TEST REPORT

FCC Part 15 Subpart B & C

Product :GPSModel(s):72XXBrand:NAVIGONApplicant:Wistron CorporationAddress:21th Fl., 88, Sec.1, Hsin Tai Wu Rd.,
Hsichih, Taipei Hsien 221,
Taiwan, R.O.C.

Test Performed by:

International Standards Laboratory

<Lung-Tan LAB> *Site Registration No. BSMI: SL2-IN-E-0013; TAF: 0997; NVLAP: 200234-0; IC: IC4164-1; VCCI: R-1435, C-1440, T-299; NEMKO: ELA 113B *Address: No. 120, Lane 180, San Ho Tsuen, Hsin Ho Rd. Lung-Tan Hsiang, Tao Yuan County 325, Taiwan *Tel : 886-3-407-1718; Fax: 886-3-407-1738

Report No.: ISL-08LR018FCBT Issue Date : 2008/07/16

Contents of Report

1. Ge	neral	1
1.1 C	Certification of Accuracy of Test Data	1
2. Te	st Results Summary	2
	scription of Equipment Under Test (EUT)	
	ST RESULTS (Bluetooth)	
	owerline Conducted Emissions	
4.1 r 4.1.1	EUT Configuration	
4.1.2	Test Procedure	
4.1.3	EMI Receiver/Spectrum Analyzer Configuration (for the frequencies tested)	
4.1.4	Test Data:	
4.2 F	HSS Maximum Peak Output Power	7
4.2.1	Test Procedure	
4.2.2	Test Setup	
4.2.3	Test Data	
	adiated Emission Measurement	
4.3.1	EUT Configuration	
4.3.2	Test Procedure	
4.3.3 4.3.4	EMI Receiver/Spectrum Analyzer Configuration (for the frequencies tested) Test Data (30MHz – 1GHz):	
4.3.5	Test Data ($36H12 - 25 \text{ GHz}$).	
	Band Edge Measurement	
441	Test Procedure	
4.4.2	Test Setup	
4.4.3	Test Data:	
4.5.1	Test Procedure (Radiated)	
4.5.2	Test Setup (Radiated)	
4.5.3	Test Data	
	Bandwidth & Hopping Channel Separation	
4.6.1	Standard Applicable	
4.6.2	Test Procedure	
4.6.3 4.6.4	Test Setup Test Data	
	Jumber of Hopping Frequency Used	
4.7.1	Test Procedure	
4.7.1	Test Setup	
4.7.3	Test Data	
	Dwell Time	
4.8.1	Test Procedure	
4.8.2	Test Setup	
4.8.3	Test Data	
5. Ap	pendix	40
-	Appendix A: Measurement Procedure for Power line Conducted Emissions	
	Appendix B: Test Procedure for Radiated Emissions	
	Appendix C: Test Equipment	
5.3.1	Test Equipment List	
5.3.2	Software for Controlling Spectrum/Receiver and Calculating Test Data	
	ppendix D: Layout of EUT and Support Equipment	
5.4.1	General Conducted Test Configuration	
5.4.2	General Radiation Test Configuration	44

emational Standards Laboratory	
5.5 Appendix E: Description of Support Equipment	45
5.5.1 Description of Support Equipment	
5.5.2 Software for Controlling Support Unit	
5.5.3 I/O Cable Condition of EUT and Support Units	
5.6 Appendix F: Accuracy of Measurement	
5.7 Appendix G: Photographs of EUT Configuration Test Set Up	
5.8 Appendix H: Antenna Spec.	

1. General

1.1 Certification of Accuracy of Test Data

Standards:CFR 47 Part 15 Subpart B Class BCFR 47 Part 15 Subpart C (Section 15.247)

Test Procedure:AEquipment Tested:OModel:AApplied by:YSample received Date:AFinal test Date :ATest ResultHTest Site:OTemperatureHHumidity:HTest Engineer:

ANSI C63.4:2003 GPS 72XX Wistron Corporation 2008/06/19 2008/06/24-2008/06/25 PASS Chamber 02, Chamber 12, Conduction 03 Refer to each site test data Refer to each site test data

every this

All the tests in this report have been performed and recorded in accordance with the standards described above and performed by an independent electromagnetic compatibility consultant, International Standards Laboratory.

The test results contained in this report accurately represent the measurements of the characteristics and the energy generated by sample equipment under test at the time of the test. The sample equipment tested as described in this report is in compliance with the limits of above standards.

Approve & Signature

Roy Hsich

Roy Hsieh / Manager

Test results given in this report apply only to the specific sample(s) tested under stated test conditions. This report shall not be reproduced other than in full without the explicit written consent of ISL. This report totally contains 53 pages, including 1 cover page, 2 contents page, and 50 pages for the test description. This report must not be use to claim product endorsement by NVLAP or any agency of the U.S. Government.

This test data shown below is traceable to NIST or national or international standard. International Standards Laboratory certifies that no party to this application has been denied the FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 853(a).

2. Test Results Summary

	Tested Standards: 47	CFR Part 15 Subpart C	2
Standard	Test Type	Result	Remarks
Section			
15.207(a)	AC Power Line	Pass	
	Emissions		
15.247(b) (1)	Max. Peak Output	Pass	
	Power		
15.209(a)	Radiated Emissions	Pass	
	30MHz – 25 GHz		
15.247 (c)	Band Edge	Pass	
	Measurement		
15.247(a)(1)(iii)	Number of Hopping	Pass	
	Frequency Used		
15.247(a) (1)(ii)	Spectrum Bandwidth	Pass	
	Of FHSS device		
15.247(a)(1)	Hopping Channel	Pass	
	Separation		
15.247(a)(1)(iii)	Dwell Time	Pass	

3. Description of Equipment Under Test (EUT)

Description:	GPS
Condition:	Pre-Production
Model:	72XX
Brand:	NAVIGON
Frequency Range	2400 - 2483.5 MHz
Support channel:	
Bluetooth:	79 Channels
Modulation Skill:	
Bluetooth:	GFSK(1Mbps)
Antennas Type:	
Bluetooth:	PIFA in Metal, made by Speed Tech Corp.
	Model: GC411
Antenna Connected:	The antenna mounted on the PCB .The user is not possible to change the antenna without disassembling the EUT.
Antenna peak Gain:	
Bluetooth:	1.03 dBi
AC power supply:	
Car Charger	I/P: DC 10-24V, 0.85A
	O/P: DC 5.0V, 1.2A

The channels and the operation frequency of Bluetooth listed below:

Chann 00 02 04	el Frequency(2402 2404 2406	MHz) 01 03 05	Chann 2403 2405 2407	nel Frequency(MHz)				
 75 77	2477 2479	76 78	2478 2480					
CPU:				Titan I				
Power	·Key:			One				
Reset	Key :			One				
USB/	DC-In /Audio C)utput p	ort:	One				
Line of	out Port:			One				
Micro	-SD Card Slot:			One				
mini-	USB/ MMCX/]	Phone J	ack Cabl	e: One				
Batter	у:			FORWOSA(Model : BI-GC411-1K6KAY)				
				3.7V/1600mAh				

4. TEST RESULTS (Bluetooth)

4.1 Powerline Conducted Emissions

4.1.1 EUT Configuration

The EUT was set up on the non-conductive table that is 1.0 by 1.5 meter, 80cm above ground. The wall of the shielded room was located 40cm to the rear of the EUT.

Power to the EUT was provided through the LISN. The impedance vs. frequency characteristic of the LISN is complied with the limit used.

Both lines (neutral and hot) were connected to the LISN in series at testing. A coaxial-type connector which provides one 50 ohms terminating impedance was provided for connecting the test instrument. The excess length of the power cord was folded back and forth at the center of the lead so as to form a bundle not exceeding 40cm in length.

Any changes made to the configuration, or modifications made to the EUT, during testing are noted in the following test record.

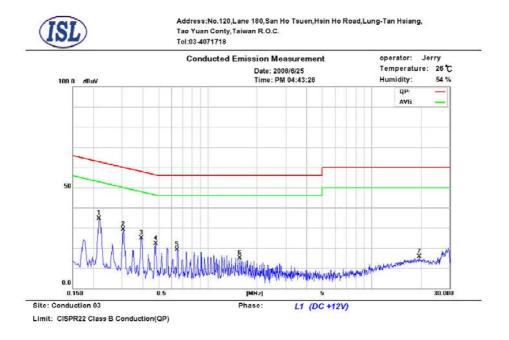
If the EUT is a Personal Computer or a peripheral of personal computer, and the personal computer has an auxiliary AC outlet which can be used for providing power to an external monitor, then all measurements will be made with the monitor power from first the computer-mounted AC outlet and then a floor-mounted AC outlet.

4.1.2 Test Procedure

The system was set up as described above, with the EMI diagnostic software running. The main power line conducted EMI tests were run on the hot and neutral conductors of the power cord and the results were recorded. The effect of varying the position of the interface cables has been investigated to find the configuration that produces maximum emission.

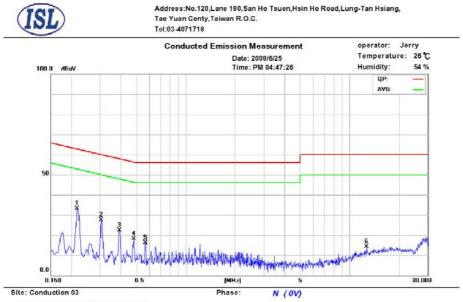
At the frequencies where the peak values of the emissions were higher than 6dß below the applicable limits, the emissions were also measured with the quasi-peak detectors. At the frequencies where the quasi-peak values of the emissions were higher than 6dß below the applicable average limits, the emissions were also measured with the average detectors.

