

Report No.: FR1N0803A

FCC RADIO TEST REPORT

FCC ID : PU5-TP00139A

Equipment : Notebook Computer

Brand Name : Lenovo **Model Name** : TP00139A

: Wistron Corporation Applicant

21F, No. 88, Sec. 1, Hsin Tai Wu Rd., Hsichih

Dist, New Taipei City 221, Taiwan

Manufacturer : Lenovo PC HK Limited.

23/F, Lincoln House, Taikoo Place, 979 King's

Road, Quarry Bay, Hong Kong, China

Standard : FCC Part 15 Subpart C §15.247

Equipment: Murata LBEE5QG2CX tested inside of Lenovo Notebook Computer.

The product was received on Jan. 06, 2022 and testing was performed from Jan. 14, 2022 to Feb. 17, 2022. We, Sporton International Inc. Wensan Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this variant report apply exclusively to the tested model / sample. Without written approval from Sporton International Inc. Wensan Laboratory, the test report shall not be reproduced except in full.

Approved by: Louis Wu

Louis Wu

Sporton International Inc. Wensan Laboratory

TEL: 0800-800005 Page Number : 1 of 17 FAX: 886-3-327-0855 Issue Date : Feb. 25, 2022 : 01

E-mail: Alex@sporton.com.tw Report Version

Table of Contents

His	tory o	of this test report	3			
Sur	nmar	y of Test Result	4			
1	General Description					
	1.1	Product Feature of Equipment Under Test	5			
	1.2	Product Specification of Equipment Under Test	5			
	1.3	Modification of EUT	6			
	1.4	Testing Location	6			
	1.5	Applicable Standards	6			
2	Test	Configuration of Equipment Under Test	7			
	2.1	Carrier Frequency Channel	7			
	2.2	Test Mode	8			
	2.3	Connection Diagram of Test System	8			
	2.4	Support Unit used in test configuration and system	9			
	2.5	EUT Operation Test Setup	9			
3	Test	Result	10			
	3.1	Output Power Measurement	10			
	3.2	Radiated Band Edges and Spurious Emission Measurement	11			
	3.3	Antenna Requirements	15			
4	List	of Measuring Equipment	16			
5	Unce	ertainty of Evaluation	17			
App	endi	x A. Conducted Test Results				
App	endi	x B. Radiated Spurious Emission				
Арр	endi	x C. Radiated Spurious Emission Plots				
Арр	endi	x D. Duty Cycle Plots				
App	endi	x E. Setup Photographs				

TEL: 0800-800005 FAX: 886-3-327-0855 E-mail: Alex@sporton.com.tw

Report Template No.: BU5-FR15CBT Version 2.4

Page Number Issue Date

: Feb. 25, 2022

Report Version

: 01

: 2 of 17

Report No.: FR1N0803A

History of this test report

Report No. : FR1N0803A

Report No.	Version	Description	Issue Date
FR1N0803A	01	Initial issue of report	Feb. 25, 2022

TEL: 0800-800005 Page Number : 3 of 17
FAX: 886-3-327-0855 Issue Date : Feb. 25, 2022

E-mail : Alex@sporton.com.tw Report Version : 01

Summary of Test Result

Report No.: FR1N0803A

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
-	15.247(a)(1)	Number of Channels	Not Required	-
-	15.247(a)(1)	Hopping Channel Separation	Not Required	-
-	15.247(a)(1)	Dwell Time of Each Channel	Not Required	-
-	15.247(a)(1)	20dB Bandwidth	Not Required	-
-	2.1049	99% Occupied Bandwidth	Not Required	-
3.1	15.247(b)(1)	Peak Output Power	Pass	-
-	15.247(d)	Conducted Band Edges	Not Required	-
-	15.247(d)	Conducted Spurious Emission	Not Required	-
3.2	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	Pass	19.09 dB under the limit at 17925.000 MHz
-	15.207	AC Conducted Emission	Not Required	-
3.3	15.203 & 15.247(b)	Antenna Requirement	Pass	-

Note:

- 1. Not required means after assessing, test items are not necessary to carry out.
- 2. This is a variant report by removing WWAN function. All the test cases were performed on original report which can be referred to Sporton Report Number FR1D1645-01A. Based on the original report, the test cases were verified.

