

FCC RADIO TEST REPORT

FCC ID	:	PU5-TP00127BLF
Equipment	:	Notebook Computer
Brand Name	:	Lenovo
Model Name	:	TP00127B
Applicant	:	Wistron Corporation 21F, No. 88, Sec. 1, Hsin Tai Wu Rd., Hsichih Dist, New Taipei City 221,Taiwan
Manufacturer	:	Lenovo PC HK Limited. 23/F, Lincoln House, Taikoo Place, 979 King's Road, Quarry Bay, Hong Kong, China
Standard	:	FCC 47 CFR Part 2, Part 27(D)

Equipment: Fibocom L860-GL-16 tested inside of Lenovo Notebook Computer.

The product was received on Nov. 18, 2021 and testing was performed from Jan. 03, 2022 to Jan. 25, 2022. We, Sporton International Inc. Wensan Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures given in ANSI / TIA-603-E and has been in compliance with the applicable technical standards.

The test results in this partial report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. Wensan Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Approved by: Louis Wu Sporton International Inc. Wensan Laboratory

Page Number	: 1 of 16
Issued Date	: Mar. 02, 2022
Report Version	: 01

Table of Contents

His	tory o	f this test report	3
Su	nmary	y of Test Result	4
1	Gene	ral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Product Specification of Equipment Under Test	5
	1.3	Modification of EUT	5
	1.4	Testing Site	6
	1.5	Applied Standards	6
2	Test	Configuration of Equipment Under Test	7
	2.1	Test Mode	7
	2.2	Connection Diagram of Test System	7
	2.3	Support Unit used in test configuration and system	8
	2.4	Frequency List of Low/Middle/High Channels	8
3	Cond	lucted Test Items	9
	3.1	Measuring Instruments	9
	3.2	Conducted Output Power Measurement	10
	3.3	Effective Isotropic Radiated Power	11
4	Radia	ated Test Items	12
	4.1	Measuring Instruments	12
	4.2	Radiated Spurious Emission Measurement	14
5	List c	of Measuring Equipment	15
6	Unce	rtainty of Evaluation	16
		x A. Test Results of Conducted Test	
		x B. Test Results of Radiated Test	
Ap	pendix	x C. Test Setup Photographs	

History of this test report

Version	Description	Issued Date
01	Initial issue of report	Mar. 02, 2022

Summary of	Test Result
------------	-------------

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark		
3.2	§2.1046	Conducted Output Power	Reporting only	-		
-	-	Peak-to-Average Ratio	Peak-to-Average Ratio - See Not			
3.3	§27.50 (a)(3)	Effective Isotropic Radiated Power Pass		-		
-	§2.1049	Occupied Bandwidth -		See Note		
-	§2.1051 §27.53 (a)(4)	Conducted Band Edge Measurement	Conducted Band Edge Measurement -			
-	§2.1051 §27.53 (a)(4)	Conducted Spurious Emission	Conducted Spurious Emission -			
-	§2.1055 §27.54	Frequency Stability Temperature & Voltage				
4.2	§2.1053 §27.53 (a)(4)	Radiated Spurious Emission	Pass	Under limit 1.15 dB at 4620.000 MHz		

Note:

1. The module (Model: L860-GL-16) makes no difference after verifying output power, this report reuses test data from the module report.

 Conducted power was verified to be consistent with the original modular approval, so the output power level in the original modular grant is referenced in this report for determining EIRP of this host product

Declaration of Conformity:

 The test results (PASS/FAIL) with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers. It's means measurement values may risk exceeding the limit of regulation standards, if measurement uncertainty is include in test results.

2. The measurement uncertainty please refer to this report "Uncertainty of Evaluation".

Comments and Explanations:

The product specifications of the EUT presented in the report are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Sheng Kuo

Report Producer: Cindy Liu

1 General Description

1.1 Product Feature of Equipment Under Test

Product Feature						
Equipment	Notebook Computer					
Brand Name	Lenovo					
Model Name	TP00127B					
FCC ID	PU5-TP00127BLF					
EUT supports Radios application	WCDMA/HSPA/LTE/GNSS					
EUT Stage	Production Unit					

Remark:

1. The above EUT's information was declared by manufacturer.

2. Equipment: Fibocom L860-GL-16 tested inside of Lenovo Notebook Computer.

WWAN Antenna Information							
Main Antonno	Manufacturer	AWAN	Peak gain (dBi)	0.24			
Main Antenna	Part number	025.901S1.0071	Туре	PIFA			

Remark: The above EUT's information was declared by manufacturer. Please refer to Comments and Explanations in report summary.

