FCC SAR Test Report **APPLICANT** : Wistron Corporation **EQUIPMENT** : Tablet PC **BRAND NAME** : Lenovo MODEL NAME : TP00082A **FCC ID** : PU5-TP00082A **STANDARD** : FCC 47 CFR Part 2 (2.1093) **ANSI/IEEE C95.1-1992** IEEE 1528-2013 Equipment: Intel 8260D2W tested inside of Lenovo Tablet PC We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the procedures and had been in compliance with the applicable technical standards. The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full. Reviewed by: Eric Huang / Deputy Manager Este man? Approved by: Jones Tsai / Manager Report No.: FA5N2711-05 ### SPORTON INTERNATIONAL INC. No.52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan District, Taoyuan City, Taiwan (R.O.C.) TEL: 886-3-327-3456 / FAX: 886-3-328-4978 FCC ID: PU5-TP00082A Issued Date: Jan. 18, 2016 Page 1 of 38 Form version.: 151208 # SPORTON LAB. FCC SAR Test Report # **Table of Contents** | | Statement of Compliance | | |-----|--|--------------| | | Administration Data | | | | Guidance Standard | | | 4. | Equipment Under Test (EUT) Information | 5 | | | 4.1 General Information | | | 5. | RF Exposure Limits | | | | 5.1 Uncontrolled Environment | | | | 5.2 Controlled Environment | | | 6. | Specific Absorption Rate (SAR) | | | | 6.1 Introduction | | | _ | 6.2 SAR Definition | 7 | | 7. | System Description and Setup | | | | 7.1 E-Field Probe | | | | 7.2 Data Acquisition Electronics (DAE) | | | | 7.3 Phantom | | | _ | 7.4 Device Holder | | | 8. | Measurement Procedures | | | | 8.1 Spatial Peak SAR Evaluation | | | | 8.2 Power Reference Measurement | | | | | | | | 8.4 Zoom Scan | | | | 8.6 Power Drift Monitoring | | | ۵ | Test Equipment List | | | | . System Verification | | | | 10.1 Tissue Verification | | | | 10.2 System Performance Check Results | . 1 /
1 R | | 11 | . RF Exposure Positions | 18 | | • • | 11.1 SAR Testing for Tablet | | | 12 | Conducted RF Output Power (Unit: dBm) | | | | . Test Exclusion Applied | | | | SAR Test Results | | | | 14.1 Body SAR | | | | 14.2 Repeated SAR Measurement | | | 15 | . Simultaneous Transmission Analysis | .32 | | | 15.1 Body Exposure Conditions | | | | 15.2 SPLSR Evaluation and Analysis | | | 16 | . Uncertainty Assessment | .35 | | | . References | .38 | | | pendix A. Plots of System Performance Check | | | | pendix B. Plots of High SAR Measurement | | | | pendix C. DASY Calibration Certificate | | | Αį | pendix D. Antenna Location & Test Setup Photos | | Page 2 of 38 TEL: 886-3-327-3456 / FAX: 886-3-328-4978 FCC ID: PU5-TP00082A Report No. : FA5N2711-05 # **Revision History** | REPORT NO. | VERSION | DESCRIPTION | ISSUED DATE | |-------------|---------|-------------------------|---------------| | FA5N2711-05 | Rev. 01 | Initial issue of report | Jan. 18, 2016 | Page 3 of 38 TEL: 886-3-327-3456 / FAX: 886-3-328-4978 FCC ID: PU5-TP00082A Report No. : FA5N2711-05 # 1. Statement of Compliance The maximum results of Specific Absorption Rate (SAR) found during testing for Wistron Corporation, Tablet PC, TP00082A, are as follows. Report No. : FA5N2711-05 | Equipment
Class | Frequency
Band | Highest SAR Summary Body (Separation 0mm) 1g SAR (W/kg) | Highest Simultaneous
Transmission
1g SAR (W/kg) | |--------------------|-------------------|---|---| | DTS | 2.4GHz WLAN | 1.06 | 1.06 | | NII | 5GHz WLAN | 1.12 | 1.47 | | DSS | Bluetooth | 0.03 | 1.06 | | Date of Testing: | | 2015/01/04 | ~ 2015/01/12 | This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 and FCC KDB publications # 2. Administration Data | Testing Laboratory | | |--------------------------------------|--| | Test Site SPORTON INTERNATIONAL INC. | | | Test Site Location | No.52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan District, Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978 | | Applicant | | |------------------|--| | Company Name | Wistron Corporation | | Address | 21F, No. 88, Sec. 1, Hsin Tai Wu Rd., Hsichih Dist, New Taipei City 221, Taiwan R.O.C. | | Manufacturer Manufacturer | | |----------------------------------|--| | Company Name Wistron Corporation | | | Address | 21F, No. 88, Sec. 1, Hsin Tai Wu Rd., Hsichih Dist, New Taipei City 221, Taiwan R.O.C. | TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Jan. 18, 2016 FCC ID: PU5-TP00082A Form version.: 151208 Page 4 of 38 ### 3. Guidance Standard The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards: **Report No. : FA5N2711-05** - FCC 47 CFR Part 2 (2.1093) - ANSI/IEEE C95.1-1992 - IEEE 1528-2013 - FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04 - FCC KDB 865664 D02 SAR Reporting v01r02 - FCC KDB 447498 D01 General RF Exposure Guidance v06 - FCC KDB 248227 D01 802.11 Wi-Fi SAR v02r02 - FCC KDB 616217 D04 SAR for laptop and tablets v01r02 # 4. Equipment Under Test (EUT) Information ### 4.1 General Information | Product Feature & Specification | | | |--|--|--| | Equipment Name | Tablet PC | | | Brand Name | Lenovo | | | Model Name | TP00082A | | | FCC ID | PU5-TP00082A | | | IMEI Code | 359073060057498 | | | Integrated Module | Brand Name: Intel | | | integrated Module | Model Name: 8260D2W | | | | WLAN 2.4GHz Band: 2412 MHz ~ 2472 MHz | | | W | WLAN 5.2GHz Band: 5180 MHz ~ 5240 MHz | | | | WLAN 5.3GHz Band: 5260 MHz ~ 5320 MHz | | | Frequency Range | WLAN 5.5GHz Band: 5500 MHz ~ 5720MHz | | | | WLAN 5.8GHz Band: 5745 MHz ~ 5825 MHz | | | | Bluetooth: 2402 MHz ~ 2480 MHz | | | Mode | · 802.11a/b/g/n/ac HT20/HT40/VHT20/VHT40/VHT80 | | | - 111 | · Bluetooth v3.0+EDR · Bluetooth v4.1-LE | | | EUT Stage | Production Unit | | | Remark: | | | | 1. 802.11ac-VHT20/VHT40 is not supported in 2.4GHz WLAN. | | | | Antenna Information | | | |---------------------|----------------------|-----------------------------| | Manufacturer PULSE | | SE | | Antenna Type | Main: dipole Antenna | Aux: dipole Antenna | | Part number | 025.900FC.0001 | 025.900FD.0001 | | | Main Antenna : | Aux Antenna : | | Peak gain(dBi) | WLAN(2.4G):-0.82 | WLAN(2.4G):1.39
BT :1.39 | | | WLAN(5G):2.31 | WLAN(5G):3.13 | **SPORTON INTERNATIONAL INC.**TEL: 886-3-327-3456 / FAX: 886-3-328-4978 ## 5. RF Exposure Limits ### 5.1 Uncontrolled Environment Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity. Report No.: FA5N2711-05 ### 5.2 Controlled Environment Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means. #### Limits for Occupational/Controlled Exposure (W/kg) | Whole-Body | Partial-Body | Hands, Wrists, Feet and Ankles | |------------|--------------|--------------------------------| | 0.4 | 8.0 | 20.0 | #### Limits for General Population/Uncontrolled Exposure (W/kg) | Whole-Body | Partial-Body | Hands, Wrists, Feet and Ankles | |------------|--------------|--------------------------------| | 0.08 | 1.6 | 4.0 | 1. Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube. FCC ID : PU5-TP00082A Page 6 of 38 Form version. : 151208 # 6. Specific Absorption Rate (SAR) ### 6.1 Introduction SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard
recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled. Report No.: FA5N2711-05 ### 6.2 SAR Definition The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (p). The equation description is as below: $$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$ SAR is expressed in units of Watts per kilogram (W/kg) $$SAR = \frac{\sigma |E|^2}{\rho}$$ Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength. TEL: 886-3-327-3456 / FAX: 886-3-328-4978 FCC ID: PU5-TP00082A ## 7. System Description and Setup The DASY system used for performing compliance tests consists of the following items: Report No.: FA5N2711-05 - A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE). - An isotropic Field probe optimized and calibrated for the targeted measurement. - A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC. - The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server. - The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts. - The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning. - A computer running WinXP or Win7 and the DASY5 software. - Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, - The phantom, the device holder and other accessories according to the targeted measurement. FCC ID : PU5-TP00082A Page 8 of 38 Form version. : 151208 ### 7.1 E-Field Probe The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom. #### <ES3DV3 Probe> | Construction | Symmetric design with triangular core
Interleaved sensors
Built-in shielding against static charges
PEEK enclosure material (resistant to organic
solvents, e.g., DGBE) | | |---------------|---|--| | Frequency | 10 MHz – 4 GHz;
Linearity: ±0.2 dB (30 MHz – 4 GHz) | | | Directivity | ±0.2 dB in TSL (rotation around probe axis)
±0.3 dB in TSL (rotation normal to probe axis) | | | Dynamic Range | 5 μW/g - >100 mW/g;
Linearity: ±0.2 dB | | | Dimensions | Overall length: 337 mm (tip: 20 mm) Tip diameter: 3.9 mm (body: 12 mm) Distance from probe tip to dipole centers: 2.0 mm | | Report No.: FA5N2711-05 #### <EX3DV4 Probe> | Construction | Symmetric design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE) | |---------------|---| | Frequency | 10 MHz - >6 GHz
Linearity: ±0.2 dB (30 MHz - 6 GHz) | | Directivity | ± 0.3 dB in TSL (rotation around probe axis) ± 0.5 dB in TSL (rotation normal to probe axis) | | Dynamic Range | 10 μW/g $- > 100$ mW/g
Linearity: ± 0.2 dB (noise: typically < 1 μW/g) | | Dimensions | Overall length: 337 mm (tip: 20 mm) Tip diameter: 2.5 mm (body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm | ### 7.2 <u>Data Acquisition Electronics (DAE)</u> The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB. Fig 5.1 Photo of DAE SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 / FAX: 886-3-328-4978 FCC ID: PU5-TP00082A Issued Date: Jan. 18, 2016 Page 9 of 38 Form version. : 151208 ### 7.3 Phantom #### <SAM Twin Phantom> | Shell Thickness | 2 ± 0.2 mm;
Center ear point: 6 ± 0.2 mm | | |-------------------|---|-----| | Filling Volume | Approx. 25 liters | | | Dimensions | Length: 1000 mm; Width: 500 mm; Height: adjustable feet | 7 5 | | Measurement Areas | Left Hand, Right Hand, Flat Phantom | | Report No.: FA5N2711-05 The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot. #### <ELI Phantom> | 1==::::::a:::(0::::> | | | |----------------------|--|--| | Shell Thickness | 2 ± 0.2 mm (sagging: <1%) | | | Filling Volume | Approx. 30 liters | | | Dimensions | Major ellipse axis: 600 mm