Declaration of Conformity:

- The test results (PASS/FAIL) with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.
 It's means measurement values may risk exceeding the limit of regulation standards, if measurement uncertainty is include in test results.
- 2. The measurement uncertainty please refer to this report "Uncertainty of Evaluation".

Comments and Explanations:

The product specifications of the EUT presented in the report are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Sheng Kuo Report Producer: Tina Chuang

TEL: 0800-800005 Page Number : 4 of 17
FAX: 886-3-327-0855 Issue Date : Feb. 25, 2022

E-mail: Alex@sporton.com.tw Report Version : 01

General Description

1.1 Product Feature of Equipment Under Test

Product Feature					
Equipment	Notebook Computer				
Brand Name	Lenovo				
Model Name	TP00139A				
FCC ID	PU5-TP00139A				
Sample 1	EUT with INPAQ Antenna				
Sample 2	EUT with WNC Antenna				
	WLAN 11a/b/g/n HT20/HT40				
EUT supports Radios application	WLAN 11ac VHT20/VHT40/VHT80/VHT160				
	WLAN 11ax HE20/HE40/HE80/HE160				
	Bluetooth BR/EDR/LE				

Report No.: FR1N0803A

Remark:

- 1. The EUT's information above is declared by manufacturer.
- 2. Equipment: Murata LBEE5QG2CX tested inside of Lenovo Notebook Computer.

Antenna Information						
	Manufacturer	INPAQ				
	Antenna Type	PIFA Antenna	PIFA Antenna			
Antenna 1	Part number	025.901YK.0011	025.901YL.0011			
Antenna		Main Antenna:	Aux. Antenna :			
	Peak gain (dBi)	WLAN (2.4G): 2.48 dBi	Bluetooth: 2.45 dBi WLAN (2.4G): 2.45 dBi			
	Manufacturer	WNC				
	Antenna Type	PIFA Antenna	PIFA Antenna			
Antenna 2	Part number	025.901YK.0001	025.901YL.0001			
Antenna 2		Main Antenna:	Aux. Antenna :			
	Peak gain (dBi)	WLAN (2.4G): 2.62 dBi	Bluetooth: 2.54 dBi WLAN (2.4G): 2.54 dBi			

Remark: The EUT's information above is declared by manufacturer. Please refer to Comments and Explanations in report summary.

1.2 Product Specification of Equipment Under Test

Product Specification subjective to this standard				
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz			
Number of Channels	79			
Carrier Frequency of Each Channel	2402+n*1 MHz; n=0~78			
Maximum Output Power to Antenna	Bluetooth BR (1Mbps): 8.88 dBm / 0.0077 W Bluetooth BR (2Mbps): 7.98 dBm / 0.0063 W Bluetooth BR (3Mbps): 8.17 dBm / 0.0066 W			
Type of Modulation	Bluetooth BR (1Mbps) : GFSK Bluetooth EDR (2Mbps) : π /4-DQPSK Bluetooth EDR (3Mbps) : 8-DPSK			

TEL: 0800-800005 : 5 of 17 Page Number FAX: 886-3-327-0855 Issue Date : Feb. 25, 2022 : 01

Report Version E-mail: Alex@sporton.com.tw

1.3 Modification of EUT

No modifications made to the EUT during the testing.

1.4 Testing Location

Test Site	Sporton International Inc. Wensan Laboratory
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010
Test Site No.	Sporton Site No.
rest site No.	TH05-HY, 03CH20-HY

Report No.: FR1N0803A

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW3786

1.5 Applicable Standards

According to the specifications declared by the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v05r02
- ANSI C63.10-2013

Remark:

- 1. All the test items were validated and recorded in accordance with the standards without any modification during the testing.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.

