



Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL

tissue simulating liquid

ConvF N/A

sensitivity in TSL / NORM x,y,z not applicable or not measured

### Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.

#### Additional Documentation:

b) DASY System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.
- The absorbed power density (APD): The absorbed power density is evaluated according to Samaras T, Christ A, Kuster N, "Compliance assessment of the epithelial or absorbed power density above 6 GHz using SAR measurement systems", Bioelectromagnetics, 2021 (submitted). The additional evaluation uncertainty of 0.55 dB (rectangular distribution) is considered.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Page 2 of 6

### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY6                            | V16.0                            |
|------------------------------|----------------------------------|----------------------------------|
| Extrapolation                | Advanced Extrapolation           |                                  |
| Phantom                      | Modular Flat Phantom             |                                  |
| Distance Dipole Center - TSL | 5 mm                             | with Spacer                      |
| Zoom Scan Resolution         | dx, $dy = 3.4$ mm, $dz = 1.4$ mm | Graded Ratio = 1.4 (Z direction) |
| Frequency                    | 6500 MHz ± 1 MHz                 |                                  |

# **Head TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 34.5         | 6.07 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 33.6 ± 6 %   | 6.11 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

# SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                         |
|-------------------------------------------------------|--------------------|-------------------------|
| SAR measured                                          | 100 mW input power | 29.4 W/kg               |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 292 W/kg ± 24.7 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 5.42 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 53.8 W/kg ± 24.4 % (k=2) |

Certificate No: D6.5GHzV2-1003\_Sep21

## **Appendix**

#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 54.4 Ω - 1.9 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 26.8 dB       |

# **APD (Absorbed Power Density)**

| APD averaged over 1 cm <sup>2</sup> | Condition          |                                      |
|-------------------------------------|--------------------|--------------------------------------|
| APD measured                        | 100 mW input power | 292 W/m²                             |
| APD measured                        | normalized to 1W   | 2920 W/m <sup>2</sup> ± 29.2 % (k=2) |

| APD averaged over 4 cm <sup>2</sup> | condition          |                                      |
|-------------------------------------|--------------------|--------------------------------------|
| APD measured                        | 100 mW input power | 132 W/m <sup>2</sup>                 |
| APD measured                        | normalized to 1W   | 1320 W/m <sup>2</sup> ± 28.9 % (k=2) |

# **General Antenna Parameters and Design**

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

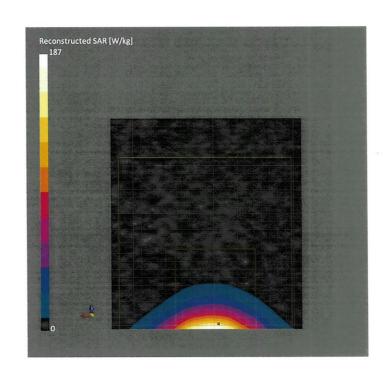
#### **Additional EUT Data**

| Manufactured by | SPEAG |
|-----------------|-------|

# **DASY6 Validation Report for Head TSL**

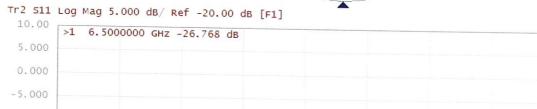
Measurement Report for D6.5GHz-1003, UID 0 -, Channel 6500 (6500.0MHz)

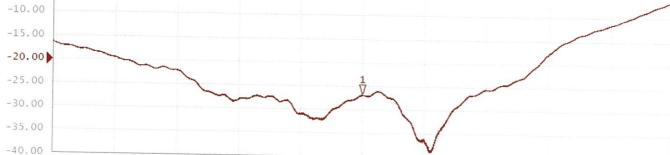
| Device under 7 | est Pro | perties |
|----------------|---------|---------|
|----------------|---------|---------|


| Name, Manufacturer                       |                                       | mensions | [mm]          | IMEI               | DUT Type<br>-        |                    |                     |
|------------------------------------------|---------------------------------------|----------|---------------|--------------------|----------------------|--------------------|---------------------|
| D6.5GHz                                  | D6.5GHz 16.0 x 6.0                    |          | 300.0         | SN: 1003           |                      |                    |                     |
| Exposure Cond<br>Phantom<br>Section, TSL | ditions<br>Position, Test<br>Distance | Band     | Group,<br>UID | Frequency<br>[MHz] | Conversion<br>Factor | TSL Cond.<br>[S/m] | TSL<br>Permittivity |
|                                          | [mm]                                  |          |               |                    |                      |                    |                     |
| Flat, HSL                                | 5.00                                  | Band     | CW,           | 6500               | 5.75                 | 6.11               | 33.6                |

| Н | laı | rd | W | ar | e | S | e | t | u | р |
|---|-----|----|---|----|---|---|---|---|---|---|
|   |     |    |   |    |   |   |   |   |   |   |

| Phantom                | TSL             | Probe, Calibration Date     | DAE, Calibration Date  |
|------------------------|-----------------|-----------------------------|------------------------|
| MFP V8.0 Center - 1182 | HBBL600-10000V6 | EX3DV4 - SN7405, 2020-12-30 | DAE4 Sn908, 2021-06-24 |