1.2 Product Specification of Equipment Under Test

Product Specification subjective to this standard							
Tx Frequency	LTE Band 30 : 2307.5 MHz ~ 2312.5 MHz						
Rx Frequency	LTE Band 30 : 2352.5 MHz ~ 2357.5 MHz						
Bandwidth	LTE Band 30 :5MHz / 10MHz						
Maximum Output Power to Antenna	21.97 dBm						
Type of Modulation	QPSK / 16QAM / 64QAM						

1.3 Modification of EUT

No modifications are made to the EUT during all test items.

1.4 Testing Site

Test Site	Sporton International Inc. EMC & Wireless Communications Laboratory			
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333			
Test Site No.	Sporton Site No.			
Test Site No.	TH03-HY (TAF Code: 1190)			
Test Engineer	HaoEn Zhang			
Temperature (°C)	22.1~23.4			
Relative Humidity (%)	51.8~55.6			
Remark	The Conducted test item subcontracted to Sporton International Inc. EMC & Wireless Communications Laboratory			
Test Site	Sporton International Inc. Wensan Laboratory			
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010			
Test Site No.	Sporton Site No.			
Test She No.	03CH20-HY			
Test Engineer	Bill Chang and JC Liang			
Temperature (°C)	20~23			
Relative Humidity (%)	66~69			

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC Designation No.: TW1190 and TW3786

1.5 Applied Standards

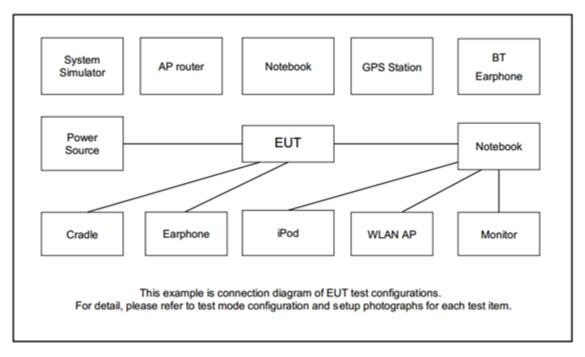
According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- ANSI C63.26-2015
- FCC 47 CFR Part 2, Part 27(D)
- ANSI / TIA-603-E
- FCC KDB 971168 Power Meas License Digital Systems D01 v03r01
- FCC KDB 412172 D01 Determining ERP and EIRP v01r01
- FCC KDB 414788 D01 Radiated Test Site v01r01

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.

2 Test Configuration of Equipment Under Test


2.1 Test Mode

Antenna port conducted and radiated test items listed below are performed according to KDB 971168 D01 Power Meas. License Digital Systems v03r01 with maximum output power.

For radiated measurement, the measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in Tablet Type (three orthogonal axis (X: flat, Y: portrait, Z: landscape)) and Notebook Type, and adjusting the measurement antenna orientation, following C63.26 exploratory test procedures and find Notebook Type as worst plane.

T	_	Bandwidth (MHz)			Modulation			RB #			Test Channel						
Test Items	ва	nd	1.4	3	5	10	15	20	QPSK	16QAM	64QAM	1	Half	Full	L	м	н
Max. Output Power	3	0	-	-	v	v	-	-	v	v	v	v v v v		v	v		
E.I.R.P	3	0	-	-	v	v	-	-	v	v	v	Max. Power					
Radiated Spurious Emission	3	0	-	-	v	v	-	-	v			v			v	v	v
Remark	 The mark "v " means that this configuration is chosen for testing The mark "-" means that this bandwidth is not supported. 									er							

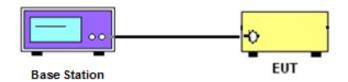
2.2 Connection Diagram of Test System

2.3 Support Unit used in test configuration and system

ltem	Equipment	Brand Name	Model No.	FCC ID	Data Cable	Power Cord
1.	System Simulator	Anritsu	MT8821C	N/A	N/A	Unshielded, 1.8 m
2.	iPod Earphone	Apple	N/A	Verification	Unshielded, 1.0 m	N/A

2.4 Frequency List of Low/Middle/High Channels

LTE Band 30 Channel and Frequency List										
BW [MHz]	Channel/Frequency(MHz) Lowest Middle Highe									
10	Channel	-	27710	-						
10	Frequency	-	2310	-						
-	Channel	27685	27710	27735						
5	Frequency	2307.5	2310	2312.5						


3 Conducted Test Items

3.1 Measuring Instruments

See list of measuring instruments of this test report.