The highest emissions were analyzed in details by operating the spectrum analyzer in fixed tuned mode to determine the nature of the emissions and to provide information which could be useful in reducing their amplitude.


4.1.3 EMI Receiver/Spectrum Analyzer Configuration (for the frequencies tested)

Frequency Range Detector Function Bandwidth (RBW) 150 KHz--30MHz Quasi-Peak/Average 9KHz

4.1.4 Test Data:


Power Line Conducted Emissions (Hot) Channel 00, 39, 78

Frequency MHz	LISN Loss dB	Cable Loss dB	QP Correct. dBuV	QP Limit dBuV	QP Margin dB	AVG Correct. dBuV	AVG Limit dBuV	AVG Margin dB	Note
* 0.2180	1.11	0.06	34.69	62.8	-28.2	34.05	52.8	-18.8	
0.3060	0.69	0.1	28.95	60.0	-31.1	28.26	50.0	-21.8	
0.3940	0.51	0.09	24.89	57.9	-33.0	24.19	47.9	-23.7	
0.4820	0.42	0.07	21.91	56.3	-34.3	21.17	46.3	-25.1	
0.6540	0.37	0.07	17.31	56.0	-38.6	16.14	46.0	-29.8	
1.5700	0.26	0.08	7.53	56.0	-48.4	5.03	46.0	-40.9	
19.5860	0.31	0.34	9.69	60.0	-50.3	4.60	50.0	-45.4	

*:Maximum data x:Over limit

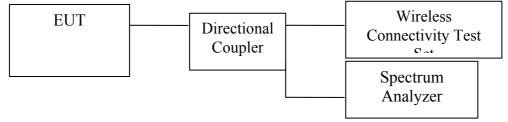
Power Line Conducted Emissions (Neutral) Channel 00, 39, 78

Limit: CISPR22 Class B Conduction(QP)

Frequency MHz	LISN Loss dB	Cable Loss dB	QP Correct. dBuV	QP Limit dBuV	QP Margin dB	AVG Correct. dBuV	AVG Limit dBuV	AVG Margin dB	Note
* 0.2180	0.93	0.06	32.07	62.8	-30.8	31.29	52.8	-21.6	
0.3060	0.59	0.1	25.64	60.0	-34.4	24.77	50.0	-25.3	
0.3940	0.41	0.09	20.78	57.9	-37.2	19.91	47.9	-28.0	
0.4820	0.38	0.07	17.14	56.3	-39.1	16.12	46.3	-30.1	
0.5700	0.37	0.07	14.21	56.0	-41.7	12.71	46.0	-33.2	
12.7180	0.27	0.26	7.33	60.0	-52.6	2.00	50.0	-48.0	

*:Maximum data x:Over limit

* NOTE: During the test, the EMI receiver was set to Max. Hold then switch the EUT Channel between 00, 39, 78 to get the maximum reading of all these channels.
 Margin = Amplitude + Insertion Loss- Limit


 A margin of -8dB means that the emission is 8dB below the limit

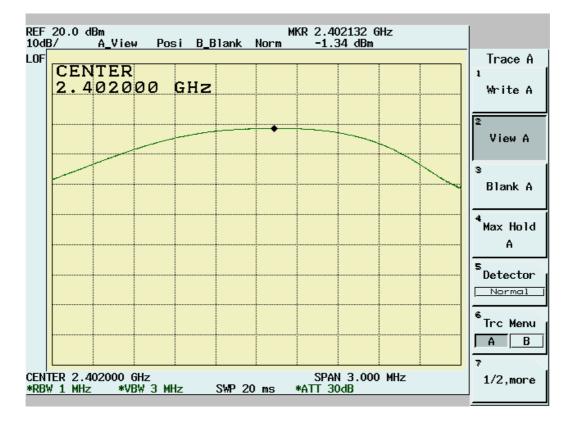
4.2 FHSS Maximum Peak Output Power

4.2.1 Test Procedure

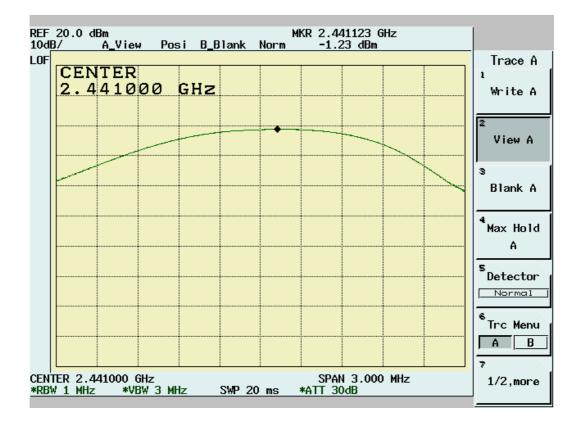
The Transmitter output of EUT was connected to the spectrum analyzer.

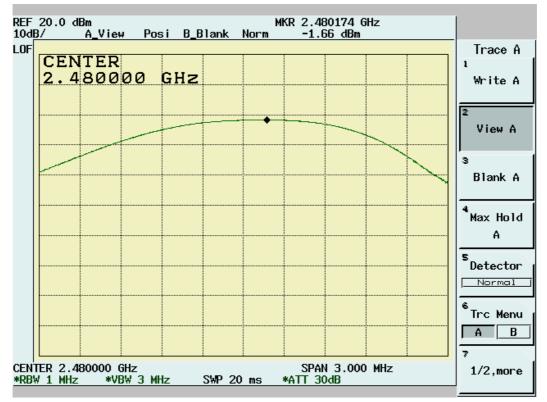
4.2.2 Test Setup

4.2.3 Test Data


Maximum Peak Output Power

Test Engineer:Jerry Chiou


Temperature (°C):25


Humidity	(%):55

Channel	Frequency (Mhz)	Analyzer Reading (dBm)	Cable Loss (dB)	Peak Power Output (mW)	Peak Power Output (dBm)	Limit (dBm)	Pass/Fail
00	2402	-1.34	3.23	1.55	1.89	30	Pass
39	2441	-1.23	3.23	1.58	2.00	30	Pass
78	2480	-1.66	3.23	1.44	1.57	30	Pass

4.3 Radiated Emission Measurement

4.3.1 EUT Configuration

The equipment under test was set up on the 10 meter chamber with measurement distance of 3 meters. The EUT was placed on a non-conductive table 80cm above ground.

Any changes made to the configuration, or modifications made to the EUT, during testing are noted in the following test record.

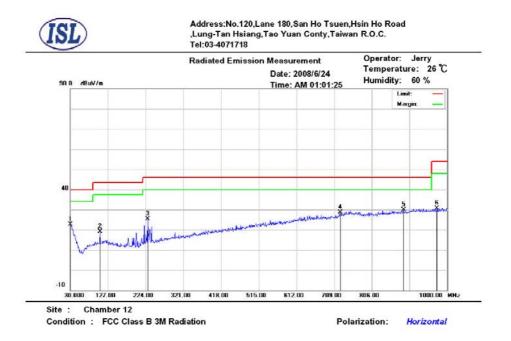
4.3.2 Test Procedure

The system was set up as described above, with the EMI diagnostic software running. We found the maximum readings by varying the height of antenna and then rotating the turntable. Both polarization of antenna, horizontal and vertical, are measured.

30M to 1GHz: The highest emissions between 30 MHz to 1000 MHz were also analyzed in details by operating the spectrum analyzer and/or EMI receiver in quasi-peak mode to determine the precise amplitude of the emissions. While doing so, the interconnecting cables and major parts of the system were moved around, the antenna height was varied between one and four meters, its polarization was varied between vertical and horizontal, and the turntable was slowly rotated, to maximize the emission.

1GHz – 25GHz: The highest emissions were also analyzed in details by operating the spectrum analyzer and/or EMI receiver in peak mode to determine the precise amplitude of the emission. While doing so, the interconnecting cables and major parts of the system were moved around, the antenna height was varied between one and four meters, its polarization was varied between vertical and horizontal, and the turntable was slowly rotated, to maximize the emission. During test the EMI receiver and spectrum was setup according to EMI Receiver/Spectrum Analyzer Configuration.

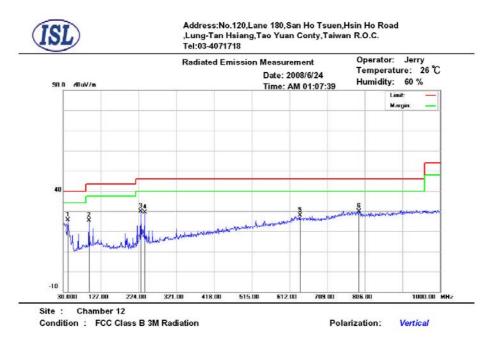
For the test of 2nd to 10th harmonics frequencies, the equipment setup was also referred to EMI Receiver/Spectrum Analyzer Configuration. The frequencies were tested using Peak mode first, if the test data is higher than the emissions limit, an additional measurement using Average mode will be performed and the average reading will be compared to the limit and record in test report.