#### Scan Setup


| Scan Setup          |                             | Measurement Results |                  |
|---------------------|-----------------------------|---------------------|------------------|
|                     | Zoom Scan                   |                     | Zoom Scan        |
| Grid Extents [mm]   | 22.0 x 22.0 x 22.0          | Date                | 2021-09-24, 9:30 |
| Grid Steps [mm]     | $3.4 \times 3.4 \times 1.4$ | psSAR1g [W/Kg]      | 29.4             |
| Sensor Surface [mm] | 1.4                         | psSAR10g [W/Kg]     | 5.42             |
| Graded Grid         | Yes                         | Power Drift [dB]    | -0.02            |
| Grading Ratio       | 1.4                         | Power Scaling       | Disabled         |
| MAIA                | N/A                         | Scaling Factor [dB] |                  |
| Surface Detection   | VMS + 6p                    | TSL Correction      | No correction    |
| Scan Method         | Measured                    | M2/M1 [%]           | 55.6             |
|                     |                             | Dist 3dB Peak [mm]  | 4.6              |



# Impedance Measurement Plot for Head TSL

>1 511 Smith (R+jX) Scale 1.000 U [F1]
>1 6.5000000 GHz 54.414 Ω -1.8621 Ω 13.149 pF









S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

Sporton

Certificate No: 5G-Veri10-1020 Jan21

# **CALIBRATION CERTIFICATE** 5G Verification Source 10 GHz - SN: 1020 Object QA CAL-45.v3 Calibration procedure(s) Calibration procedure for sources in air above 6 GHz January 18, 2021 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Scheduled Calibration **Primary Standards** ID# Cal Date (Certificate No.) Reference Probe EummWV3 SN: 9374 30-Dec-20 (No. EUmmWV3-9374\_Dec20) Dec-21 DAE4ip SN: 1602 11-Aug-20 (No. DAE4ip-1602\_Aug20) Aug-21 Secondary Standards ID# Check Date (in house) Scheduled Check Name **Function** Calibrated by: Michael Weber Laboratory Technician Katja Pokovic Approved by: Technical Manager Issued: January 25, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

#### **Glossary**

CW

Continuous wave

## Calibration is Performed According to the Following Standards

- Internal procedure QA CAL-45-5Gsources
- IEC TR 63170 ED1, "Measurement procedure for the evaluation of power density related to human exposure to radio frequency fields from wireless communication devices operating between 6 GHz and 100 GHz", January 2018

#### **Methods Applied and Interpretation of Parameters**

- Coordinate System: z-axis in the waveguide horn boresight, x-axis is in the direction of the E-field, y-axis normal to the others in the field scanning plane parallel to the horn flare and horn flange.
- Measurement Conditions: (1) 10 GHz: The forward power to the horn antenna is measured prior and after the measurement with a power sensor. During the measurements, the horn is directly connected to the cable and the antenna ohmic and mismatch losses are determined by far-field measurements. (2) 30, 45, 60 and 90 GHz: The verification sources are switched on for at least 30 minutes. Absorbers are used around the probe cub and at the ceiling to minimize reflections.
- Horn Positioning: The waveguide horn is mounted vertically on the flange of the waveguide source to allow vertical positioning of the EUmmW probe during the scan. The plane is parallel to the phantom surface. Probe distance is verified using mechanical gauges positioned on the flare of the horn.
- E- field distribution: E field is measured in two x-y-plane (10mm, 10mm + λ/4) with a
  vectorial E-field probe. The E-field value stated as calibration value represents the E-fieldmaxima and the averaged (1cm² and 4cm²) power density values at 10mm in front of the
  horn.
- Field polarization: Above the open horn, linear polarization of the field is expected. This is verified graphically in the field representation.

#### **Calibrated Quantity**

 Local peak E-field (V/m) and average of peak spatial components of the poynting vector (W/m²) averaged over the surface area of 1 cm² and 4cm² at the nominal operational frequency of the verification source. Both square and circular averaging results are listed.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: 5G-Veri10-1020\_Jan21 Page 2 of 7

# **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                   | cDASY6 Module mmWave | V2.2 |
|--------------------------------|----------------------|------|
| Phantom                        | 5G Phantom           |      |
| Distance Horn Aperture - plane | 10 mm                |      |
| XY Scan Resolution             | dx, dy = 7.5 mm      | -    |
| Number of measured planes      | 2 (10mm, 10mm + λ/4) |      |
| Frequency                      | 10 GHz ± 10 MHz      |      |

# **Calibration Parameters, 10 GHz**

# **Circular Averaging**

| Distance Horn Aperture | Prad¹ | Max E-field | Uncertainty | Avg Powe          | er Density        | Uncertainty |
|------------------------|-------|-------------|-------------|-------------------|-------------------|-------------|
| to Measured Plane      | (mW)  | (V/m)       | (k = 2)     | Avg (psPDn+, psi  | PDtot+, psPDmod+) | (k = 2)     |
|                        |       |             | ·           | (W.               | /m²)              |             |
|                        |       |             |             | 1 cm <sup>2</sup> | 4 cm <sup>2</sup> |             |
| 10 mm                  | 74.0  | 134         | 1.27 dB     | 45.1              | 42.2              | 1.28 dB     |