Minor axis: 400 mm | | The ELI phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids. SPORTON INTERNATIONAL INC. ### 7.4 Device Holder #### <Mounting Device for Hand-Held Transmitter> In combination with the Twin SAM V5.0/V5.0c or ELI phantoms, the Mounting Device for Hand-Held Transmitters enables rotation of the mounted transmitter device to specified spherical coordinates. At the heads, the rotation axis is at the ear opening. Transmitter devices can be easily and accurately positioned according to IEC 62209-1, IEEE 1528, FCC, or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat). And upgrade kit to Mounting Device to enable easy mounting of wider devices like big smart-phones, e-books, small tablets, etc. It holds devices with width up to 140 mm. Report No.: FA5N2711-05 Mounting Device for Hand-Held Transmitters Mounting Device Adaptor for Wide-Phones ### <Mounting Device for Laptops and other Body-Worn Transmitters> The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the mounting device in place of the phone positioned. The extension is fully compatible with the SAM Twin and ELI phantoms. Mounting Device for Laptops TEL: 886-3-327-3456 / FAX: 886-3-328-4978 FCC ID: PU5-TP00082A Issued Date: Jan. 18, 2016 Page 11 of 38 Form version. : 151208 ### 8. Measurement Procedures The measurement procedures are as follows: #### <Conducted power measurement> (a) For WWAN power measurement, use base station simulator to configure EUT WWAN transmission in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band. Report No.: FA5N2711-05 - (b) Read the WWAN RF power level from the base station simulator. - (c) For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power in each supported wireless interface and frequency band - (d) Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power #### <SAR measurement> - (a) Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest power channel. - (b) Place the EUT in the positions as Appendix D demonstrates. - c) Set scan area, grid size and other setting on the DASY software. - (d) Measure SAR results for the highest power channel on each testing position. - (e) Find out the largest SAR result on these testing positions of each band - (f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps: - (a) Power reference measurement - (b) Area scan - (c) Zoom scan - (d) Power drift measurement ### 8.1 Spatial Peak SAR Evaluation The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value. The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest
averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan. The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages: - (a) Extraction of the measured data (grid and values) from the Zoom Scan - (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters) - (c) Generation of a high-resolution mesh within the measured volume - (d) Interpolation of all measured values form the measurement grid to the high-resolution grid - (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface - (f) Calculation of the averaged SAR within masses of 1g and 10g FCC ID : PU5-TP00082A Page 12 of 38 Form version. : 151208 ### 8.2 Power Reference Measurement The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties. ### 8.3 Area Scan The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly. Area scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz. | | ≤ 3 GHz | > 3 GHz | |--|--|--| | Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface | 5 ± 1 mm | $\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$ | | Maximum probe angle from probe axis to phantom surface normal at the measurement location | 30° ± 1° | 20° ± 1° | | | \leq 2 GHz: \leq 15 mm
2 – 3 GHz: \leq 12 mm | $3 - 4 \text{ GHz:} \le 12 \text{ mm}$
$4 - 6 \text{ GHz:} \le 10 \text{ mm}$ | | Maximum area scan spatial resolution: $\Delta x_{\text{Area}},\Delta y_{\text{Area}}$ | When the x or y dimension of measurement plane orientation the measurement resolution of x or y dimension of the test of measurement point on the test | on, is smaller than the above, must be \leq the corresponding levice with at least one | Page 13 of 38 TEL: 886-3-327-3456 / FAX: 886-3-328-4978 FCC ID: PU5-TP00082A Issued Date: Jan. 18, 2016 Report No.: FA5N2711-05 Form version. : 151208 ### 8.4 Zoom Scan Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label. Report No.: FA5N2711-05 Zoom scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz. | | | | ≤ 3 GHz | > 3 GHz | |--|--------------|---|--|--| | Maximum zoom scan s | spatial reso | lution: Δx _{Zoom} , Δy _{Zoom} | \leq 2 GHz: \leq 8 mm
2 – 3 GHz: \leq 5 mm [*] | $3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$
$4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$ | | Maximum zoom scan
spatial resolution,
normal to phantom
surface | uniform | grid: $\Delta z_{Zoom}(n)$ | ≤ 5 mm | $3 - 4 \text{ GHz: } \le 4 \text{ mm}$
$4 - 5 \text{ GHz: } \le 3 \text{ mm}$
$5 - 6 \text{ GHz: } \le 2 \text{ mm}$ | | | graded | Δz _{Zoom} (1): between 1 st two points closest to phantom surface | ≤ 4 mm | $3 - 4 \text{ GHz: } \le 3 \text{ mm}$
$4 - 5 \text{ GHz: } \le 2.5 \text{ mm}$
$5 - 6 \text{ GHz: } \le 2 \text{ mm}$ | | | grid | Δz _{Zoom} (n>1):
between subsequent
points | $\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$ | | | Minimum zoom scan
volume | X V 7 | | ≥ 30 mm | 3 – 4 GHz: ≥ 28 mm
4 – 5 GHz: ≥ 25 mm
5 – 6 GHz: ≥ 22 mm | Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details. TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Jan. 18, 2016 FCC ID: PU5-TP00082A Form version.: 151208 Page 14 of 38 When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is $\leq 1.4 \text{ W/kg}$, $\leq 8 \text{ mm}$, $\leq 7 \text{ mm}$ and $\leq 5 \text{ mm}$ zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz. ### 8.5 Volume Scan Procedures The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR. Report No.: FA5N2711-05 ### 8.6 Power Drift Monitoring All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested. TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date : Jan. 18, 2016 Form version.: 151208 FCC ID: PU5-TP00082A Page 15 of 38 # 9. Test Equipment List | Manufacturer | Name of Equipment | Towns /Mandal | Carriel Number | Calib | ration | | |---------------|-------------------------------|---------------|----------------|---------------|---------------|--| | Manufacturer | Name of Equipment | Type/Model | Serial Number | Last Cal. | Due Date | | | SPEAG | 2450MHz System Validation Kit | D2450V2 | 736 | Aug. 20, 2015 | Aug. 19, 2016 | | | SPEAG | 5GHz System Validation Kit | D5GHzV2 | 1006 | Oct. 06, 2015 | Oct. 05, 2016 | | | SPEAG | 5GHz System Validation Kit | D5GHzV2 | 1128 | Jul. 20, 2015 | Jul. 19, 2016 | | | SPEAG | Data Acquisition Electronics | DAE3 | 577 | Sep. 24, 2015 | Sep. 23, 2016 | | | SPEAG | Data Acquisition Electronics | DAE4 | 1399 | Nov. 23, 2015 | Nov. 22, 2016 | | | SPEAG | Dosimetric E-Field Probe | EX3DV4 | 3578 | Mar. 31, 2015 | Mar. 30, 2016 | | | SPEAG | Dosimetric E-Field Probe | EX3DV4 | 3931 | Oct. 01, 2015 | Sep. 30, 2016 | | | SPEAG | Dosimetric E-Field Probe | EX3DV4 | 3955 | Nov. 24, 2015 | Nov. 23, 2016 | | | WonDer | Thermometer | WD-5015 | TM685 | Oct. 16, 2015 | Oct. 15, 2016 | | | WonDer | Thermometer | WD-5015 | TM642 | Oct. 16, 2015 | Oct. 15, 2016 | | | SPEAG | Device Holder | N/A | N/A | N/A | N/A | | | R&S | Signal Generator | MG3710A | 6201502524 | Dec. 18, 2015 | Dec. 17, 2016 | | | Agilent | ENA Network Analyzer | E5071C | MY46316648 | Feb. 11, 2015 | Feb. 10, 2016 | | | SPEAG | Dielectric Probe Kit | DAK-3.5 | 1126 | Jul. 21, 2015 | Jul. 20, 2016 | | | LINE SEIKI | Digital Thermometer | LKMelectronic | DTM3000SPEZIAL | Jul. 17, 2015 | Jul. 16, 2016 | | | Anritsu | Power Meter | ML2495A | 1419002 | May. 13, 2015 | May. 12, 2016 | | | Anritsu | Power Sensor | MA2411B | 1339124 | May. 13, 2015 | May. 12, 2016 | | | Anritsu | Spectrum Analyzer | MS2830A | 6201396378 | Jun. 17, 2015 | Jun. 16, 2016 | | | ATM | Dual Directional Coupler | C122H-10 | P610410z-02 | Not | te 1 | | | Woken | Attenuator 1 | WK0602-XX | N/A | No | te 1 | | | PE | Attenuator 2 | PE7005-10 | N/A | Not | Note 1 | | | PE | Attenuator 3 | PE7005- 3 | N/A | No | Note 1 | | | AR | Power Amplifier | 5S1G4M2 | 0328767 | Not | te 1 | | | Mini-Circuits | Power Amplifier | ZVE-3W | 162601250 | No | te 1 | | **Report No. : FA5N2711-05** ### **General Note:** 1. Prior to system verification and validation, the path loss from the signal generator to the system
check source and the power meter, which includes the amplifier, cable, attenuator and directional coupler, was measured by the network analyzer. The reading of the power meter was offset by the path loss difference between the path to the power meter and the path to the system check source to monitor the actual power level fed to the system check source. FCC ID : PU5-TP00082A Page 16 of 38 Form version. : 151208 # 10. System Verification # 10.1 Tissue Verification The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target Report No. : FA5N2711-05 tissue parameters required for routine SAR evaluation. | Frequency
(MHz) | Water
(%) | Sugar
(%) | Cellulose
(%) | Salt
(%) | Preventol
(%) | DGBE
(%) | Conductivity (σ) | Permittivity
(εr) | | | | |--------------------|--------------|--------------|------------------|-------------|------------------|-------------|------------------|----------------------|--|--|--| | | For Head | | | | | | | | | | | | 750 | 41.1 | 57.0 | 0.2 | 1.4 | 0.2 | 0 | 0.89 | 41.9 | | | | | 835 | 40.3 | 57.9 | 0.2 | 1.4 | 0.2 | 0 | 0.90 | 41.5 | | | | | 900 | 40.3 | 57.9 | 0.2 | 1.4 | 0.2 | 0 | 0.97 | 41.5 | | | | | 1800, 1900, 2000 | 55.2 | 0 | 0 | 0.3 | 0 | 44.5 | 1.40 | 40.0 | | | | | 2450 | 55.0 | 0 | 0 | 0 | 0 | 45.0 | 1.80 | 39.2 | | | | | 2600 | 54.8 | 0 | 0 | 0.1 | 0 | 45.1 | 1.96 | 39.0 | | | | | | | | | For Body | | | | | | | | | 750 | 51.7 | 47.2 | 0 | 0.9 | 0.1 | 0 | 0.96 | 55.5 | | | | | 835 | 50.8 | 48.2 | 0 | 0.9 | 0.1 | 0 | 0.97 | 55.2 | | | | | 900 | 50.8 | 48.2 | 0 | 0.9 | 0.1 | 0 | 1.05 | 55.0 | | | | | 1800, 1900, 2000 | 70.2 | 0 | 0 | 0.4 | 0 | 29.4 | 1.52 | 53.3 | | | | | 2450 | 68.6 | 0 | 0 | 0 | 0 | 31.4 | 1.95 | 52.7 | | | | | 2600 | 68.1 | 0 | 0 | 0.1 | 0 | 31.8 | 2.16 | 52.5 | | | | Simulating Liquid for 5GHz, Manufactured by SPEAG | Ingredients | (% by weight) | | | |--------------------|---------------|--|--| | Water | 64~78% | | | | Mineral oil | 11~18% | | | | Emulsifiers | 9~15% | | | | Additives and Salt | 2~3% | | | ### <Tissue Dielectric Parameter Check Results> | Frequency
(MHz) | Tissue
Type | Liquid
Temp.