TEL: 0800-800005 Page Number : 6 of 17
FAX: 886-3-327-0855 Issue Date : Feb. 25, 2022

E-mail : Alex@sporton.com.tw Report Version : 01

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
2400-2483.5 MHz	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

TEL: 0800-800005 FAX: 886-3-327-0855 E-mail: Alex@sporton.com.tw

Report Template No.: BU5-FR15CBT Version 2.4

Page Number : 7 of 17 Issue Date : Feb. 25, 2022

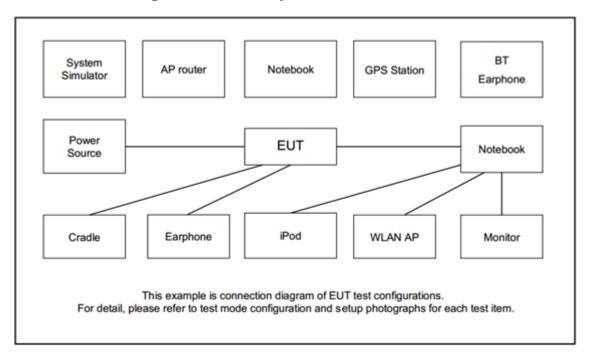
Report No.: FR1N0803A

Report Version : 01

2.2 Test Mode

a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: radiation emission (1 GHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower, and the worst mode of radiated spurious emissions is Bluetooth 3Mbps mode, and recorded in this report.

Report No.: FR1N0803A


The following summary table is showing all test modes to demonstrate in compliance with the standard.

Summary table of Test Cases					
Test Item	Data Rate / Modulation				
Radiated	Bluetooth EDR 3Mbps 8-DPSK				
Test Cases	Mode 1: CH78_2480 MHz				

Remark:

- For Radiated Test Cases, the worst mode data rate 3Mbps was reported only since the highest RF output power in the preliminary tests. The conducted spurious emissions and conducted band edge measurement for other data rates were not worse than 3Mbps, and no other significantly frequencies found in conducted spurious emission.
- 2. For Radiated Test Cases, the tests were performed with Sample 2

2.3 Connection Diagram of Test System

 TEL: 0800-800005
 Page Number
 : 8 of 17

 FAX: 886-3-327-0855
 Issue Date
 : Feb. 25, 2022

 E-mail: Alex@sporton.com.tw
 Report Version
 : 01

E-mail : Alex@sporton.com.tw Report Version
Report Template No.: BU5-FR15CBT Version 2.4

2.4 Support Unit used in test configuration and system

Iten	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	iPod Earphone	Apple	N/A	Verification	Unshielded, 1.0 m	N/A

Report No.: FR1N0803A

2.5 EUT Operation Test Setup

The RF test items, utility "QRCT v4.0.00195.0" was installed in EUT which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

TEL: 0800-800005 Page Number : 9 of 17
FAX: 886-3-327-0855 Issue Date : Feb. 25, 2022

E-mail : Alex@sporton.com.tw Report Version : 01
Report Template No.: BU5-FR15CBT Version 2.4

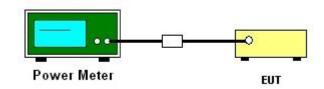
3 Test Result

3.1 Output Power Measurement

3.1.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

Report No.: FR1N0803A


3.1.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.1.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 1. The RF output of EUT is connected to the power meter by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 2. Set the maximum power setting and enable the EUT to transmit continuously.
- 3. Measure the conducted output power with cable loss and record the results in the test report.
- 4. Measure and record the results in the test report.

3.1.4 Test Setup

3.1.5 Test Result of Peak Output Power

Please refer to Appendix A.

3.1.6 Test Result of Average Output Power (Reporting Only)

Please refer to Appendix A.