# **Square Averaging**

| Distance Horn Aperture | Prad <sup>1</sup> | Max E-field | Uncertainty | Avg Powe          | er Density               | Uncertainty |
|------------------------|-------------------|-------------|-------------|-------------------|--------------------------|-------------|
| to Measured Plane      | (mW)              | (V/m)       | (k = 2)     | Avg (psPDn+, psF  | PDtot+, psPDmod+)        | (k = 2)     |
|                        |                   |             |             | (W                | /m²)                     |             |
|                        |                   |             |             | 1 cm <sup>2</sup> | <b>4</b> cm <sup>2</sup> |             |
| 10 mm                  | 74.0              | 134         | 1.27 dB     | 45.1              | 42.1                     | 1.28 dB     |

Certificate No: 5G-Veri10-1020\_Jan21

<sup>&</sup>lt;sup>1</sup> Assessed ohmic and mismatch loss: 0.45 dB

#### Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

# **Device under Test Properties**

Name, Manufacturer 5G Verification Source 10 GHz Dimensions [mm] 100.0 x 100.0 x 172.0 IMEI SN: 1020 **DUT Type** 

#### **Exposure Conditions**

**Phantom Section** 

Position, Test Distance

Band

Group,

Frequency [MHz], Channel Number

,

5G - 10

[mm] 10.0 mm

Validation band

CW

5G Scan

10.0

120.0 x 120.0

MAIA not used

0.25 x 0.25

10000.0, 10000

1.0

**Conversion Factor** 

#### **Hardware Setup**

**Phantom** 

mmWave Phantom - 1002

Medium

Air

**Probe, Calibration Date** 

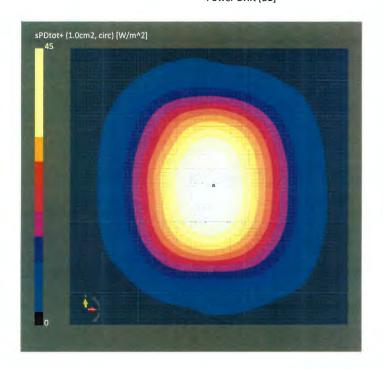
EUmmWV3 - SN9374\_F1-78GHz,

2020-12-30

DAE, Calibration Date DAE4ip Sn1602,

2020-08-11

#### **Scan Setup**


Grid Extents [mm] Grid Steps [lambda] Sensor Surface [mm]

MAIA

#### **Measurement Results**

| Date                         |
|------------------------------|
| Avg. Area [cm <sup>2</sup> ] |
| psPDn+ [W/m <sup>2</sup> ]   |
| psPDtot+ [W/m <sup>2</sup> ] |
| psPDmod+ [W/m <sup>2</sup> ] |
| E <sub>max</sub> [V/m]       |
| Power Drift [dB]             |

**5G Scan**2021-01-18, 14:59
1.00
44.9
45.0
45.3
134
0.06



#### Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

#### **Device under Test Properties**

Name, Manufacturer 5G Verification Source 10 GHz Dimensions [mm] 100.0 x 100.0 x 172.0 IMEI SN: 1020 **DUT Type** 

#### **Exposure Conditions**

**Phantom Section** 

**Position, Test Distance** 

and

Group,

Frequency [MHz], Channel Number

[mm]

5G -

10.0 mm

Validation band

CW

5G Scan

10.0

120.0 x 120.0

MAIA not used

0.25 x 0.25

10000.0, 10000 1.0

**Conversion Factor** 

#### **Hardware Setup**

**Phantom** 

mmWave Phantom - 1002

Medium

Air

Probe, Calibration Date

EUmmWV3 - SN9374\_F1-78GHz,

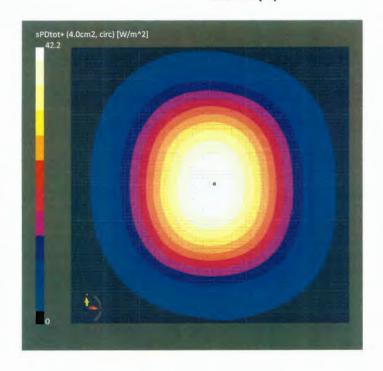
2020-12-30

DAE, Calibration Date DAE4ip Sn1602,

2020-08-11

#### **Scan Setup**

Grid Extents [mm] Grid Steps [lambda] Sensor Surface [mm]


MAIA

#### **Measurement Results**

| Data                         |
|------------------------------|
| Date                         |
| Avg. Area [cm <sup>2</sup> ] |
| psPDn+ [W/m²]                |
| psPDtot+ [W/m²]              |
| psPDmod+ [W/m <sup>2</sup> ] |
| E <sub>max</sub> [V/m]       |
| Power Drift [dB]             |

2021-01-18, 14:59 4.00 42.0 42.2 42.3 . 134 0.06

5G Scan



#### Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

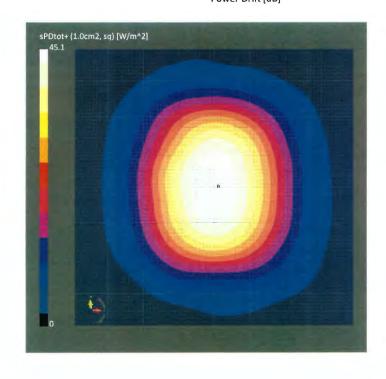
#### **Device under Test Properties**

Name, Manufacturer Dimensions [mm] IMEI **DUT Type** 5G Verification Source 10 GHz 100.0 x 100.0 x 172.0 SN: 1020

