

FCC RF Test Report

APPLICANT	:	Wistron Corporation
EQUIPMENT	:	Tablet PC
BRAND NAME	:	Lenovo
MODEL NAME	:	TP00082A
FCC ID	:	PU5-TP00082ASI
STANDARD	:	FCC Part 15 Subpart E §15.407
CLASSIFICATION	:	(NII) Unlicensed National Information Infrastructure

Equipment: Sierra Wireless EM7455 and Intel 8265D2W tested inside of Lenovo Tablet PC. This is a variant report which is only valid together with the original test report. The product was received on Sep. 12, 2016 and testing was completed on Nov. 16, 2016. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by: Joseph Lin / Supervisor

Approved by: Jones Tsai / Manager

SPORTON INTERNATIONAL INC. No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.

SPORTON INTERNATIONAL INC. TEL : 886-3-327-3456 FAX : 886-3-328-4978 FCC ID : PU5-TP00082ASI Page Number : 1 of 22 Report Issued Date : Dec. 05, 2016 Report Version : Rev. 01 Report Template No.: BU5-FR15EWL Version 1.4

TABLE OF CONTENTS

SU	MMAR	Y OF TEST RESULT	.4
1	GENE	RAL DESCRIPTION	.5
	1.1 1.2 1.3 1.4 1.5 1.6 1.7	Applicant Manufacturer Product Feature of Equipment Under Test Product Specification of Equipment Under Test Modification of EUT Testing Location Applicable Standards	.5 .5 .6 .6 .7
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	.8
	2.1 2.2 2.3 2.4 2.5	Carrier Frequency Channel Test Mode Connection Diagram of Test System Support Unit used in test configuration and system EUT Operation Test Setup	.8 .9 10 11 11
3	TEST	RESULT	12
	3.1 3.2 3.4	Unwanted Radiated Emission Measurement AC Conducted Emission Measurement Antenna Requirements	12 16 20
4	LIST	OF MEASURING EQUIPMENTS	21
5	UNCE	RTAINTY OF EVALUATION	22
AP	PENDI	X A. RADIATED SPURIOUS EMISSION	
AP	PENDI	X B. RADIATED SPURIOUS EMISSION PLOTS	
AP	PENDI	X C. DUTY CYCLE PLOTS	

APPENDIX D. SETUP PHOTOGRAPHS

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR5N2711-08D	Rev. 01	Initial issue of report	Dec. 05, 2016

SUMMARY	OF TEST	RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.407(b)	Unwanted Emissions	\leq -17, -27 dBm (depend on	Pass	Under limit 0.76 dB at
			band)&15.209(a)		5149.500 MHz
3.2	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 7.30 dB at 0.494 MHz
3.4	15.203 & 15.407(a)	Antenna Requirement	N/A	Pass	-

1 General Description

1.1 Applicant

Wistron Corporation

21F, No. 88, Sec. 1, Hsin Tai Wu Rd., Hsichih Dist, New Taipei City 221, Taiwan R.O.C.

1.2 Manufacturer

Wistron Corporation

21F, No. 88, Sec. 1, Hsin Tai Wu Rd., Hsichih Dist, New Taipei City 221, Taiwan R.O.C.

1.3 Product Feature of Equipment Under Test

	Product Feature
Equipment	Tablet PC
Brand Name	Lenovo
Model Name	TP00082A
FCC ID	PU5-TP00082ASI
	Brand Name: Intel
Integrated the WLAN Module	Model Name: 8265D2W
	FCC ID: N7NEM7455
	WCDMA/HSPA/LTE
EUT supports Padios application	WLAN 11a/b/g/n HT20/HT40
	WLAN 11ac VHT20/VHT40/VHT80
	Bluetooth BR/EDR/LE
EUT Stage	Production Unit

Remark:

- 1. The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.
- This is a variant report by TP00082A update its CPU to Intel KabyLake-Y processor and change WLAN module from Intel 8260D2W to Intel 8265D2W. All the test cases were performed on original report which can be referred to Sporton Report Number FR5N2711-09D and FR5N2711-09E. Based on the original report, only worst case was verified.