4.3.3 EMI Receiver/Spectrum Analyzer Configuration (for the frequencies tested)

Frequency Range Tested:	30MHz~1000MHz
Detector Function:	Quasi-Peak Mode
Resolution Bandwidth (RBW):	120KHz
Video Bandwidth (VBW)	1MHz
Frequency Range Tested:	1GHz – 25 GHz
Detector Function:	Peak Mode
Resolution Bandwidth (RBW):	1MHz
Video Bandwidth (VBW)	3MHz
Frequency Range Tested:	1GHz – 25 GHz
Detector Function:	Average Mode
Resolution Bandwidth (RBW):	1MHz
Video Bandwidth (VBW)	10 Hz

4.3.4 Test Data (30MHz – 1GHz):

30M – 1GHz Open Field Radiated Emissions (Horizontal) Channel 00, 39, 78



Mk.	Frequency (MHz)	RX_R (dBuV/m)	Ant_F (dB)	Cab_L (dB)	PreAmp (dB)	Emission (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Ant.Pos (cm)	Tab.Pos (deg.)	Detector
	30.0000	2.64	18.97	1	0	22.61	40.00	-17.39	390	299	peak
	106.6300	7.71	9.16	2.17	0	19.04	43.50	-24.46	238	24	peak
	229.8200	13.99	8.59	2.9	0	25.48	46.00	-20.52	104	311	peak
	725.4900	4.68	18.84	5	0	28.52	46.00	-17.48	100	124	peak
*	887.4800	3.78	20.49	5.57	0	29.84	46.00	-16.16	100	281	peak
	973.8100	3.62	21.1	5.85	0	30.57	54.00	-23.43	244	25	peak

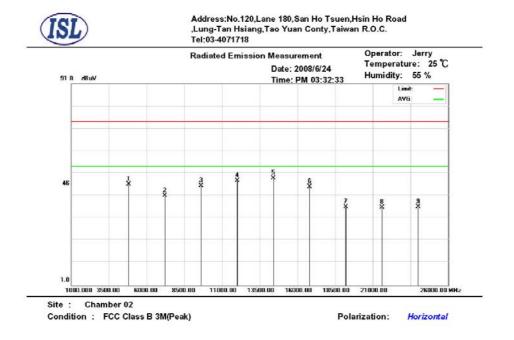
*:Maximum data x:Over limit !:over margin

30M - 1GHz Open Field Radiated Emissions (Vertical) Channel 00, 39, 78

Mk.	Frequency (MHz)	RX_R (dBuV/m)	Ant_F (dB)	Cab_L (dB)	PreAmp (dB)	Emission (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Ant.Pos (cm)	Tab.Pos (deg.)	Detector
*	41.6400	11.22	12.86	1.43	0	25.51	40.00	-14.49	105	246	peak
	95.9600	14.48	8.76	2.06	0	25.30	43.50	-18.20	333	357	peak
	229.8200	18.30	8.59	2.9	0	29.79	46.00	-16.21	209	186	peak
	239.5200	17.44	8.96	2.9	0	29.30	46.00	-16.70	299	165	peak
	639.1600	5.67	17.54	4.76	0	27.97	46.00	-18.03	322	82	peak
	791.4500	5.19	19.36	5.27	0	29.82	46.00	-16.18	359	67	peak

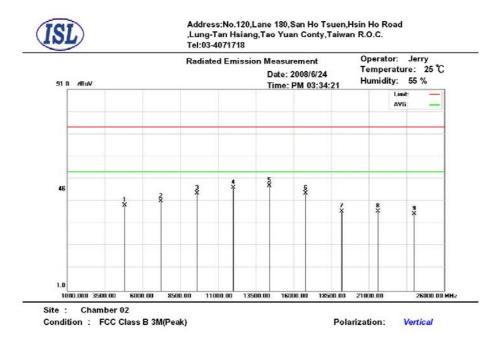
*:Maximum data x:Over limit !:over margin

NOTE:


- During the Pre-test, the EUT has been tested for Channel 00, 39, 78 transmit from Main and Aux antenna respectively to get all the critical emission frequencies. In the final test all the critical emission frequencies has been tested and the test data are listed above.
- Margin = Corrected Amplitude Limit Corrected Amplitude = Radiated Amplitude + Antenna Correction Factor + Cable Loss - Pre-Amplifier Gain A margin of -8dB means that the emission is 8dB below the limit

All frequencies from 30MHz to 1GHz have been tested

4.3.5 Test Data (1GHz – 25 GHz)

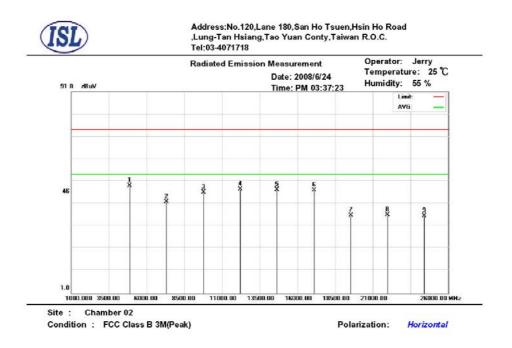

1GHz~25 GHz (Horizontal), Channel 00: 2402 MHz

Mk.	Frequency (MHz)	RX_R (dBuV)	Ant_F (dB)	Cab_L (dB)	PreAmp (dB)	Emission (dBuV)	Limit (dBuV)	Margin (dB)	Ant.Pos (cm)	Tab.Pos (deg.)	Detector
	4800.000	40.30	33.54	2.83	30.46	46.21	74.00	-27.79	208	354	peak
	7206.000	30.45	38.04	3.37	30.89	40.97	74.00	-33.03	301	353	peak
	9608.000	29.70	40.08	3.99	28.26	45.51	74.00	-28.49	323	249	peak
	12010.000	33.37	41.71	4.47	31.8	47.75	74.00	-26.25	240	112	peak
*	14412.000	31.98	43.44	4.85	31.5	48.77	74.00	-25.23	185	101	peak
	16814.000	28.81	41.77	5.38	30.95	45.01	74.00	-28.99	328	240	peak
	19216.000	27.85	32.39	5.66	29.8	36.10	74.00	-37.90	228	255	peak
	21618.000	24.40	33.1	6.02	27.7	35.82	74.00	-38.18	250	75	peak
	24020.000	24.46	33.31	5.87	27.73	35.91	74.00	-38.09	100	265	peak

*:Maximum data x:Over limit !:over margin

1GHz~25 GHz (Vertical), Channel 00: 2402 MHz

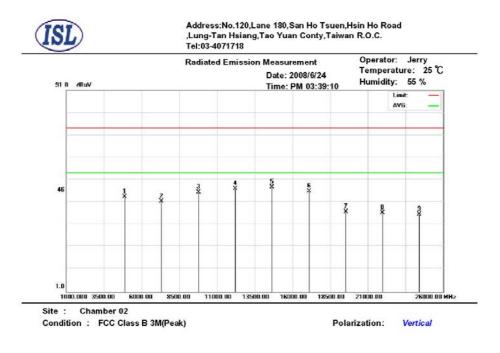
Mk.	Frequency (MHz)	RX_R (dBuV)	Ant_F (dB)	Cab_L (dB)	PreAmp (dB)	Emission (dBuV)	Limit (dBuV)	Margin (dB)	Ant.Pos (cm)	Tab.Pos (deg.)	Detector
	4800.000	33.32	33.54	2.83	30.46	39.23	74.00	-34.77	306	49	peak
	7206.000	30.47	38.04	3.37	30.89	40.99	74.00	-33.01	265	111	peak
	9608.000	28.74	40.08	3.99	28.26	44.55	74.00	-29.45	314	321	peak
	12010.000	32.56	41.71	4.47	31.8	46.94	74.00	-27.06	113	178	peak
*	14412.000	31.14	43.44	4.85	31.5	47.93	74.00	-26.07	228	258	peak
	16814.000	28.44	41.77	5.38	30.95	44.64	74.00	-29.36	380	243	peak
	19216.000	28.15	32.39	5.66	29.8	36.40	74.00	-37.60	211	225	peak
	21618.000	25.06	33.1	6.02	27.7	36.48	74.00	-37.52	302	347	peak
	24020.000	23.90	33.31	5.87	27.73	35.35	74.00	-38.65	100	0	peak


*:Maximum data x:Over limit !:over margin

Note:

- According to the standards used, Where limits are specified by agencies for both average and peak (or quasi-peak) detection, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement.
- > "* ": Fundamental Frequency, "**": Not in the restricted band, Limit level=Fundamental Emission-20dB
- " pk": peak mode, "av": average mode
- > "---": No meter reading data due to the emission level is smaller than spectrum noise level.
- The Spectrum noise level+Correction Factor < Limit 6 dB
- Margin=Corrected Amplitude Limit
- > Corrected Amplitude=Radiated Amplitude+Antenna Correction Factor+Cable Loss-Pre-Amplifier Gain
- A margin of -8dB means that the emission is 8dB below the limit.

All frequencies from 1GHz to 25 GHz have been tested.