#### **Exposure Conditions**

**Phantom Section Position, Test Distance** Group, Frequency [MHz], **Conversion Factor** [mm] **Channel Number** 1.0

10000.0, 5G -10.0 mm Validation band 10000


#### **Hardware Setup**

**Phantom** Medium **Probe, Calibration Date DAE, Calibration Date** EUmmWV3 - SN9374\_F1-78GHz, mmWave Phantom - 1002 DAE4ip Sn1602, Air 2020-12-30 2020-08-11

#### **Scan Setup**

5G Scan 5G Scan 2021-01-18, 14:59 120.0 x 120.0 Grid Extents [mm] Date **Grid Steps [lambda]** 0.25 x 0.25 Avg. Area [cm<sup>2</sup>] 1.00 Sensor Surface [mm] 10.0 psPDn+ [W/m²] 45.0 MAIA MAIA not used psPDtot+ [W/m2] 45.1 psPDmod+ [W/m²] 45.3 E<sub>max</sub> [V/m] 134 Power Drift [dB] 0.06

**Measurement Results** 



#### Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

Band

#### **Device under Test Properties**

Name, Manufacturer 5G Verification Source 10 GHz Dimensions [mm] 100.0 x 100.0 x 172.0 IMEI SN: 1020 **DUT Type** 

**Exposure Conditions** 

**Phantom Section** 

**Position, Test Distance** 

Frequency [MHz],

**Channel Number** 

**Conversion Factor** 

[mm] 5G -

10.0 mm

Validation band

Group,

10000.0,

10000

1.0

**Hardware Setup** 

**Phantom** 

mmWave Phantom - 1002

Medium

**Probe, Calibration Date** 

EUmmWV3 - SN9374\_F1-78GHz,

2020-12-30

**DAE, Calibration Date** 

DAE4ip Sn1602, 2020-08-11

**Scan Setup** 

Grid Extents [mm] Grid Steps [lambda] Sensor Surface [mm]

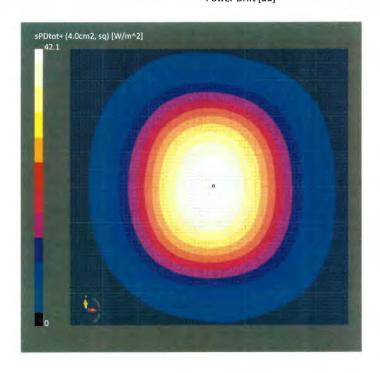
MAIA

5G Scan

120.0 x 120.0 0.25 x 0.25 10.0

MAIA not used

Measurement Results


Date Avg. Area [cm<sup>2</sup>] psPDn+ [W/m<sup>2</sup>] psPDtot+ [W/m<sup>2</sup>]

psPDmod+ [W/m²] E<sub>max</sub> [V/m]

Power Drift [dB]

5G Scan 2021-01-18, 14:59 4.00 42.0

> 42.1 42.3 134 0.06



# **Calibration Laboratory of**

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

Sporton

Accreditation No.: SCS 0108

Certificate No: EUmmWV4-9441\_Nov21

# **CALIBRATION CERTIFICATE**

Object

EUmmWV4 - SN:9441

Calibration procedure(s)

QA CAL-02.v9, QA CAL-25.v7, QA CAL-42.v2

Calibration procedure for E-field probes optimized for close near field

evaluations in air

Calibration date:

November 24, 2021

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards          | ID               | Cal Date (Certificate No.)              | Scheduled Calibration  |
|----------------------------|------------------|-----------------------------------------|------------------------|
| Power meter NRP            | SN: 104778       | 09-Apr-21 (No. 217-03291/0292)          | Apr-22                 |
| Power sensor NRP-Z91       | SN: 103244       | 09-Apr-21 (No. 217-03291)               | Apr-22                 |
| Power sensor NRP-Z91       | SN: 103245       | 09-Apr-21 (No. 217-03292)               | Apr-22                 |
| Reference 20 dB Attenuator | SN: CC2552 (20x) | 09-Apr-21 (No. 217-03343)               | Apr-22                 |
| Reference Probe ER3DV6     | SN: 2328         | 08-Oct-21 (No. ER3-2328_Oct21)          | Oct-22                 |
| DAE4                       | SN: 789          | 23-Dec-20 (No. DAE4-789 Dec20)          | Dec-21                 |
| :8                         |                  | (************************************** | 20021                  |
| Secondary Standards        | ID               | Check Date (in house)                   | Scheduled Check        |
| Power meter E4419B         | SN: GB41293874   | 06-Apr-16 (in house check Jun-20)       | In house check: Jun-22 |
| Power sensor E4412A        | SN: MY41498087   | 06-Apr-16 (in house check Jun-20)       | In house check: Jun-22 |
| Power sensor E4412A        | SN: 000110210    | 06-Apr-16 (in house check Jun-20)       | In house check: Jun-22 |
| RF generator HP 8648C      | SN: US3642U01700 | 04-Aug-99 (in house check Jun-20)       | In house check: Jun-22 |
| Network Analyzer E8358A    | SN: US41080477   | 31-Mar-14 (in house check Oct-20)       | In house check: Oct-22 |

