shell corresponds to the specifications of
the Specific Anthropomorphic Mannequin
(SAM) phantom defined in IEEE 1528-200X,
CENELEC 50361 and IEC 62209. It enables
the dosimetric evaluation of left and right
hand phone usage as well as body mounted
usage at the flat phantom region. A cover
prevents evaporation of the liquid. Reference
markings on the phantom allow the complete
setup of all predefined phantom positions
and measurement grids by manually teaching
three points with the robot.
$2 \pm 0.2 \text{ mm}$
Approx. 25 liters
Height: 810mm; Length: 1000mm; Width:
500mm

Device Holder for SAM Twin Phantom

Construction:

In combination with the Twin SAM Phantom V4.0 or Twin SAM, the Mounting Device (made from POM) enables the rotation of the mounted transmitter in spherical coordinates, whereby the rotation point is the ear opening. The devices can be easily and accurately positioned according to IEC, IEEE, CENELEC, FCC or other specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

System Validation Kits

Construction:	Symmetrical dipole with 1/4 balun Enables measurement of feedpoint impedance with NWA Matched for use near flat phantoms filled with brain simulating solutions Includes distance holder and tripod adaptor.			
Frequency:	450, 900, 1800, 2450, 5800 MHz			
Return loss:	> 20 dB at specified validation position			
Power capability:	: > 100 W ($f < 1GHz$); > 40 W ($f > 1GHz$)			
Dimensions:	450V2: dipole length: 270 mm; overall height: 330 mm			
	D900V2: dipole length: 149 mm; overall height: 330 mm			
	D1800V2: dipole length: 72 mm; overall height: 300 mm			
	D2450V2: dipole length: 51.5 mm; overall height: 300 mm D5GHzV2: dipole length: 25.5 mm; overall height: 290 mm			

4. EVALUATION PROCEDURES

DATA EVALUATION

The DASY4 post processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	- Sensitivity	<i>Norm</i> _{<i>i</i>} , a_{i0} , a_{i1} , a_{i2}	
	- Conversion factor	$ConvF_i$	
	- Diode compression point	dcp_i	
Device parameters:	- Frequency	f	
	- Crest factor	cf	
Media parameters:	- Conductivity	σ	
	- Density	ho	

These parameters must be set correctly in the software. They can be found in the component documents or be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DCtransmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

W

vith	V_i	= Compensated signal of channel i	(i = x, y, z)
	U_i	= Input signal of channel i	(i = x, y, z)
	cf	= Crest factor of exciting field	(DASY parameter)
	dcp_i	= Diode compression point	(DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes:

$$E_{i} = \sqrt{\frac{V_{i}}{Norm_{i} \bullet ConvF}}$$
H-field probes:

$$H_{i} = \sqrt{Vi} \cdot \frac{a_{i10} + a_{i11}f_{i1} + a_{i12}f_{i2}^{2}}{f}$$
with V_{i} = Compensated signal of channel i (i = x, y, z)
Norm_{i} = Sensor sensitivity of channel i (i = x, y, z)
 $\mu V/(V/m)^{2}$ for E0field Probes

ConvF = Sensitivity enhancement in solution

- = Sensor sensitivity factors for H-field probes aij
- f = Carrier frequency (GHz)
- Ei = Electric field strength of channel i in V/m
- Hi = Magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with SAR = local specific absorption rate in mW/g

 E_{tot} = total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m]

 ρ = equivalent tissue density in g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

The power flow density is calculated assuming the excitation field as a free space field.

$$P_{pwe} = \frac{E_{tot}^2}{3770}$$
 or $P_{pwe} = H_{tot}^2 \cdot 37.7$

with P_{pwe} = Equivalent power density of a plane wave in mW/cm²

 E_{tot} = total electric field strength in V/m

 H_{tot} = total magnetic field strength in A/m

SAR MEASUREMENT PROCEDURES

The procedure for assessing the peak spatial-average SAR value consists of the following steps:

• Power Reference Measurement

The reference and drift jobs are useful jobs for monitoring the power drift of the device under test in the batch process. Both jobs measure the field at a specified reference position, at a selectable distance from the phantom surface. The reference position can be either the selected section's grid reference point or a user point in this section. The reference job projects the selected point onto the phantom surface, orients the probe perpendicularly to the surface, and approaches the surface using the selected detection method.

Area Scan

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a finer measurement around the hot spot. The sophisticated interpolation routines implemented in DASY4 software can find the maximum locations even in relatively coarse grids. The scan area is defined by an editable grid. This grid is anchored at the grid reference point of the selected section in the phantom. When the area scan's property sheet is brought-up, grid was at to **10 mm by 10 mm** and can be edited by a user.

Zoom Scan

Zoom scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default zoom scan measures $7 \times 7 \times 8$ points within a cube whose base faces are centered around the maximum found in a preceding area scan job within the same procedure. If the preceding Area Scan job indicates more then one maximum, the number of Zoom Scans has to be enlarged accordingly (The default number inserted is 1).