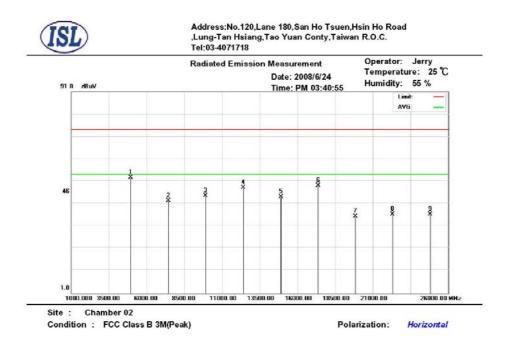

1GHz~25 GHz (Horizontal), Channel 39: 2441 MHz

Mk.	Frequency (MHz)	RX_R (dBuV)	Ant_F (dB)	Cab_L (dB)	PreAmp (dB)	Emission (dBuV)	Limit (dBuV)	Margin (dB)	Ant.Pos (cm)	Tab.Pos (deg.)	Detector
*	4875.000	43.09	33.75	2.82	30.55	49.11	74.00	-24.89	321	180	peak
	7323.000	30.80	38.34	3.38	30.78	41.74	74.00	-32.26	100	112	peak
	9764.000	30.47	40.05	4.03	28.36	46.19	74.00	-27.81	334	281	peak
	12205.000	33.00	41.82	4.53	31.88	47.47	74.00	-26.53	288	234	peak
	14646.000	30.51	43.12	4.87	31.21	47.29	74.00	-26.71	100	19	peak
	17087.000	29.45	43.28	5.43	31.1	47.06	74.00	-26.94	207	206	peak
	19528.000	27.37	32.5	5.71	29.78	35.80	74.00	-38.20	240	108	peak
	21969.000	24.45	33.1	6.08	27.7	35.93	74.00	-38.07	100	217	peak
	24410.000	24.86	33.46	5.53	28.27	35.58	74.00	-38.42	100	275	peak

*:Maximum data x:Over limit !:over margin

1GHz~25 GHz (Vertical) Channel 39: 2441 MHz

Mk.	Frequency (MHz)	RX_R (dBuV)	Ant_F (dB)	Cab_L (dB)	PreAmp (dB)	Emission (dBuV)	Limit (dBuV)	Margin (dB)	Ant.Pos (cm)	Tab.Pos (deg.)	Detector
	4875.000	37.39	33.75	2.82	30.55	43.41	74.00	-30.59	229	221	peak
	7323.000	30.55	38.34	3.38	30.78	41.49	74.00	-32.51	383	11	peak
	9764.000	29.67	40.05	4.03	28.36	45.39	74.00	-28.61	115	202	peak
	12205.000	32.57	41.82	4.53	31.88	47.04	74.00	-26.96	152	68	peak
*	14646.000	30.94	43.12	4.87	31.21	47.72	74.00	-26.28	157	120	peak
	17087.000	28.24	43.28	5.43	31.1	45.85	74.00	-28.15	118	109	peak
	19528.000	28.27	32.5	5.71	29.78	36.70	74.00	-37.30	279	284	peak
	21969.000	24.76	33.1	6.08	27.7	36.24	74.00	-37.76	266	353	peak
	24410.000	24.86	33.46	5.53	28.27	35.58	74.00	-38.42	390	239	peak

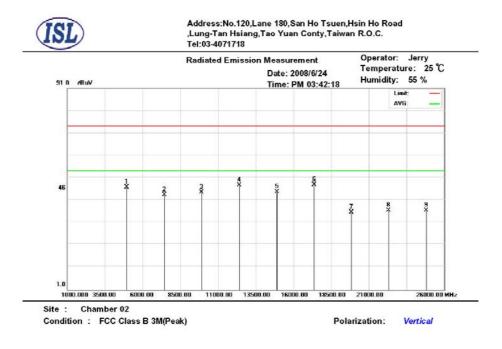

*:Maximum data x:Over limit !:over margin

Note:

- According to the standards used: Where limits are specified by agencies for both average and peak (or quasi-peak) detection, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement.
- > "* ": Fundamental Frequency, "**": Not in the restricted band, Limit level=Fundamental Emission-20dB
- " pk": peak mode, "av": average mode
- > "---": No meter reading data due to the emission level is smaller than spectrum noise level.
- The Spectrum noise level+Correction Factor < Limit 6 dB
- Margin=Corrected Amplitude Limit
- > Corrected Amplitude=Radiated Amplitude+Antenna Correction Factor+Cable Loss-Pre-Amplifier Gain
- A margin of -8dB means that the emission is 8dB below the limit.

All frequencies from 1GHz to 25 GHz have been tested.

1GHz~25 GHz (Horizontal), Channel 78: 2480 MHz


Mk.	Frequency (MHz)	RX_R (dBuV)	Ant_F (dB)	Cab_L (dB)	PreAmp (dB)	Emission (dBuV)	Limit (dBuV)	Margin (dB)	Ant.Pos (cm)	Tab.Pos (deg.)	Detector
*	4950.000	46.48	33.96	2.81	30.64	52.61	74.00	-21.39	187	258	peak
	7440.000	31.01	38.64	3.39	30.66	42.38	74.00	-31.62	225	322	peak
	9920.000	28.99	40.02	4.08	28.45	44.64	74.00	-29.36	100	256	peak
	12400.000	33.53	41.94	4.58	31.96	48.09	74.00	-25.91	260	34	peak
	14880.000	27.66	42.18	4.89	30.74	43.99	74.00	-30.01	315	191	peak
	17360.000	30.61	44.15	5.46	31.1	49.12	74.00	-24.88	100	244	peak
	19840.000	26.60	32.5	5.76	29.6	35.26	74.00	-38.74	216	10	peak
	22320.000	24.20	33.61	6.13	27.76	36.18	74.00	-37.82	178	212	peak
	24800.000	25.91	34.34	5.4	29.36	36.29	74.00	-37.71	100	278	peak

*:Maximum data x:Over limit !:over margin

-16-

1GHz~25 GHz (Vertical), Channel 78:2480 MHz

Mk.	Frequency (MHz)	RX_R (dBuV)	Ant_F (dB)	Cab_L (dB)	PreAmp (dB)	Emission (dBuV)	Limit (dBuV)	Margin (dB)	Ant.Pos (cm)	Tab.Pos (deg.)	Detector
	4950.000	40.57	33.96	2.81	30.64	46.70	74.00	-27.30	175	27	peak
	7440.000	32.10	38.64	3.39	30.66	43.47	74.00	-30.53	100	204	peak
	9920.000	28.94	40.02	4.08	28.45	44.59	74.00	-29.41	389	63	peak
	12400.000	33.21	41.94	4.58	31.96	47.77	74.00	-26.23	138	184	peak
	14880.000	28.35	42.18	4.89	30.74	44.68	74.00	-29.32	130	229	peak
*	17360.000	29.39	44.15	5.46	31.1	47.90	74.00	-26.10	100	168	peak
	19840.000	26.86	32.5	5.76	29.6	35.52	74.00	-38.48	100	311	peak
	22320.000	24.48	33.61	6.13	27.76	36.46	74.00	-37.54	399	8	peak
	24800.000	26.16	34.34	5.4	29.36	36.54	74.00	-37.46	266	19	peak

*:Maximum data x:Over limit !:over margin

Note:

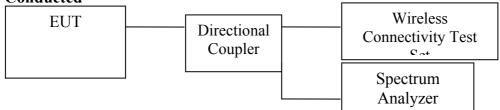
- According to the standards used, Where limits are specified by agencies for both average and peak (or quasi-peak) detection, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement.
- > "* ": Fundamental Frequency, "**": Not in the restricted band, Limit level=Fundamental Emission-20dB
- " pk": peak mode, "av": average mode
- > "---": No meter reading data due to the emission level is smaller than spectrum noise level.
- The Spectrum noise level+Correction Factor < Limit 6 dB
- Margin=Corrected Amplitude Limit
- > Corrected Amplitude=Radiated Amplitude+Antenna Correction Factor+Cable Loss-Pre-Amplifier Gain
- A margin of -8dB means that the emission is 8dB below the limit.

All frequencies from 1GHz to 25 GHz have been tested.

4.4 Band Edge Measurement

4.4.1 Test Procedure

Conducted


- The transmitter output of EUT was connected to the spectrum analyzer. Equipment mode: Spectrum analyzer Detector function: Peak mode SPAN: 10MHz RBW: 100KHz VBW: 100KHz Center frequency: 2.375GHz, 2.5GHz.
 Using Peak Search to read the peak power of Carrier frequencies after Maximum
- Hold function is completed
- 3. Find the next peak frequency outside the operation frequency band

Radiated

- Antenna and Turntable test procedure same as Radiated Emission Measurement. Equipment mode: Spectrum analyzer Detector function: Peak mode SPAN: 10MHz RBW: 100KHz VBW: 100KHz Center frequency: 2.375GHz, 2.5GHz.
- Center frequency: 2.375GHz, 2.5GHz.
 Using Peak Search to read the peak power of Carrier frequencies after Maximum Hold function is completed
- 3. Find the next peak frequency outside the operation frequency band

4.4.2 Test Setup

Conducted

Radiated

Same as *Radiated Emission Measurement*

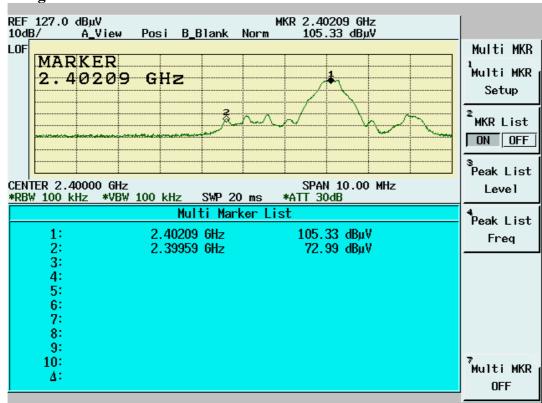
4.4.3 Test Data:

Table: Band Edge measurement (Conducted)