(°C) | Conductivity (σ) | Permittivity (ε _r) | Conductivity
Target (σ) | Permittivity
Target (ε _r) | Delta (σ)
(%) | Delta (ε _r)
(%) | Limit (%) | Date | |--------------------|----------------|-------------------------|------------------|--------------------------------|----------------------------|--|------------------|--------------------------------|-----------|-----------| | 2450 | MSL | 22.4 | 2.009 | 54.484 | 1.95 | 52.70 | 3.03 | 3.39 | ±5 | 2016/1/4 | | 2450 | MSL | 22.5 | 1.990 | 52.350 | 1.95 | 52.70 | 2.05 | -0.66 | ±5 | 2016/1/12 | | 5250 | MSL | 22.8 | 5.509 | 46.959 | 5.36 | 48.93 | 2.78 | -4.03 | ±5 | 2016/1/6 | | 5300 | MSL | 22.5 | 5.409 | 46.628 | 5.42 | 48.90 | -0.20 | -4.65 | ±5 | 2016/1/5 | | 5600 | MSL | 22.5 | 5.775 | 46.163 | 5.77 | 48.50 | 0.09 | -4.82 | ±5 | 2016/1/5 | | 5600 | MSL | 22.8 | 5.968 | 46.345 | 5.77 | 48.50 | 3.43 | -4.44 | ±5 | 2016/1/6 | | 5750 | MSL | 22.8 | 6.174 | 46.124 | 5.94 | 48.27 | 3.94 | -4.45 | ±5 | 2016/1/6 | ### 10.2 System Performance Check Results Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10 %. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report. | Date | Frequency
(MHz) | Tissue
Type | Input
Power
(mW) | Dipole
S/N | Probe
S/N | DAE
S/N | Measured
1g SAR
(W/kg) | Targeted
1g SAR
(W/kg) | Normalized
1g SAR
(W/kg) | Deviation
(%) | |-----------|--------------------|----------------|------------------------|-------------------|-----------------|-------------|------------------------------|------------------------------|--------------------------------|------------------| | 2016/1/4 | 2450 | MSL | 250 | D2450V2-736 | EX3DV4 - SN3578 | DAE4 Sn1399 | 13.60 | 51.90 | 54.40 | 4.82 | | 2016/1/12 | 2450 | MSL | 250 | D2450V2-736 | EX3DV4 - SN3931 | DAE3 Sn577 | 12.20 | 51.90 | 48.80 | -5.97 | | 2016/1/6 | 5250 | MSL | 100 | D5GHzV2-1128-5250 | EX3DV4 - SN3955 | DAE4 Sn1399 | 7.18 | 76.20 | 71.80 | -5.77 | | 2016/1/5 | 5300 | MSL | 100 | D5GHzV2-1006-5300 | EX3DV4 - SN3578 | DAE4 Sn1399 | 7.62 | 79.50 | 76.20 | -4.15 | | 2016/1/5 | 5600 | MSL | 100 | D5GHzV2-1006-5600 | EX3DV4 - SN3578 | DAE4 Sn1399 | 8.14 | 82.30 | 81.40 | -1.09 | | 2016/1/6 | 5600 | MSL | 100 | D5GHzV2-1006-5600 | EX3DV4 - SN3955 | DAE4 Sn1399 | 7.81 | 82.30 | 78.10 | -5.10 | | 2016/1/6 | 5750 | MSL | 100 | D5GHzV2-1128-5750 | EX3DV4 - SN3955 | DAE4 Sn1399 | 7.24 | 75.90 | 72.40 | -4.61 | Report No.: FA5N2711-05 Fig 8.3.1 System Performance Check Setup Fig 8.3.2 Setup Photo # 11. RF Exposure Positions ### 11.1 SAR Testing for Tablet This device can be used also in full sized tablet exposure conditions, due to its size. Per FCC KDB 616217, the back surface and edges of the tablet should be tested for SAR compliance with the tablet touching the phantom. The SAR exclusion threshold in KDB 447498 D01v06 can be applied to determine SAR test exclusion for adjacent edge configurations. The closest distance from the antenna to an adjacent tablet edge is used to determine if SAR testing is required for the adjacent edges, with the adjacent edge positioned against the phantom and the edge containing the antenna positioned perpendicular to the phantom. FCC ID : PU5-TP00082A Page 18 of 38 Form version. : 151208 # 12. Conducted RF Output Power (Unit: dBm) #### <WLAN Conducted Power> #### **General Note:** For WLAN SAR testing was performed on single antenna RF power in SISO mode is larger or equal to the single antenna RF power in MIMO mode, and for RF exposure assessment of MIMO mode simultaneous transmission exclusion analysis was performed with SAR test results of each antenna in SISO mode. Report No.: FA5N2711-05 - 2. Per KDB 248227 D01v02r02, the simultaneous SAR provisions in KDB publication 447498 should be applied to determine simultaneous transmission SAR test exclusion for WiFi MIMO. If the sum of 1g single transmission chain SAR measurements is < 1.6W/kg and SAR peak to location ratio < 0.04, no additional SAR measurements for MIMO. - Per KDB 248227 D01v02r02, SAR test reduction is determined according to 802.11 transmission mode 3. configurations and certain exposure conditions with multiple test positions. In the 2.4 GHz band, separate SAR procedures are applied to DSSS and OFDM configurations to simplify DSSS test requirements. For OFDM, in both 2.4 and 5 GHz bands, an initial test configuration must be determined for each standalone and aggregated frequency band, according to the transmission mode configuration with the highest maximum output power specified for production units to perform SAR measurements. If the same highest maximum output power applies to different combinations of channel bandwidths, modulations and data rates, additional procedures are applied to determine which test configurations require SAR measurement. When applicable, an initial test position may be applied to reduce the number of SAR measurements required for next to the ear, UMPC mini-tablet or hotspot mode configurations with multiple test positions. - For 2.4 GHz 802.11b DSSS, either the initial test position procedure for multiple exposure test positions or the DSSS procedure for fixed exposure position is applied; these are mutually exclusive. For 2.4 GHz and 5 GHz OFDM configurations, the initial test configuration is applied to measure SAR using either the initial test position procedure for multiple exposure test position configurations or the initial test configuration procedures for fixed exposure test conditions. Based on the reported SAR of the measured configurations and maximum output power of the transmission mode configurations that are not included in the initial test configuration, the subsequent test configuration and initial test position procedures are applied to determine if SAR measurements are required for the remaining OFDM transmission configurations. In general, the number of test channels that require SAR measurement is minimized based on maximum output power measured for the test sample(s). - 5. For OFDM transmission configurations in the 2.4 GHz and 5 GHz bands, When the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel for each frequency band. - DSSS and OFDM configurations are considered separately according to the required SAR procedures. SAR is 6. measured in the initial test position using the 802.11 transmission mode configuration required by the DSSS procedure or initial test configuration and subsequent test configuration(s) according to the OFDM procedures.18 The initial test position procedure is described in the following: - When the reported SAR of the initial test position is ≤ 0.4 W/kg, further SAR measurement is not required for the other test positions in that exposure configuration and 802.11 transmission mode combinations within the frequency band or aggregated band. - When the reported SAR of the test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position to measure the subsequent next closet/smallest test separation distance and maximum coupling test position on the highest maximum output power channel, until the report SAR is ≤ 0.8 W/kg or all required test position are tested. - For all
positions/configurations, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested. - 7. For Channel #12 and #13 SAR testing are not necessary, due to the maximum power is even lower than the other channels, the maximum power please referred to Tune-up document. TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Jan. 18, 2016 Form version. : 151208 FCC ID: PU5-TP00082A Page 19 of 38 SPORTON INTERNATIONAL INC. ### <2.4GHz WLAN ANT 1> | | Mode | Channel | Frequency
(MHz) | Data Rate | Average power (dBm) | Tune-Up
Limit | Peak Power
(dBm) | Duty Cycle % | |----------------------|--------------|---------|--------------------|-----------|---------------------|------------------|---------------------|--------------| | | | CH 1 | 2412 | | 14.78 | 15.00 | 17.54 | | | | 802.11b | CH 6 | 2437 | 1Mbps | 14.70 | 15.00 | 17.49 | 97.97 | | 2.4011 | CH 11 | 2462 | | 14.71 | 15.00 | 17.52 | | | | | | CH 1 | 2412 | | 14.73 | 15.00 | 20.12 | 98.01 | | 2.4GHz
WLAN ANT 1 | 802.11g | CH 6 | 2437 | 6Mbps | 14.92 | 15.00 | 20.16 | | | | | CH 11 | 2462 | | 14.70 | 15.00 | 19.93 | | | | | CH 1 | 2412 | | 14.66 | 15.00 | 20.21 | | | | 802.11n-HT20 | CH 6 | 2437 | MCS0 | 14.82 | 15.00 | 20.26 | 98.00 | | | | CH 11 | 2462 | | 14.80 | 15.00 | 20.15 | | | | | CH 3 | 2422 | | 14.86 | 15.00 | 19.29 | | | | 802.11n-HT40 | CH 6 | 2437 | MCS0 | 14.78 | 15.00 | 19.06 | 97.37 | | | | CH 9 | 2452 | | 14.88 | 15.00 | 19.43 | | Report No. : FA5N2711-05 ### <2.4GHz WLAN ANT 2> | | Mode | Channel | Frequency
(MHz) | Data Rate | Average
power (dBm) | Tune-Up
Limit | Peak Power
(dBm) | Duty Cycle % | |----------------------|--------------|---------|--------------------|-----------|------------------------|------------------|---------------------|-------------------------| | | | CH 1 | 2412 | | 14.93 | 15.00 | 17.75 | | | | 802.11b | CH 6 | 2437 | 1Mbps | 14.84 | 15.00 | 17.65 | 97.97 | | | | CH 11 | 2462 | | 14.91 | 15.00 | 17.71 | | | | 802.11g | CH 1 | 2412 | 6Mbps | 14.93 | 15.00 | 20.26 | 98.01