• Power Drift measurement

The drift job measures the field at the same location as the most recent reference job within the same procedure, and with the same settings. The drift measurement gives the field difference in dB from the reading conducted within the last reference measurement. Several drift measurements are possible for one reference measurement. This allows a user to monitor the power drift of the device under test within a batch process. In the properties of the Drift job, the user can specify a limit for the drift and have DASY4 software stop the measurements if this limit is exceeded.

• Z-Scan

The Z Scan job measures points along a vertical straight line. The line runs along the Z-axis of a onedimensional grid. A user can anchor the grid to the current probe location. As with any other grids, the local Zaxis of the anchor location establishes the Z-axis of the grid.

5. MEASUREMENT UNCERTAINTY

UNCERTAINTY BUDGE ACCORDING TO IEEE P1528								
Error Description	Uncertainty Value [%]	Prob. Dist.	Div.	(<i>c_i</i>) 1g	(<i>c_i</i>) 10g	Std. Unc.(1g)	Std. Unc. (10g)	(vi) v _{eff}
Measurement System								
Probe Calibration	±8.3	Ν	1	1	1	±4.8%	±4.8%	8
Axial Isotropy	±4.7	R	$\sqrt{3}$	0.7	0.7	±1.9%	±1.9%	8
Hemispherical Isotropy	±9.6	R	$\sqrt{3}$	0.7	0.7	±3.9%	±3.9%	8
Boundary Effects	±2.0	R	$\sqrt{3}$	1	1	±1.2%	±1.2%	8
Linearity	±4.7	R	$\sqrt{3}$	1	1	±2.7%	±2.7%	×
System Detection Limits	±1.0	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	×
Readout Electronics	±1.0	Ν	$\sqrt{3}$	1	1	±1.0%	±1.0%	8
Response Time	±0.8	R	$\sqrt{3}$	1	1	±0.5%	±0.5%	8
Integration Time	±2.6	R	$\sqrt{3}$	1	1	±1.5%	±1.5%	×
RF Ambient Condition	±1.59	R	$\sqrt{3}$	1	1	±0.9%	±0.9%	×
Probe Positioner	±0.8	R	$\sqrt{3}$	1	1	±0.2%	±0.2%	×
Probe Positioning	±5	R	$\sqrt{3}$	1	1	±0.5%	±0.5%	×
Max. SAR Eval.	±1.0	R	$\sqrt{3}$	1	1	±2.9%	±2.9%	×
Extrap/Interp algorithm error	20	R	$\sqrt{3}$	1	1	11.6	11.6	×
Test sample Related								
Device Positioning	±1.1	Ν	1	1	1	±1.1%	±1.1%	145
Device Holder	±3.6	Ν	1	1	1	±3.6%	±3.6%	5
Power Drift	±5.0	R	$\sqrt{3}$	1	1	±2.9%	±2.9%	×
Phantom and Setup								
Phantom Uncertainty	±4.0	R	$\sqrt{3}$	1	1	±2.3%	±2.3%	×
Liquid Conductivity (target)	±5.0	R	$\sqrt{3}$	0.64	0.43	±1.8%	±1.2%	×
Liquid Conductivity (meas.)	±2.5	Ν	1	0.64	0.43	±1.6%	±1.1%	×
Liquid Peermittivity (target)	±5.0	R	$\sqrt{3}$	0.6	0.49	±1.7%	±1.4%	∞
Liquid Permittivity (meas.)	±2.5	Ν	1	0.6	0.49	±1.5%	±1.2%	∞
Combined Std. Uncertainty						±15.4%	±15.3%	330
Expanded STD Uncertainty						±30.8%	±30.6%	

Table: Worst-case uncertainty for DASY4 assessed according to IEEE P1528.

The budge is valid for the frequency range 300 MHz to 6G Hz and represents a worst-case analysis.

6. EXPOSURE LIMIT

(A).Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	2.0

(B).Limits for General Population/Uncontrolled Exposure (W/kg)					
Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles			
0.08	1.6	4.0			

NOTE: *Whole-Body SAR* is averaged over the entire body, *partial-body SAR* is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. *SAR for hands, wrists, feet and ankles* is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

<u>Population/Uncontrolled Environments</u>:

are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Occupational/Controlled Environments:

are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

NOTE GENERAL POPULATION/UNCONTROLLED EXPOSURE PARTIAL BODY LIMIT 1.6 W/kg

7. MEASUREMENT RESULTS

7.1. SYSTEM PERFORMANCE CHECK

The system performance check is performed prior to any usage of the system in order to guarantee reproducible results. The system performance check verifies that the system operates within its specifications. The system performance check results are tabulated below. And also the corresponding SAR plot is attached as well in the SAR plots files.

SYSTEM PERFORMANCE CHECK MEASUREMENT CONDITIONS

- The measurements were performed in the flat section of the SAM twin phantom filled with Body simulating liquid of the following parameters.
- The DASY4 system with an Isotropic E-Field Probe ES3DV2-SN: 3023 was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x8 fine cube was chosen for cube integration (dx=dy= 4.3 mm, dz= 3 mm).
- Distance between probe sensors and phantom surface was set to 3.0 mm.
- The dipole input power (forward power) was 250 mW±3%.
- The results are normalized to 1 W input power.

