

FCC RF Test Report

APPLICANT	:	Wistron Corporation
EQUIPMENT	:	Notebook Computer
BRAND NAME	:	Lenovo
MODEL NAME	:	TP00076BUC
FCC ID	:	PU5-TP00076BUC
STANDARD	:	FCC Part 15 Subpart E §15.407
CLASSIFICATION	:	(NII) Unlicensed National Information Infrastructure

Equipment: AriPrime EM7455 and Intel 8260NGW tested inside of Lenovo Notebook PC. This is a partial data. In this report, tests are performed only for U-NII band IV. The product was received on Nov. 25, 2015 and testing was completed on Jan. 25, 2016. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by: Joseph Lin / Supervisor

Approved by: Jones Tsai / Manager

SPORTON INTERNATIONAL INC. No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.

SPORTON INTERNATIONAL INC. TEL : 886-3-327-3456 FAX : 886-3-328-4978 FCC ID : PU5-TP00076BUC

Page Number : 1 of 38 Report Issued Date : Feb. 05, 2016 Report Version : Rev. 01 Report Template No.: BU5-FR15EWLB4 AC MA Version 1.2

TABLE OF CONTENTS

RE	VISIO	N HISTORY	3
SU	MMAF	RY OF TEST RESULT	4
1	GEN	ERAL DESCRIPTION	5
	1.1 1.2 1.3 1.4 1.5 1.6 1.7	Applicant Manufacturer Product Feature of Equipment Under Test Product Specification of Equipment Under Test Modification of EUT Testing Location Applicable Standards	5 7 7 7
2	TEST	T CONFIGURATION OF EQUIPMENT UNDER TEST	9
	2.1 2.2 2.3 2.4 2.5 2.6 2.7	Carrier Frequency and Channel Pre-Scanned RF Power Test Mode Connection Diagram of Test System Support Unit used in test configuration and system EUT Operation Test Setup Measurement Results Explanation Example	
3	TEST	T RESULT	17
	3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8	6dB and 26dB and 99% Occupied Bandwidth Measurement Maximum Conducted Output Power Measurement Power Spectral Density Measurement Unwanted Emissions Measurement AC Conducted Emission Measurement Frequency Stability Measurement Automatically Discontinue Transmission Antenna Requirements	20 21 23 29 33 34
4	LIST	OF MEASURING EQUIPMENT	37
AP	PEND PEND	ERTAINTY OF EVALUATION DIX A. CONDUCTED TEST RESULTS DIX B. RADIATED SPURIOUS EMISSION DIX C. RADIATED SPURIOUS EMISSION PLOTS	38
AP	FEND	VIX C. RADIAIED SPURIDUS EMISSION PLUIS	

APPENDIX D. SETUP PHOTOGRAPHS

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR5O1701-03B	Rev. 01	Initial issue of report	Feb. 05, 2016

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.403(i)	6dB, 26dB and 99% Occupied Bandwidth > 500kHz Pass		-	
3.2	15.407(a)	Maximum Conducted Output Power	\leq 30 dBm	Pass	-
3.3	15.407(a)	Power Spectral Density	\leq 30 dBm/500kHz	Pass	-
3.4	15.407(b)	Unwanted Emissions	≤ -17, -27 dBm/MHz &15.209(a)	Pass	Under limit 1.59 dB at 5712.200 MHz
3.5	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 16.10 dB at 0.190 MHz
3.6	15.407(g)	Frequency Stability Within Operation		Pass	-
3.7	15.407(c)	Automatically Discontinue Transmission	Discontinue Transmission	Pass	-
3.8	15.203 & 15.407(a)	Antenna Requirement	N/A	Pass	-

1 General Description

1.1 Applicant

Wistron Corporation

21F, No. 88, Sec. 1, Hsin Tai Wu Rd., Hsichih Dist, New Taipei City 221, Taiwan R.O.C.

1.2 Manufacturer

Wistron Corporation

21F, No. 88, Sec. 1, Hsin Tai Wu Rd., Hsichih Dist, New Taipei City 221, Taiwan R.O.C.