98.01
97.39 | | 2.4GHz
WLAN ANT 2 | | CH 6 | 2437 | | 14.97 | 15.00 | 20.30 | | | | | CH 11 | 2462 | | 14.92 | 15.00 | 20.21 | | | | | CH 1 | 2412 | | 14.84 | 15.00 | 20.25 | | | | 802.11n-HT20 | CH 6 | 2437 | MCS0 | 14.91 | 15.00 | 20.33 | | | | | CH 11 | 2462 | | 14.96 | 15.00 | 20.38 | | | | | CH 3 | 2422 | | 14.94 | 15.00 | 19.63 | | | | 802.11n-HT40 | CH 6 | 2437 | MCS0 | 14.85 | 15.00 | 19.46 | | | | | CH 9 | 2452 | | 14.97 | 15.00 | 19.72 | | ### <2.4GHz WLAN ANT 1+2> | | Mode | Channel | Frequency
(MHz) | Data Rate | Average
power (dBm) | Tune-Up
Limit | Peak Power
(dBm) | Duty Cycle % | |--------|--------------|---------|--------------------|-----------|------------------------|------------------|---------------------|--------------| | 2.4GHz | | CH 1 | 2412 | | 14.88 | 15.00 | 20.58 | 97.39 | | | 802.11n-HT20 | CH 6 | 2437 | MCS0 | 14.74 | 15.00 | 20.23 | | | 1+2 | | CH 11 | 2462 | | 14.81 | 15.00 | 20.17 | | | | | CH 3 | 2422 | | 14.82 | 15.00 | 19.02 | | | 8 | 802.11n-HT40 | CH 6 | 2437 | MCS0 | 14.88 | 15.00 | 18.90 | 97.37 | | | | CH 9 | 2452 | | 14.85 | 15.00 | 18.83 | | TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date : Jan. 18, 2016 Form version. : 151208 FCC ID: PU5-TP00082A Page 20 of 38 ### <5GHz WLAN ANT1> | | Mode | Channel | Frequency
(MHz) | Data Rate | Average power (dBm) | Tune-Up
Limit | Peak Power
(dBm) | Duty Cycle % | |----------------|--|---------|--------------------|-----------|---------------------|------------------|---------------------|---| | | | CH 36 | 5180 | | 13.33 | 13.50 | 18.60 | | | | 802.11a | CH 40 | 5200 | GMbba | 13.37 | 13.50 | 18.59 | 08.01 | | | 602.11a | CH 44 | 5220 | 6Mbps | 13.31 | 13.50 | 18.54 | 96.01 | | | | CH 48 | 5240 | | 13.29 | 13.50 | 18.40 | | | | | CH 36 | 5180 | | 13.34 | 13.50 | 18.55 | | | | 802.11n-HT20 | CH 40 | 5200 | MCCO | 13.22 | 13.50 | 18.66 | 09.01 | | 5.2GHz
WLAN | 802.1111-H120 | CH 44 | 5220 | MCS0 | 13.41 | 13.50 | 18.74 | 96.01 | | ANT 1 | | CH 48 | 5240 | | 13.30 | 13.50 | 18.56 | | | | 802.11n-HT40 | CH 38 | 5190 | MCS0 | 13.37 | 13.50 | 17.62 | 98.01 98.01 98.01 97.71 98.03 97.39 97.37 | | | 802.1111-H140 | CH 46 | 5230 | IVICSU | 13.34 | 13.50 | 17.73 | | | | | CH 36 | 5180 | | 13.20 | 13.50 | 18.77 | | | | 802.11ac-VHT20 | CH 40 | 5200 | MCCO | 13.11 | 13.50 | 18.71 | | | | 802.11ac-VH120 | CH 44 | 5220 | MCS0 | 13.39 | 13.50 | 18.81 | | | | | CH 48 | 5240 | | 13.28 | 13.50 | 18.96 | | | 8 | 000 11cc \/\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | CH 38 | 5190 | MCCO | 13.30 | 13.50 | 18.55 | 07.20 | | | 802.11ac-VHT40 | CH 46 | 5230 | MCS0 | 13.32 | 13.50 | 17.74 | 97.39 | | | 802.11ac-VHT80 | CH 42 | 5210 | MCS0 | 13.45 | 13.50 | 17.75 | 97.37 | Report No. : FA5N2711-05 | | Mode | Channel | Frequency
(MHz) | Data Rate | Average
power (dBm) | Tune-Up
Limit | Peak Power
(dBm) | Duty Cycle % | |----------------|--|---------|--------------------|-----------|------------------------|------------------|---------------------|---| | | | CH 52 | 5260 | | 13.25 | 13.50 | 18.31 | | | | 802.11a | CH 56 | 5280 | 6Mbna | 13.30 | 13.50 | 18.44 | 09.01 | | | 602.11a | CH 60 | 5300 | 6Mbps | 13.24 | 13.50 | 18.55 | 96.01 | | | | CH 64 | 5320 | | 13.39 | 13.50 | 18.58 | | | | | CH 52 | 5260 | | 13.27 | 13.50 | 18.67 | | | | 802.11n-HT20 | CH 56 | 5280 | MCS0 | 13.23 | 13.50 | 18.63 | 00.01 | | 5.3GHz
WLAN | 602.11II-H120 | CH 60 | 5300 | IVICSU | 13.23 | 13.50 | 18.71 | 96.01 | | ANT 1 | | CH 64 | 5320 | | 13.28 | 13.50 | 18.75 | | | | 802.11n-HT40 | CH 54 | 5270 | MOCO | 13.29 | 13.50 | 17.59 | 07.71 | | | 602.1111-H140 | CH 62 | 5310 | MCS0 | 13.28 | 13.50 | 17.93 | 97.71 | | | | CH 52 | 5260 | | 13.26 | 13.50 | 18.53 | 98.01 98.01 98.01 97.71 98.03 97.39 97.37 | | | 000 11 \/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | CH 56 | 5280 | MCCO | 13.21 | 13.50 | 18.52 | | | | 802.11ac-VHT20 | CH 60 | 5300 | MCS0 | 13.20 | 13.50 | 18.47 | | | | | CH 64 | 5320 | | 13.21 | 13.50 | 18.52 | | | | 802.11ac-VHT40 | CH 54 | 5270 | MCCO | 13.27 | 13.50 | 18.08 | 07.20 | | | 002.11aC-VH140 | CH 62 | 5310 | MCS0 | 13.25 | 13.50 | 18.13 | 97.39 | | | 802.11ac-VHT80 | CH 58 | 5290 | MCS0 | 13.32 | 13.50 | 17.60 | 97.37 | TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date : Jan. 18, 2016 Form version. : 151208 FCC ID: PU5-TP00082A SPORTON LAB. FCC SAR Test Report | | Mode | Channel | Frequency
(MHz) | Data Rate | Average
power (dBm) | Tune-Up
Limit | Peak Power
(dBm) | Duty Cycle % | |--------|----------------|---------|--------------------|-----------|------------------------|------------------|---------------------|--------------| | | | CH 100 | 5500 | | 13.37 | 13.50 | 18.54 | | | | | CH 116 | 5580 | | 13.33 | 13.50 | 18.76 | | | | 802.11a | CH 124 | 5620 | 6Mbps | 13.42 | 13.50 | 18.75 | 98.01 | | | | CH 132 | 5660 | | 13.29 | 13.50 | 18.64 | | | | | CH 144 | 5720 | | 13.28 | 13.50 | 18.66 | | | | | CH 100 | 5500 | | 13.36 | 13.50 | 18.74 | | | | | CH 116 | 5580 | | 13.34 | 13.50 | 18.82 | | | | 802.11n-HT20 | CH 124 | 5620 | MCS0 | 13.27 | 13.50 | 18.74 | 98.01 | | | | CH 132 | 5660 | | 13.35 | 13.50 | 18.60 | | | | | CH 144 | 5720 | | 13.23 | 13.50 | 18.59 | | | | | CH 102 | 5510 | | 13.31 | 13.50 | 17.77 | | | 5.5GHz | | CH 110 | 5550 | | 13.37 | 13.50 | 18.03 | | | WLAN | 802.11n-HT40 | CH 126 | 5630 | MCS0 | 13.45 | 13.50 | 18.11 | 97.71 | | ANT 1 | | CH 134 | 5670 | | 13.41 | 13.50 | 17.93 | | | | | CH 142 | 5710 | | 13.45 | 13.50 | 18.04 | | | | | CH 100 | 5500 | | 13.35 | 13.50 | 18.63 | | | | | CH 116 | 5580 | | 13.33 | 13.50 | 18.97 | | | | 802.11ac-VHT20 | CH 124 | 5620 | MCS0 | 13.21 | 13.50 | 18.63 | | | | | CH 132 | 5660 | | 13.32 | 13.50 | 18.52 | | | | | CH 144 | 5720 | | 13.21 | 13.50 | 18.84 | | | | | CH 102 | 5510 | | 13.26 | 13.50 | 17.88 | | | | | CH 110 | 5550 | | 13.34 | 13.50 | 17.97 | | | | 802.11ac-VHT40 | CH 126 | 5630 | MCS0 | 13.44 | 13.50 | 17.66 | 97.39 | | | | CH 134 | 5670 | | 13.40 | 13.50 | 17.98 | | | | | CH 142 | 5710 | | 13.46 | 13.50 | 17.85 | | | | | CH 106 | 5530 | | 13.37 | 13.50 | 17.63 | _ | | | 802.11ac-VHT80 | CH 122 | 5610 | MCS0 | 13.23 | 13.50 | 17.30 | 97.37 | | | | CH 138 | 5690 | | 13.41 | 13.50 | 17.42 | | | | Mode | Channel | Frequency
(MHz) | Data Rate | Average
power (dBm) | Tune-Up
Limit | Peak Power
(dBm) | Duty Cycle % | |--------|-----------------|---------|--------------------|-----------|------------------------|------------------|---------------------|---| | | | CH 149 | 5745 | | 13.32 | 13.50 | 18.52 | | | | 802.11a | CH 157 | 5785 | MCS0 | 13.30 | 13.50 | 18.72 | 98.01 | | | | CH 165 | 5825 | | 13.28 | 13.50 | 18.53 | | | | | CH 149 | 5745 | | 13.22 | 13.50 | 18.35 | | | 5.8GHz | 802.11n-HT20 | CH 157 | 5785 | MCS0 | 13.18 | 13.50 | 18.38 | 98.01
98.01
97.71
98.03
97.39 | | WLAN | | CH 165 | 5825 | | 13.31 | 13.50 | 18.52 | | | ANT 1 | 802.11n-HT40 | CH 151 | 5755 | MCS0 | 13.35 | 13.50 | 17.69 | 07.71 | | | 002.1111-11140 | CH 159 | 5795 | MCSU | 13.42 | 13.50 | 18.51 | 97.71 | | | | CH 149 | 5745 | | 13.21 | 13.50 | 18.42 | | | | 802.11ac-VHT20 | CH 157 | 5785 | MCS0 | 13.17 | 13.50 | 18.38 | 98.01
98.01
97.71
98.03 | | | | CH 165 | 5825 | | 13.29 | 13.50 | 18.44 | | | | 802.11ac-VHT40 | CH 151 | 5755 | MCSO | 13.33 | 13.50 | 17.85 | 07 30 | | | 002.11ac-v11140 | CH 159 | 5795 | MCS0 | 13.40 | 13.50 | 17.74 | 31.J3 | | | 802.11ac-VHT80 | CH 155 | 5775 | MCS0 | 13.39 | 13.50 | 17.67 | 97.37 | ### SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 / FAX: 886-3-328-4978 FCC ID: PU5-TP00082A Report No. : FA5N2711-05 ### <5GHz WLAN ANT2> | | Mode |
Channel | Frequency
(MHz) | Data Rate | Average power (dBm) | Tune-Up
Limit | Peak Power
(dBm) | Duty Cycle % | |----------------|----------------|---------|--------------------|-----------|---------------------|---|---------------------|-------------------------------------| | | | CH 36 | 5180 | | 13.34 | 13.50 | 18.73 | | | | 000 110 | CH 40 | 5200 | CMbpa | 13.38 | 13.50 | 18.70 | 08.00 | | | 802.11a | CH 44 | 5220 | 6Mbps | 13.44 | 13.50 | 18.74 | 98.00 | | | | CH 48 | 5240 | | 13.35 | 13.50 | 18.65 | | | | | CH 36 | 5180 | | 13.36 | 8 13.50 18.70 4 13.50 18.74 5 13.50 18.65 6 13.50 18.76 3 13.50 18.73 1 13.50 18.78 4 13.50 17.93 6 13.50 17.87 0 13.50 18.73 | 18.84 | | | | 000 11 × UT00 | CH 40 | 5200 | MCCO | 13.25 | 13.50 | 18.76 | 00.00 | | 5.2GHz