REFERENCE SAR VALUES

The reference SAR values were using measurement results indicated in the dipole calibration document (see table below)

f (MHz)	Head	Tissue	Body	Tissue
I (IVIIIZ)	SAR _{1g}	SAR 10g	SAR_{1g}	SAR 10g
5200	86.0	23.8	84.0	23.4
5800	88.8	24.4	80.0	22.4

SYSTEM PERFORMANCE CHECK RESULTS

Dipole: D5GHzV2 SN 1004

Date: December 29, 2003

Ambient condition: Temperature 24.4°C; Relative humidity 59%

Body	Simulating L	₋iquid	Parameters	Target	Measured	Deviation[%]	Limited[%]
f(MHz)	Temp.[°C]	Depth [cm]	Farameters	Taiyet	weasureu	Deviation[//]	Linited[/0]
			Permitivity:	49	48.38	-1.27	± 10
5200	23.40	15.00	Conductivity:	5.3	5.36	1.13	± 5
			1g SAR:	84	88	4.76	±

Dipole: D5GHzV2 SN 1004

Date: December 30, 2003

Ambient condition: Temperature 24.5°C; Relative humidity 60%

Body	Body Simulating Liquid		Parameters	Target	Measured	Deviation[%]	Limited[%]
f(MHz)	Temp.[°C]	Depth [cm]	Farameters	Taryer	weasureu	Deviation[//]	Linnea[/0]
			Permitivity:	49	48.85	-0.31	± 10
5200	23.50	15.00	Conductivity:	5.3	5.42	2.26	± 5
			1g SAR:	84	88.2	5.00	±

7.2. TEST LIQUID CONFIRMATION

SIMULATING LIQUIDS PARAMETER CHECK

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameters are within the tolerances of the specified target values. The relative permittivity and conductivity of the tissue material should be within \pm 5% of the values given in the table below. 5% may not be easily achieved at certain frequencies. Under such circumstances, 10% tolerance may be used until more precise tissue recipes are available circumstances, 10% tolerance may be used until more precise tissue recipes are available

TISSUE SIMULATING LIQUIDS

In the current guidelines and draft standards for compliance testing of mobile phones (i.e., IEEE P1528, OET 65 Supplement C), the dielectric parameters suggested for head and body tissue simulating liquid are given only at 3.0 GHz and 5.8 GHz. As an intermediate solution, dielectric parameters for the frequencies between 5 to 5.8 GHz were obtained using linear interpolation (see table below).

SPEAG has developed suitable head and body tissue simulating liquids consisting of the following ingredients: de-ionized water, salt and a special composition including mineral oil and an emulgators. Dielectric parameters of these liquids were measured suing a HP 8570D Dielectric Probe Kit in conjunction with HP E8358A Network Analyzer (30 kHz - 9 G Hz). The differences with respect to the interpolated values were well within

f (GHz)	Head	Fissue	Body 7	Гissue	Reference
I (UIIZ)	rel. permitivity	conductivity	rel. permitivity	conductivity	Kelefence
3.0	38.5	2.40	52.0	2.73	Standard
5.8	35.3	5.27	48.2	6.00	Standard
5.0	36.2	1.45	49.3	5.07	Interpolated
5.1	36.1	4.55	49.1	5.18	Interpolated
<mark>5.2</mark>	36.0	4.66	<mark>49.0</mark>	<mark>5.30</mark>	Interpolated
5.3	35.9	4.76	48.9	5.42	Interpolated
5.4	35.8	4.86	48.7	5.53	Interpolated
5.5	35.6	4.96	48.6	5.65	Interpolated
5.6	35.5	5.07	48.5	5.77	Interpolated
5.7	35.4	5.17	48.3	5.88	Interpolated

desired $\pm 5\%$ for the whole 5 to 5.8 GHz range

(ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

SIMULATING LIQUIDS PARAMETER CHECK RESULTS

Ambient condition: Temperature: 24.4°C; Relative humidity: 59%

Date: December 29, 2003

Body	Body Simulating Liquid		Parameters	Target	Mongurad	Deviation[%]	Limited[%]
f (MHz)	Temp. [°C]	Depth (cm)	Parameters	Target	Measured	Deviation[76]	
5200	22.4	15	Permitivity:	49	48.38	-1.27	± 10
5200	5200 23.4 15		Conductivity:	5.3	5.36	1.13	± 5

Ambient condition: Temperature: 24.5°C; Relative humidity: 60%

Date: December 30, 2003

Body	Body Simulating Liquid		Body Simulating Liquid		Parameters	Target	Measured	Deviation[%]	Limitad[%]
f (MHz)	Temp. [°C]	Depth (cm)	Parameters	Taiget	Measureu		Liniteu[70]		
5200	23.5	15	Permitivity:	49	48.85	-0.31	± 10		
3200	23.5	13	Conductivity:	5.3	5.42	2.26	± 5		

7.3. EUT TUNE-UP PROCEDURES

The following procedures had been used to prepare the EUT for the SAR test.