TEL: 0800-800005 Page Number : 10 of 17
FAX: 886-3-327-0855 Issue Date : Feb. 25, 2022

E-mail : Alex@sporton.com.tw Report Version : 01

3.2 Radiated Band Edges and Spurious Emission Measurement

3.2.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics / spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Report No.: FR1N0803A

Frequency	Field Strength	Measurement Distance		
(MHz)	(microvolts/meter)	(meters)		
0.009 – 0.490	2400/F(kHz)	300		
0.490 – 1.705	24000/F(kHz)	30		
1.705 – 30.0	30	30		
30 – 88	100	3		
88 – 216	150	3		
216 - 960	200	3		
Above 960	500	3		

3.2.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

TEL: 0800-800005 Page Number : 11 of 17
FAX: 886-3-327-0855 Issue Date : Feb. 25, 2022

E-mail : Alex@sporton.com.tw Report Version : 01

3.2.3 Test Procedures

1. The EUT is placed on a turntable with 1.5 meter for frequency above 1 GHz respectively above ground.

Report No.: FR1N0803A

: 01

- 2. The EUT is set 3 meters away from the receiving antenna, which is mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT is arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set the maximum power setting and enable the EUT to transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW = 100 kHz for f < 1 GHz, RBW = 1 MHz for f>1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c).

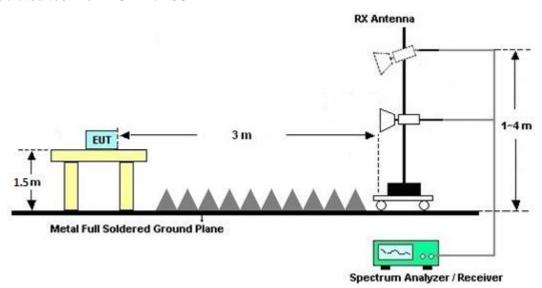
Duty cycle = On time/100 milliseconds

On time = $N_1*L_1+N_2*L_2+...+N_{n-1}*LN_{n-1}+N_n*L_n$

Where N_1 is number of type 1 pulses, L_1 is length of type 1 pulses, etc.

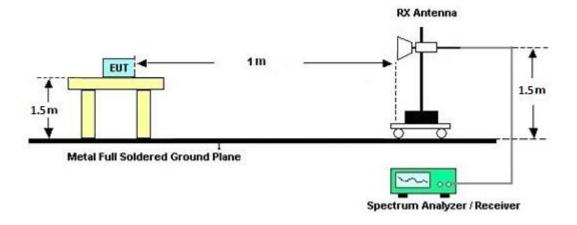
Average Emission Level = Peak Emission Level + 20*log (Duty cycle)

- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. Radiated testing above 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading for scanning all frequencies. When there is no suspected emission found and the harmonic emission level is with at least 6 dB margin against average limit line, the position is marked as "-".


Note: The average levels are calculated from the peak level corrected with duty cycle correction factor (-24.79dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.

TEL: 0800-800005 Page Number : 12 of 17
FAX: 886-3-327-0855 Issue Date : Feb. 25, 2022

E-mail : Alex@sporton.com.tw Report Version


3.2.4 Test Setup

For radiated test from 1GHz to 18GHz

Report No.: FR1N0803A

For radiated test above 18GHz

 TEL: 0800-800005
 Page Number
 : 13 of 17

 FAX: 886-3-327-0855
 Issue Date
 : Feb. 25, 2022

 E-mail: Alex@sporton.com.tw
 Report Version
 : 01

3.2.5 Test Results of Radiated Spurious Emissions (above 18 GHz)

For frequency above 18GHz, the pre-scanned result is 20dB lower than the limit line is not reported.

Report No.: FR1N0803A

3.2.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix B and C.

3.2.7 Duty Cycle

Please refer to Appendix D.

3.2.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix B and C.