WLAN | 802.11n-HT20 | CH 44 | 5220 | MCS0 | 13.43 | 13.50 | 18.73 | 98.00 | | ANT 2 | | CH 48 | 5240 | | 13.31 | 13.50 | 18.78 | | | | 000 11n UT40 | CH 38 | 5190 | MCS0 | 13.44 | 13.50 | 17.93 | 07.07 | | | 802.11n-HT40 | CH 46 | 5230 | IVICSU | 13.36 | 13.50 | 17.87 | 97.37 | | | | CH 36 | 5180 | | 13.40 | 13.50 | 18.73 | 98.00 98.00 98.00 98.03 98.03 97.37 | | | 802.11ac-VHT20 | CH 40 | 5200 | MCCO | 13.18 | 13.50 | 18.63 | | | | 802.11ac-VH120 | CH 44 | 5220 | MCS0 | 13.30 | 13.50 | 18.53 | | | | | CH 48 | 5240 | | 13.26 | 13.50 | 18.57 | | | | 802.11ac-VHT40 | CH 38 | 5190 | MCCO | 13.42 | 13.50 | 18.19 | 09.00 | | 8 | 002.11ac-vn140 | CH 46 | 5230 | MCS0 | 13.34 | 13.50 | 17.96 | 96.03 | | | 802.11ac-VHT80 | CH 42 | 5210 | MCS0 | 13.46 | 13.50 | 18.05 | 97.37 | Report No. : FA5N2711-05 | | Mode | Channel | Frequency
(MHz) | Data Rate | Average
power (dBm) | Tune-Up
Limit | Peak Power
(dBm) | Duty Cycle % | |----------------|----------------|---------|--------------------|-----------|------------------------|------------------|---------------------|--| | | | CH 52 | 5260 | | 13.31 | 13.50 | 18.66 | | | | 802.11a | CH 56 | 5280 | 6Mbps | 13.32 | 13.50 | 18.68 | 09.00 | | | 002.11d | CH 60 | 5300 | Givibps | 13.38 | 13.50 | 18.72 | 96.00 | | | | CH 64 | 5320 | | 13.41 | 13.50 | 18.58 | | | | | CH 52 | 5260 | | 13.30 | 13.50 | 18.65 | | | | 802.11n-HT20 | CH 56 | 5280 | MCS0 | 13.25 | 13.50 | 18.61 | 09.00 | | 5.3GHz
WLAN | 002.11II-H120 | CH 60 | 5300 | MCSU | 13.35 | 13.50 | 18.63 | 96.00 | | ANT 2 | | CH 64 | 5320 | | 13.32 | 13.50 | 18.73 | | | | 000 44 × LIT40 | CH 54 | 5270 | MCCO | 13.34 | 13.50 | 17.78 | 07.07 | | | 802.11n-HT40 | CH 62 | 5310 | MCS0 | 13.31 | 13.50 | 17.73 | 97.37 | | | | CH 52 | 5260 | | 13.28 | 13.50 | 18.74 | 98.00
98.00
98.00
97.37
98.03
98.03 | | | 802.11ac-VHT20 | CH 56 | 5280 | MCS0 | 13.24 | 13.50 | 18.68 | | | | 002.11ac-VH120 | CH 60 | 5300 | MCSU | 13.30 | 13.50 | 18.67 | 96.03 | | | | CH 64 | 5320 | | 13.31 | 13.50 | 18.82 | | | 8 | 802.11ac-VHT40 | CH 54 | 5270 | MCS0 | 13.32 | 13.50 | 18.52 | 09.02 | | | 002.11aC-VH140 | CH 62 | 5310 | IVICSU | 13.29 | 13.50 | 18.00 | 98.03 | | | 802.11ac-VHT80 | CH 58 | 5290 | MCS0 | 13.43 | 13.50 | 17.98 | 97.37 | TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date : Jan. 18, 2016 Form version. : 151208 FCC ID: PU5-TP00082A Page 23 of 38 | TON LAB. F | FCC SAR Test Report Report No.: FA5N2711-05 | | | | | | | | | | | | |------------|---|---------|--------------------|-----------|------------------------|------------------|---------------------|----------------------------|--|--|--|--| | | Mode | Channel | Frequency
(MHz) | Data Rate | Average
power (dBm) | Tune-Up
Limit | Peak Power
(dBm) | Duty Cycle % | | | | | | | | CH 100 | 5500 | | 13.40 | 13.50 | 18.84 | | | | | | | | | CH 116 | 5580 | | 13.36 | 13.50 | 18.57 | | | | | | | | 802.11a | CH 124 | 5620 | 6Mbps | 13.44 | 13.50 | 18.59 | 98.00 | | | | | | | | CH 132 | 5660 | | 13.47 | 13.50 | 18.68 | | | | | | | | | CH 144 | 5720 | | 13.47 | 13.50 | 18.71 | | | | | | | | | CH 100 | 5500 | | 13.37 | 13.50 | 18.75 | | | | | | | | | CH 116 | 5580 | | 13.35 | 13.50 | 18.71 | | | | | | | | 802.11n-HT20 | CH 124 | 5620 | MCS0 | 13.33 | 13.50 | 18.57 | 98.00 | | | | | | | | CH 132 | 5660 | | 13.39 | 13.50 | 18.69 | | | | | | | 5.5GHz | | CH 144 | 5720 | | 13.38 | 13.50 | 18.59 | | | | | | | | | CH 102 | 5510 | | 13.43 | 13.50 | 17.84 | | | | | | | | | CH 110 | 5550 | | 13.39 | 13.50 | 17.76 | | | | | | | WLAN | 802.11n-HT40 | CH 126 | 5630 | MCS0 | 13.49 | 13.50 | 17.66 | 97.37 | | | | | | ANT 2 | | CH 134 | 5670 | | 13.48 | 13.50 | 17.84 | | | | | | | | | CH 142 | 5710 | | 13.47 | 13.50 | 17.72 | 7.66 97.37
7.84
7.72 | | | | | | | | CH 100 | 5500 | | 13.36 | 13.50 | 18.88 | | | | | | | | | CH 116 | 5580 | | 13.31 | 13.50 | 18.86 | | | | | | | | 802.11ac-VHT20 | CH 124 | 5620 | MCS0 | 13.31 | 13.50 | 18.81 | 98.03 | | | | | | | | CH 132 | 5660 | | 13.35 | 13.50 | 18.79 | | | | | | | | | CH 144 | 5720 | | 13.41 | 13.50 | 18.83 | | | | | | | | | CH 102 | 5510 | | 13.37 | 13.50 | 18.05 | | | | | | | | | CH 110 | 5550 | | 13.35 | 13.50 | 17.91 | | | | | | | | 802.11ac-VHT40 | CH 126 | 5630 | MCS0 | 13.46 | 13.50 | 18.16 | 98.03 | | | | | | o | | CH 134 | 5670 | | 13.45 | 13.50 | 18.52 | | | | | | | | | CH 142 | 5710 | | 13.47 | 13.50 | 18.43 | | | | | | | | | CH 106 | 5530 | | 13.45 | 13.50 | 18.02 | | | | | | | | 802.11ac-VHT80 | CH 122 | 5610 | MCS0 | 13.34 | 13.50 | 17.52 | 97.37 | | | | | | | | CH 138 | 5690 | | 13.37 | 13.50 | 17.66 | | | | | | | | Mode | Channel | Frequency
(MHz) | Data Rate | Average
power (dBm) | Tune-Up
Limit | Peak Power
(dBm) | Duty Cycle % | |--------|----------------|---------|--------------------|-----------|------------------------|------------------|---------------------|--------------| | | | CH 149 | 5745 | | 13.34 | 13.50 | 18.41 | | | | 802.11a | CH 157 | 5785 | MCS0 | 13.31 | 13.50 | 18.57 | 98.00 | | | | CH 165 | 5825 | | 13.30 | 13.50 | 18.58 | | | | | CH 149 | 5745 | | 13.34 | 13.50 | 18.59 | | | 5.8GHz | 802.11n-HT20 | CH 157 | 5785 | MCS0 | 13.39 | 13.50 | 18.63 | 98.00 | | WLAN | | CH 165 | 5825 | | 13.43 | 13.50 | 18.78 | | | ANT 2 | 802.11n-HT40 | CH 151 | 5755 | MCS0 | 13.39 | 13.50 | 17.58 | 97.37 | | | 002.11II-11140 | CH 159 | 5795 | MCS0 | 13.45 | 13.50 | 17.71 | | | | | CH 149 | 5745 | | 13.24 | 13.50 | 18.52 | | | | 802.11ac-VHT20 | CH 157 | 5785 | MCS0 | 13.19 | 13.50 | 18.46 | 98.03 | | | | CH 165 | 5825 | | 13.31 | 13.50 | 18.54 | | | | 902 1120 VUT40 | CH 151 | 5755 | MCSO | 13.35 | 13.50 | 17.72 | 08.03 | | | 802.11ac-VHT40 | CH 159 | 5795 | MCS0 | 13.42 | 13.50 | 17.90 | 98.03 | | | 802.11ac-VHT80 | CH 155 | 5775 | MCS0 | 13.40 | 13.50 | 17.54 | 97.37 | TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date : Jan. 18, 2016 Form version. : 151208 FCC ID: PU5-TP00082A Page 24 of 38 ### <5GHz WLAN ANT1+2> | | Mode | Channel | Frequency
(MHz) | Data Rate | Average power (dBm) | Tune-Up
Limit | Peak Power
(dBm) | Duty Cycle % | |----------------|----------------|---------|--------------------|-----------|---------------------|------------------|---------------------|--------------| | | | CH 36 | 5180 | | 13.32 | 13.50 | 18.69 | | | | 802.11n-HT20 | CH 40 | 5200 | MCS0 | 13.23 | 13.50 | 18.61 | 97.37 | | | 002.11II-H120 | CH 44 | 5220 | MCSU | 13.22 | 13.50 | 18.63 | 97.37 | | | | CH 48 | 5240 | | 13.24 | 13.50 | 18.65 | | | 5.2GHz
WLAN | 802.11n-HT40 | CH 38 | 5190 | MCS0 | 13.31 | 13.50 | 17.29 | 97.39 | | ANT 1+2 | | CH 46 | 5230 | | 13.33 | 13.50 | 17.16 | 97.39 | | | | CH 36 | 5180 | | 13.21 | 13.50 | 18.48 | | | | 802.11ac-VHT20 | CH 40 | 5200 | MCS0 | 13.26 | 13.50 | 18.52 | 97.37 | | | 002.11ac-VH120 | CH 44 | 5220 | IVICSU | 13.25 | 13.50 | 18.55 | 97.37 | | | | CH 48 | 5240 | | 13.20 | 13.50 | 18.64 | | | | 902 1100 VUT40 | CH 38 | 5190 | MCS0 | 13.34 | 13.50 | 17.64 | 97.39 | | 3 | 802.11ac-VHT40 | CH 46 | 5230 | IVICSU | 13.36 | 13.50 | 17.21 | 97.39 | | | 802.11ac-VHT80 | CH 42 | 5210 | MCS0 | 13.28 | 13.50 | 17.94 | 97.39 | Report No. : FA5N2711-05 | | Mode | Channel | Frequency
(MHz) | Data Rate | Average
power (dBm) | Tune-Up
Limit | Peak Power
(dBm) | Duty Cycle % | |----------------|----------------------------|---------|--------------------|-----------|------------------------|------------------|---------------------|-------------------------| | | | CH 52 | 5260 | | 13.36 | 13.50 | 18.62 | | | | 802.11n-HT20 | CH 56 | 5280 | MCCO | 13.44 | 13.50 | 18.59 | 97.37
97.37
97.39 | | | 002.1111-H120 | CH 60 | 5300 | MCS0 | 13.26 | 13.50 | 18.56 | 97.37 | | 5.3GHz
WLAN | | CH 64 | 5320 | | 13.32 | 13.50 | 18.64 | | | | 802.11n-HT40 | CH 54 | 5270 | MCS0 | 13.28 | 13.50 | 17.76 | 07.20 | | ANT 1+2 | | CH 62 | 5310 | | 13.23 | 13.50 | 18.12 | 97.39 | | | | CH 52 | 5260 | | 13.33 | 13.50 | 18.86 | | | | 000 11cc V/UT00 | CH 56 | 5280 | MCCO | 13.41 | 13.50 | 18.77 | 97.37 | | | 802.11ac-VHT20 | CH 60 | 5300 | MCS0 | 13.21 | 13.50 | 18.79 | | | | | CH 64 | 5320 | | 13.26 | 13.50 | 18.72 | | | 8 | 802.11ac-VHT40 CH 54 CH 62 | 5270 | MCCO | 13.38 | 13.50 | 17.40 | 07.20 | | | | | CH 62 | 5310 | MCS0 | 13.44 | 13.50 | 18.12 | 97.39 | | | 802.11ac-VHT80 | CH 58 | 5290 | MCS0 | 13.27 | 13.50 | 17.93 | 97.39 | TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date : Jan. 18, 2016 Form version. : 151208 FCC ID: PU5-TP00082A Page 25 of 38 | | Mode | Channel | Frequency
(MHz) | Data Rate | Average power (dBm) | Tune-Up
Limit | Peak Power
(dBm) | Duty Cycle % | |----------------|-----------------|---------|--------------------|-----------|---------------------|------------------|---------------------|--------------| | | | CH 100 | 5500 | | 13.25 | 13.50 | 18.60 | | | | | CH 116 | 5580 | | 13.25 | 13.50 | 18.85 | | | | 802.11n-HT20 | CH 124 | 5620 | MCS0
| 13.29 | 13.50 | 18.61 | 97.37 | | | | CH 132 | 5660 | | 13.26 | 13.50 | 18.72 | | | | | CH 144 | 5720 | | 13.41 | 13.50 | 18.54 | | | | | CH 102 | 5510 | MCS0 | 13.26 | 13.50 | 17.22 | | | | | CH 110 | 5550 | | 13.23 | 13.50 | 17.10 | | | | 802.11n-HT40 | CH 126 | 5630 | | 13.24 | 13.50 | 17.06 | 97.39 | | | | CH 134 | 5670 | | 13.36 | 13.50 | 17.06 | | | 5.5GHz