Calibrated by:

Name Leif Klysner Function

Laboratory Technician

Signature

Approved by:

Niels Kuster

Quality Manager

Issued: November 26, 2021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EUmmWV4-9441\_Nov21

Page 1 of 19





Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

NORMx,y,z

sensitivity in free space

DCP CF

diode compression point

crest factor (1/duty\_cycle) of the RF signal

A, B, C, D

modulation dependent linearization parameters

Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e.,  $\vartheta = 0$  is normal to probe axis

Connector Angle Sensor Angles

information used in DASY system to align probe sensor X to the robot coordinate system sensor deviation from the probe axis, used to calculate the field orientation and polarization

is the wave propagation direction

# Calibration is Performed According to the Following Standards:

a) IEEE Std 1309-2005, "IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", December 2005

# Methods Applied and Interpretation of Parameters:

- *NORMx,y,z:* Assessed for E-field polarization  $\vartheta$  = 0 for XY sensors and  $\vartheta$  = 90 for Z sensor (f  $\leq$  900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). For frequencies > 6 GHz, the far field in front of waveguide horn antennas is measured for a set of frequencies in various waveguide bands up to 110 GHz.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- The frequency sensor model parameters are determined prior to calibration based on a frequency sweep (sensor model involving resistors R, Rp, inductance L and capacitors C, Cp).
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- Sensor Offset: The sensor offset corresponds to the mechanical from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).
- Equivalent Sensor Angle: The two probe sensors are mounted in the same plane at different angles. The angles are assessed using the information gained by determining the NORMx (no uncertainty required).
- Spherical isotropy (3D deviation from isotropy): in a locally homogeneous field realized using an open waveguide / horn setup.

# DASY - Parameters of Probe: EUmmWV4 - SN:9441

**Basic Calibration Parameters** 

|                                     | Sensor X | Sensor Y | Unc (k=2) |
|-------------------------------------|----------|----------|-----------|
| Norm ( $\mu$ V/(V/m) <sup>2</sup> ) | 0.02280  | 0.02704  | ± 10.1 %  |
| DCP (mV) <sup>B</sup>               | 105.0    | 105.0    | 2 10.1 70 |
| Equivalent Sensor Angle             | -60.0    | 33.9     |           |

Calibration results for Frequency Response (750 MHz - 110 GHz)

| Frequency | larget E-Field | requency Response (750 Deviation Sensor X | Deviation Sensor Y | Unc (k=2)              |
|-----------|----------------|-------------------------------------------|--------------------|------------------------|
| GHz       | V/m            | dB                                        | dB                 | dB                     |
| 0.75      | 77.2           | -0.08                                     | -0.04              | ± 0.43 dB              |
| 1.8       | 140.4          | 0.07                                      | 0.10               | ± 0.43 dB              |
| 2         | 133.0          | 0.06                                      | 0.08               | ± 0.43 dB              |
| 2.2       | 124.8          | 0.07                                      | 0.06               | ± 0.43 dB              |
| 2.5       | 123.0          | 0.00                                      | -0.04              | ± 0.43 dB              |
| 3.5       | 256.2          | 0.24                                      | 0.02               | ± 0.43 dB              |
| 3.7       | 249.8          | 0.31                                      | 0.05               | ± 0.43 dB              |
| 6.6       | 41.8           |                                           |                    |                        |
| 8         |                | 0.24                                      | 0.40               | ± 0.98 dB              |
| 10        | 48.4           | -0.11                                     | -0.15              | ± 0.98 dB              |
| 15        | 54.4           | 0.01                                      | 0.01               | ± 0.98 dB              |
| 18        | 71.5           | -0.27                                     | -0.48              | ± 0.98 dB              |
| 10        | 85.3           | -0.22                                     | 0.09               | ± 0.98 dB              |
| 26.6      | 96.9           | -0.08                                     | -0.08              | 1 0 00 ID              |
| 30        | 92.6           | 0.09                                      | 0.07               | ± 0.98 dB              |
| 35        | 93.7           | -0.11                                     | -0.01              | ± 0.98 dB              |
| 40        | 91.5           | -0.29                                     | -0.01              | ± 0.98 dB              |
|           |                | 0.20                                      | -0.25              | ± 0.98 dB              |
| 50        | 19.6           | 0.08                                      | 0.00               | ± 0.98 dB              |
| 55        | 22.4           | 0.63                                      | 0.52               | ± 0.98 dB              |
| 60        | 23.0           | -0.02                                     | -0.05              | ± 0.98 dB              |
| 65        | 27.4           | -0.22                                     | -0.15              | ± 0.98 dB              |
| 70        | 23.9           | -0.05                                     | -0.13              |                        |
| 75        | 20.0           | -0.07                                     | 0.05               | ± 0.98 dB<br>± 0.98 dB |
| 75        | 14.8           | 0.04                                      |                    |                        |
| 80        | 22.5           | -0.21                                     | -0.01              | ± 0.98 dB              |
| 85        | 22.8           | 0.22                                      | 0.25               | ± 0.98 dB              |
| 90        | 23.8           | -0.02                                     | -0.05              | ± 0.98 dB              |
| 92        | 23.9           | 0.06                                      | 0.07               | ± 0.98 dB              |
| 95        | 20.5           | -0.17                                     | -0.26              | ± 0.98 dB              |
| 97        | 24.4           | -0.25                                     | -0.22              | ± 0.98 dB              |
| 100       |                | -0.08                                     | -0.15              | ± 0.98 dB              |
| 105       | 22.6           | 0.06                                      | -0.03              | ± 0.98 dB              |
| 110       | 22.7           | 0.05                                      | 0.12               | ± 0.98 dB              |
| 110       | 19.7           | 0.04                                      | 0.13               | ± 0.98 dB              |