TEL: 0800-800005 Page Number : 14 of 17
FAX: 886-3-327-0855 Issue Date : Feb. 25, 2022

E-mail : Alex@sporton.com.tw Report Version : 01
Report Template No.: BU5-FR15CBT Version 2.4

3.3 Antenna Requirements

3.3.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6 dBi, the power shall be reduced by the same level in dB comparing to gain minus 6 dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

Report No.: FR1N0803A

3.3.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.3.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

TEL: 0800-800005 Page Number : 15 of 17
FAX: 886-3-327-0855 Issue Date : Feb. 25, 2022

E-mail: Alex@sporton.com.tw Report Version : 01

4 List of Measuring Equipment

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
EMI Test Receicver	Keysight	N9010B	MY60241055	10Hz~44GHz	Jul. 12, 2021	Feb. 14, 2022~ Feb. 17, 2022	Jul. 11, 2022	Radiation (03CH20-HY)
Amplifier	EMCI	EMC118A45S E	980792	N/A	Nov. 15, 2021	Feb. 14, 2022~ Feb. 17, 2022	Nov. 14, 2022	Radiation (03CH20-HY)
Preamplifier	EMEC	EM18G40G	060801	18GHz~40GHz	Jun. 22, 2021	Feb. 14, 2022~ Feb. 17, 2022	Jun. 21, 2022	Radiation (03CH20-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-02294	1GHz~18GHz	Jun. 23, 2021	Feb. 14, 2022~ Feb. 17, 2022	Jun. 22, 2022	Radiation (03CH20-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA9170	00991	18GHz-40GHz	May 12, 2021	Feb. 14, 2022~ Feb. 17, 2022	May 11, 2022	Radiation (03CH20-HY)
Hygrometer	TECPEL	DTM-303B	TP200728	N/A	Mar. 09, 2021	Feb. 14, 2022~ Feb. 17, 2022	Mar. 08, 2022	Radiation (03CH20-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	519229/2,804 015/2,804027 /2	N/A	Jan. 19, 2022	Feb. 14, 2022~ Feb. 17, 2022	Jan. 18, 2023	Radiation (03CH20-HY)
1.53GHz Low Pass Filter	Wainwright	WLK4-1000-15 30-8000-40SS	SN27	N/A	May 25, 2021	Feb. 14, 2022~ Feb. 17, 2022	May 24, 2022	Radiation (03CH20-HY)
Filter	Wainwright	WHKX12-2700 -3000-18000-6 0ST	SN8	N/A	Mar. 26, 2021	Feb. 14, 2022~ Feb. 17, 2022	Mar. 25, 2022	Radiation (03CH20-HY)
Software	Audix	E3 6.2009-8-24	RK-002156	N/A	N/A	Feb. 14, 2022~ Feb. 17, 2022	N/A	Radiation (03CH20-HY)
Antenna Mast	EMEC	AM-BS-4500-B	N/A	1m~4m	N/A	Feb. 14, 2022~ Feb. 17, 2022	N/A	Radiation (03CH20-HY)
Turn Table	EMEC	TT2000	N/A	0~360 Degree	N/A	Feb. 14, 2022~ Feb. 17, 2022	N/A	Radiation (03CH20-HY)
Controller	EMEC	EM1000	N/A	Control Turn table & Ant Mast	N/A	Feb. 14, 2022~ Feb. 17, 2022	N/A	Radiation (03CH20-HY)
Hygrometer	TECPEL	DTM-303A	TP201996	N/A	Nov. 16, 2021	Jan. 14, .2022	Nov. 15, 2022	Conducted (TH05-HY)
Power Meter	Anritsu	ML2495A	1036004	N/A	Aug. 01, 2021	Jan. 14, .2022	Jul. 31, 2022	Conducted (TH05-HY)
Power Sensor	Anritsu	MA2411B	1027253	300MHz~40GH z	Aug. 01, 2021	Jan. 14, .2022	Jul. 31, 2022	Conducted (TH05-HY)
Spectrum Analyzer	Rohde & Schwarz	FSP40	100057	9kHz-40GHz	Dec. 30, 2021	Jan. 14, .2022	Dec. 29, 2022	Conducted (TH05-HY)
Switch Control Manframe	E-IUSTRUME NT	ETF-1405-0	EC1900067 (BOX7)	N/A	Aug. 12, 2021	Jan. 14, .2022	Aug. 11, 2022	Conducted (TH05-HY)