Antenna Information				
	Manufacturer	PULSE		
	Antenna Type	Main: Dipole Antenna	Aux.: Dipole Antenna	
	Part number	025.900FC.0001	025.900FD.0001	
Antenna		Main Antenna :	Aux. Antenna :	
	Peak gain	WLAN (2.4GHz):-0.82	WLAN (2.4GHz):1.39 Bluetooth :1.39	
		WLAN (5GHz):2.31	WLAN (5GHz):3.13	

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification				
Tx/Rx Frequency Range	5180 MHz ~ 5240 MHz 5260 MHz ~ 5320 MHz 5500 MHz ~ 5720 MHz 5745 MHz ~ 5825 MHz			
Type of Modulation	00 802.11a/n : OFDM (BPSK / QPSK / 16QAM / 64QAM) 802.11ac : OFDM (BPSK / QPSK / 16QAM / 64QAM / 256QAM			56QAM)
Antenna Function Description	802.11 a/n/ac 802.11 n/ac MIMO	Ant. 1 V V	Ant. 2 V V	

Note: MIMO Ant. 1+2 is a calculated result from sum of the power MIMO Ant. 1 and MIMO Ant. 2.

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code : 1190) and the FCC designation No. TW1022 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC Test.

Test Site	SPORTON INTERNATIONAL INC.		
Tel Olis Landian	No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park,		
	Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.		
Test Sile Location	TEL: +886-3-327-3456		
	FAX: +886-3-328-4978		
Test Site No.	Sporton	Site No.	
	CO05-HY	03CH07-HY	

Note: The test site complies with ANSI C63.4 2014 requirement.

1.7 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart E
- FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r03
- FCC KDB 662911 D01 Multiple Transmitter Output v02r01.
- FCC KDB 644545 D03 Guidance for IEEE 802 11ac New Rules v01
- ANSI C63.10-2013

Remark: All test items were verified and recorded according to the standards and without any deviation during the test.

2 Test Configuration of Equipment Under Test

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conducted emission (150 kHz to 30 MHz) and radiated emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (X plane) were recorded in this report.

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	36	5180	44	5220
5150-5250 MHz Band 1	38*	5190	46*	5230
(U-NII-1)	40	5200	48	5240
(••••••)	42#	5210		
Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	52	5260	60	5300
5250-5350 MHZ Band 2	54*	5270	62*	5310
(U-NII-2A)	56	5280	64	5320
	58#	5290		
Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	100	5500	112	5560
	102*	5510	116	5580
5470-5725 MHZ Band 3	104	5520	132	5660
(U-NII-2C)	106#	5530	134*	5670
(•••••••)	108	5540	136	5680
	110*	5550	140	5700
Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	149	5745	157	5785
5725-5850 MHz	151*	5755	159*	5795
(U-NII-3)	153	5765	161	5805
(0 0)	155#	5775	165	5825

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
TDWR Channel	118*	5590	124	5620
	120	5600	126*	5630
	122 [#]	5610	128	5640
Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
Straddle Channel	138 [#]	5690	144	5720
	142*	5710		

Note:

- 1. The above Frequency and Channel in "*" were 802.11n HT40 and 802.11ac VHT40.
- 2. The above Frequency and Channel in "#" were 802.11ac VHT80.

2.2 Test Mode

	Test Cases		
Α	C Conducted		
	Emission		
Remark:			
 TC stands for Test Configuration, and consists of Earphone, USB HD, iPod Earphone, Adapter, SD Card, and DP Cable. 			

2. TF stands for Test Function, and consists of MPEG4.

Ch. #		Band I:5150-5250 MHz
		802.11n HT40
L	Low	38

Remark: Radiated test case is worst case from FR5N2711-09D and FR5N2711-09E.