1.3 Product Feature of Equipment Under Test

Product Feature				
Equipment	Notebook Computer			
Brand Name	Lenovo			
Model Name	TP00076BUC			
FCC ID	PU5-TP00076BUC			
Integrated WWAN Module	Brand Name: Sierra Model Name: EM7455			
Integrated WLAN Module	Brand Name: Intel Model Name: 8260NGW			
EUT supports Radios application	WCDMA/HSPA/LTE WLAN 11a/b/g/n HT20/HT40 WLAN 11ac VHT20/VHT40/VHT80 Bluetooth v4.1 EDR/LE			
EUT Stage	Production Unit			

Remark:

- 1. The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.
- 2. Equipment: AriPrime EM7455 and Intel 8260NGW tested inside of Lenovo Notebook PC.

	Antenna Information						
	Manufacturer	Jieng Tai					
	Antenna Type	PIFA Antenna					
		Main Antenna :	Aux. Antenna :				
Antenna 1	Part number	025.900Al.0011	025.900AJ.0011				
Antenna i		Main Antenna :	Aux. Antenna :				
	Dook goin		WLAN (2.4GHz): 1.39				
	Peak gain	WLAN (2.4GHz): 1.46	Bluetooth : 1.39				
		WLAN (5GHz): 0.4	WLAN (5GHz): 0.95				
	Manufacturer	WNC					
	Antenna Type	PIFA Antenna					
		Main Antenna :	Aux. Antenna :				
Antenna 2	Part number	025.900AI.0001	025.900AJ.0001				
			WLAN (2.4GHz):0.83				
	Peak gain	WLAN (2.4GHz):0.79	Bluetooth :0.83				
		WLAN (5GHz):-0.24	WLAN (5GHz):-0.34				

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification						
Tx/Rx Channel Frequency Range	5745 MHz ~ 5825	MHz				
Maximum Output Power	802.11a : 15.80 dBm / 0.0380 W SISO <ant. 1="" port=""> 802.11n HT20 : 15.79 dBm / 0.0379 W 802.11n HT40 : 15.80 dBm / 0.0379 W 802.11ac VHT20: 15.73 dBm / 0.0374 W 802.11ac VHT40: 15.70 dBm / 0.0372 W 802.11ac VHT80: 15.76 dBm / 0.0377 W <ant. 2=""> 802.11a : 15.74 dBm / 0.0375 W SISO <ant. 2="" port=""> 802.11n HT20 : 15.77 dBm / 0.0378 W 802.11ac VHT20: 15.67 dBm / 0.0369 W 802.11ac VHT20: 15.67 dBm / 0.0369 W 802.11ac VHT40: 15.71 dBm / 0.0372 W MIMO <ant. +="" 1="" 2="" port=""> 802.11n HT20 : 15.81 dBm / 0.0381 W 802.11ac VHT20: 15.70 dBm / 0.0372 W MIMO <ant. +="" 1="" 2="" port=""> 802.11n HT40 : 15.78 dBm / 0.0381 W 802.11ac VHT40: 15.70 dBm / 0.0372 W 802.11ac VHT40: 15.70 dBm / 0.0372 W 802.11ac VHT40: 15.70 dBm / 0.0371 W 802.11ac VHT40: 15.77 dBm / 0.0371 W 802.11a : 17.55 MHz</ant.></ant.></ant.></ant.></ant.>					
99% Occupied Bandwidth	802.11a : 17.55 MHz 802.11n HT20 : 18.70 MHz 802.11n HT40 : 36.60 MHz					
Type of Modulation	802.11ac : OFDM	`	,	56QAM)		
Antenna Function Description	802.11 a 802.11 n/ac SISO 802.11 n/ac MIMO	Chain Port 1 V V V	Chain Port 2 V V V			

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code : 1190) and the FCC designation No. TW1022 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC Test.

Test Site	SPORTON INTERNATIONAL INC.					
	No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park,					
Test Ofte Lesstian	Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.					
Test Site Location	TEL: +886-3-327-3456					
	FAX: +886-3-328-4978					
Test Site No	Sporton Site No.					
Test Site No.	TH05-HY	CO05-HY				

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	SPORTON INTERNATIONAL INC.			
	No.58, Aly. 75, Ln. 564, Wenhua 3rd Rd.,			
Test Site Location	Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.			
	TEL: +886-3-327-0868			
	FAX: +886-3-327-0855			
Test Site No.	Sporton Site No.			
1651 Sile 110.	03CH12-HY			

Note: The test site complies with ANSI C63.4 2014 requirement.