Report No.: FR1N0803A

TEL: 0800-800005 Page Number : 16 of 17
FAX: 886-3-327-0855 Issue Date : Feb. 25, 2022

E-mail : Alex@sporton.com.tw Report Version : 01
Report Template No.: BU5-FR15CBT Version 2.4

5 Uncertainty of Evaluation

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.2 dB
of 95% (U = 2Uc(y))	5.2 UB

Report No.: FR1N0803A

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

1		
	Measuring Uncertainty for a Level of Confidence	5.7 dB
	of 95% (U = 2Uc(y))	5.7 UD

TEL: 0800-800005 Page Number : 17 of 17
FAX: 886-3-327-0855 Issue Date : Feb. 25, 2022

E-mail : Alex@sporton.com.tw Report Version : 01

Report Number : FR1D1645-01A

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Benny Ku	Temperature:	21~25	°C
Test Date:	2022/1/14	Relative Humidity:	51~54	%

<u>TEST RESULTS DATA</u> Peak Power Table								
DH	CH.	NTX	Peak Power (dBm)	Power Limit (dBm)	Test Result			
DH5	78	1	8.88	20.97	Pass			
2DH5	78	1	7.98	20.97	Pass			
3DH1	78	1	8.17	20.97	Pass			

TEST RESULTS DATA <u>Average Power Table</u> (Reporting Only)							
DH	CH.	NTX	Average Power (dBm)	Duty Factor (dB)			
DH1	78	1	8.56	5.21			
וחט		1	6.25	5.16			
2DH1	78		UU				

Appendix B. Radiated Spurious Emission

Test Engineer :		Temperature :	20~25°C
rest Engineer .	Bill Chang and JC Liang	Relative Humidity :	50~60%

Report No.: FR1N0803A

2.4GHz 2400~2483.5MHz

BT (Band Edge @ 3m)

(MHz) 2480 2480	(dBµV/m) 106.13 81.34	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos		Avg.	
2480	106.13	,		(dBµV)	(dB/m)	(dB)	(dB)	(am)	/ -l \		
		-	_			(~- /	(ab)	(cm)	(deg)	(P/A)	(H/V)
2480	01 21			106	27.62	8.82	36.31	301	251	Р	Н
	01.34	-	-	-	-	-	-	-	-	Α	Н
2483.52	50.08	-23.92	74	49.93	27.63	8.83	36.31	301	251	Р	Н
2483.52	25.29	-28.71	54	-	-	-	-	-	1	Α	Н
											Н
											Н
2480	108.22	-	-	108.09	27.62	8.82	36.31	336	124	Р	V
2480	83.43	-	-	-	-	-	-	-	-	Α	V
2483.52	52.94	-21.06	74	52.79	27.63	8.83	36.31	336	124	Р	V
2483.52	28.15	-25.85	54	-	-	-	-	-	-	Α	V
											V
											V
	2483.52 2480 2480 2483.52	2483.52 25.29 2480 108.22 2480 83.43 2483.52 52.94	2483.52 25.29 -28.71 2480 108.22 - 2480 83.43 - 2483.52 52.94 -21.06	2483.52 25.29 -28.71 54 2480 108.22 - - 2480 83.43 - - 2483.52 52.94 -21.06 74	2483.52 25.29 -28.71 54 - 2480 108.22 - - 108.09 2480 83.43 - - - 2483.52 52.94 -21.06 74 52.79	2483.52 25.29 -28.71 54 - - 2480 108.22 - - 108.09 27.62 2480 83.43 - - - - 2483.52 52.94 -21.06 74 52.79 27.63	2483.52 25.29 -28.71 54 - - - 2480 108.22 - - 108.09 27.62 8.82 2480 83.43 - - - - - 2483.52 52.94 -21.06 74 52.79 27.63 8.83	2483.52 25.29 -28.71 54 - - - - 2480 108.22 - - 108.09 27.62 8.82 36.31 2480 83.43 - - - - - - 2483.52 52.94 -21.06 74 52.79 27.63 8.83 36.31	2483.52 25.29 -28.71 54 - - - - - - 2480 108.22 - - 108.09 27.62 8.82 36.31 336 2480 83.43 - - - - - - - - 2483.52 52.94 -21.06 74 52.79 27.63 8.83 36.31 336	2483.52 25.29 -28.71 54 -	2483.52 25.29 -28.71 54 - - - - - - A 2480 108.22 - - 108.09 27.62 8.82 36.31 336 124 P 2480 83.43 - - - - - - A 2483.52 52.94 -21.06 74 52.79 27.63 8.83 36.31 336 124 P