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: EUmmWV4-9441\_Nov21

<sup>&</sup>lt;sup>B</sup> Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

# DASY - Parameters of Probe: EUmmWV4 - SN:9441

Calibration Results for Modulation Response

| UID                                     | Communication System Name      |     | Α     | В     | С     | D     | \\D   |            |                          |
|-----------------------------------------|--------------------------------|-----|-------|-------|-------|-------|-------|------------|--------------------------|
|                                         | ,                              |     | dB    | dB√μV |       | dB    | VR    | Max        | Max                      |
|                                         |                                |     | u u u | чь√μν |       | uв    | mV    | dev.       | UncE                     |
| 0                                       | CW                             | X   | 0.00  | 0.00  | 1.00  | 0.00  | 440.7 |            | (k=2)                    |
|                                         |                                | Y   |       |       |       | 0.00  | 146.7 | ± 3.8 %    | ± 4.7 %                  |
| 10352-                                  | Pulse Waveform (200Hz, 10%)    |     | 0.00  | 0.00  | 1.00  |       | 78.7  |            |                          |
| AAA                                     | 1 dise waveloitii (200Hz, 10%) | X   | 1.58  | 60.00 | 13.98 | 10.00 | 6.0   | ± 4.7 %    | ± 9.6 %                  |
| 10353-                                  | D. I W                         | Y   | 1.72  | 60.00 | 15.16 |       | 6.0   |            | 10000 190000 00000 10000 |
| AAA                                     | Pulse Waveform (200Hz, 20%)    | X   | 1.08  | 60.00 | 12.82 | 6.99  | 12.0  | ± 1.0 %    | ± 9.6 %                  |
| 100000000000000000000000000000000000000 | D 1 144 6 1000                 | Y   | 2.00  | 64.00 | 15.00 | 1     | 12.0  |            |                          |
| 10354-                                  | Pulse Waveform (200Hz, 40%)    | X   | 0.64  | 60.00 | 11.55 | 3.98  | 23.0  | ± 1.3 %    | ± 9.6 %                  |
| AAA                                     |                                | Y   | 0.74  | 60.00 | 12.85 | 1     | 23.0  | 1 /        | - 0.0 70                 |
| 10355-                                  | Pulse Waveform (200Hz, 60%)    | X   | 0.38  | 60.00 | 10.72 | 2.22  | 27.0  | ± 6.8 %    | ± 9.6 %                  |
| AAA                                     |                                | Y   | 0.55  | 60.00 | 11.63 |       | 27.0  | 1 = 0.0 /0 | 2 0.0 70                 |
| 10387-                                  | QPSK Waveform, 1 MHz           | X   | 0.99  | 60.00 | 11.34 | 1.00  | 22.0  | ± 1.7 %    | ± 9.6 %                  |
| AAA                                     |                                | Υ   | 1.18  | 60.00 | 11.19 | 1     | 22.0  | /          | 2 0.0 /0                 |
| 10388-                                  | QPSK Waveform, 10 MHz          | X   | 1.23  | 60.00 | 11.63 | 0.00  | 22.0  | ± 0.8 %    | ± 9.6 %                  |
| AAA                                     |                                | Υ   | 1.50  | 60.00 | 11.38 |       | 22.0  | - 0.0 /0   | ± 0.0 /0                 |
| 10396-                                  | 64-QAM Waveform, 100 kHz       | X   | 2.08  | 61.71 | 14.41 | 3.01  | 17.0  | ± 0.7 %    | ± 9.6 %                  |
| AAA                                     |                                | Υ   | 1.97  | 60.00 | 13.80 |       | 17.0  | 2 0.7 70   | ± 3.0 /0                 |
| 10399-                                  | 64-QAM Waveform, 40 MHz        | X   | 2.08  | 60.00 | 12.19 | 0.00  | 19.0  | ± 0.9 %    | ± 9.6 %                  |
| AAA                                     |                                | Υ   | 2.31  | 60.00 | 12.04 | 0.00  | 19.0  | _ ± 0.9 /6 | 1 9.0 %                  |
| 10414-                                  | WLAN CCDF, 64-QAM, 40MHz       | X   | 3.14  | 60.00 | 12.65 | 0.00  |       | 1070/      | . 0.00/                  |
| AAA                                     | 1                              | Ŷ   | 3.47  | 60.00 | 12.48 | 0.00  | 12.0  | ± 0.7 %    | ± 9.6 %                  |
|                                         |                                | 1 ' | 5.47  | 00.00 | 12.40 |       | 12.0  |            |                          |