3.1.1 Test Setup

3.1.2 Conducted Output Power

3.1.3 Test Result of Conducted Test

Please refer to Appendix A.

3.2 Conducted Output Power Measurement

3.2.1 Description of the Conducted Output Power Measurement

A base station simulator was used to establish communication with the EUT. Its parameters were set to transmit the maximum power on the EUT. The measured power in the radio frequency on the transmitter output terminals shall be reported.

3.2.2 Test Procedures

- 1. The transmitter output port was connected to the system simulator.
- 2. Set EUT at maximum power through the system simulator.
- 3. Select lowest, middle, and highest channels for each band and different modulation.
- 4. Measure and record the power level from the system simulator.

3.3 Effective Isotropic Radiated Power

3.3.1 Description of Effective Isotropic Radiated Power

For mobile and portable stations transmitting in the 2305-2315 MHz band or the 2350-2360 MHz band, the average EIRP must not exceed 50 milliwatts within any 1 megahertz of authorized bandwidth, *except that* for mobile and portable stations compliant with 3GPP LTE standards or another advanced mobile broadband protocol that avoids concentrating energy at the edge of the operating band the average EIRP must not exceed 250 milliwatts within any 5 megahertz of authorized bandwidth but may exceed 50 milliwatts within any 1 megahertz of authorized bandwidth. For mobile and portable stations using time division duplexing (TDD) technology, the duty cycle must not exceed 38 percent in the 2305-2315 MHz and 2350-2360 MHz bands. Mobile and portable stations using FDD technology are restricted to transmitting in the 2305-2315 MHz band. Power averaging shall not include intervals in which the transmitter is off.

Remark: EIRP use worst case measure the total power to cover per 5MHz Power.

According to KDB 412172 D01 Power Approach,

 $EIRP = P_T + G_T - L_C$, where

 P_T = transmitter output power in dBm

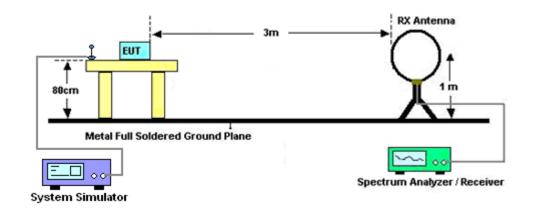
 G_T = gain of the transmitting antenna in dBi

 L_C = signal attenuation in the connecting cable between the transmitter and antenna in dB

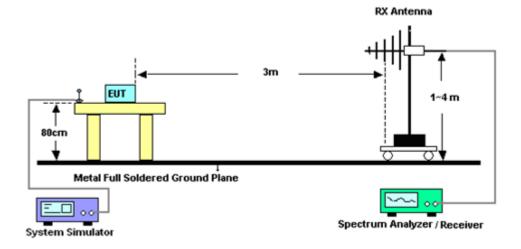
3.3.2 Test Procedures

The testing follows ANSI C63.26-2015 Section 5.2.4.5

1. Determine the EIRP by adding the effective antenna gain to the adjusted power level.

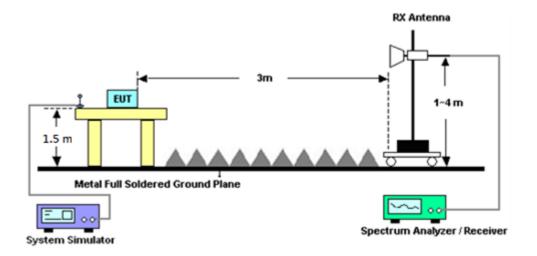

4 Radiated Test Items

4.1 Measuring Instruments

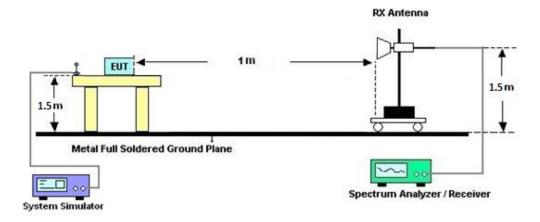

See list of measuring instruments of this test report.