2.3 Connection Diagram of Test System

<WLAN Tx Mode>

<AC Conducted Emission Mode>

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	LCD Monitor	DELL	U2410	FCC DoC	Shielded, 1.6 m	Unshielded, 1.8 m
2.	USB HD	PQI	H568V	FCC DoC	Shielded, 0.5 m	N/A
3.	SD Card	SanDisk	MicroSD HC	FCC DoC	N/A	N/A
4.	iPod Earphone	Apple	N/A	Verification	Unshielded, 1.0 m	N/A

2.4 Support Unit used in test configuration and system

2.5 EUT Operation Test Setup

The programmed RF utility "DRTU TOOL", is installed in EUT to provide channel selection, power level, data rate and the application type. RF Utility can send transmitting signal for all testing. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

3 Test Result

3.1 Unwanted Radiated Emission Measurement

This section as specified in FCC Part 15.407(b) is to measure unwanted emissions through radiated measurement for band edge spurious emissions and out of band emissions measurement. The unwanted emissions shall comply with 15.407(b)(1) to (6), and restricted bands per FCC Part15.205.

3.1.1 Limit of Unwanted Emissions

- For transmitters operating in the 5150-5250 MHz band: all emissions outside of the 5150-5350 MHz band shall not exceed an EIRP of –27dBm/MHz.
- (2) Unwanted spurious emissions fallen in restricted bands per FCC Part15.205 shall comply with the general field strength limits set forth in § 15.209 as below table,

Frequency	Field Strength	Measurement Distance	
(MHz)	(microvolts/meter)	(meters)	
0.009 – 0.490	2400/F(kHz)	300	
0.490 – 1.705	24000/F(kHz)	30	
1.705 – 30.0	30	30	
30 – 88	100	3	
88 – 216	150	3	
216 - 960	200	3	
Above 960	500	3	

Note: The following formula is used to convert the EIRP to field strength.

$$E = \frac{1000000\sqrt{30P}}{3}$$

μV/m, where P is the eirp (Watts)

EIRP (dBm)	Field Strength at 3m (dBµV/m)
-17	78.3
- 27	68.3

(3) KDB789033 D01 v01r03 G)2)c) As specified in 15.407(b), emissions above 1000 MHz that are outside of the restricted bands are subject to a peak emission limit of -27 dBm/MHz (or -17 dBm/MHz as specified in 15.407(b)(4)). However, an out-of-band emission that complies with both the average and peak limits of 15.209 is not required to satisfy the -27 dBm/MHz or -17 dBm/MHz peak emission limit.

3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedures

 The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r03. Section G) Unwanted emissions measurement.

(1) Procedure for Unwanted Emissions Measurements Below 1000MHz

- RBW = 120 kHz
- VBW = 300 kHz
- Detector = Peak
- Trace mode = max hold

(2) Procedure for Peak Unwanted Emissions Measurements Above 1000 MHz

- RBW = 1 MHz
- VBW ≥ 3 MHz
- Detector = Peak
- Sweep time = auto
- Trace mode = max hold

(3) Procedures for Average Unwanted Emissions Measurements Above 1000MHz

- RBW = 1 MHz
- VBW = 10 Hz, when duty cycle is no less than 98 percent.
- VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
- 2. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 3. The EUT was set 3 meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.
- 4. The antenna is a broadband antenna and its height is adjusted between one meter and four meters above ground to find the maximum value of the field strength for both horizontal polarization and vertical polarization of the antenna.
- 5. For each suspected emission, the EUT was arranged to its worst case and then adjust the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading.
- 6. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.

7. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

3.1.4 Test Setup

For radiated emissions below 30MHz

Spectrum Analyzer / Receiver

For radiated emissions from 30MHz to 1GHz

For radiated emissions above 1GHz

3.1.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

3.1.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix A and B.

3.1.7 Duty Cycle

Please refer to Appendix C.

3.1.8 Test Result of Radiated Spurious Emissions (30MHz ~ 10th Harmonic)

Please refer to Appendix A and B.