- The client supplied a special driving program (CRTU Version 1.2.0.3000) to program the EUT to continually transmit the specified maximum power. And also to change the channel frequency.
- The conducted power was measured at the high, middle and low channel frequency before and after the SAR measurement.
- Co-Location is not requirement, because the host device doesn't have two mini-pci sockets or mount on it.

Conducted Power Measurements

802.11a Normal mode

Channel	f (MHz)	Peak _[dBm]
1	5180	16.45
4	5240	16.35
5	5260	16.57
8	5320	16.50

7.4. SAR MEASUREMENTS RESULTS EUT Setup Configuration 1

802.11a (OFDM): Duty Cycle = 100%, Crest Factor: 1. Depth of liquid: 15.0 cm

Sep.	Antenna	Channel Frequency [MHz]		*Conducted	*Conducted Power_dBm		SAR	Limit
[mm]	Antenna	Chaimer	Frequency [WI12]	Before	After	Temp [°C]	(W/kg)	(W/kg)
0	Main	1	5180	16.43	16.41	23.5	0.00459	1.6
0	Main	4	5240	16.33	16.31	23.5	0.00407	1.6
0	Main	5	5260	16.56	16.54	23.5	0.00405	1.6
0	Main	8	5320	16.49	16.47	23.5	0.00311	1.6

Notes:

1. *: Peak power.

2. Bottom face in parallel with flat phantom.

3. The SAR measured at the middle channel for this configuration is at least 3 dB lower than SAR limit, testing at the high and low channels is option.

802.11a (OFDM): Duty Cycle = 100%, Crest Factor: 1. Depth of liquid: 15.0 cm

							-	-
Sep. [mm]	Antenna	Channel	Frequency [MHz]	*Conducted I Before	Power_dBm After	Liquid Temp [°C]	SAR (W/kg)	Limit (W/kg)
						[0]		
0	Aux	1	5180	16.42	16.41	23.4	0.00396	1.6
0	Aux	4	5240	16.32	16.31	23.4		1.6
0	Aux	5	5260	16.54	16.52	23.4	Lower than Noise	1.6
0	Aux	8	5320	16.47	16.45	23.4		1.6

Notes:

1. *: Peak power.

2. Bottom face in parallel with flat phantom.

3. The SAR measured at the middle channel for this configuration is at least 3 dB lower than SAR limit, testing at the high and low channels is option.

802.11a (OFDM): Duty Cycle = 100%, Crest Factor: 1. Depth of liquid: 15.0 cm

Antenna	Channel	Frequency [MHz]	*Conducted Before	Power_dBm After	Liquid Temp [°C]	SAR (W/kg)	Limit (W/kg)
Main	1	5180	16.42	16.40	23.5	0.00896	1.6
Main	4	5240	16.32	16.30	23.5	Lower than	1.6
Main	5	5260	16.54	16.52	23.5	Noise	1.6
Main	8	5320	16.47	16.45	23.5	0.00659	1.6
	Main Main Main	Main1Main4Main5	Main 1 5180 Main 4 5240 Main 5 5260	AntennaChannelFrequency [MHz]BeforeMain1518016.42Main4524016.32Main5526016.54	Main 1 5180 16.42 16.40 Main 4 5240 16.32 16.30 Main 5 5260 16.54 16.52	Antenna Channel Frequency [MHz] Before After Temp [°C] Main 1 5180 16.42 16.40 23.5 Main 4 5240 16.32 16.30 23.5 Main 5 5260 16.54 16.52 23.5	AntennaChannelFrequency [MHz]Contactor 10.04 and 10.04 and 10.04 and 10.04 and 10.04 and 10.04 and 10.00

Notes:

1. *: Peak power.

2. Host device perpendicular to flat phantom.

3. The SAR measured at the middle channel for this configuration is at least 3 dB lower than SAR limit, testing at the high and low channels is option.

0	
erent Serent	141

802.11a (OFDM): Duty Cycle = 100%, Crest Factor: 1. Depth of liquid: 15.0 cm

Sep.	Antenna	Channel	Frequency [MHz]	*Conducted	Power_dBm	Liquid Temp	SAR	Limit
[mm]	7 uncenna	Chaimer	r requerey [wriz]	Before	After	[°C]	(W/kg)	(W/kg)
15	Aux	1	5180	16.43	16.41	23.5	0.167	1.6
15	Aux	4	5240	16.33	16.31	23.5	0.115	1.6
15	Aux	5	5260	16.55	16.52	23.5	0.099	1.6
15	Aux	8	5320	16.48	16.46	23.5	0.125	1.6

Notes:

1. *: Peak power.

2. Host device perpendicular to flat phantom.

3. The SAR measured at the middle channel for this configuration is at least 3 dB lower than SAR limit, testing at the high and low channels is option.