1.7 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart E
- FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r01
- FCC KDB 662911 D01 Multiple Transmitter Output v02r01.
- ANSI C63.10-2013

Remark: All test items were verified and recorded according to the standards and without any deviation during the test.

2 Test Configuration of Equipment Under Test

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conducted emission (150 kHz to 30 MHz) and radiated emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (X plane) were recorded in this report.

The final configuration from all the combinations and the worst-case data rates were investigated by measuring the maximum power across all the data rates and modulation modes under section 2.2.

Based on the worst configuration found above, the RF power setting is set individually to meet FCC compliance limit for the final conducted and radiated tests shown in section 2.3.

2.1 Carrier Frequency and Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	149	5745	157	5785
5725-5850 MHz	151	5755	159	5795
Band 4 (U-NII-3)	153	5765	161	5805
	155	5775	165	5825

Note: The above Frequency and Channel in boldface were 802.11n HT40.

2.2 Pre-Scanned RF Power

Preliminary tests were performed in different data rate and data rate associated with the highest power were chosen for full test in the following tables. Final Output Power equals to Measured Output Power adds the duty factor.

<Ant. 1>

5GHz 802.11a mode									
Data Rate (MHz) 6M bps 9M bps 12M bps 18M bps 24M bps 36M bps 48M bps 54M bps									
Average Power (dBm)	<mark>15.80</mark>	15.76	15.77	15.74	15.79	15.77	15.79	15.77	

SISO <Ant. 1>

5GHz 802.11n HT20 mode								
Data Rate (MHz) MCS0 MCS1 MCS2 MCS3 MCS4 MCS5 MCS6 MCS7								
Average Power (dBm)	<mark>15.79</mark>	15.77	15.75	15.76	15.72	15.74	15.79	15.78

5GHz 802.11n HT40 mode										
Data Rate (MHz)	MCS0 MCS1 MCS2 MCS3 MCS4 MCS5 MCS6 MCS7									
Average Power (dBm)	<mark>15.80</mark>	15.68	15.78	15.76	15.79	15.77	15.74	15.78		

5GHz 802.11ac VHT20 mode										
Data Rate (MHz)	(MHz) MCS 0 MCS 1 MCS 2 MCS 3 MCS 4 MCS 5 MCS 6 MCS 7 MCS 8									
Average Power (dBm)	<mark>15.73</mark>	15.64	15.66	15.71	15.66	15.68	15.72	15.70	15.71	

5GHz 802.11ac VHT40 mode										
Data Rate (MHz)	MCS 0 MCS 1 MCS 2 MCS 3 MCS 4 MCS 5 MCS 6 MCS 7 MCS 8 MCS								MCS 9	
Average Power (dBm)	<mark>15.70</mark>	15.62	15.67	15.65	15.64	15.68	15.67	15.69	15.68	12.65

5GHz 802.11ac VHT80 mode										
Data Rate (MHz)	MCS 0	MCS 1	MCS 2	MCS 3	MCS 4	MCS 5	MCS 6	MCS 7	MCS 8	MCS 9
Average Power (dBm)	<mark>15.76</mark>	15.72	15.74	15.75	15.70	15.72	15.73	15.75	15.73	15.68

<Ant. 2>

5GHz 802.11a mode									
Data Rate (MHz)	6M bps	6M bps 9M bps 12M bps 18M bps 24M bps 36M bps 48M bps							
Average Power (dBm)	<mark>15.74</mark>	15.58	15.54	15.59	15.61	15.60	15.73	15.67	

SISO <Ant. 2>

5GHz 802.11n HT20 mode										
Data Rate (MHz)	MCS0	MCS0 MCS1 MCS2 MCS3 MCS4 MCS5 MCS6 MCS7								
Average Power (dBm)	<mark>15.77</mark>	15.68	15.71	15.77	15.75	15.72	15.73	15.76		