3.2 AC Conducted Emission Measurement

3.2.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of omission (MHz)	Conducted limit (dBµV)				
Frequency of emission (Minz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

*Decreases with the logarithm of the frequency.

3.2.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.2.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.

3.2.4 Test Setup

- AE = Associated equipment
- EUT = Equipment under test ISN = Impedance stabilization network

3.2.5 Test Result of AC Conducted Emission

Test Mode :	Mode 1			Tem	peratur	e :	20~25℃
Test Engineer :	Engineer : James Chiu		Rela	Relative Humidity :		50~55%	
Test Voltage :	Voltage: 120Vac / 60Hz		Pha	Phase :		Line	
Function Type :	WLAN (5GH:	z) Link	+ TC -	+ TF			
Final Resu	100 90 80 70 60 50 40 30 20 10 10 150k 300 It : QuasiPea	400 500	800 1M	F TT	2M 3M Juency in Hz	CISPR CISPR2	22-QP Limit at Main Ports 2-Ave Limit at Main Ports 8 10M 20M 30M
Frequency (MHz)	QuasiPeak	Filter	Line	Corr.	Margin (dB)	Limit (dBuV)	
0.174000	46.8	Off	L1	19.6	18.0	64.8	
0.222000	41.0	Off	L1	19.6	21.7	62.7	
0.310000	40.9	Off	L1	19.6	19.1	60.0	
0.462000	47.7	Off	L1	19.6	9.0	56.7	
0.518000	44.8	Off	L1	19.6	11.2	56.0	
0.662000	38.1	Off	L1	19.6	17.9	56.0	
0.758000	38.8	Off	L1	19.6	17.2	56.0	
Final Resu	It : Average			Com	Morain	Linsit	
(MH ₇)	(dBuV)	Filter	Line	(dB)	(dB)	(dBuV)	
0 174000	(UBµV)	Off	11	19.6	(UD) 31.4	(ubμv) 54.8	
0.174000	26.9	Off	11	19.6	25.8	52 7	
0.310000	29.7	Off	L1	19.6	20.3	50.0	
0.462000	37.3	Off	 L1	19.6	9.4	46.7	
0.518000	34.7	Off	L1	19.6	11.3	46.0	
0.662000	28.6	Off	L1	19.6	17.4	46.0	
0.758000	28.7	Off	L1	19.6	17.3	46.0	

Test Mode :	Mode 1			Tem	peratur	e :	20~25 ℃
Test Engineer :	James Chiu			Rela	Relative Humidity : 50~55		50~55%
Test Voltage :	st Voltage: 120Vac / 60Hz		Pha	se :		Neutral	
Function Type :	ection Type · WI AN (5GHz) Link + TC + *						
,,	,	/					
Final Resu Frequency (MHz) 0.150000 0.206000 0.270000 0.430000 0.494000	100 90 80 70 60 50 40 90 90 90 90 90 90 90 90 90 90 90 90 90	0 400 500 k Filter Off Off Off Off Off	Line N N N N N	Corr. (dB) 19.6 19.6 19.6 19.6	2M 3M 4 2m 3M 4 Jency in Hz 24.3 27.1 20.7 11.1 8.3	CISPR22 CISPR2 CISPR	-OP Limit at Main Ports Ave Limit at Main Ports 10M 20M 30M
0.558000	39.8	Off	Ν	19.6	16.2	56.0	
0.638000	41.8	Off	N	19.6	14.2	56.0	
1.574000	38.3	Off	N	19.0	17.1	56.0	
Final Resu	It : Average	· · · ·				·]	
Frequency	Average	Filter	Line	Corr.	Margin	Limit	
(MHz)	(dBµV)	0"	N	(dB)	(dB)	(dBµV)	
0.150000	25.2	Off	N	19.6	30.8	50.U	
0.200000	24.0	Off	N	19.6	20.9 19.6	51.1	
0.430000	35.6	Off	N	19.6	11.7	47.3	
0.494000	38.8	Off	N	19.6	7.3	46.1	
0.558000	31.9	Off	Ν	19.6	14.1	46.0	
0.638000	32.9	Off	Ν	19.6	13.1	46.0	
0.734000	31.6	Off	Ν	19.6	14.4	46.0	
1.574000	32.4	Off	Ν	19.7	13.6	46.0	