:	
4	All Market All All All All All All All All All Al

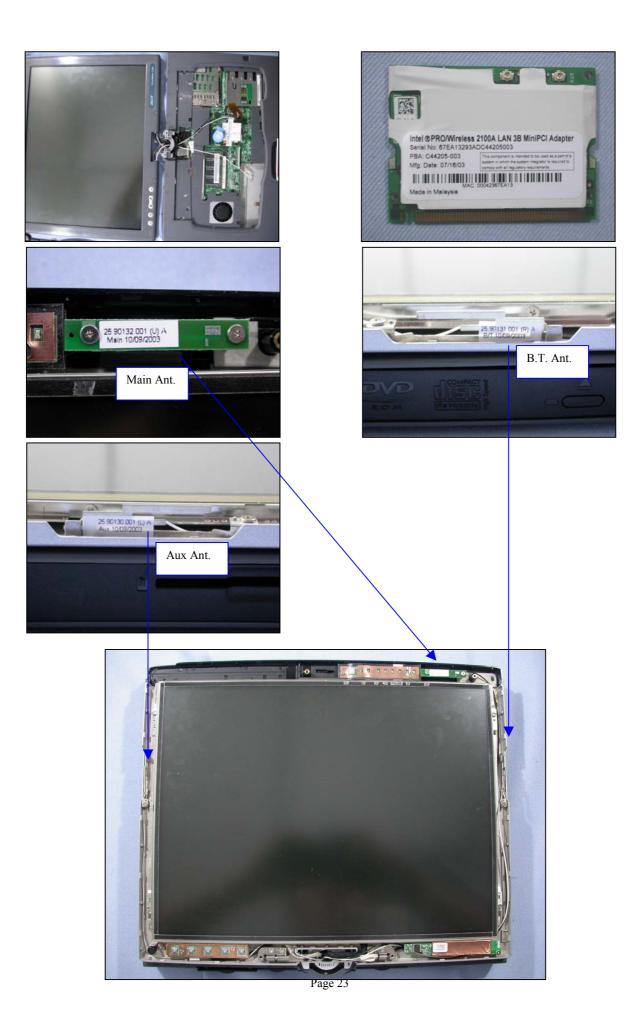
802.11a (OFDM): Duty Cycle = 100%, Crest Factor: 1. Depth of liquid: 15.0 cm

Sep.	Antenna	Channel	Fraguency [MHz]	*Conducted	Power_dBm	Liquid Tomm	SAR	Limit
[mm]	Antenna	Chaimer	Frequency [MHz]	Before	After	Temp [°C]	(W/kg)	(W/kg)
0	Aux	1	5180	16.45	16.42	23.5	1.15	1.6
0	Aux	4	5240	16.35	16.32	23.5	1.37	1.6
0	Aux	5	5260	16.57	16.55	23.5	1.41	1.6
0	Aux	8	5320	16.50	16.48	23.5	1.29	1.6

Notes:

1. *: Peak power.

2. Host device perpendicular to flat phantom.


3. The SAR measured at the middle channel for this configuration is at least 3 dB lower than SAR limit, testing at the high and low channels is option.

8. EUT PHOTOS

Calibration Manufacturer Type/Model Serial Number Name of Equipment Due E8358A US40280243 03/24/04 S-Parameter Network Analyzer Agilent 85070D N/A Electronic Probe kit Hewlett Packard N/A Power Meter Boonton 4531 13061 07/03/04 Power Sensor Boonton 56218 2240 07/03/04 GB41291611 03/15/04 Power Meter Agilent E4416A Power Sensor E9327A US40441097 03/15/04 Agilent Thermometer Amarell 4046 23641 12/12/12 Thermometer Amarell 4046 24775 12/11/13 Universal Radio Communication Tester Rohde & Schwarz CMU 200 1100.0008.02 N/A Signal Generator Agilent 83630B 3844A01022 01/15/04 Amplifier Mini-Circuit ZVE-8G N/A N/A ABM 8301HD N/A DC Power generator SPEAG DAE3 03/07/04 Data Acquisition Electronics (DAE) 558 Dosimetric E-Field Probe SPEAG ES3DV2 3023 09/23/04 179 900 MHz System Validation Dipole SPEAG D900V2 03/31/04 SPEAG D1800V2 2d026 04/01/04 1800 MHz System Validation Dipole SPEAG D2450V2 728 03/05/04 2450 MHz System Validation Dipole 5GHz System Validation Dipole SPEAG D5GHz V2 1004 10/05/04 SPEAG Probe Alignment Unit LB (V2) 348 N/A Staubli RX90B L F02/5T69A1/A/01 N/A Robot SPEAG N/A SAM Twin Phantom V4.0 N/A N/A Devices Holder SPEAG N/A N/A N/A Head 835 MHz CCS H835A N/A N/A Muscle 835 MHz CCS M835A N/A N/A Head 900 MHz CCS H900A N/A N/A Muscle 900 MHz CCS M900A N/A N/A H1800A Head 1800 MHz CCS N/A N/A Muscle 1800 MHz CCS M1800A N/A N/A Head 1900 MHz CCS H1900A N/A N/A Muscle 1900 MHz N/A CCS M1900A N/A Head 2450 MHz CCS H2450A N/A N/A Muscle 2450 MHz CCS M2450A N/A N/A Head 5800 MHz SPEAG H5800A N/A N/A Muscle 5800 MHz SPEAG M5800A N/A N/A