Conducted Test

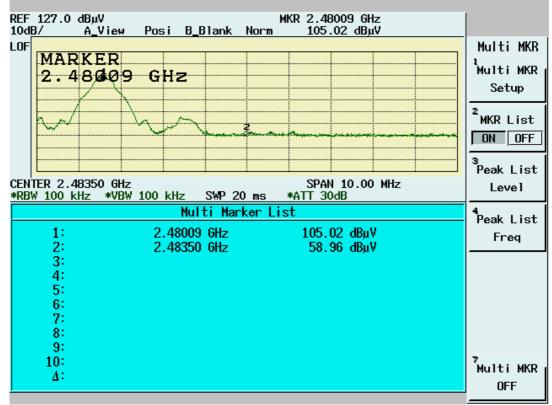
ina Euge measurement (Conducted)

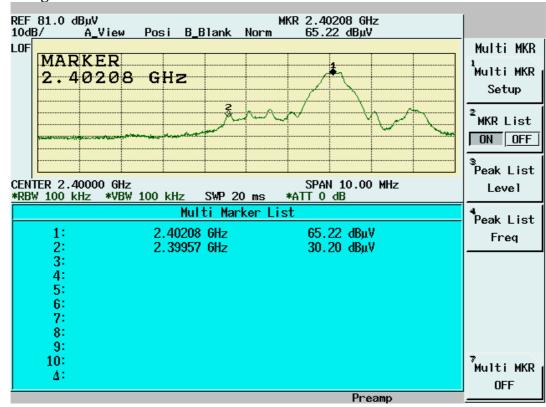
Test Engineer:Jerry	Chiou	Humidity (%):55						
Channel	Frequency	Spectrum Reading	Carrier - Outsideband Limit: >20dB	Pass/Fail				
	(MHz)	(dBuV)	(dB)					
00	2402.9	105.33						
Outside band	239.59	72.99	32.34	Pass				
78	2480.09	105.02						
Outside band	2483.5	58.96	46.06	Pass				


Radiated Test

Temperature (°C):25 Humidity (%):55

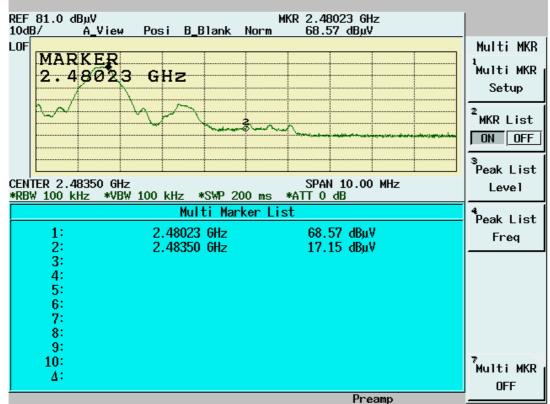
Temperature (°C):25


Test Engineer:Jerry	Chiou		Humidity (%):55					
Channel	Frequency	Spectrum Reading	Carrier - Outsideband Limit: >20dB	Pass/Fail				
	(MHz)	(dBuV)	(dB)					
00	2402.08	65.22						
Outside band	2399.57	30.2	35.02	Pass				
78	2480.23	68.57						
Outside band	2483.5	17.15	51.42	Pass				



Band Edge Conducted Measurement

Band Edge Conducted Measurement



Band Edge Radiated Measurement

4.5 Restricted Bands Measurement

4.5.1 Test Procedure (Radiated)

- Antenna and Turntable test procedure same as Radiated Emission Measurement. Equipment mode: Spectrum analyzer Detector function: Peak mode SPAN: 30MHz RBW: 1MHz VBW: 3MHz Center frequency: 2.375GHz, 2.5GHz.
 Using Deak Search to read the peak power of Carrier frequencies offer Maximum II
- 2. Using Peak Search to read the peak power of Carrier frequencies after Maximum Hold function is completed.
- 3. Find the next peak frequency outside the operation frequency band
- For peak frequency emission level measurement in Restricted Band, Change RBW: 1MHz VBW: 1KHz Span: 30MHz.
- 5. Get the spectrum reading after Maximum Hold function is completed.

4.5.2 Test Setup (Radiated)

Same as Radiated Emission Measurement

FCC ID:PU572XX

Temp. (° C):

25

4.5.3 Test Data

Table Band Edge measurement (Radiated)

					1 cmp. (C).		25
Test Engr:	Jerry				Humidity (%):	55
Description	Frequency (MHz)	Spectrum Reading (dBuV)	Correction Factor (dB/m)	Emission Level (dBuV/m)	Limit (dBuV/m)	Equip. Setup VBW	Pass or Fail
Channel_00 (peak mode)	2402.09	65.58	30.7	96.28		3MHz	
Channel_00 (average mode)	2402.9	64.3	30.7	95		1KHz	
Channel_78 (peak mode)	2380.07	68.89	30.78	99.67		3MHz	
Channel_78 (average mode)	2480.07	68.24	30.78	99.02		1KHz	
Channel_00 Restricted band (peak mode)	2390	20.82	30.69	51.51	74	3MHz	Pass
Restricted band (average mode)	2390	9.81	30.69	40.5	54	1KHz	Pass
Channel_78 Restricted band (peak mode)	2483.5	27.6	30.78	58.38	74	3MHz	Pass
Restricted band (average mode)	2483.5	17.38	30.78	48.16	54	1KHz	Pass

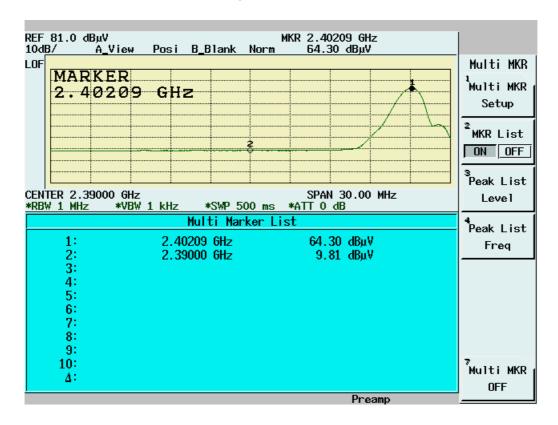
Note:

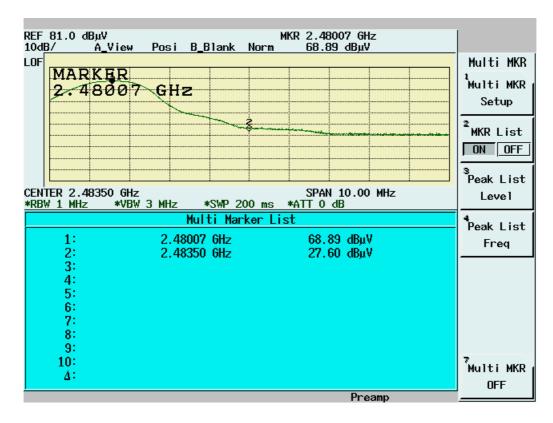
> The Spectrum plot of emission level measurement in Restricted band is attached.

Emission Level=Spectrum Reading+Correction Factor

> Correction Factor=Antenna Factor+cable loss-amplifier gain

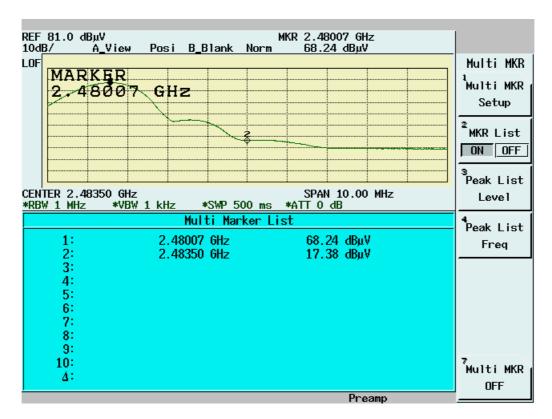
> Both Horizontal and Vertical polarization have been tested and the worst data is listed above.


-23-


REF 81 10dB/		}μV A_Vie	w Po	osi B_I	Blank	M Norm	KR 2.40 65.5)209 GH 58 dBµV		
	IAR	KER								Multi MKR ¹ Multi MKR Setup
				· · · · · · · · · · · · · · · · · · ·		2				² MKR List
CENTER *RBW 1			Hz B₩ 3 N		*SWP 20		*ATT 0	4 30.00 dB	MHz	[®] Peak List Level
	1: 2:			Mul 2.40209 2.39000		ker Lis	65.	58 dBµ' 82 dBµ'		 Peak List Freq
	3: 4: 5:									
	6: 7: 8:									
	9: 10: 									7 Multi MKR OFF
								Pre	amn	

Restricted Band (Radiated)-Peak Mode (Channel 00)

Restricted Band (Radiated)-Average Mode (Channel 00)



Restricted Band (Radiated)-Peak Mode (Channel 78)

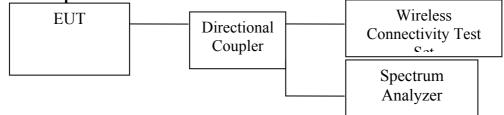
Restricted Band (Radiated)-Average Mode (Channel 78)

4.6 Bandwidth & Hopping Channel Separation

4.6.1 Standard Applicable

According to \$15.247(a)(1), frequency hopping system shall have, hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudorandomly ordered list of hopping frequencies.