Remark

TEL: 0800-800005 Page Number : B1 of B4

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

2.4GHz 2400~2483.5MHz BT (Harmonic @ 3m)

Report No.: FR1N0803A

Factor (dB) 37.66 - 38.63 - 43.3 - 43.17	Pos (cm)	Pos (deg)	Avg. (P/A) P A P A	(H/V) H H H
37.66 - 38.63 - 43.3 - 43.17			P A P A	H H H
38.63 - 43.3 - 43.17			A P A	H H
38.63 - 43.3 - 43.17			P	Н
- 43.3 - 43.17	-	-	Α	Н
43.3	-	-		
43.17			Р	Н
43.17	-	-		
-		1	Α	Н
	-	-	Р	Н
	-	-	А	Н
45.42	-	-	Р	Н
-	-	-	Α	Н
				Н
				Н
37.66	-	-	Р	٧
-	-	-	Α	V
38.63	-	-	Р	V
-	-	-	Α	٧
43.22	-	-	Р	٧
-	-	-	Α	V
43.16	-	-	Р	V
-	-	-	Α	V
45.45	-	-	Р	V
-	-	-	Α	V
_				V
				V
	43.16	43.16 45.45 -		A 43.16 P A 45.45 P

- 1. No other spurious found.
- 2. All results are PASS against Peak and Average limit line.

Remark

- 3. The emission position marked as "-" means no suspected emission found with sufficient margin against limit line or noise floor only.
- 4. The emission level close to 18GHz is checked that the average emission level is noise floor only.

TEL: 0800-800005 Page Number : B2 of B4

Note symbol

Report No. : FR1N0803A

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

TEL: 0800-800005 Page Number : B3 of B4

A calculation example for radiated spurious emission is shown as below:

Report No.: FR1N0803A

ВТ	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
вт		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	Н
CH 00													
2402MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	Α	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dB μ V) - Preamp Factor(dB)

3. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- $= 55.45 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level($dB\mu V/m$) Limit Line($dB\mu V/m$)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- $= 43.54 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level($dB\mu V/m$) Limit Line($dB\mu V/m$)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

