Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage S Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Accreditation No.: SCS 0108 Certificate No: D1900V2-5d041_Aug21 # CALIBRATION CERTIFICATE Object D1900V2 - SN:5d041 Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: August 19, 2021 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------------|----------------------------------|-----------------------------------|------------------------------| | Power meter NRP | SN: 104778 | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | Power sensor NRP-Z91 | SN: 103244 | 09-Apr-21 (No. 217-03291) | Apr-22 | | Power sensor NRP-Z91 | SN: 103245 | 09-Apr-21 (No. 217-03292) | Apr-22 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 09-Apr-21 (No. 217-03343) | | | Type-N mismatch combination | SN: 310982 / 06327 | 09-Apr-21 (No. 217-03344) | Apr-22 | | Reference Probe EX3DV4 | SN: 7349 | 28-Dec-20 (No. EX3-7349_Dec20) | Apr-22 | | DAE4 | SN: 601 | 02-Nov-20 (No. DAE4-601_Nov20) | Dec-21 | | | 1 | 02-140V-20 (140. DAE4-601_140V20) | Nov-21 | | Secondary Standards | ID# | Chook Data (in harran) | war is 10 miles and 10 miles | | Power meter E4419B | SN: GB39512475 | Check Date (in house) | Scheduled Check | | Power sensor HP 8481A | SN: US37292783 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | RF generator R&S SMT-06 | | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Network Analyzer Agilent E8358A | SN: 100972 | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | Metwork Analyzer Agriefit E6356A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-21 | | | Name | Function | Ciematore | | Calibrated by: | Leif Klysner | Laboratory Technician | Signature | | 1 | | Laboratory recrinician | Sollie | | | | | A CASS | | Approved by: | Katja Pokovic | Technical Manager | | | | g
National Artifaction (1985) | | Villa | Issued: August 25, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D1900V2-5d041_Aug21 Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: **TSL** N/A tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z not applicable or not measured Calibration is Performed According to the Following Standards: a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** c) DASY System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 17-2 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | V52.10.4 | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | with Spacer | | Frequency | 1900 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | Nominal II | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.1 ± 6 % | 1.39 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | 1.00 HHO/H ± 0 % | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | | | SAR for nominal Head TSL parameters | | 10.1 W/kg | | parameters | normalized to 1W | 40.6 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | | | SAR for nominal Head TSL parameters | | 5.27 W/kg | | 3 - parameters | normalized to 1W | 21.1 W/kg ± 16.5 % (k=2) | # Appendix (Additional assessments outside the scope of SCS 0108) ### Antenna Parameters with Head TSL | Impedance, transformed to feed point | F1.0.0 + 0.0 + 5 | |--------------------------------------|------------------| | Return Loss | 51.8 Ω + 6.9 jΩ | | | - 23.1 dB | # General Antenna Parameters and Design | Electrical Delay (one direction) | 1.200 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | | |-----------------|-------| | | SPEAG | | | | Certificate No: D1900V2-5d041_Aug21 Page 4 of 6 # **DASY5 Validation Report for Head TSL** Date: 19.08.2021 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d041 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.39 S/m; ϵ_r = 40.1; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.43, 8.43, 8.43) @ 1900 MHz; Calibrated: 28.12.2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 02.11.2020 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 110.2 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 18.3 W/kg # SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.27 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to \hat{SAR} at M1 = 55.8% Maximum value of SAR (measured) = 15.4 W/kg # Impedance Measurement Plot for Head TSL Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage S Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Accreditation No.: SCS 0108 Certificate No: D2600V2-1008_Aug21 # **CALIBRATION CERTIFICATE** Object D2600V2 - SN:1008 Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: August 17, 2021 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |--|------------------------|---|--| | Power meter NRP | SN: 104778 | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | Power sensor NRP-Z91 | SN: 103244 | 09-Apr-21 (No. 217-03291) | Apr-22 | | Power sensor NRP-Z91 | SN: 103245 | 09-Apr-21 (No. 217-03292) | Apr-22 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 09-Apr-21 (No. 217-03343) | Apr-22 | | Type-N mismatch combination | SN: 310982 / 06327 | 09-Apr-21 (No. 217-03344) | Apr-22 | | Reference Probe EX3DV4 | SN: 7349 | 28-Dec-20 (No. EX3-7349_Dec20) | Dec-21 | | DAE4 | SN: 601 | 02-Nov-20 (No. DAE4-601_Nov20) | Nov-21 | | Secondary Standards Power meter E4419B | ID #