4.1.1 Test Setup

For radiated test below 30MHz



For radiated test from 30MHz to 1GHz



For radiated test from 1GHz to 18GHz

For radiated test above 18GHz

4.1.2 Test Result of Radiated Test

Please refer to Appendix B.

Note:

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is adequate comparison measurement of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

4.2 Radiated Spurious Emission Measurement

4.2.1 Description of Radiated Spurious Emission Measurement

The radiated spurious emission was measured by substitution method according to ANSI / TIA-603-E The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitter power (P) by a factor of at least 70 + 10 log (P) dB.

The spectrum is scanned from 30 MHz up to a frequency including its 10th harmonic.

4.2.2 Test Procedures

The testing follows FCC KDB 971168 D01 v03r01 Section 7 and ANSI / TIA-603-E Section 2.2.12.

- 1. The EUT was placed on a turntable with 0.8 meter height for frequency below 1GHz and 1.5 meter height for frequency above 1GHz respectively above ground.
- 2. The EUT was set 3 meters from the receiving antenna mounted on the antenna tower.
- 3. The table was rotated 360 degrees to determine the position of the highest spurious emission.
- 4. The height of the receiving antenna is varied between 1m to 4m to search the maximum spurious emission for both horizontal and vertical polarizations.
- 5. During the measurement, the system simulator parameters were set to force the EUT transmitting at maximum output power.
- 6. Make the measurement with the spectrum analyzer's RBW = 1MHz, VBW = 3MHz, taking the record of maximum spurious emission.
- 7. A horn antenna was substituted in place of the EUT and was driven by a signal generator.
- 8. Tune the output power of signal generator to the same emission level with EUT maximum spurious emission.

EIRP (dBm) = S.G. Power - Tx Cable Loss + Tx Antenna Gain ERP (dBm) = EIRP - 2.15

9. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

The limit line is derived from 70 + 10log(P)dB below the transmitter power P(Watts)

= P(W) - [70 + 10log(P)] (dB)

= [30 + 10log(P)] (dBm) - [70 + 10log(P)] (dB)

= -40dBm.