Note: For details on all calibrated UID parameters see Appendix

Calibration Results for Linearity Response

| Frequency<br>GHz | Target E-Field<br>V/m | Deviation Sensor X dB | Deviation Sensor Y dB | Unc (k=2)<br>dB |
|------------------|-----------------------|-----------------------|-----------------------|-----------------|
| 0.9              | 50.0                  | -0.14                 | 0.15                  | ± 0.2 dB        |
| 0.9              | 100.0                 | -0.02                 | 0.13                  | ± 0.2 dB        |
| 0.9              | 500.0                 | 0.04                  | 0.00                  | ± 0.2 dB        |
| 0.9              | 1000.0                | 0.07                  | 0.02                  | ± 0.2 dB        |
| 0.9              | 1500.0                | 0.03                  | 0.02                  | ± 0.2 dB        |
| 0.9              | 2000.0                | 0.00                  | 0.00                  | ± 0.2 dB        |

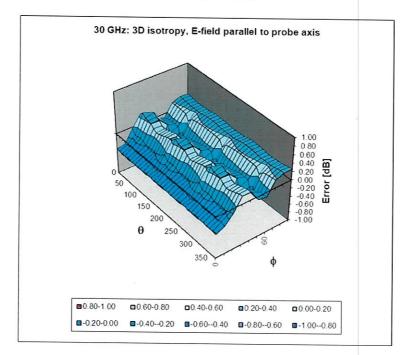
Sensor Frequency Model Parameters (750 MHz - 55 GHz)

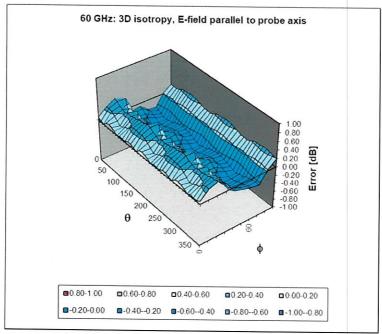
|                     | Sensor X | Sensor Y |
|---------------------|----------|----------|
| R (Ω)               | 82.62    | 79.18    |
| $R_{p}(\Omega)$     | 87.68    | 90.73    |
| L (nH)              | 0.10484  | 0.10096  |
| C (pF)              | 0.3505   | 0.3249   |
| C <sub>p</sub> (pF) | 0.0869   | 0.0757   |

Sensor Frequency Model Parameters (55 GHz - 110 GHz)

| 110 0112 |                                                 |  |
|----------|-------------------------------------------------|--|
| Sensor X | Sensor Y                                        |  |
| 33.34    | 38.40                                           |  |
| 95.40    | 93.57                                           |  |
| 0.03148  | 0.02936                                         |  |
| 0.2089   | 0.2795                                          |  |
| 0.1347   | 0.1343                                          |  |
|          | Sensor X<br>33.34<br>95.40<br>0.03148<br>0.2089 |  |

# DASY - Parameters of Probe: EUmmWV4 - SN:9441


# **Sensor Model Parameters**


|   | C1<br>fF | C2<br>fF | α<br>V <sup>-1</sup> | T1<br>ms.V <sup>-2</sup> | T2<br>ms.V <sup>-1</sup> | T3<br>ms | T4<br>V-2 | T5<br>V-1 | T6   |
|---|----------|----------|----------------------|--------------------------|--------------------------|----------|-----------|-----------|------|
| X | 34.1     | 246.66   | 33.46                | 0.85                     | 2.83                     | 5.01     | 0.00      | 0.00      | 1.04 |
| Υ | 32.8     | 236.50   | 33.29                | 0.00                     | 3.43                     |          |           | 0.90      | 1.01 |
|   |          | 200.00   | 00.23                | 0.00                     | 3.43                     | 5.03     | 0.00      | 1.24      | 1.01 |

# **Other Probe Parameters**

| Sensor Arrangement                      | Rectangular |
|-----------------------------------------|-------------|
| Connector Angle (°)                     | -138.6      |
| Mechanical Surface Detection Mode       | enabled     |
| Optical Surface Detection Mode          | disabled    |
| Probe Overall Length                    | 320 mm      |
| Probe Body Diameter                     | 8 mm        |
| Tip Length                              | 23 mm       |
| Tip Diameter                            | 8.0 mm      |
| Probe Tip to Sensor X Calibration Point | 1.5 mm      |
| Probe Tip to Sensor Y Calibration Point | 1.5 mm      |

# Deviation from Isotropy in Air f = 30, 60 GHz





Probe isotropy for E<sub>tot</sub>: probe rotated  $\phi$  = 0° to 360°, tilted from field propagation direction  $\overline{k}$  Parallel to the field propagation ( $\psi$  =0° - 90°) at 30 GHz: deviation within ± 0.36 dB Parallel to the field propagation ( $\psi$  =0° - 90°) at 60 GHz: deviation within ± 0.37 dB