5GHz 802.11n HT40 mode										
Data Rate (MHz)	MCS0	MCS0 MCS1 MCS2 MCS3 MCS4 MCS5 MCS6 MCS7								
Average Power (dBm)	<mark>15.73</mark>	15.71	15.72	15.68	15.70	15.65	15.72	15.71		

5GHz 802.11ac VHT20 mode										
Data Rate (MHz) MCS 0 MCS 1 MCS 2 MCS 3 MCS 4 MCS 5 MCS 6 MCS 7 MCS 8										
Average Power (dBm)	<mark>15.67</mark>	15.65	15.62	15.64	15.66	15.65	15.67	15.66	15.62	

5GHz 802.11ac VHT40 mode										
Data Rate (MHz) MCS 0 MCS 1 MCS 2 MCS 3 MCS 4 MCS 5 MCS 6 MCS 7 MCS 8 MCS 9										
Average Power (dBm)	<mark>15.67</mark>	15.52	15.60	15.51	15.65	15.64	15.61	15.61	15.66	15.64

Data Rate (MHz)	MCS 0	MCS 1	MCS 2	MCS 3	MCS 4	MCS 5	MCS 6	MCS 7	MCS 8	MCS 9
Average Power (dBm)	<mark>15.71</mark>	15.49	15.61	15.66	15.70	15.64	15.69	15.70	15.69	15.70

MIMO <Ant. 1+2>

5GHz 802.11n HT20 mode												
Data Rate (MHz)	MCS 0	MCS	61 M	ICS 2	MC	S 3	МС	CS 4	M	CS 5	MCS 6	MCS 7
Average Power (dBm)	<mark>15.81</mark>	15.3	35 1	5.37	15	38	15	6.40	1	5.39	15.34	15.44
5GHz 802.11n HT40 mode												
Data Rate (MHz)	MCS 0	MCS	61 M	ICS 2	MC	S 3	МС	CS 4	M	CS 5	MCS 6	MCS 7
Average Power (dBm)	<mark>15.88</mark>	15.8	34 1	5.86	15	82	15	.87	1	5.86	15.87	15.84
5GHz 802.11ac VHT20 mode												
Data Rate (MHz)	MCS 0	MCS 1	MCS	2 M	CS 3	MC	S 4	МС	CS 5	MCS 6	MCS 7	MCS 8
Average Power (dBm)	<mark>15.70</mark>	15.03	15.0	9 1	5.07	15	.68	15	5.13	15.14	15.17	15.23
		5	GHz 80	2.11ac	VHT4	0 mc	ode					
Data Rate (MHz)	MCS 0	MCS 1	MCS 2	MCS	3 M	CS 4	MCS	S 5	MCS	6 MCS	7 MCS	B MCS 9
Average Power (dBm)	<mark>15.77</mark>	15.69	15.68	15.59) 15	5.74	15.7	76	15.75	5 15.7	1 15.73	3 15.75
	5GHz 802.11ac VHT80 mode											
Data Rate (MHz)	MCS 0	MCS 1	MCS 2	MCS	3 M	CS 4	MCS	65	MCS	6 MCS	7 MCS	B MCS 9
Average Power (dBm)	<mark>15.69</mark>	15.64	15.63	15.67	7 15	5.68	15.6	66	15.62	15.6	5 15.68	3 15.67

Note: MIMO Ant. 1+2 is a calculated result from sum of the power MIMO Ant. 1 and MIMO Ant. 2.

2.3 Test Mode

Final test mode of conducted test items and radiated spurious emissions are considering the modulation and worse data rates from the power table described in section 2.2.

Single Antenna

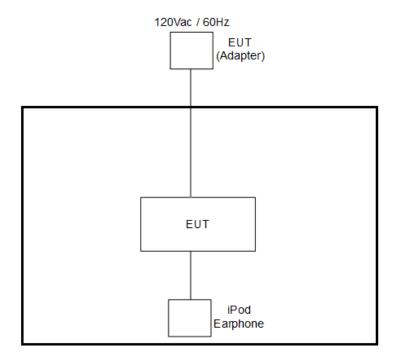
Modulation	Data Rate
802.11a	6 Mbps
802.11n HT20	MCS0
802.11n HT40	MCS0
802.11ac VHT20	MCS0
802.11ac VHT40	MCS0
802.11ac VHT80	MCS0

MIMO Antenna

Modulation	Data Rate
802.11n HT20	MCS8
802.11n HT40	MCS8
802.11ac VHT20	MCS0
802.11ac VHT40	MCS0
802.11ac VHT80	MCS0

AC Conducted	Mode 1 : WLAN (5GHz) Link + TC + TF
Emission	NOUE 1 . WLAN (SGHZ) LINK + TC + TF
Remark:	
1. TC stands	for Test Configuration, and consists of Camera, MPEG4, H-Pattern, and Bluetooth Link.