9. EQUIPMENT LIST & CALIBRATION STATUS

10. REFERENCES

- [1] Federal Communications Commission, \Report and order: Guidelines for evaluating the environ-mental effects of radiofrequency radiation", Tech. Rep. FCC 96-326, FCC, Washington, D.C. 20554, 1996.
- [2] David L. Means Kwok Chan, Robert F. Cleveland, \Evaluating compliance with FCC guidelines for human exposure to radiofrequency electromagnetic fields", Tech. Rep., Federal Communication Commision, O_ce of Engineering & Technology, Washington, DC, 1997.
- [3] Thomas Schmid, Oliver Egger, and Niels Kuster, \Automated E-_eld scanning system for dosimetric assessments", IEEE Transactions on Microwave Theory and Techniques, vol. 44, pp. 105 {113, Jan. 1996.
- [4] Niels Kuster, Ralph K.astle, and Thomas Schmid, \Dosimetric evaluation of mobile communications equipment with known precision", IEICE Transactions on Communications, vol. E80-B, no. 5, pp. 645 [652, May 1997.
- [5] CENELEC, \Considerations for evaluating of human exposure to electromagnetic fields (EMFs) from mobile telecommunication equipment (MTE) in the frequency range 30MHz - 6GHz", Tech. Rep., CENELEC, European Committee for Electrotechnical Standardization, Brussels, 1997.
- [6] ANSI, ANSI/IEEE C95.1-1992: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, The Institute of Electrical and Electronics Engineers, Inc., New York, NY 10017, 1992.
- [7] Katja Pokovic, Thomas Schmid, and Niels Kuster, \Robust setup for precise calibration of E-_eld probes in tissue simulating liquids at mobile communications frequencies", in ICECOM _ 97, Dubrovnik, October 15{17, 1997, pp. 120{124.
- [8] Katja Pokovic, Thomas Schmid, and Niels Kuster, \E-_eld probe with improved isotropy in brain simulating liquids", in Proceedings of the ELMAR, Zadar, Croatia, 23 {25 June, 1996, pp. 172 {175.
- [9] Volker Hombach, Klaus Meier, Michael Burkhardt, Eberhard K. uhn, and Niels Kuster, \The dependence of EM energy absorption upon human head modeling at 900 MHz", IEEE Transactions onMicrowave Theory and Techniques, vol. 44, no. 10, pp. 1865{1873, Oct. 1996.
- [10] Klaus Meier, Ralf Kastle, Volker Hombach, Roger Tay, and Niels Kuster, \The dependence of EM energy absorption upon human head modeling at 1800 MHz", IEEE Transactions on Microwave Theory and Techniques, Oct. 1997, in press.
- [11] W. Gander, Computermathematik, Birkhaeuser, Basel, 1992.
- [12] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Receptes in C, The Art of Scientific Computing, Second Edition, Cambridge University Press, 1992. Dosimetric Evaluation of Sample device, month 1998 9
- [13] NIS81 NAMAS, \The treatment of uncertainity in EMC measurement", Tech. Rep., NAMAS Executive, National Physical Laboratory, Teddington, Middlesex, England, 1994.
- [14] Barry N. Taylor and Christ E. Kuyatt, \Guidelines for evaluating and expressing the uncertainty of NIST measurement results", Tech. Rep., National Institute of Standards and Technology, 1994. Dosimetric Evaluation of Sample device, month 1998 10

11. ATTACHMENTS

Exhibit	Content
1	Data Acquisition Electronics (DAE)-DAE3, S/N: 558
2	Dosimetric E-Field Probe - ES3DV6, S/N:3023
3	Validation Dipole - D5GHzV2, S/N: 1004
4	System Performance Check Plots
5	SAR Test Plots

End of Report

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

-

20 C C

and the second se

Object(s)	DAE3 - SN:558	Note Man Electron	
Calibration procedure(s)	QA CAL-06.v2 Calibration proces	dure for the data acquisit	tion unit (DAE)
Calibration date:	March 07, 2003	and the second	
Condition of the calibrated item	In Tolerance (acc	ording to the specific cal	libration document)
Calibration Equipment used (MSTE Model Type	critical for calibration)	Cal Date	
VICIDE: 1 VICE	10 #		
Fluka Process Calibrator Type 702	and the second se	3-Sep-01	Scheduled Calibration Sep-03
and the second se	and the second se	and a little of a second second second	and the second se
luka Process Calibrator Type 702	SN: 6295803	3-Sep-01	Sep-03
luka Process Calibrator Type 702	and the second se	and a little of a second second second	and the second se
luka Process Calibrator Type 702	SN: 6295803	3-Sep-01	Sep-03
luka Process Calibrator Type 702	SN: 6295803	3-Sep-01 Function Technician	Signature

1. DC Voltage Measurement

DA - Converter Values from DAE

High Range:	1LSB =	6.1µV,	full range =	400 mV
Low Range:	1LSB =	61nV,	full range =	4 mV

Software Set-up: Calibration time: 3 sec Measuring time: 3 sec

Setup	X	Y	Z
High Range	405.010098	404.9037428	405.0817835
Low Range	3.972	3.95185	3.96828
Connector Position		86 °	