**Appendix: Modulation Calibration Parameters** 

| UID   | Rev | Communication System Name                           | Group        | PAR<br>(dB) | Unc <sup>E</sup><br>(k=2) |
|-------|-----|-----------------------------------------------------|--------------|-------------|---------------------------|
| 0     | -   | CW                                                  | CW           | 0.00        | ± 4.7 %                   |
| 10010 | CAA | SAR Validation (Square, 100ms, 10ms)                | Test         | 10.00       | ± 9.6 %                   |
| 10011 | CAB | UMTS-FDD (WCDMA)                                    | WCDMA        | 2.91        | ± 9.6 %                   |
| 10012 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)            | WLAN         | 1.87        | ± 9.6 %                   |
| 10013 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps)       | WLAN         | 9.46        | ± 9.6 %                   |
| 10021 | DAC | GSM-FDD (TDMA, GMSK)                                | GSM          | 9.39        | ± 9.6 %                   |
| 10023 | DAC | GPRS-FDD (TDMA, GMSK, TN 0)                         | GSM          | 9.57        | ± 9.6 %                   |
| 10024 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-1)                       | GSM          | 6.56        | ± 9.6 %                   |
| 10025 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0)                         | GSM          | 12.62       | ± 9.6 %                   |
| 10026 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1)                       | GSM          | 9.55        | ± 9.6 %                   |
| 10027 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-1-2)                     | GSM          | 4.80        | ± 9.6 %                   |
| 10028 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)                   | GSM          | 3.55        | ± 9.6 %                   |
| 10029 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1-2)                     | GSM          | 7.78        | ± 9.6 %                   |
| 10030 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH1)                 | Bluetooth    | 5.30        | ± 9.6 %                   |
| 10031 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH3)                 | Bluetooth    | 1.87        | ± 9.6 %                   |
| 10032 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH5)                 | Bluetooth    | 1.16        | ± 9.6 %                   |
| 10033 | CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)           | Bluetooth    | 7.74        | ± 9.6 %                   |
| 10034 | CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)           | Bluetooth    | 4.53        | ± 9.6 %                   |
| 10035 | CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)           | Bluetooth    | 3.83        | ± 9.6 %                   |
| 10036 | CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH1)               | Bluetooth    | 8.01        | ± 9.6 %                   |
| 10037 | CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH3)               | Bluetooth    | 4.77        | ± 9.6 %                   |
| 10038 | CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH5)               | Bluetooth    | 4.10        | ± 9.6 %                   |
| 10039 | CAB | CDMA2000 (1xRTT, RC1)                               | CDMA2000     | 4.10        | ± 9.6 %                   |
| 10042 | CAB | IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate) | AMPS         | 7.78        | ± 9.6 %                   |
| 10044 | CAA | IS-91/EIA/TIA-553 FDD (FDMA, FM)                    | AMPS         | 0.00        | ± 9.6 %                   |
| 10048 | CAA | DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)           | DECT         | 13.80       | ± 9.6 %                   |
| 10049 | CAA | DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)         | DECT         | 10.79       | ± 9.6 %                   |
| 10056 | CAA | UMTS-TDD (TD-SCDMA, 1.28 Mcps)                      | TD-SCDMA     |             | The same services of      |
| 10058 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)                   | GSM          | 6.52        | ± 9.6 %                   |
| 10059 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)            | WLAN         | 2.12        | ± 9.6 %                   |
| 10060 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)          | WLAN         | 200 200     | ± 9.6 %                   |
| 10061 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)           | WLAN         | 2.83        | ± 9.6 %                   |
| 10062 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)            | WLAN         | 3.60        | ± 9.6 %                   |
| 10063 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)            | WLAN         | 8.68        | ± 9.6 %                   |
| 10064 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)           | WLAN         | 8.63        | ± 9.6 %                   |
| 10065 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)           | WLAN         | 9.09        | ± 9.6 %                   |
| 10066 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)           | WLAN         | 9.00        | ± 9.6 %                   |
| 10067 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)           |              | 9.38        | ± 9.6 %                   |
| 10068 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)           | WLAN<br>WLAN | 10.12       | ± 9.6 %                   |
| 10069 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)           |              | 10.24       | ± 9.6 %                   |
| 10071 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)       | WLAN         | 10.56       | ± 9.6 %                   |
| 10072 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)      | WLAN         | 9.83        | ± 9.6 %                   |
| 10073 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)      | WLAN         | 9.62        | ± 9.6 %                   |
| 10074 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)      | WLAN         | 9.94        | ± 9.6 %                   |
| 10075 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)      | WLAN         | 10.30       | ± 9.6 %                   |
| 10076 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)      | WLAN         | 10.77       | ± 9.6 %                   |
| 10077 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)      | WLAN         | 10.94       | ± 9.6 %                   |
| 10081 | CAB | CDMA2000 (1xRTT, RC3)                               | WLAN         | 11.00       | ± 9.6 %                   |
| 10082 | CAB | IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate) | CDMA2000     | 3.97        | ± 9.6 %                   |
| 10090 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-4)                       | AMPS         | 4.77        | ± 9.6 %                   |
| 10097 | CAB | UMTS-FDD (HSDPA)                                    | GSM          | 6.56        | ± 9.6 %                   |
| 10097 | CAB | UMTS-FDD (HSUPA, Subtest 2)                         | WCDMA        | 3.98        | ± 9.6 %                   |
| 10099 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-4)                       | WCDMA        | 3.98        | ± 9.6 %                   |
| 10099 | DAC | 1001-1 00 (1014, 073K, 114 0-4)                     | GSM          | 9.55        | ± 9.6 %                   |