4.6.2 Test Procedure


Bandwidth Test Procedure

The Transmitter output of EUT was connected to the spectrum analyzer. The 20 dB bandwidth of the fundamental frequency was measured. The setting of spectrum analyzer is as follows

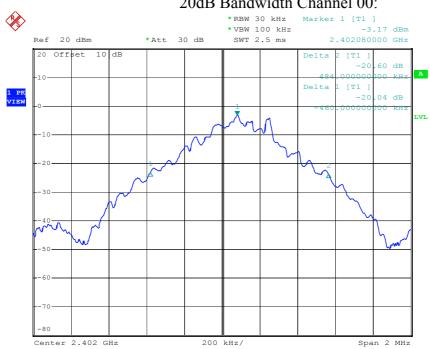
Equipment mode	Spectrum analyzer
Detector function	Peak mode
RBW	30KHz
VBW	100KHz

- Hopping Channel Separation Test Procedure
 - Connect EUT antenna terminal to the spectrum analyzer with a low loss cable. Equipment mode: Spectrum analyzer RBW: 100KHz VBW: 300KHz
 - SPAN:3MHz
 - 2. By using the Max-Hold function record the separation of two adjacent channels.
 - 3. Measure the frequency difference of these two adjacent channels by spectrum analyzer Marker function.
 - 4. Repeat above procedures until all frequencies measured were complete.

4.6.3 Test Setup

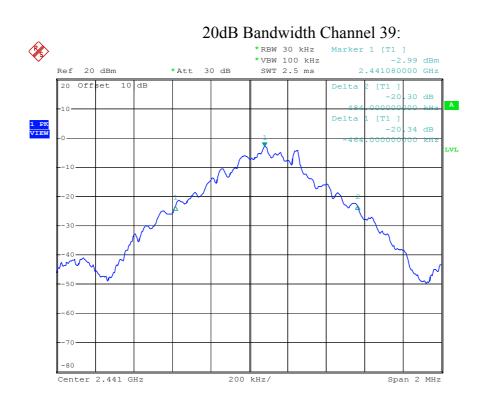
4.6.4 Test Data

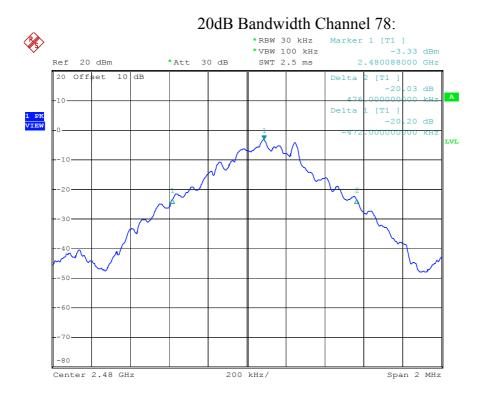
20dB Bandwidth


Test Engineer:Jerr	(°C):25):55					
Channel	Frequency (MHz)	20dB Bandwidth (KHz)	Limit (KHz)		Pass/Fail	
00	2402	944	(1000	Pass	
39	2441	948	\leq	1000	Pass	
78	2480	948	\leq	1000	Pass	

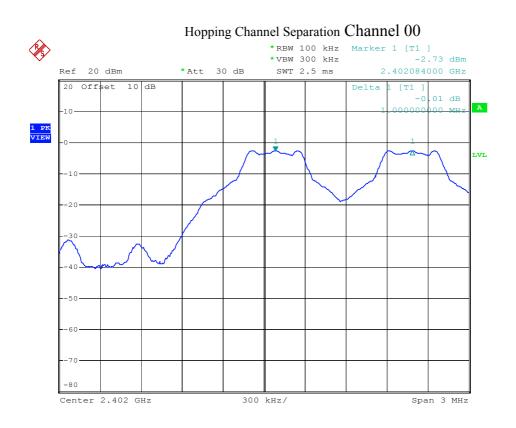
Hopping Channel Separation

Temperature (°C):25 Humidity (%):55


Test Engineer:Jerry	Chiou	Humidity (%):55			
Channel	Frequency	Separation Limit		Limit	Pass/Fail
	(MHz)	(KHz)	(KHz)		
00	2402	1000	\geq	944	Pass
39	2441	1000	\geq	948	Pass
78	2480	1000	\geq	948	Pass

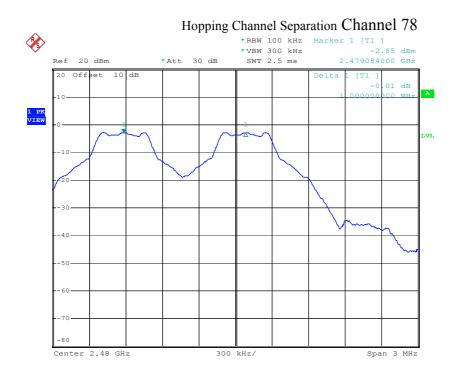

²⁰dB Bandwidth Channel 00:

Date: 19.JUN.2008 19:42:41



Date: 19.JUN.2008 19:44:31

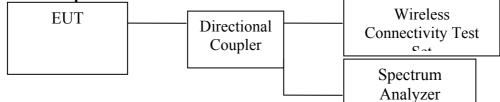
Date: 19.JUN.2008 19:57:25



Date: 19.JUN.2008 20:28:20

Date: 19.JUN.2008 20:48:43

Date: 19.JUN.2008 21:03:03



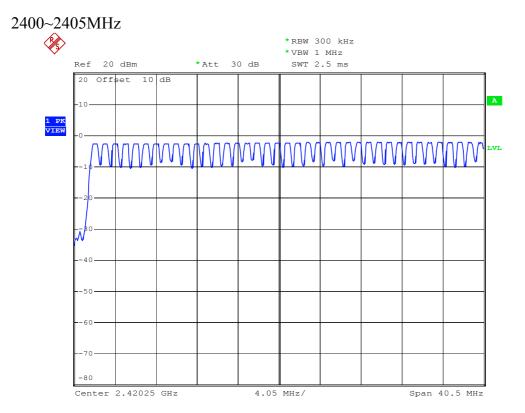
4.7 Number of Hopping Frequency Used

4.7.1 Test Procedure

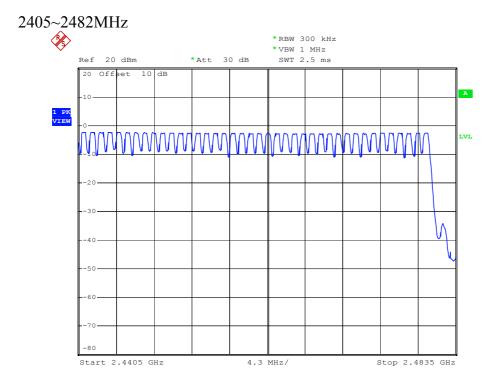
- Connect EUT antenna terminal to the spectrum analyzer with a low loss cable. Equipment mode: Spectrum analyzer RBW: 300KHz VBW: 1MHz
- 2. Set the spectrum analyzer on Max-Hold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- 3. Repeat above procedures until all frequencies measured were complete.

4.7.2 Test Setup

4.7.3 Test Data


Number of Hopping Frequency Used

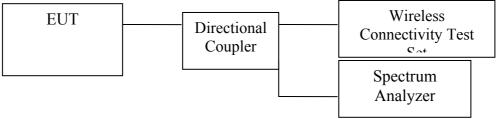
Test Engineer Jerry Chiou


Temperature ($^{\circ}$ C):25 Humidity ($^{\circ}$ C):55

Test Eligineer.serry Childu	framency (70).55			
Test result	Limit (Channels)	Pass/Fail		
79	>75	Pass		

Date: 19.JUN.2008 21:28:33

Date: 19.JUN.2008 21:32:57



4.8 Dwell Time

4.8.1 Test Procedure

- Connect EUT antenna terminal to the spectrum analyzer with a low loss cable. Equipment mode: Spectrum analyzer RBW: 1MHz VBW: 1MHz SPAN: Zero Span
- 2. Adjust the center frequency of spectrum analyzer on any frequency be measured.
- 3. Measure the Dwell Time by spectrum analyzer Marker function.
- 4. Repeat above procedures until all frequencies measured were complete.

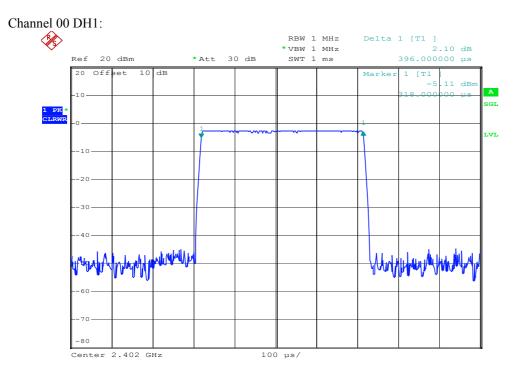
4.8.2 Test Setup

4.8.3 Test Data

Dwell Time

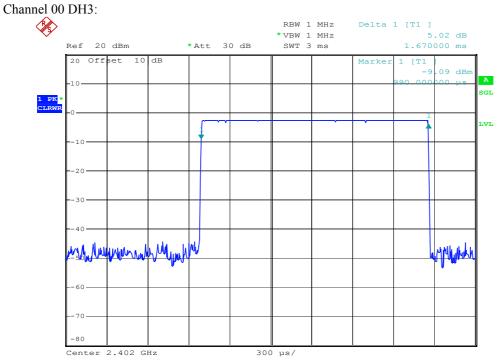
					Temperatur	e (°C):25
Test Engineer:Jerry Chiou Humidity (%						%):55
Mode	Frequency	Spectrum Reading	Test Result	Limit		Pass/Fail
	(MHz)	(µs)	(ms)	(ms)	
DH1	2402	396	253.44	<	400	Pass
DH3	2402	1670	356.27	<	400	Pass
DH5	2402	2920	373.76	<	400	Pass