SN: GB39512475 | Check Date (in house) 30-Oct-14 (in house check Oct-20) | Scheduled Check In house check: Oct-22 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-21 | | | Name | Function | Signature | | Calibrated by: | Leif Klysner | Laboratory Technician | Leif Ille | | A | | | | | Approved by: | Katja Pokovic | Technical Manager | 100 | Issued: August 25, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D2600V2-1008_Aug21 Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S C Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signature. The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL N/A tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2600V2-1008_Aug21 Page 2 of 6 # **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | VEO 40 4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | V52.10.4 | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | with Spacer | | Frequency | 2600 MHz ± 1 MHz | | ### **Head TSL parameters** The following parameters and calculations were applied. | N | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|----------------------| | Nominal Head TSL parameters | 22.0 °C | 39.0 | 1.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.4 ± 6 % | 2.04 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | 2.04 11110/111 ± 0 % | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 44014 | | SAR for nominal Head TSL parameters | | 14.9 W/kg | | | normalized to 1W | 58.0 W/kg ± 17.0 % (k=2) | | condition | | |--------------------|--------------------------| | 250 mW input power | 6.56 W/kg | | normalized to 1W | 25.8 W/kg ± 16.5 % (k=2) | | | 250 mW input power | Certificate No: D2600V2-1008_Aug21 Page 3 of 6 # Appendix (Additional assessments outside the scope of SCS 0108) ### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 49.20, 20:0 | |--------------------------------------|-----------------| | Return Loss | 49.2 Ω - 3.0 jΩ | | | - 30.0 dB | # General Antenna Parameters and Design | Electrical Delay (one direction) | 1.153 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| | | | Certificate No: D2600V2-1008_Aug21 Page 4 of 6 ## **DASY5 Validation Report for Head TSL** Date: 17.08.2021 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1008 Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; σ = 2.04 S/m; ϵ_r = 37.4; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(7.84, 7.84, 7.84) @ 2600 MHz; Calibrated: 28.12.2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 02.11.2020 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 119.8 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 29.9 W/kg SAR(1 g) = 14.9 W/kg; SAR(10 g) = 6.56 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 49.9% Maximum value of SAR (measured) = 24.4 W/kg # Impedance Measurement Plot for Head TSL Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service** Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 Client Sporton | | | | 5G-Veri30-1007_Nov21 | | |---------------------------------------|--|--|------------------------------|--| | CALIBRATION | CERTIFICA | ATE | | | | Object | 5G Verification Source 30 GHz - SN: 1007 | | | | | Calibration procedure(s) | QA CAL-45.v
Calibration pr | łz | | | | Calibration date: | November 15 | , 2021 | | | | The measurements and the unce | ertainties with confiden | o national standards, which realize the physical units ace probability are given on the following pages and a pratory facility: environment temperature (22 ± 3)°C a | are part of the certificate. | | | Calibration Equipment used (M& | TE critical for calibration | on) | | | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | | Reference Probe EUmmWV3 | SN: 9374 | 2020-12-30 (No. EUmmWV3-9374_Dec20) | Dec-21 | | | DAE4ip | SN: 1602 | 2021-06-25 (No. DAE4ip-1602_Jun21) | Jun-22 | | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | | | | | | | | 0.111 | Name | Function | Signature | | | Calibrated by: | Leif Klysner | Laboratory Technician | Seif Alex | | | Approved by: | Niels Kuster | Quality Manager | 1.185 | | | This calibration certificate shall no | ot be reproduced excep | ot in full without written approval of the laboratory. | Issued: November 24, 2021 | | Certificate No: 5G-Veri30-1007_Nov21 Page 1 of 7 Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary CW