List of Measuring Equipment 5

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
EMI Test Receicver	Keysight	N9010B	MY60241055	10Hz~44GHz	Jul. 12, 2021	Jan. 08, 2022~ Jan. 25, 2022	Jul. 11, 2022	Radiation (03CH20-HY)
Preamplifier	COM-POWE R	PAM-103	18020201	1MHz-1000MHz	Jan. 03, 2022	Jan. 08, 2022~ Jan. 25, 2022	Jan. 02, 2023	Radiation (03CH20-HY)
Amplifier	EMCI	EMC118A45SE	980792	N/A	Nov. 15, 2021	Jan. 08, 2022~ Jan. 25, 2022	Nov. 14, 2022	Radiation (03CH20-HY)
Preamplifier	EMEC	EM18G40G	060715	18GHz~40GHz	Dec. 24, 2021	Jan. 08, 2022~ Jan. 25, 2022	Dec. 23, 2022	Radiation (03CH20-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100315	9 kHz~30 MHz	Jan. 07, 2022	Jan. 08, 2022~ Jan. 25, 2022	Jan. 06, 2023	Radiation (03CH20-HY)
Bilog Antenna	TESEQ	CBL 6111D&00802N 1D01N-06	55606 & 08	30MHz~1GHz	Oct. 17, 2021	Jan. 08, 2022~ Jan. 25, 2022	Oct. 16, 2022	Radiation (03CH20-HY)
Bilog Antenna	TESEQ	CBL 6111D&00802N 1D01N-06	37059 & 01	30MHz~1GHz	Oct. 09, 2021	Jan. 08, 2022~ Jan. 25, 2022	Oct. 08, 2022	Radiation (03CH20-HY)
Horn Antenna	SCHWARZB ECK	BBHA 9120 D	9120D-02294	1GHz~18GHz	Jun. 23, 2021	Jan. 08, 2022~ Jan. 25, 2022	Jun. 22, 2022	Radiation (03CH20-HY)
Horn Antenna	SCHWARZB ECK	BBHA 9120 D	02360	1GHz~18GHz	Nov. 02, 2021	Jan. 08, 2022~ Jan. 25, 2022	Nov. 01, 2022	Radiation (03CH20-HY)
SHF-EHF Horn Antenna	SCHWARZB ECK	BBHA9170	00991	18GHz-40GHz	May 12, 2021	Jan. 08, 2022~ Jan. 25, 2022	May 11, 2022	Radiation (03CH20-HY)
SHF-EHF Horn Antenna	SCHWARZB ECK	BBHA9170	00993	18GHz-40GHz	Nov. 30, 2021	Jan. 08, 2022~ Jan. 25, 2022	Nov. 29, 2022	Radiation (03CH20-HY)
Hygrometer	TECPEL	DTM-303B	TP200728	N/A	Mar. 09, 2021	Jan. 08, 2022~ Jan. 25, 2022	Mar. 08, 2022	Radiation (03CH20-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	519229/2,8040 15/2,804027/2	N/A	Jan. 20, 2021	Jan. 08, 2022~ Jan. 18, 2022	Jan. 19, 2022	Radiation (03CH20-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	519229/2,8040 15/2,804027/2	N/A	Jan. 19, 2022	Jan. 19, 2022~ Jan. 25, 2022	Jan. 18, 2023	Radiation (03CH20-HY)
Software	Audix	E3 6.2009-8-24	RK-002156	N/A	N/A	Jan. 08, 2022~ Jan. 25, 2022	N/A	Radiation (03CH20-HY)
Antenna Mast	EMEC	AM-BS-4500-B	N/A	1m~4m	N/A	Jan. 08, 2022~ Jan. 25, 2022	N/A	Radiation (03CH20-HY)
Turn Table	EMEC	TT2000	N/A	0~360 Degree	N/A	Jan. 08, 2022~ Jan. 25, 2022	N/A	Radiation (03CH20-HY)
Controller	EMEC	EM1000	N/A	Control Turn table & Ant Mast	N/A	Jan. 08, 2022~ Jan. 25, 2022	N/A	Radiation (03CH20-HY)
Signal Generator	Rohde & Schwarz	SMF100A	101107	100kHz~40GHz	Dec. 08, 2021	Jan. 08, 2022~ Jan. 25, 2022	Dec. 07, 2022	Radiation (03CH20-HY)
Radio Communication Analyzer	Anritsu	MT8821C	6201664755	2/3/4G/LTE FDD/TDD with44)/LTE-3C C DLCA/2CC ULCA, CatM1/NB1/NB2	Jul. 21, 2021	Jan. 03, 2022~ Jan. 07, 2022	Jul. 20, 2022	Conducted (TH03-HY)
Coupler	Warison	20dB 25W SMA Directional Coupler	#B	1-18GHz	Jan. 09, 2021	Jan. 03, 2022~ Jan. 07, 2022	Jan. 08, 2022	Conducted (TH03-HY)

6 Uncertainty of Evaluation

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of	3.33 dB
Confidence of 95% (U = 2Uc(y))	5.55 UB

Uncertainty of Radiated Emission Measurement (1 GHz ~ 18 GHz)

Measuring Uncertainty for a Level of	3.40 dB
Confidence of 95% (U = 2Uc(y))	

Uncertainty of Radiated Emission Measurement (18 GHz ~ 40 GHz)

Measuring Uncertainty for a Level of	4.43 dB
Confidence of 95% (U = 2Uc(y))	4.43 UB

Appendix A. Test Results of Conducted Test

Conducted Output Power(Average power & EIRP)

	LTE Band 30 Maximum Average Power [dBm] (GT - LC = 0.24 dB)										
BW [MHz]	RB Size	RB Offset	Mod	Lowest	Middle	Highest	EIRP (dBm)	EIRP (W)			
10	1	0			21.97						
10	1	49	QPSK		21.96		22.21	0.1663			
10	50	0		-	20.89	-					
10	1	0	16-QAM		21.36		21.60	0.1445			
10	1	0	64-QAM		20.33		20.57	0.1140			
Limit	Limit EIRP < 250mW/5MHz				Result		Pass				