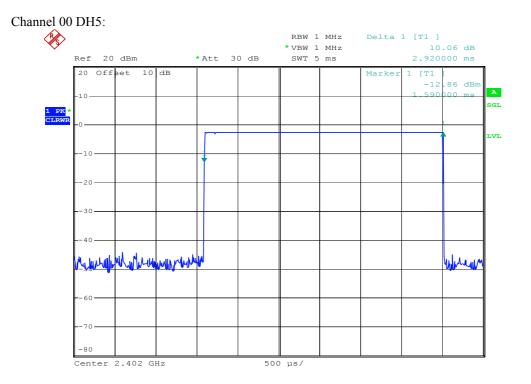
Mode	Frequency	Spectrum Reading	Test Result	Limit		Pass/Fail
	(MHz)	(µs)	(ms)	(1	ms)	
DH1	2441	404	258.56	<	400	Pass
DH3	2441	1676	357.55	<	400	Pass
DH5	2441	2930	375.04	<	400	Pass


Mode	Frequency	Spectrum Reading	Test Result	L	imit	Pass/Fail
	(MHz)	(µs)	(ms)	(1	ms)	
DH1	2480	404	258.56	<	400	Pass
DH3	2480	1676	357.55	<	400	Pass
DH5	2480	2916	373.25	<	400	Pass

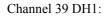
Note:

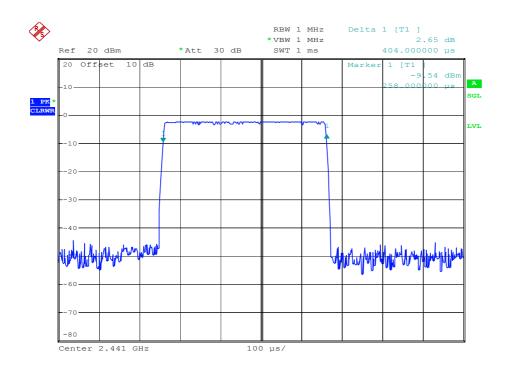
А	period	time=79x0.4(s)=31.6(s)	
---	--------	------------------------	--


r			
CH00	DH1 time slot=	396 (µs)*(1600/(1*79))*31.6=	253.44 (ms)
	DH3 time slot=	1670 (µs)*(1600/(3*79))*31.6=	356.27 (ms)
	DH5 time slot=	2920 (µs)*(1600/(5*79))*31.6=	373.76 (ms)
СН39	DH1 time slot=	404 (µs)*(1600/(1*79))*31.6=	258.56 (ms)
	DH3 time slot=	1676 (µs)*(1600/(3*79))*31.6=	357.55 (ms)
	DH5 time slot=	2930 (µs)*(1600/(5*79))*31.6=	375.04 (ms)
CH78	DH1 time slot=	404 (µs)*(1600/(1*79))*31.6=	258.56 (ms)
	DH3 time slot=	1676 (µs)*(1600/(3*79))*31.6=	357.55 (ms)
	DH5 time slot=	2916 (µs)*(1600/(5*79))*31.6=	373.25 (ms)

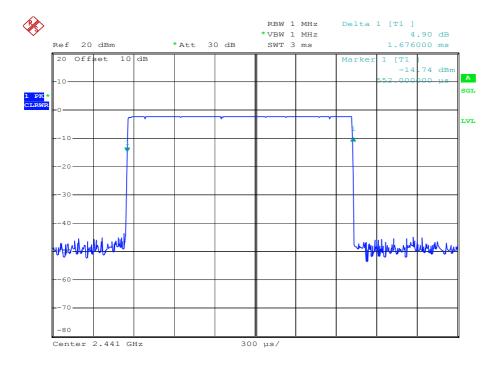

-35-

Date: 19.JUN.2008 15:56:17

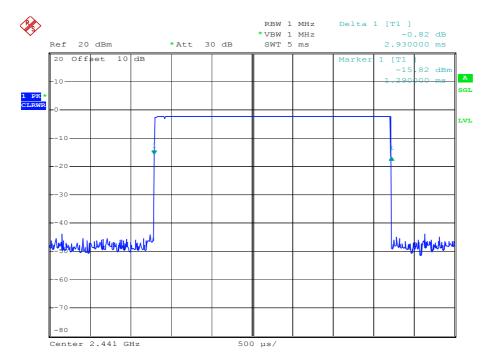



Date: 19.JUN.2008 16:06:52

Date: 19.JUN.2008 16:07:52

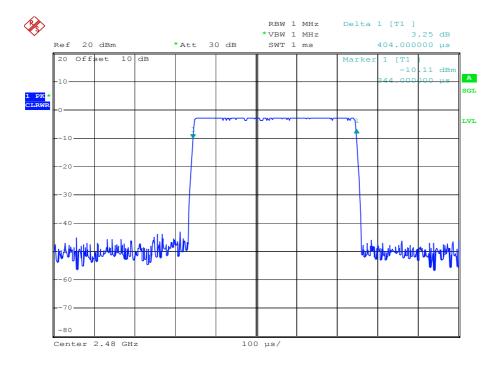


Date: 19.JUN.2008 16:09:32

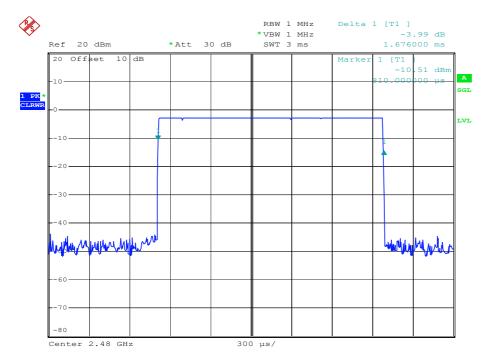


Channel 39 DH3:

Date: 19.JUN.2008 16:11:08

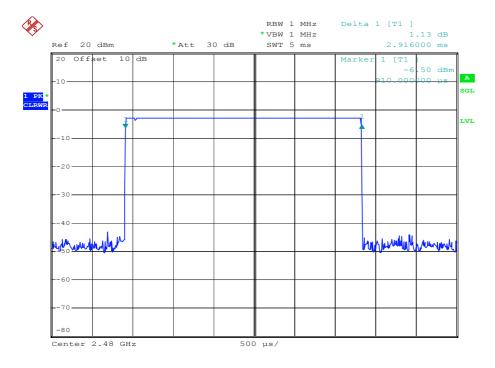

Channel 39 DH5:

Date: 19.JUN.2008 16:12:12



Channel 78 DH1:

Date: 19.JUN.2008 16:13:19


Channel 78 DH3:

Date: 19.JUN.2008 16:14:24

Channel 78 DH5:

Date: 19.JUN.2008 16:20:11

5. Appendix

5.1 Appendix A: Measurement Procedure for Power line Conducted Emissions

The measurements are performed in a $3.5m \times 3.4m \times 2.5m$ shielded room, which referred as Conduction 01 test site, or a $3m \times 3m \times 2.3m$ test site, which referred as Conduction 02 test site. The EUT was placed on non-conduction 1.0m x 1.5m table, which is 0.8 meters above an earth-grounded.

Power to the EUT was provided through the LISN which has the Impedance (50ohm/50uH) vs. Frequency Characteristic in accordance with the required standard. Power to the LISNs were filtered to eliminate ambient signal interference and these filters were bonded to the ground plane. Peripheral equipment required to provide a functional system (support equipment) for EUT testing was powered from the second LISN through a ganged, metal power outlet box which is bonded to the ground plane at the LISN.

If the EUT is supplied with a flexible power cord, the power cord length in excess of the distance separating the EUT from the LISN shall be folded back and forth at the center of the lead so as to form a bundle not exceeding 40cm in length. If the EUT is provided with a permanently coiled power cord, bundling of the cord is not required. If the EUT is supplied without a power cord, the EUT shall be connected to the LISN by a power cord of the type specified by the manufacturer which shall not be longer than 1 meter. The excess power cord shall be bundled as described above. If a non-flexible power cord is provided with the EUT, it shall be cut to the length necessary to attach the EUT to the LISN and shall not be bundled.

The interconnecting cables were arranged and moved to get the maximum emission. Both the line of power cord, hot and neutral, were measured.

The highest emissions were analyzed in details by operating the spectrum analyzer in fixed tuned mode to determine the nature of the emissions and to provide information which could be useful in reducing their amplitude.

5.2 Appendix B: Test Procedure for Radiated Emissions

Preliminary Measurements in the Anechoic Chamber

The radiated emissions are initially measured in the anechoic chamber at a measurement distance of 3 meters. Desktop EUT are placed on a wooden stand 0.8 meter in height. The measurement antenna is 3 meters from the EUT. The test setup in anechoic chamber is the same as open site. The turntable rotated 360°C. The antenna height is varied from 1-2.5m. The primary objective of the radiated measurements in the anechoic chamber is to identify the frequency spectrum in the absence of the electromagnetic environment existing on the open test site. The frequencies can then be pre-selected on the open test site to obtain the corresponding amplitude. The initial scan is made with the spectrum analyzer in automatic sweep mode. The spectrum peaks are then measured manually to determine the exact frequencies.

Measurements on the Open Site or 10m EMC Chamber

The radiated emissions test will then be repeated on the open site or 10m EMC chamber to measure the amplitudes accurately and without the multiple reflections existing in the shielded room. The EUT and support equipment are set up on the turntable of one of the 3 or 10 meter open field sites. Desktop EUT are set up on a wooden stand 0.8 meter above the ground.