SPORTON INTERNATIONAL INC. TEL : 886-3-327-3456 FAX : 886-3-328-4978 FCC ID : PU5-TP00082ASI

3.4 Antenna Requirements

3.4.1 Standard Applicable

According to FCC 47 CFR Section 15.407(a)(1)(2), if transmitting antenna directional gain is greater than 6 dBi, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.4.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.4.3 Antenna Gain

FCC KDB 662911 D01 Multiple Transmitter Output v02r01

For CDD transmissions, directional gain is calculated as

Directional gain = G_{ANT} + Array Gain, where Array Gain is as follows.

For power spectral density (PSD) measurements on all devices,

Array Gain = $10 \log(N_{ANT}/N_{SS}=1) dB$.

For power measurements on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$.

Directional gain may be calculated by using the formulas applicable to equal gain antennas with GANT set equal to the gain of the antenna having the highest gain;

The EUT supports CDD mode.

For power, the directional gain G_{ANT} is set equal to the antenna having the highest gain, i.e., F)2)f)i). For PSD, the directional gain calculation is following F)2)f)ii) of KDB 662911 D01 v02r01.

The power and PSD limit should be modified if the directional gain of EUT is over 6 dBi,

The directional gain "DG" is calculated as following table.

			DG	DG	Power	PSD
			for	for	Limit	Limit
	Ant 1	Ant 2	Power	PSD	Reduction	Reduction
	(dBi)	(dBi)	(dBi)	(dBi)	(dB)	(dB)
Band I	1.82	2.98	2.98	5.43	0.00	0.00
Band II	2.31	3.13	3.13	5.74	0.00	0.00
Band III	1.71	2.32	2.32	5.03	0.00	0.00
Band IV	1.10	2.44	2.44	4.81	0.00	0.00

Power limit reduction = Composite gain - 6dBi, (min = 0)

PSD limit reduction = Composite gain + PSD Array gain - 6dBi, (min = 0)