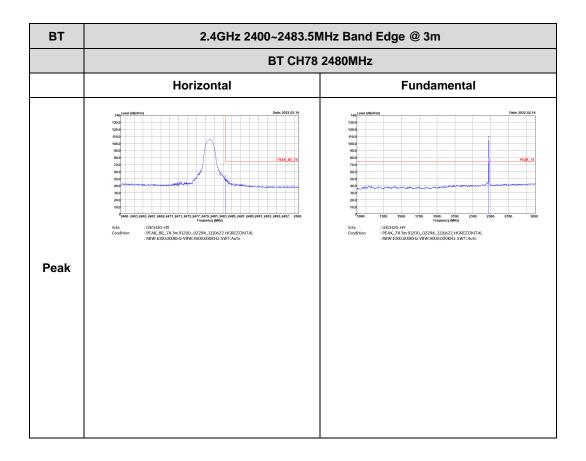
TEL: 0800-800005 Page Number : B4 of B4

Appendix C. Radiated Spurious Emission Plots

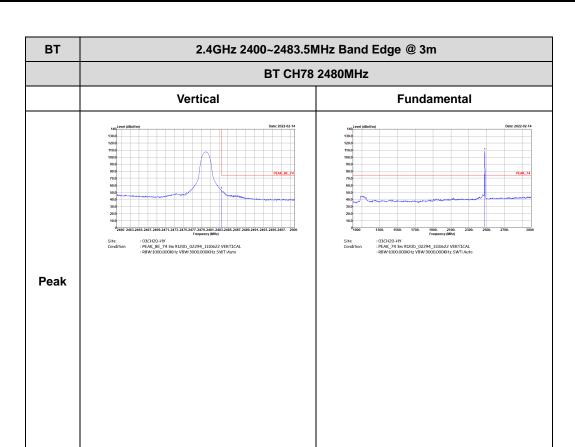
Test Engineer :		Temperature :	20~25°C
rest Engineer:	Bill Chang and JC Liang	Relative Humidity :	50~60%

Report No.: FR1N0803A

Note symbol


-L	Low channel location
-R	High channel location

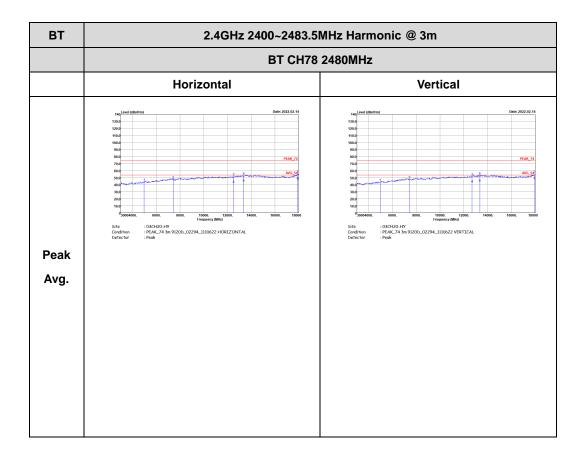
TEL: 0800-800005 Page Number : C1 of C


2.4GHz 2400~2483.5MHz

Report No.: FR1N0803A

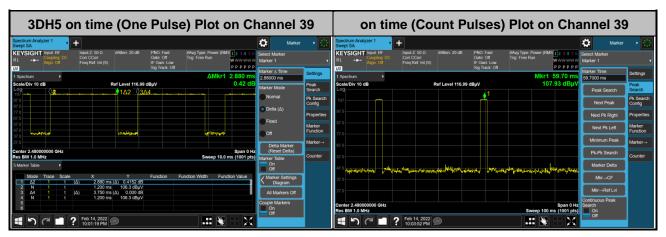
BT (Band Edge @ 3m)

TEL: 0800-800005 Page Number : C2 of C4


Report No.: FR1N0803A

TEL: 0800-800005 Page Number : C3 of C4

2.4GHz 2400~2483.5MHz


Report No.: FR1N0803A

BT (Harmonic @ 3m)

TEL: 0800-800005 Page Number : C4 of C4

Appendix D. Duty Cycle Plots

Report No.: FR1N0803A

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = 2 * 2.88 / 100 = 5.76 %
- 2. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.79 dB
- 3. **3DH5** has the highest duty cycle worst case and is reported.

Duty Cycle Correction Factor Consideration for AFH mode:

Bluetooth normal hopping rate is 1600Hz and reduced to 800Hz in AFH mode; due to the reduced number of hopping frequencies, with the same packet configuration the dwell time in each channel frequency within 100msec period is longer in AFH mode than normal mode.

In AFH mode, the minimum hopping frequencies are 20, to get the longest dwell time DH5 packet is observed; the on time period to have DH5 packet completing one hopping sequence is

$$2.88 \text{ ms x } 20 \text{ channels} = 57.6 \text{ ms}$$

There cannot be 2 complete hopping sequences within 100ms period, considering the random hopping behavior, maximum 2 hops can be possibly observed within the period. [100 ms / 57.6 ms] = 2 hops Thus, the maximum possible ON time:

$$2.88 \text{ ms } x 2 = 5.76 \text{ ms}$$

Worst case Duty Cycle Correction factor, which is derived from the maximum possible ON time,

$$20 \times log(5.76 \text{ ms}/100 \text{ ms}) = -24.79 \text{ dB}$$

TEL: 0800-800005 Page Number : D1 of D1