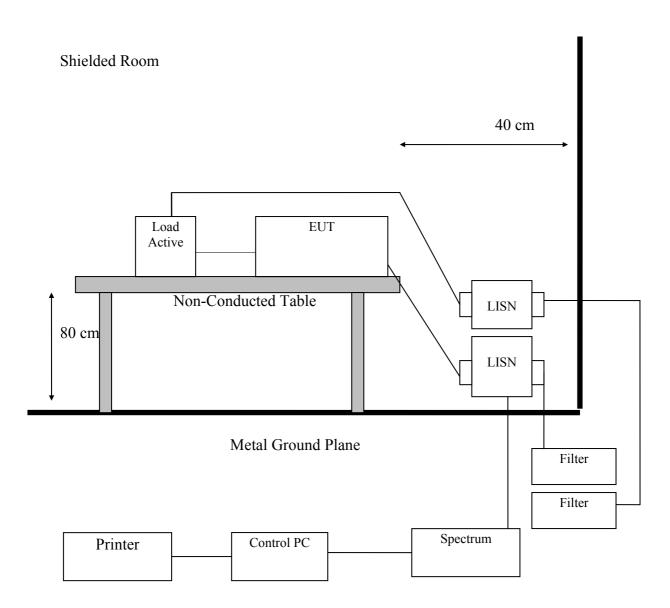
For the initial measurements, the receiving antenna is varied from 1-4 meter height and is changed in the vertical plane from vertical to horizontal polarization at each frequency. Both reading are recorded with the quasi-peak detector with 120KHz bandwidth. For frequency between 30 MHz and 1000MHz, the reading is recorded with peak detector or quasi-peak detector. For frequency above 1 GHz, the reading is recorded with peak detector or average detector with 1 MHz bandwidth.

At the highest amplitudes observed, the EUT is rotated in the horizontal plane while changing the antenna polarization in the vertical plane to maximize the reading. The interconnecting cables were arranged and moved to get the maximum emission. Once the maximum reading is obtained, the antenna elevation and polarization will be varied between specified limits to maximize the readings.

5.3 Appendix C: Test Equipment

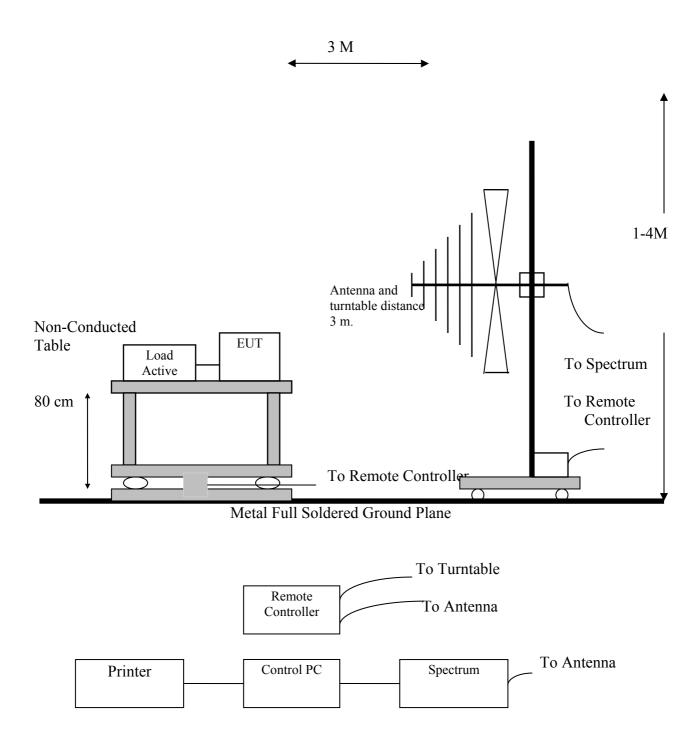
5.3.1 Test Equipment List

Location	Equipment Name	Brand	Model	S/N	Last Cal. Date	Next Cal. Date
Conduction	Coaxial Cable 1F-C2	Harbourindustr ies	RG400	1F-C2	02/13/2008	02/13/2009
Conduction	Digital Hygro-Thermometer Conduct	MicroLife	HT-2126G	ISL-Conductio n02	12/26/2007	12/26/2008
Conduction	EMI Receiver 07	Schwarzbeck Mess-Elektroni k	FCKL 1528	1528-201	08/31/2007	08/30/2008
Conduction	LISN 01	R&S	ESH2-Z5	890485/013	01/03/2008	01/03/2009
Conduction	LISN 06	R&S	ESH3-Z5	828874/009	12/14/2007	12/14/2008
Radiation	BILOG Antenna 08	Schaffner	CBL6112B	2756	06/13/2008	06/12/2009
Radiation	Coaxial Cable Chmb 02-10M	Belden	RG-8/U	Chmb 02-10M	02/13/2008	02/12/2009
Radiation	Digital Hygro-Thermometer Chmb 02	MicroLife	HT-2126G	Chmb 02	12/26/2006	12/26/2008
Radiation	EMI Receiver 02	HP	85460A	3448A00183	12/29/2007	12/28/2008
Radiation	Spectrum Analyzer 13	Advantest	R3132	121200411	03/16/2008	03/15/2009
Radiation	Horn Antenna 02	Com-Power	AH-118	10088	12/28/2007	12/27/2008
Radiation	Horn Antenna 04	Com-Power	AH-826	081-001	03/23/2008	03/22/2009
Radiation	Microwave Cable RF SK-01	HUBER+SUH NERAG.	Sucoflex 102	22139 /2	06/01/2008	06/01/2009
Radiation	Preamplifier 09	MITEQ	AFS44-001026 50-40-10P-44	858687	04/02/2008	04/02/2009
Radiation	High Pass Filter 01	HEWLETT-P ACKARD	84300-80038	001	N/A	N/A
Radiation	Spectrum Analyzer 19	R&S	FSP40	100116	09/12/2007	09/12/2008
Chamber 05	Wireless Connectivity Test Set 01	Agilent	N4010A	MY48100200	05/23/2008	05/23/2009
Chamber 05	Directional Coupler	Agilent	87300C	MY44300272	N/A	N/A
Radiation	Spectrum Analyzer 14	Advantest	R3182	140600028	12/06/2007	12/06/2008


Note: Calibration is traceable to NIST or national or international standards.

5.3.2 Software for Controlling Spectrum/Receiver and Calculating Test Data

Radiation/Conduction	Filename	Version	Issued Date
Lung_Tan Conduction	EZ EMC	1.1.4.2	2/10/2007
Lung_Tan Radiation	EZ EMC	1.1.4.2	1/24/2007


5.4 Appendix D: Layout of EUT and Support Equipment

5.4.1 General Conducted Test Configuration

5.4.2 General Radiation Test Configuration

5.5 Appendix E: Description of Support Equipment

5.5.1 Description of Support Equipment

None

5.5.2 Software for Controlling Support Unit

Test programs exercising various part of EUT were used. The programs were executed as follows:

A. The Bluetooth Connectivity Test Set link with EUT(execute the software) to makes the transmitter continuously sending RF signals .

	Filename Issued Da	
Bluetooth	SetPSKeyCE_IVT.exe	06/12/2008

5.5.3 I/O Cable Condition of EUT and Support Units

Description	Path	Cable Length	Cable Type	Connector Type
DC Power Cord	DC 12V to EUT USB Port	1.5M	Non-shielded, Detachable	Plastic Head

-46-

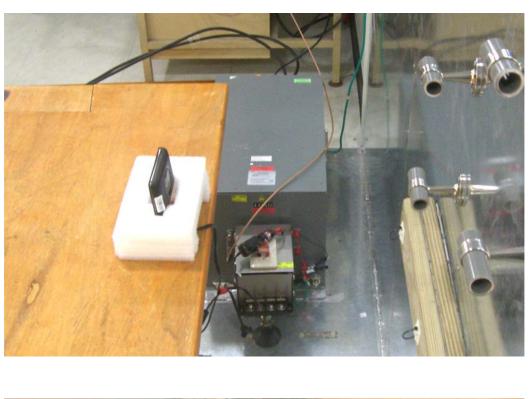
5.6 Appendix F: Accuracy of Measurement

The measurement uncertainty refers to CISPR 16-4-2:2003. The coverage factor k = 2 yields approximately a 95 % level of confidence.

<Conduction 03>: ±0.88dB

<Chamber 02 (3M)> 1GHz~18GHz: ±2.62dB 18GHz~26GHz: ±2.94dB 26GHz~40GHz: ±2.70dB

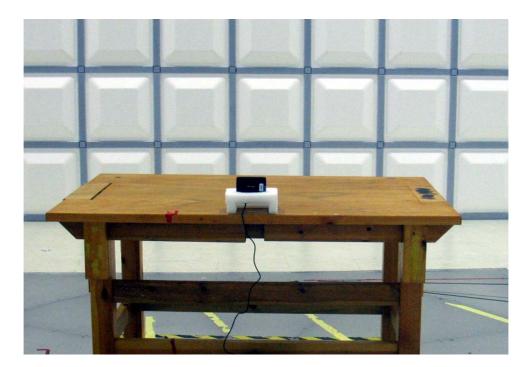
<Chamber 12 (3M)> 30MHz~1GHz: ±3.306 dB 1GHz~18GHz: ±2.62 dB 18GHz~26GHz: ±3.609 dB 26GHz~40GHz: ±2.702 dB



5.7 Appendix G: Photographs of EUT Configuration Test Set Up

The Front View of Highest Conducted Set-up For EUT

The Back View of Highest Conducted Set-up For EUT



The Front View of Highest Radiated Set-up For EUT

The Back View of Highest Radiated Set-up For EUT

-50-

5.8 Appendix H: Antenna Spec.

Please refer to the attached file.