4 List of Measuring Equipments

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	Nov. 08, 2016	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESCI 7	100724	9kHz~7GHz	Aug. 30, 2016	Nov. 08, 2016	Aug. 29, 2017	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100080	9kHz~30MHz	Dec. 02, 2015	Nov. 08, 2016	Dec. 01, 2016	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100081	9kHz~30MHz	Dec. 14, 2015	Nov. 08, 2016	Dec. 13, 2016	Conduction (CO05-HY)
Bilog Antenna	TESEQ	CBL 6111D&00800 N1D01N-06	35419&03	30MHz to 1GHz	Jan. 13, 2016	Nov. 16, 2016	Jan. 12, 2017	Radiation (03CH07-HY)
Double Ridge Horn Antenna	ESCO	3117	00075962	1GHz ~ 18GHz	Aug. 19, 2016	Nov. 16, 2016	Aug. 18, 2017	Radiation (03CH07-HY)
EMI Test Receiver	Keysight	N9038A(MXE)	MY54130085	20Hz ~ 8.4GHz	Oct. 26, 2016	Nov. 16, 2016	Oct. 25, 2017	Radiation (03CH07-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100315	9 kHz~30 MHz	Sep. 02, 2015	Nov. 16, 2016	Sep. 01, 2017	Radiation (03CH07-HY)
Preamplifier	MITEQ	AMF-7D-0010 1800-30-10P	1590075	1GHz ~ 18GHz	Apr. 15, 2016	Nov. 16, 2016	Apr. 14, 2017	Radiation (03CH07-HY)
Preamplifier	COM-POWER	PA-103A	161241	10MHz-1GHz	Mar. 18, 2016	Nov. 16, 2016	Mar. 17, 2017	Radiation (03CH07-HY)
Preamplifier	Agilent	8449B	3008A02362	1GHz~ 26.5GHz	Oct. 12, 2016	Nov. 16, 2016	Oct. 11, 2017	Radiation (03CH07-HY)
Spectrum Analyzer	Agilent	N9010A	MY53470118	10Hz~44GHz	Feb. 27, 2016	Nov. 16, 2016	Feb. 26, 2017	Radiation (03CH07-HY)
Antenna Mast	Max-Full	MFA520BS	N/A	1m~4m	N/A	Nov. 16, 2016	N/A	Radiation (03CH07-HY)
Turn Table	ChainTek	Chaintek 3000	N/A	0~360 Degree	N/A	Nov. 16, 2016	N/A	Radiation (03CH07-HY)
Preamplifier	MITEQ	JS44-1800400 0-33-8P	1840917	18GHz ~ 40GHz	Jun. 14, 2016	Nov. 16, 2016	Jun. 13, 2017	Radiation (03CH07-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA917025 1	18GHz- 40GHz	Oct. 07, 2016	Nov. 16, 2016	Oct. 06, 2017	Radiation (03CH07-HY)
Spectrum Analyzer	Rohde & Schwarz	FSP40	100055	9kHz-40GHz	Jul. 17, 2016	Sep. 14, 2016 ~ Nov. 04, 2016	Jul. 16, 2017	Radiation (03CH07-HY)

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150kHz ~ 30MHz)

Measuring Uncertainty for a Level of Confidence	27
of 95% (U = 2Uc(y))	2.1

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5 7
of 95% (U = 2Uc(y))	5.7

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.5
of 95% (U = 2Uc(y))	5.5

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0
of 95% (U = 2Uc(y))	5.2

Appendix A. Radiated Spurious Emission

Test Engineer :	Jesse Wang	Temperature :	21~24°C	
Test Engineer .		Relative Humidity :	50~54%	

Band 1 - 5150~5250MHz

WIFI 802.11n HT40 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
2		(MHZ)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5149.76	60.49	-13.51	74	50.67	33.69	11.21	35.08	100	292	Р	Н
		5149.5	53.24	-0.76	54	43.42	33.69	11.21	35.08	100	292	Α	Н
	*	5190	105.06	-	-	95.11	33.78	11.25	35.08	100	292	Р	Н
	*	5190	96.71	-	-	86.76	33.78	11.25	35.08	100	292	А	Н
802.11n		5442.72	49.96	-24.04	74	38.73	34.43	11.89	35.09	100	292	Ρ	Н
HT40		5446.8	41.83	-12.17	54	30.56	34.47	11.89	35.09	100	292	А	Н
CH 38		5150	58.43	-15.57	74	48.61	33.69	11.21	35.08	310	191	Р	V
5190MHz		5149.5	50.79	-3.21	54	40.97	33.69	11.21	35.08	310	191	А	V
	*	5190	103.01	-	-	93.06	33.78	11.25	35.08	310	191	Р	V
	*	5190	95.07	-	-	85.12	33.78	11.25	35.08	310	191	А	V
		5366.88	48.89	-25.11	74	37.96	34.25	11.76	35.08	310	191	Р	V
		5447.52	41.36	-12.64	54	30.09	34.47	11.89	35.09	310	191	А	V
Remark	1. No 2. All	o other spurious results are PA	s found. SS against F	eak and	Average lim	it line.							

	WIFI 802.11n HT40 (Harmonic @ 3m)												
WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		10380	44.2	-29.8	74	47.11	39.11	17.17	59.19	100	0	Р	Н
		15570	46.98	-27.02	74	43.37	41.14	19.63	57.16	100	0	Р	Н
802.11n													Н
HT40													Н
CH 38		10380	44.63	-29.37	74	47.54	39.11	17.17	59.19	100	0	Р	V
5190MHz		15570	47.23	-26.77	74	43.62	41.14	19.63	57.16	100	0	Р	V
													V
													V
Remark	1. No 2. All	o other spurious	s found. SS against P	eak and	Average lim	t line.							