High Range	Input	Reading in µV	% Error	
Channel X + Input	200mV	200000	0.00	
	20mV	20003.4	0.02	
Channel X - Input	20mV	-19993	-0.04	
Channel Y + Input	200mV	200001	0.00	
	20mV	20002.7	0.01	
Channel Y - Input	20mV	-19993	-0.04	
Channel Z + Input	200mV	200000	0.00	
	20mV	20000.8	0.00	
Channel Z - Input	20mV	-19997.7	-0.01	

Low Range	Input	Reading in µV	% Error
Channel X + Input	2mV	2000.2	0.01
-	0.2mV	200.04	0.02
Channel X - Input	0.2mV	-200.81	0.41
Channel Y + Input	2mV	2000.1	0.00
	0.2mV	199.47	-0.27
Channel Y - Input	0.2mV	-201.01	0.50
Channel Z + Input	2mV	1999.9	0.00
	0.2mV	198.68	-0.66
Channel Z - Input	0.2mV	-201.1	0.55

2. Common mode sensitivity

Software Set-up

Calibration time: 3 sec, Measuring time: 3 sec High/Low Range

in μV	Common mode Input Voltage	High Range Reading	Low Range Reading
Channel X	200mV	-1.0284	-1.5716
	- 200mV	3.9204	1.3725
Channel Y	200mV	6.7686	5.874
	- 200mV	-6.8145	-8.0898
Channel Z	200mV	2.1943	2.766
	- 200mV	-2.52	-4.6218

3. Channel separation

Software Set-up Calibration time: 3 sec, Measuring time: 3 sec High Range

in μV	Input Voltage	Channel X	Channel Y	Channel Z
Channel X	200mV		0.88082	0.19177
Channel Y	200mV	0.049124		0.25676
Channel Z	200mV	-2.1226	-0.89508	

4. AD-Converter Values with inputs shorted

in LSB	Low Range	High Range
Channel X	16492	16236
Channel Y	16307	15690
Channel Z	16461	16033

-

5. Input Offset Measurement

Measured after 15 min warm-up time of the Data Acquisition Electronic. Every Measurement is preceded by a calibration cycle.

Software set-up:

Calibration time:
Measuring time:
Number of measurements:

3 sec 3 sec 100, Low Range

Input 10MΩ

in μV	Average	min. Offset	max. Offset	Std. Deviation
Channel X	-0.52	-1.64	0.60	0.43
Channel Y	-2.05	-3.65	0.06	0.51
Channel Z	-0.34	-2.05	0.43	0.37

Input shorted

in μV	Average	min. Offset	max. Offset	Std. Deviation
Channel X	0.04	-0.84	1.09	0.41
Channel Y	-0.77	-2.08	0.17	0.40
Channel Z	-1.01	-1.68	-0.38	0.24

6. Input Offset Current

in fA	Input Offset Current
Channel X	< 25
Channel Y	< 25
Channel Z	< 25

7. Input Resistance

	Calibrating	Measuring
Channel X	200 kΩ	200 MΩ
Channel Y	200 kΩ	200 MΩ
Channel Z	200 kΩ	200 MΩ

8. Low Battery Alarm Voltage

in V	Alarm Level	
Supply (+ Vcc)	7.66 V	
Supply (- Vcc)	-7.53 V	

9. Power Consumption

in mA	Switched off	Stand by	Transmitting
Supply (+ Vcc)	0.000	5.83	14.1
Supply (- Vcc)	-0.011	-7.86	-9.13

10. Functional test

Touch async pulse 1	ok
Touch async pulse 2	ok
Touch status bit 1	ok
Touch status bit 2	ok
Remote power off	ok
Remote analog Power control	ok
Modification Status	B – C

~	11.0	-
	пe	nt

C&C Taiwan (Auden)

CALIBRATION C	ERTIFICATI				
Object(s)	ES3DV2 - SN:30	023			
Calibration procedure(s) QA CAL-01.v2 Calibration procedure for dosimetric E-field probes					
Calibration date:	September 23, 2	2003			
Condition of the calibrated item	In Tolerance (ac	cording to the specific calibration	document)		
This calibration statement documen 17025 international standard.	ts traceability of M&TE use	ed in the calibration procedures and conformity of	the procedures with the ISO/IEC		
All calibrations have been conducte	d in the closed laboratory f	facility: environment temperature 22 +/- 2 degrees	Celsius and humidity < 75%.		
Calibration Equipment used (M&TE	critical for calibration)				
Model Type	1D #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration		
Power meter EPM E4419B	GB41293874	2-Apr-03 (METAS, No 252-0250)	Apr-04		
Power sensor E4412A	MY41495277	2-Apr-03 (METAS, No 252-0250)	Apr-04		
Reference 20 dB Attenuator	SN: 5086 (20b)	3-Apr-03 (METAS No. 251-0340	Apr-04		
Fluke Process Calibrator Type 702	SN: 6295803	8-Sep-03 (Sintrel SCS No. E-030020)	Sep-04		
Power sensor HP 8481A	MY41092180	18-Sep-02 (Agilent, No. 20020918)	In house check: Oct 03		
RF generator HP 8684C	US3642U01700	4-Aug-99 (SPEAG, in house check Aug-02)	In house check: Aug-05		
Network Analyzer HP 8753E	US37390585	18-Oct-01 (Agilent, No. 24BR1033101)	In house check: Oct 03		
	Name	Function	Signature		
Collibrated by:					
Calibrated by:	Katja Pokovic	Laboratory Director	olonio llatza		
Approved by:	Niels Kuster	Quality Manager	1.195		
			Date issued: October 5, 2003		
			9		
This calibration certificate is issued a Calibration Laboratory of Schmid &		n until the accreditation process (based on ISO/IEC s completed.	17025 International Standard) for		