WLAN | | CH 142 | 5710 | | 13.37 | 13.50 | 17.09 | | | ANT 1+2 | | CH 100 | 5500 | | 13.38 | 13.50 | 18.82 | | | | | CH 116 | 5580 | MCS0 | 13.42 | 13.50 | 18.79 | | | | 802.11ac-VHT20 | CH 124 | 5620 | | 13.41 | 13.50 | 18.68 | 97.37 | | | | CH 132 | 5660 | | 13.43 | 13.50 | 18.63 | | | | | CH 144 | 5720 | | 13.33 | 13.50 | 18.71 | | | | | CH 102 | 5510 | | 13.34 | 13.50 | 17.12 | | | | | CH 110 | 5550 | | 13.26 | 13.50 | 17.28 | | | | 802.11ac-VHT40 | CH 126 | 5630 | MCS0 | 13.41 | 13.50 | 17.30 | 97.39 | | | | CH 134 | 5670 | | 13.26 | 13.50 | 17.20 | | | | | CH 142 | 5710 | | 13.29 | 13.50 | 17.22 | | | | | CH 106 | 5530 | | 13.31 | 13.50 | 17.67 | | | | 802.11ac-VHT80 | CH 122 | 5610 | MCS0 | 13.32 | 13.50 | 17.62 | 97.39 | | | 002.1140 111100 | CH 138 | 5690 | | 13.37 | 13.50 | 17.59 | | Report No. : FA5N2711-05 | | Mode | Channel | Frequency
(MHz) | Data Rate | Average
power (dBm) | Tune-Up
Limit | Peak Power
(dBm) | Duty Cycle % | |----------------|-----------------|---------|--------------------|-----------|------------------------|------------------|---------------------|--------------| | | | CH 149 | 5745 | | 13.45 | 13.50 | 18.52 | | | | 802.11n-HT20 | CH 157 | 5785 | MCS0 | 13.33 | 13.50 | 18.72 | 97.37 | | | | CH 165 | 5825 | | 13.41 | 13.50 | 18.53 | | | 5.8GHz
WLAN | 802.11n-HT40 | CH 151 | 5755 | MCS0 | 13.36 | 13.50 | 18.16 | 97.39 | | ANT 1+2 | | CH 159 | 5795 | WIOOO | 13.41 | 13.50 | 18.01 | 97.39 | | | | CH 149 | 5745 | | 13.42 | 13.50 | 18.77 | | | | 802.11ac-VHT20 | CH 157 | 5785 | MCS0 | 13.36 | 13.50 | 18.68 | 97.37 | | | | CH 165 | 5825 | | 13.27 | 13.50 | 18.81 | | | | 902 11cc V/UT40 | CH 151 | 5755 | MCS0 | 13.38 | 13.50 | 18.03 | 97.39 | | | 802.11ac-VHT40 | CH 159 | 5795 | IVICSU | 13.36 | 13.50 | 18.12 | 97.39 | | | 802.11ac-VHT80 | CH 155 | 5775 | MCS0 | 13.34 | 13.50 | 17.49 | 97.39 | TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date : Jan. 18, 2016 Form version. : 151208 FCC ID: PU5-TP00082A Page 26 of 38 ### <2.4GHz Bluetooth> ### **General Note:** - 1. For 2.4GHz Bluetooth SAR testing was selected 1Mbps, due to its highest average power. - 2. The duty factor is selected theoretical 83.3% perform Bluetooth SAR testing. | Mode Cha | Channel | Frequency | Peak power (dBm) | | | | | | |---------------|---------|-----------|------------------|-------|-------|--|--|--| | | Channel | (MHz) | 1Mbps | 2Mbps | 3Mbps | | | | | | CH 00 | 2402 | 7.02 | 8.63 | 8.84 | | | | | v3.0 with EDR | CH 39 | 2441 | 7.04 | 8.82 | 8.86 | | | | | | CH 78 | 2480 | 6.79 | 8.56 | 8.67 | | | | **Report No. : FA5N2711-05** | Mode | Channel | Frequency | Average power (dBm) | | | | | | |---------------|---------------|-----------|---------------------|-------|-------|--|--|--| | Wode | Onarino | (MHz) | 1Mbps | 2Mbps | 3Mbps | | | | | CH 00 | | 2402 | 6.03 | 6.00 | 6.00 | | | | | v3.0 with EDR | CH 39 | 2441 | 6.11 | 6.01 | 6.08 | | | | | | CH 78 | 2480 | 6.10 | 6.09 | 6.08 | | | | | | Tune-up Limit | | 6.50 | 6.50 | 6.50 | | | | | Mode | Channel | Frequency | Peak power (dBm) | |--------------|----------|-----------|------------------| | ivioue | Onamilei | (MHz) | GFSK | | | CH 00 | 2402 | 5.25 | | v4.1 with LE | CH 19 | 2440 | 5.33 | | | CH 39 | 2480 | 5.01 | | Mode | Channel | Frequency | Average power (dBm) | |--------------|---------------|-----------|---------------------| | Mode | Onamici | (MHz) | GFSK | | | CH 00 | 2402 | 5.04 | | v4.1 with LE | CH 19 | 2440 | 5.12 | | | CH 39 | 2480 | 4.72 | | | Tune-up Limit | | 6.50 | ## 13. Test Exclusion Applied #### **General Note:** 1. The below table, when the distance is < 50 mm exclusion threshold is "Ratio", when the distance is > 50 mm exclusion threshold is "mW" Report No.: FA5N2711-05 - 2. Maximum power is the source-based time-average power and represents the maximum RF output power among production units - 3. Per KDB 447498 D01v06, for larger devices, the test separation distance of adjacent edge configuration is determined by the closest separation between the antenna and the user. - 4. Per KDB 447498 D01v06, standalone SAR test exclusion threshold is applied; If the test separation distance is < 5mm, 5mm is used to determine SAR exclusion threshold. - 5. Per KDB 447498 D01v06, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at *test separation distances* ≤ 50 mm are determined by: [(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR - f(GHz) is the RF channel transmit frequency in GHz - Power and distance are rounded to the nearest mW and mm before calculation - The result is rounded to one decimal place for comparison - 6. Per KDB 447498 D01v06, at 100 MHz to 6 GHz and for test separation distances > 50 mm, the SAR test exclusion threshold is determined according to the following - a) [Threshold at 50 mm in step 1) + (test separation distance 50 mm)·(f(MHz)/150)] mW, at 100 MHz to 1500 MHz - b) [Threshold at 50 mm in step 1) + (test separation distance 50 mm) 10] mW at > 1500 MHz and ≤ 6 GHz - 7. The detail antenna location please refers to Appendix D. | | Wireless Interface | 2.4GHz
WLAN
ANT 1 | 2.4GHz
WLAN
ANT 2 | 5GHz
WLAN
ANT 1 | 5GHz
WLAN
ANT 2 | |-------------------|-------------------------|-------------------------|-------------------------|-----------------------|-----------------------| | Exposure Position | Calculated Frequency | 2462MHz | 2462MHz | 5825MHz | 5825MHz | | | Maximum power (dBm) | 15 | 15 | 13.5 | 13.5 | | | Maximum rated power(mW) | 32.0 | 32.0 | 22.0 | 22.0 | | | Separation distance(mm) | 5.0 | 5.0 | 5.0 | 5.0 | | Bottom Face | exclusion threshold | 10.0 | 10.0 | 10.6 | 10.6 | | | Testing required? | Yes | Yes | Yes | Yes | | | Separation distance(mm) | 66.2 | 5.0 | 66.2 | 5.0 | | Edge 1 | exclusion threshold | 257.0 | 10.0 | 224.0 | 10.6 | | | Testing required? | No | Yes | No | Yes | | | Separation distance(mm) | 277.9 | 164.2 | 277.9 | 164.2 | | Edge 2 | exclusion threshold | 2375.0 | 1238.0 | 2341.0 | 1204.0 | | | Testing required? | No | No | No | No | | | Separation distance(mm) | 117.0 | 192.0 | 117.0 | 192.0 | | Edge 3 | exclusion threshold | 766.0 | 1516.0 | 732.0 | 1482.0 | | | Testing required? | No | No | No | No | | | Separation distance(mm) | 5.0 | 111.5 | 5.0 | 111.5 | | Edge 4 | exclusion threshold | 10.0 | 711.0 | 10.6 | 677.0 | | | Testing required? | Yes | No | Yes | No | FCC ID : PU5-TP00082A Page 28 of 38 Form version. : 151208 ### 14. SAR Test Results #### **General Note:** - 1. Per KDB 447498 D01v06, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance. - a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units. Report No.: FA5N2711-05 - b. For SAR testing of WLAN signal with non-100% duty cycle, the measured SAR is scaled-up by the duty cycle scaling factor which is equal to "1/(duty cycle)" - c. For Bluetooth: Reported SAR(W/kg)= Measured SAR(W/kg)*Tune-up Scaling Factor - d. For WLAN: Reported SAR(W/kg)= Measured SAR(W/kg)* Duty Cycle scaling factor * Tune-up scaling factor - 2. Per KDB 447498 D01v06, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the *reported* 1-g or 10-g SAR for the mid-band or highest output power channel is: - · ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz - · ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz - \cdot ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz - 3. Bluetooth is share antenna 2 with WLAN; therefore, for Bluetooth SAR test is follow WLAN Ant 2 positions perform. #### **WLAN Note:** - 1. Per KDB 248227 D01v02r02, for 2.4GHz 802.11g/n SAR testing is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg. - 2. Per KDB 248227 D01v02r02, for U-NII-1 Body SAR testing is not required when the U-NII-2A band highest reported SAR for a test configuration is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band. - 3. When the reported SAR of the test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position to measure the subsequent next closet/smallest test separation distance and maximum coupling test position on the highest maximum output power channel, until the report SAR is ≤ 0.8 W/kg or all required test position are tested. - 4. For all positions / configurations, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions / configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested. - 5. For WLAN SAR testing was performed on single antenna RF power in SISO mode is larger or equal to the single antenna RF power in MIMO mode, and for RF exposure assessment of MIMO mode simultaneous transmission exclusion analysis was performed with SAR test results of each antenna in SISO mode. - 6. Per KDB 248227 D01v02r02, the simultaneous SAR provisions in KDB publication 447498 should be applied to determine simultaneous transmission SAR test exclusion for WiFi MIMO. If the sum of 1g single transmission chain SAR measurements is < 1.6W/kg and SAR peak to location ratio < 0.04, no additional SAR
measurements for MIMO.</p> - 7. During SAR testing the WLAN transmission was verified using a spectrum analyzer. SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Jan. 18, 2016 # 14.1 Body SAR ### <WLAN SAR> | Plot