Band 1 5150~5250MHz

SPORTON INTERNATIONAL INC. TEL : 886-3-327-3456 FAX : 886-3-328-4978

Emission below 1GHz

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		82.38	29.24	-10.76	40	45.37	14.14	1.28	31.55	-	-	Р	Н
		203.61	38.06	-5.44	43.5	51.55	16.11	1.87	31.47	100	0	Р	Н
		278.67	36.71	-9.29	46	46.39	19.32	2.32	31.32	-	-	Р	н
		820.8	31.99	-14.01	46	30.36	28.11	4.1	30.58	-	-	Р	Н
		881.7	33.76	-12.24	46	31.25	28.89	4.17	30.55	-	-	Р	н
		953.8	33.83	-12.17	46	30.08	30.21	4.07	30.53	-	-	Р	Н
													н
													Н
													н
													Н
902 11n													Н
002.1111 НТ40													н
1 F		35.94	36.09	-3.91	40	43.73	22.72	1.07	31.43	100	0	Р	V
		115.05	29.76	-13.74	43.5	42.09	17.63	1.55	31.51	-	-	Р	V
		279.21	30.67	-15.33	46	40.35	19.31	2.32	31.31	-	-	Р	V
		827.1	31.34	-14.66	46	29.57	28.25	4.1	30.58	-	-	Р	V
		866.3	32.59	-13.41	46	30.18	28.8	4.17	30.56	-	-	Р	V
		947.5	33.2	-12.8	46	29.51	30.15	4.07	30.53	-	-	Р	V
													V
													V
													V
													V
													V
													V
Remark	1. No 2. All	o other spurious	s found. SS against li	mit line.									

WIFI 802.11n HT40 (LF @ 3m)

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any unwanted emissions shall not
	exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

A calculation example for radiated spurious emission is shown as below:

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
2		(MHz)	($dB\mu V/m$)	(dB)	($dB\mu V/m$)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	Н

1. Level(dBµV/m) =

Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

2. Over Limit(dB) = Level(dBµV/m) – Limit Line(dBµV/m)

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- = 55.45 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- = 43.54 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

Appendix B. Radiated Spurious Emission Plots

Test Engineer :	Jesse Wang	Temperature :	21~24°C
Test Engineer .		Relative Humidity :	50~54%

Note symbol

-L	Low channel location
-R	High channel location

Band 1 - 5150~5250MHz

WIFI 802.11n HT40 (Band Edge @ 3m)

WIFI	Band 1 5150~5250MHz Band Edge @ 3m								
ANT	802.11n HT40 CH	138 5190MHz - R							
2	Horizontal	Fundamental							
Peak	Hole Date 285.51.15 133 134 <	Left blank							
Avg.	Hole Date 285.51.6 133 134 <t< th=""><th>Left blank</th></t<>	Left blank							

WIFI	Band 1 5150~5250MHz Band Edge @ 3m									
ANT	802.11n HT40 CH	H38 5190MHz - R								
2	Vertical	Fundamental								
Peak	Tele Level (BloVm) Date: 2016-11.15 1330 133	Left blank								
Avg.	Hole Date 285-51.15 133 134 <	Left blank								

Band 1 - 5150~5250MHz

WIFI 802.11n HT40 (Harmonic @ 3m)

Emission below 1GHz

5GHz WIFI 802.11n HT40 (LF)

Appendix C Duty Cycle Plots

Antenna	Band	Duty Cycle(%) T(us)		1/T(kHz)	VBW Setting	
1	5GHz 802.11n HT40	96.91	940	1.063	3kHz	

Date: 14.SEP.2016 15:14:50