Continuous wave # Calibration is Performed According to the Following Standards - Internal procedure QA CAL-45-5Gsources - IEC TR 63170 ED1, "Measurement procedure for the evaluation of power density related to human exposure to radio frequency fields from wireless communication devices operating between 6 GHz and 100 GHz", January 2018 ### **Methods Applied and Interpretation of Parameters** - Coordinate System: z-axis in the waveguide horn boresight, x-axis is in the direction of the E-field, y-axis normal to the others in the field scanning plane parallel to the horn flare and horn flange. - Measurement Conditions: (1) 10 GHz: The radiated power is the forward power to the horn antenna minus ohmic and mismatch loss. During the measurements, the horn is directly connected to the cable and the antenna ohmic and mismatch losses are determined by farfield measurements. (2) 30, 45, 60 and 90 GHz: The verification sources are switched on for at least 30 minutes. Absorbers are used around the probe cub and at the ceiling to minimize reflections. - Horn Positioning: The waveguide horn is mounted vertically on the flange of the waveguide source to allow vertical positioning of the EUmmW probe during the scan. The plane is parallel to the phantom surface. Probe distance is verified using mechanical gauges positioned on the flare of the horn. - E- field distribution: E field is measured in two x-y-plane (10mm, 10mm + λ/4) with a vectorial E-field probe. The E-field value stated as calibration value represents the E-field-maxima and the averaged (1cm² and 4cm²) power density values at 10mm in front of the horn. - Field polarization: Above the open horn, linear polarization of the field is expected. This is verified graphically in the field representation. #### **Calibrated Quantity** Local peak E-field (V/m) and average of peak spatial components of the poynting vector (W/m²) averaged over the surface area of 1 cm² and 4cm² at the nominal operational frequency of the verification source. Both square and circular averaging results are listed. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: 5G-Veri30-1007_Nov21 Page 2 of 7 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | cDASY6 Module mmWave | V2.4 | |--------------------------------|----------------------|--------------| | Phantom | 5G Phantom | 90710.54/set | | Distance Horn Aperture - plane | 10 mm | | | XY Scan Resolution | dx, dy = 2.5 mm | | | Number of measured planes | 2 (10mm, 10mm + λ/4) | | | Frequency | 30 GHz ± 10 MHz | | ## Calibration Parameters, 30 GHz **Circular Averaging** | Distance Horn Aperture to Measured Plane | (| | Uncertainty
(k = 2) | Avg Power Density Avg (psPDn+, psPDtot+, psPDmod+) (W/m²) | | Uncertainty
(k = 2) | |--|------|-----|------------------------|---|-------------------|------------------------| | | | | | 1 cm ² | 4 cm ² | | | 10 mm | 31.0 | 133 | 1.27 dB | 41.3 | 35.9 | 1.28 dB | **Square Averaging** | Distance Horn Aperture to Measured Plane | Prad¹
(mW) | Max E-field
(V/m) | Uncertainty
(k = 2) | Avg (psPDn+, psl | er Density PDtot+, psPDmod+) /m²) | Uncertainty
(k = 2) | |--|---------------|----------------------|------------------------|-------------------|-----------------------------------|------------------------| | | | | | 1 cm ² | 4 cm ² | | | 10 mm | 31.0 | 133 | 1.27 dB | 41.3 | 35.8 | 1.28 dB | Certificate No: 5G-Veri30-1007_Nov21 derived from far-field data #### **DASY Report** # Measurement Report for 5G Verification Source 30 GHz, UID 0 -, Channel 30000 (30000.0MHz) #### **Device under Test Properties** | Name, Manufacturer | Dimensions [mm] | IMEI | DUTT | |-------------------------------|-----------------------|-----------|----------| | 5G Verification Source 30 GHz | 100.0 x 100.0 x 100.0 | SN: 1007 | DUT Type | | | N 100.0 X 100.0 | 311. 1007 | _ | #### **Exposure Conditions** | | Position, Test Distance [mm] | Band | Group, | Frequency [MHz],
Channel Number | Conversion Factor | |------|------------------------------|-----------------|--------|------------------------------------|-------------------| | 5G - | 5.55 mm | Validation band | CW | 30000.0,
30000 | 1.0 | #### **Hardware Setup** | Phantom | Medium | Probe, Calibration Date | DAE, Calibration Date | |-----------------------|--------|--|------------------------------| | mmWave Phantom - 1002 | Air | EUmmWV3 - SN9374_F1-78GHz,
2020-12-30 | DAE4ip Sn1602,
2021-06-25 | #### Scan Setup | Grid Extents [mm]
Grid Steps [lambda]
Sensor Surface [mm]
MAIA | 5G Scan
60.0 x 60.0
0.25 x 0.25
5.55
MAIA not used | Date
Avg. Area [cm²]
psPDn+ [W/m²]
psPDtot+ [W/m²] | 5G Scan
2021-11-15, 16:43
1.00
41.0 | |---|---|---|---| | | | psPDmod+ [W/m²]
E _{max} [V/m]
Power Drift [dB] | 41.4
41.5
133
-0.09 | **Measurement Results**