2. TF stands for Test Function, and consists of USB HD, HDMI Cable, Earphone, DP Cable (Load), OneLink with RJ45, and Adapter.


	Ch #		Band IV : 5725-5850 MHz	
	Ch. #	802.11a	802.11n HT20	802.11n HT40
L	Low	149	149	151
М	Middle	157	157	-
н	High	165	165	159

	Ch #		Band IV:5725-5850 MHz	
	Ch. #	802.11ac VHT20	802.11ac VHT40	802.11ac VHT80
L	Low	149	151	-
М	Middle	157	-	155
Н	High	165	159	-

2.4 Connection Diagram of Test System

<WLAN Tx Mode>

<AC Conducted Emission Mode>

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Bluetooth Earphone	Sony Ericsson	MW600	PY7DDA-2029	N/A	N/A
2.	WLAN AP	D-Link	DIR-628	KA2DIR628A2	N/A	Unshielded, 1.8 m
3.	Notebook	DELL	Latitude E6320	FCC DoC/ Contains FCC ID: QDS-BRCM1054	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
4.	iPod Earphone	Apple	N/A	Verification	Unshielded, 1.0 m	N/A
5.	LCD Monitor	DELL	U2410	FCC DoC	Shielded, 1.6 m	Unshielded, 1.8 m
6.	USB HD	PQI	H568V	FCC DoC	Shielded, 0.5 m	N/A
7.	SD Card	SanDisk	MicroSD HC	FCC DoC	N/A	N/A

2.5 Support Unit used in test configuration and system

2.6 EUT Operation Test Setup

The programmed RF utility "DRTU tool", is installed in EUT to provide channel selection, power level, data rate and the application type. RF Utility can send transmitting signal for all testing. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

2.7 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example :

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10dB attenuator.

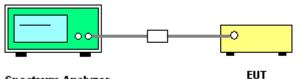
 $Offset(dB) = RF \ cable \ loss(dB) + attenuator \ factor(dB).$ = 4.2 + 10 = 14.2 (dB)

3 Test Result

3.1 6dB and 26dB and 99% Occupied Bandwidth Measurement

3.1.1 Description of 6dB and 26dB and 99% Occupied Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz. 26dB and 99% Occupied bandwidth are reporting only.

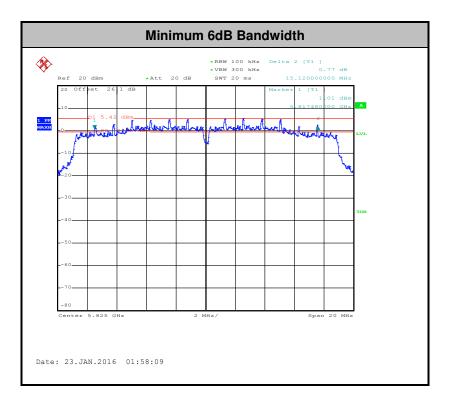

3.1.2 Measuring Instruments

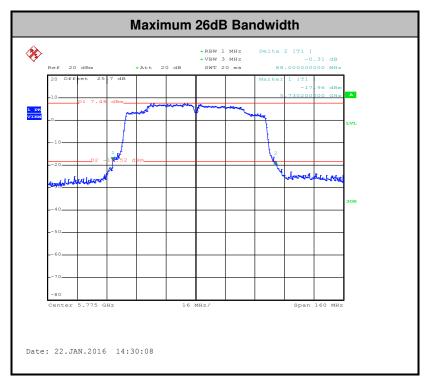
The measuring equipment is listed in the section 4 of this test report.