No. | Band | Mode | Test
Position | Gap
(mm) | Antenna | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Duty
Cycle
% | Duty
Cycle
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|------------|---------------------|------------------|-------------|---------|-----|----------------|---------------------------|---------------------------|--------------------|------------------------------------|------------------------|------------------------------|------------------------------| | 01 | WLAN2.4GHz | 802.11b 1Mbps | Bottom Face | 0mm | Ant 1 | 1 | 2412 | 14.78 | 15.00 | 97.97 | 1.021 | 0.04 | 0.983 | 1.056 | | | WLAN2.4GHz | 802.11b 1Mbps | Bottom Face | 0mm | Ant 1 | 6 | 2437 | 14.70 | 15.00 | 97.97 | 1.021 | -0.13 | 0.872 | 0.954 | | | WLAN2.4GHz | 802.11b 1Mbps | Bottom Face | 0mm | Ant 1 | 11 | 2462 | 14.71 | 15.00 | 97.97 | 1.021 | -0.17 | 0.930 | 1.015 | | | WLAN2.4GHz | 802.11b 1Mbps | Edge 4 | 0mm | Ant 1 | 1 | 2412 | 14.78 | 15.00 | 97.97 | 1.021 | 0.14 | 0.406 | 0.436 | | | WLAN2.4GHz | 802.11b 1Mbps | Bottom Face | 0mm | Ant 2 | 1 | 2412 | 14.93 | 15.00 | 97.97 | 1.021 | -0.15 | 0.793 | 0.823 | | | WLAN2.4GHz | 802.11b 1Mbps | Bottom Face | 0mm | Ant 2 | 11 | 2462 | 14.91 | 15.00 | 97.97 | 1.021 | -0.12 | 0.838 | 0.874 | | | WLAN2.4GHz | 802.11b 1Mbps | Edge 1 | 0mm | Ant 2 | 1 | 2412 | 14.93 | 15.00 | 97.97 | 1.021 | -0.16 | 0.646 | 0.670 | | | WLAN5GHz | 802.11ac-VHT80 MCS0 | Bottom Face | 0mm | Ant 1 | 58 | 5290 | 13.32 | 13.50 | 97.37 | 1.027 | 0.13 | 0.632 | 0.677 | | | WLAN5GHz | 802.11ac-VHT80 MCS0 | Edge 4 | 0mm | Ant 1 | 58 | 5290 | 13.32 | 13.50 | 97.37 | 1.027 | -0.17 | 0.510 | 0.546 | | 02 | WLAN5GHz | 802.11ac-VHT80 MCS0 | Bottom Face | 0mm | Ant 2 | 58 | 5290 | 13.43 | 13.50 | 97.37 | 1.027 | -0.12 | 0.733 | 0.766 | | | WLAN5GHz | 802.11ac-VHT80 MCS0 | Edge 1 | 0mm | Ant 2 | 58 | 5290 | 13.43 | 13.50 | 97.37 | 1.027 | -0.12 | 0.644 | 0.673 | | | WLAN5GHz | 802.11ac-VHT80 MCS0 | Bottom Face | 0mm | Ant 1 | 138 | 5690 | 13.41 | 13.50 | 97.37 | 1.027 | 0.1 | 0.667 | 0.699 | | | WLAN5GHz | 802.11ac-VHT80 MCS0 | Edge 4 | 0mm | Ant 1 | 138 | 5690 | 13.41 | 13.50 | 97.37 | 1.027 | -0.19 | 0.496 | 0.520 | | | WLAN5GHz | 802.11ac-VHT80 MCS0 | Bottom Face | 0mm | Ant 2 | 106 | 5530 | 13.45 | 13.50 | 97.37 | 1.027 | 0.07 | 0.571 | 0.594 | | | WLAN5GHz | 802.11ac-VHT80 MCS0 | Edge 1 | 0mm | Ant 2 | 106 | 5530 | 13.45 | 13.50 | 97.37 | 1.027 | -0.04 | 0.851 | 0.885 | | | WLAN5GHz | 802.11ac-VHT80 MCS0 | Edge 1 | 0mm | Ant 2 | 122 | 5610 | 13.34 | 13.50 | 97.37 | 1.027 | 0.16 | 0.956 | 1.020 | | 03 | WLAN5GHz | 802.11ac-VHT80 MCS0 | Edge 1 | 0mm | Ant 2 | 138 | 5690 | 13.37 | 13.50 | 97.37 | 1.027 | 0.11 | 1.060 | 1.122 | | | WLAN5GHz | 802.11ac-VHT80 MCS0 | Bottom Face | 0mm | Ant 1 | 155 | 5775 | 13.39 | 13.50 | 97.37 | 1.027 | 0.13 | 0.654 | 0.690 | | | WLAN5GHz | 802.11ac-VHT80 MCS0 | Edge 4 | 0mm | Ant 1 | 155 | 5775 | 13.39 | 13.50 | 97.37 | 1.027 | -0.04 | 0.607 | 0.640 | | | WLAN5GHz | 802.11ac-VHT80 MCS0 | Bottom Face | 0mm | Ant 2 | 155 | 5775 | 13.40 | 13.50 | 97.37 | 1.027 | -0.17 | 0.610 | 0.642 | | 04 | WLAN5GHz | 802.11ac-VHT80 MCS0 | Edge 1 | 0mm | Ant 2 | 155 | 5775 | 13.40 | 13.50 | 97.37 | 1.027 | 0.1 | 0.993 | 1.045 | Report No. : FA5N2711-05 ### <Bluetooth SAR> | Plot
No. | Band | Mode | Test
Position | Gap
(mm) | Antenna | Ch. | Freq.
(MHz) | Dower | | Duty
Cycle
% | Duty Cycle
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|-----------|-------|------------------|-------------|---------|-----|----------------|-------|------|--------------------|---------------------------------|------------------------|------------------------------|------------------------------| | | Bluetooth | 1Mbps | Bottom Face | 0mm | Ant 2 | 39 | 2441 | 6.11 | 6.50 | 100 | 1.000 | 0 | 0.001 | 0.001 | | | Bluetooth | 1Mbps | Edge 1 | 0mm | Ant 2 | 39 | 2441 | 6.11 | 6.50 | 100 | 1.000 | -0.18 | 0.026 | 0.028 | | | Bluetooth | 1Mbps | Edge 1 | 0mm | Ant 2 | 0 | 2402 | 6.03 | 6.50 | 100 | 1.000 | -0.14 | 0.022 | 0.025 | | 05 | Bluetooth | 1Mbps | Edge 1 | 0mm | Ant 2 | 78 | 2480 | 6.10 | 6.50 | 100 | 1.000 | 0.15 | 0.029 | 0.032 | TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Jan. 18, 2016 FCC ID : PU5-TP00082A Page 30 of 38 Form version. : 151208 # 14.2 Repeated SAR Measurement | No. | Band | Mode | Test
Position | Gap
(mm) | Antenna | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Duty
Cycle
% | Duty
Cycle
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Ratio | Reported
1g SAR
(W/kg) | |-----|------------|---------------------|------------------|-------------|---------|-----|----------------|---------------------------|---------------------------|--------------------|------------------------------------|------------------------|------------------------------|-------|------------------------------| | 1st | WLAN2.4GHz | 802.11b 1Mbps | Bottom Face | 0mm | Ant 1 | 1 | 2412 | 14.78 | 15.00 | 97.97 | 1.021 | 0.04 | 0.983 | | 1.056 | | 2nd | WLAN2.4GHz | 802.11b 1Mbps | Bottom Face | 0mm | Ant 1 | 1 | 2412 | 14.78 | 15.00 | 97.97 | 1.021 | -0.08 | 0.953 | 1.03 | 1.024 | | 1st | WLAN5GHz | 802.11ac-VHT80 MCS0 | Edge 1 | 0mm | Ant 2 | 138 | 5690 | 13.37 | 13.50 | 97.37 | 1.027 | 0.11 | 1.060 | | 1.122 | | 2nd | WLAN5GHz | 802.11ac-VHT80 MCS0 | Edge 1 | 0mm | Ant 2 | 138 | 5690 | 13.37 | 13.50 | 97.37 | 1.027 | 0.05 | 1.000 | 1.06 | 1.058 | | 1st | WLAN5GHz | 802.11ac-VHT80 MCS0 | Edge 1 | 0mm | Ant 2 | 155 | 5775 | 13.40 | 13.50 | 97.37 | 1.027 | 0.1 | 0.993 | | 1.045 | | 2nd | WLAN5GHz | 802.11ac-VHT80 MCS0 | Edge 1 | 0mm | Ant 2 | 155 | 5775 | 13.40 | 13.50 | 97.37 | 1.027 | 0.08 | 0.971 | 1.02 | 1.021 | **Report No. : FA5N2711-05** #### **General Note:** - 1. Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg. - 2. Per KDB 865664 D01v01r04, if the ratio among the repeated measurement is ≤ 1.2 and the measured SAR <1.45W/kg, only one repeated measurement is required. - 3. The ratio is the difference in percentage between original and repeated measured SAR. - 4. All measurement SAR result is scaled-up to account for tune-up tolerance and is compliant. FCC ID : PU5-TP00082A Page 31 of 38 Form version. : 151208 ### 15. Simultaneous Transmission Analysis | NO. | Simultaneous Transmission Configurations | Body | |-----|--|------| | 1. | WLAN Antenna 1+ Bluetooth Antenna 2 | Yes | | 2. | WLAN Antenna 1 + WLAN Antenna 2 | Yes | #### **General Note:** WLAN RF exposure assessment of MIMO mode simultaneous transmission exclusion analysis was performed with SAR test results of each antenna in SISO mode. Therefore SPLSR calculation was choose worst case with SAR test results of each antenna in SISO mode perform evaluation. Report No.: FA5N2711-05 - 2. For SAR testing was performed on single antenna RF power in SISO mode is larger or equal to the single antenna RF power in MIMO mode, and for RF exposure assessment of MIMO mode simultaneous transmission exclusion analysis was performed with SAR test results of each antenna in SISO mode. - 3. WLAN and Bluetooth share the same antenna2, and cannot transmit simultaneously. - 4. EUT will choose either WLAN 2.4GHz or WLAN 5GHz according to the network signal condition; therefore, 2.4GHz WLAN and 5GHz WLAN will not operate simultaneously at any moment. - 5. The Scaled SAR summation is calculated based on the same configuration and test position. - 6. Per KDB 447498 D01v06, simultaneous transmission SAR is compliant if, - i) Scalar SAR summation < 1.6W/kg. - ii) SPLSR = (SAR1 + SAR2)^1.5 / (min. separation distance, mm), and the peak separation distance is determined from the square root of [(x1-x2)2 + (y1-y2)2 + (z1-z2)2], where (x1, y1, z1) and (x2, y2, z2) are the coordinates of the extrapolated peak SAR locations in the zoom scan. - iii) If SPLSR ≤ 0.04, simultaneously transmission SAR measurement is not necessary. - iv) Simultaneously transmission SAR measurement, and the reported multi-band SAR < 1.6W/kg. - v) The SPLSR calculated results please refer to section 15.2. FCC ID : PU5-TP00082A Page 32 of 38 Form version. : 151208 # 15.1 Body Exposure Conditions | Exposure Position | 1
2.4GHz WLAN
Ant 1
1g SAR
(W/kg) | 2
2.4GHz WLAN
Ant 2
1g SAR
(W/kg) | 1+2
Summed
1g SAR (W/kg) | SPLSR | Case No | |--------------------|---|---|--------------------------------|-------|---------| | Bottom Face at 0mm | 1.056 | 0.874 | 1.93 | 0.020 | Case 1 | | Edge 1 at 0mm | | 0.670 | 0.67 | | | | Edge 4 at 0mm | 0.436 | | 0.44 | | | Report No. : FA5N2711-05 | Exposure Position | 3
5GHz WLAN
Ant 1
1g SAR
(W/kg) | 4
5GHz WLAN
Ant 2
1g SAR
(W/kg) | 3+4
Summed
1g SAR (W/kg) | SPLSR | Case No | |--------------------|---|---|--------------------------------|-------|---------| | Bottom Face at 0mm | 0.699 | 0.766 | 1.47 | | | | Edge 1 at 0mm | | 1.122 | 1.12 | | | | Edge 4 at 0mm | 0.640 | | 0.64 | | | | Exposure Position | 1
2.4GHz WLAN
Ant 1