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Probe ES3DV2

S

SN:3023

Manufactured: Last calibration: April 15, 2003 September 23, 2003

e

a

0

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

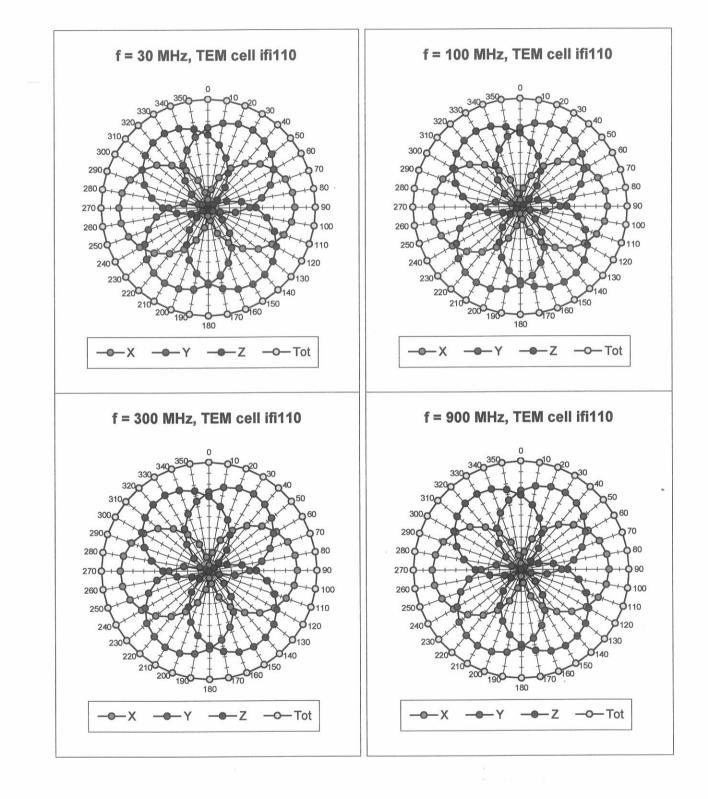
DASY - Parameters of Probe: ES3DV2 SN:3023

Sensitivity in Free Space				Diode	Compress	ion	
	NormX	0.85	μ V/(V/m) ²		DCP X	96	mV
	NormY	0.94	μV/(V/m) ²		DCP Y	96	mV
	NormZ	1.01	μ V/(V/m) ²		DCP Z	96	mV
Sensiti	ivity in Tissue	Simu	lating Liquid				
Head	900 MH	z	ε _r = 41.5 ± 5%	σ:	= 0.97 ± 5% n	nho/m	
Valid for f	=800-1000 MHz with	Head T	fissue Simulating Liquid	according	to EN 50361, P	1528-200X	Σ.
	ConvF X	6.0	± 9.5% (k=2)		Boundary ef	fect:	
	ConvF Y	6.0	± 9.5% (k=2)		Alpha	0.33	
	ConvF Z	6.0	± 9.5% (k=2)		Depth	1.66	
Head	1800 MH	z	ε _r = 40.0 ± 5%	σ	= 1.40 ± 5% n	nho/m	
Valid for f	=1710-1910 MHz wi	th Head	Tissue Simulating Liqui	d according	g to EN 50361, I	P1528-200	X
	ConvF X	4.9	± 9.5% (k=2)		Boundary ef	fect:	
X.	ConvF Y	4.9	± 9.5% (k=2)		Alpha	0.23	
	ConvF Z	4.9	± 9.5% (k=2)		Depth	2.54	
Boundary Effect							
Head	900 MH	z	Typical SAR gradien	t: 5 % per	mm		
	Probe Tip to Bo	undary			1 mm	2 mm	

Probe Tip to	b Boundary	1 mm	2 mm
SAR _{be} [%]	Without Correction Algorithm	5.8	2.8
SAR _{be} [%]	With Correction Algorithm	0.1	0.3

пеаа	Н	ead	
------	---	-----	--

1800 MHz Typical S


Typical SAR gradient: 10 % per mm

Probe Tip t	o Boundary	1 mm	2 mm
SAR _{be} [%]	Without Correction Algorithm	7.7	4.7
SAR _{be} [%]	With Correction Algorithm	0.1	0.3

Sensor Offset

,

Probe Tip to Sensor Center	2.0	mm
----------------------------	-----	----

Receiving Pattern (ϕ), θ = 0°