	LTE Band 30 Maximum Average Power [dBm] (GT - LC = 0.24 dB)										
BW [MHz]	RB Size	RB Offset	Mod	Lowest	Middle	Highest	EIRP (dBm)	EIRP (W)			
5	1	0	QPSK	21.56	21.65	21.96	22.20	0.1660			
5	1	0	16-QAM	20.78	20.36	20.63	21.02	0.1265			
5	1	0	64-QAM	19.63	20.21	20.32	20.56	0.1138			
Limit	Limit EIRP < 250mW/5MHz				Result			Pass			

Appendix B. Test Results of Radiated Test

	LTE Band 30 / 5MHz / QPSK										
Channel	Frequency (MHz)	EIRP (dBm)	Limit (dBm)	Over Limit (dB)	SPA Reading (dBm)	S.G. Power (dBm)	TX Cable loss (dB)	TX Antenna Gain (dBi)	Polarization (H/V)		
	4608	-47.76	-40	-7.76	-69.14	-51.53	8.33	12.10	Н		
	6918	-56.68	-40	-16.68	-82.02	-57.80	10.31	11.44	Н		
	9221	-53.65	-40	-13.65	-82.08	-52.99	11.92	11.26	Н		
									Н		
									Н		
Louiot									Н		
Lowest	4608	-43.81	-40	-3.81	-63.1	-47.58	8.33	12.10	V		
	6918	-52.65	-40	-12.65	-78.78	-53.77	10.31	11.44	V		
	9221	-54.07	-40	-14.07	-81.86	-53.41	11.92	11.26	V		
									V		
									V		
									V		
	4614	-47.94	-40	-7.94	-68.35	-51.70	8.34	12.10	Н		
	6923	-95.85	-40	-55.85	-81.2	-96.98	10.32	11.45	Н		
	9231	-53.10	-40	-13.10	-81.53	-52.41	11.92	11.24	Н		
									Н		
									Н		
Mi al all a									Н		
Middle	4614	-42.61	-40	-2.61	-61.93	-46.37	8.34	12.10	V		
	6923	-51.82	-40	-11.82	-77.95	-52.95	10.32	11.45	V		
	9231	-54.21	-40	-14.21	-82.01	-53.52	11.92	11.24	V		
									V		
									V		
									V		

LTE Band 30

	4620	-46.68	-40	-6.68	-67.1	-50.43	8.35	12.10	Н
	6930	-56.33	-40	-16.33	-81.69	-57.47	10.32	11.46	Н
	9241	-53.59	-40	-13.59	-82.01	-52.88	11.93	11.22	Н
									Н
									Н
									Н
									Н
Highest	4620	-41.15	-40	-1.15	-60.48	-44.90	8.35	12.10	V
	6930	-52.15	-40	-12.15	-78.28	-53.29	10.32	11.46	V
	9241	-53.92	-40	-13.92	-81.72	-53.21	11.93	11.22	V
									V
									V
									V
									V

Remark: Spurious emissions within 30-1000MHz were found more than 20dB below limit line.

			Ľ	TE Band 30	/ 10MHz / QF	PSK			
Channel	Frequency (MHz)	EIRP (dBm)	Limit (dBm)	Over Limit (dB)	SPA Reading (dBm)	S.G. Power (dBm)	TX Cable loss (dB)	TX Antenna Gain (dBi)	Polarization (H/V)
	4614	-47.98	-40	-7.98	-68.39	-51.74	8.34	12.10	Н
	6916	-56.30	-40	-16.30	-81.65	-57.42	10.31	11.43	Н
	9220	-53.52	-40	-13.52	-81.95	-52.86	11.92	11.26	Н
									Н
									Н
									Н
Middle									Н
wilddie	4614	-43.45	-40	-3.45	62.77	-47.21	8.34	12.10	V
	6916	-53.10	-40	-13.10	-79.23	-54.22	10.31	11.43	V
	9220	-54.17	-40	-14.17	-81.96	-53.51	11.92	11.26	V
									V
									V
									V
									V

Remark: Spurious emissions within 30-1000MHz were found more than 20dB below limit line.