1g SAR
(W/kg) | 5 Bluetooth Ant 2 1g SAR (W/kg) | 1+5
Summed
1g SAR (W/kg) | SPLSR | Case No | |--------------------|---|---------------------------------|--------------------------------|-------|---------| |
Bottom Face at 0mm | 1.056 | 0.001 | 1.06 | | | | Edge 1 at 0mm | | 0.032 | 0.03 | | | | Edge 4 at 0mm | 0.436 | | 0.44 | | | | Exposure Position | 3
5GHz WLAN
Ant 1
1g SAR
(W/kg) | 5 Bluetooth Ant 2 1g SAR (W/kg) | 3+5
Summed
1g SAR (W/kg) | SPLSR | Case No | |--------------------|---|---------------------------------|--------------------------------|-------|---------| | Bottom Face at 0mm | 0.699 | 0.001 | 0.70 | | | | Edge 1 at 0mm | | 0.032 | 0.03 | | | | Edge 4 at 0mm | 0.640 | | 0.64 | | | TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date : Jan. 18, 2016 Form version. : 151208 FCC ID: PU5-TP00082A Page 33 of 38 # 15.2 SPLSR Evaluation and Analysis #### **General Note:** SPLSR = (SAR₁ + SAR₂)^{1.5} / (min. separation distance, mm). If SPLSR ≤ 0.04, simultaneously transmission SAR measurement is not necessary **Report No. : FA5N2711-05** | Band Case 1 | Position | SAR | Gap | SAR p | SAR peak location (m) | | | Summed | SPLSR | Simultaneous | | |-------------|------------------|-------------|-------|-------|-----------------------|----------|------------------|---------------|---------|--------------|--------------| | | | (W/kg) | (cm) | Х | Υ | Z | distance
(mm) | SAR
(W/kg) | Results | SAR | | | Case I | WLAN2.4GHz Ant 1 | Bottom Face | 1.056 | 0mm | 0.0116 | -0.136 | -0.177 | 140.6 | 1.93 | 0.02 | Not required | | | WLAN2.4GHz Ant 2 | bollom race | 0.874 | 0mm | 0.0974 | -0.0246 | -0.176 | 140.6 | 1.93 | 0.02 | Not required | NITA | | | | | | | | | | | | F | NT1 | ANT 2 | — | AIVI 2 | | | | | | | | | | | | | ANIZ | | | | | | | Test Engineer: Lawrence Chen and Tommy Chen ### 16. Uncertainty Assessment The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type An evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance. Report No.: FA5N2711-05 A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement. A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience, and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in table below. | Uncertainty Distributions | Normal | Rectangular | Triangular | U-Shape | |------------------------------------|--------------------|-------------|------------|---------| | Multi-plying Factor ^(a) | 1/k ^(b) | 1/√3 | 1/√6 | 1/√2 | - (a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity - (b) κ is the coverage factor #### Table 16.1. Standard Uncertainty for Assumed Distribution The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances. Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is shown in the following tables. | Error Description | Uncertainty
Value
(±%) | Probability | Divisor | (Ci)
1g | (Ci)
10g | Standard
Uncertainty
(1g) (±%) | Standard
Uncertainty
(10g) (±%) | |---|------------------------------|-------------|---------|------------|-------------|--------------------------------------|---------------------------------------| | Measurement System | | | | | | | | | Probe Calibration | 6.0 | N | 1 | 1 | 1 | 6.0 | 6.0 | | Axial Isotropy | 4.7 | R | 1.732 | 0.7 | 0.7 | 1.9 | 1.9 | | Hemispherical Isotropy | 9.6 | R | 1.732 | 0.7 | 0.7 | 3.9 | 3.9 | | Boundary Effects | 1.0 | R | 1.732 | 1 | 1 | 0.6 | 0.6 | | Linearity | 4.7 | R | 1.732 | 1 | 1 | 2.7 | 2.7 | | System Detection Limits | 1.0 | R | 1.732 | 1 | 1 | 0.6 | 0.6 | | Modulation Response | 3.2 | R | 1.732 | 1 | 1 | 1.8 | 1.8 | | Readout Electronics | 0.3 | N | 1 | 1 | 1 | 0.3 | 0.3 | | Response Time | 0.0 | R | 1.732 | 1 | 1 | 0.0 | 0.0 | | Integration Time | 2.6 | R | 1.732 | 1 | 1 | 1.5 | 1.5 | | RF Ambient Noise | 3.0 | R | 1.732 | 1 | 1 | 1.7 | 1.7 | | RF Ambient Reflections | 3.0 | R | 1.732 | 1 | 1 | 1.7 | 1.7 | | Probe Positioner | 0.4 | R | 1.732 | 1 | 1 | 0.2 | 0.2 | | Probe Positioning | 2.9 | R | 1.732 | 1 | 1 | 1.7 | 1.7 | | Max. SAR Eval. | 2.0 | R | 1.732 | 1 | 1 | 1.2 | 1.2 | | Test Sample Related | | | | | | | | | Device Positioning | 3.0 | N | 1 | 1 | 1 | 3.0 | 3.0 | | Device Holder | 3.6 | N | 1 | 1 | 1 | 3.6 | 3.6 | | Power Drift | 5.0 | R | 1.732 | 1 | 1 | 2.9 | 2.9 | | Power Scaling | 0.0 | R | 1.732 | 1 | 1 | 0.0 | 0.0 | | Phantom and Setup | | | | | | | | | Phantom Uncertainty | 6.1 | R | 1.732 | 1 | 1 | 3.5 | 3.5 | | SAR correction | 0.0 | R | 1.732 | 1 | 0.84 | 0.0 | 0.0 | | Liquid Conductivity Repeatability | 0.2 | N | 1 | 0.78 | 0.71 | 0.1 | 0.1 | | Liquid Conductivity (target) | 5.0 | R | 1.732 | 0.78 | 0.71 | 2.3 | 2.0 | | Liquid Conductivity (mea.) | 2.5 | R | 1.732 | 0.78 | 0.71 | 1.1 | 1.0 | | Temp. unc Conductivity | 3.4 | R | 1.732 | 0.78 | 0.71 | 1.5 | 1.4 | | Liquid Permittivity Repeatability | 0.15 | N | 1 | 0.23 | 0.26 | 0.0 | 0.0 | | Liquid Permittivity (target) | 5.0 | R | 1.732 | 0.23 | 0.26 | 0.7 | 0.8 | | Liquid Permittivity (mea.) | 2.5 | R | 1.732 | 0.23 | 0.26 | 0.3 | 0.4 | | Temp. unc Permittivity | 0.83 | R | 1.732 | 0.23 | 0.26 | 0.1
11.4% | 0.1 | | Combined Std. Uncertainty Coverage Factor for 95 % | | | | | | | 11.4% | | Co | K=2 | K=2 | | | | | | Table 16.2. Uncertainty Budget for frequency range 300 MHz to 3 GHz TEL: 886-3-327-3456 / FAX: 886-3-328-4978 FCC ID: PU5-TP00082A Page 36 of 38 **Expanded STD Uncertainty** Issued Date : Jan. 18, 2016 Form version. : 151208 22.9% 22.7% Report No. : FA5N2711-05 | Error Description | Uncertainty
Value
(±%) | Probability | Divisor | (Ci)
1g | (Ci)
10g | Standard
Uncertainty
(1g) (±%) | Standard
Uncertainty
(10g) (±%) | | |-----------------------------------|------------------------------|-------------|---------|------------|-------------|--------------------------------------|---------------------------------------|--| | Measurement System | | | | | | | | | | Probe Calibration | 6.55 | N | 1 | 1 | 1 | 6.6 | 6.6 | | | Axial Isotropy | 4.7 | R | 1.732 | 0.7 | 0.7 | 1.9 | 1.9 | | | Hemispherical Isotropy | 9.6 | R | 1.732 | 0.7 | 0.7 | 3.9 | 3.9 | | | Boundary Effects | 2.0 | R | 1.732 | 1 | 1 | 1.2 | 1.2 | | | Linearity | 4.7 | R | 1.732 | 1 | 1 | 2.7 | 2.7 | | | System Detection Limits | 1.0 | R | 1.732 | 1 | 1 | 0.6 | 0.6 | | | Modulation Response | 3.2 | R | 1.732 | 1 | 1 | 1.8 | 1.8 | | | Readout Electronics | 0.3 | N | 1 | 1 | 1 | 0.3 | 0.3 | | | Response Time | 0.0 | R | 1.732 | 1 | 1 | 0.0 | 0.0 | | | Integration Time | 2.6 | R | 1.732 | 1 | 1 | 1.5 | 1.5 | | | RF Ambient Noise | 3.0 | R | 1.732 | 1 | 1 | 1.7 | 1.7 | | | RF Ambient Reflections | 3.0 | R | 1.732 | 1 | 1 | 1.7 | 1.7 | | | Probe Positioner | 0.4 | R | 1.732 | 1 | 1 | 0.2 | 0.2 | | | Probe Positioning | 6.7 | R | 1.732 | 1 | 1 | 3.9 | 3.9 | | | Max. SAR Eval. | 4.0 | R | 1.732 | 1 | 1 | 2.3 | 2.3 | | | Test Sample Related | | | | | | | | | | Device Positioning | 3.0 | N | 1 | 1 | 1 | 3.0 | 3.0 | | | Device Holder | 3.6 | N | 1 | 1 | 1 | 3.6 | 3.6 | | | Power Drift | 5.0 | R | 1.732 | 1 | 1 | 2.9 | 2.9 | | | Power Scaling | 0.0 | R | 1.732 | 1 | 1 | 0.0 | 0.0 | | | Phantom and Setup | | | | | | | | | | Phantom Uncertainty | 6.6 | R | 1.732 | 1 | 1 | 3.8 | 3.8 | | | SAR correction | 0.0 | R | 1.732 | 1 | 0.84 | 0.0 | 0.0 | | | Liquid Conductivity Repeatability | 0.2 | N | 1 | 0.78 | 0.71 | 0.1 | 0.1 | | | Liquid Conductivity (target) | 5.0 | R | 1.732 | 0.78 | 0.71 | 2.3 | 2.0 | | | Liquid Conductivity (mea.) | 2.5 | R | 1.732 | 0.78 | 0.71 | 1.1 | 1.0 | | | Temp. unc Conductivity | 3.4 | R | 1.732 | 0.78 | 0.71 | 1.5 | 1.4 | | | Liquid Permittivity Repeatability | 0.15 | N
| 1 | 0.23 | 0.26 | 0.0 | 0.0 | | | Liquid Permittivity (target) | 5.0 | R | 1.732 | 0.23 | 0.26 | 0.7 | 0.8 | | | Liquid Permittivity (mea.) | 2.5 | R | 1.732 | 0.23 | 0.26 | 0.3 | 0.4 | | | Temp. unc Permittivity | 0.83 | R | 1.732 | 0.23 | 0.26 | 0.1 | 0.1 | | | Combined Std. Uncertainty | | | | | | | 12.5% | | | Coverage Factor for 95 % | | | | | | | K=2 | | | Ехр | 25.0% | 24.9% | | | | | | | Table 16.3. Uncertainty Budget for frequency range 3 GHz to 6 GHz TEL: 886-3-327-3456 / FAX: 886-3-328-4978 FCC ID: PU5-TP00082A Page 37 of 38 Issued Date : Jan. 18, 2016 Form version. : 151208 Report No. : FA5N2711-05 ### 17. References [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations" Report No.: FA5N2711-05 - [2] ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992 - [3] IEEE Std. 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", Sep 2013 - [4] SPEAG DASY System Handbook - [5] FCC KDB 248227 D01 v02r02, "SAR Guidance for IEEE 802.11 (WiFi) Transmitters", Oct 2015. - [6] FCC KDB 447498 D01 v06, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Oct 2015 - [7] FCC KDB 616217 D04 v01r02, "SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers", Oct 2015 - [8] FCC KDB 865664 D01 v01r04, "SAR Measurement Requirements for 100 MHz to 6 GHz", Aug 2015. - [9] FCC KDB 865664 D02 v01r02, "RF Exposure Compliance Reporting and Documentation Considerations" Oct 2015.