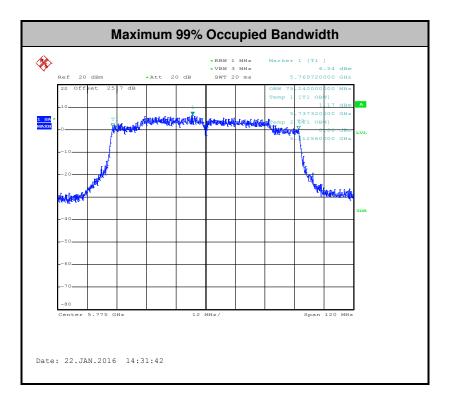
3.1.3 Test Procedures

- The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r01. Section C) Emission bandwidth for the band 5.725-5.85GHz
- 2. Set RBW = 100kHz.
- 3. Set the VBW \ge 3 x RBW.
- 4. Detector = Peak.
- 5. Trace mode = max hold
- 6. Measure the maximum width of the emission that is 6 dB down from the peak of the emission.
- 7. Measure and record the results in the test report.

3.1.4 Test Setup


Spectrum Analyzer




3.1.5 Test Result of 6dB Bandwidth

Please refer to Appendix A.

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

3.2 Maximum Conducted Output Power Measurement

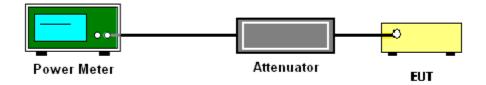
3.2.1 Limit of Maximum Conducted Output Power

For the band 5.725–5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.2.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.


3.2.3 Test Procedures

The testing follows Method PM of FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r01.

Method PM (Measurement using an RF average power meter):

- 1. Measurement is performed using a wideband RF power meter.
- 2. The EUT is configured to transmit continuously with a consistent duty cycle at its maximum power control level.
- 3. Measure the average power of the transmitter, and the average power is corrected with duty factor, $10 \log(1/x)$, where x is the duty cycle.

3.2.4 Test Setup

3.2.5 Test Result of Maximum Conducted Output Power

Please refer to Appendix A.

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

For the band 5.725–5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band.

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

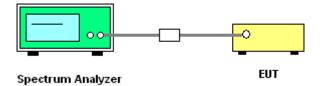
3.3.3 Test Procedures

The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r01. Section F) Maximum power spectral density.

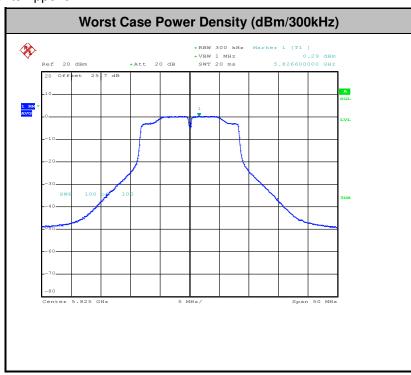
Method SA-2

(trace averaging across on and off times of the EUT transmissions, followed by duty cycle correction).

- 1. The testing follows Method SA-2 of FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r01.
 - Measure the duty cycle.
 - Set span to encompass the entire emission bandwidth (EBW) of the signal.
 - Set RBW = 300 kHz.
 - Set VBW ≥ 1 MHz.
 - Number of points in sweep \geq 2 Span / RBW.
 - Sweep time = auto.
 - Detector = RMS
 - Trace average at least 100 traces in power averaging mode.
 - Add 10 log(500kHz/RBW) to the test result.
 - Add 10 log(1/x), where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times. For example, add 10 log(1/0.25) = 6 dB if the duty cycle is 25 percent.



- 2. The RF output of EUT was connected to the spectrum analyzer by a low loss cable.
- 3. Each plot has already offset with cable loss, and attenuator loss. Measure the PPSD and record it.
- 4. For MIMO mode, calculation method follows FCC KDB 662911 D01 Multiple Transmitter Output v02r01.


Method (a): Measure and sum the spectra across the outputs.

The total final Power Spectral Density is from a device with 2 transmitter outputs. The spectrum measurements of the individual outputs are all performed with the same span and number of points, the spectrum value in the first spectral bin of output 1 is summed with that in the first spectral bin of output 2 to obtain the value for the first frequency bin of the summed spectrum.

3.3.4 Test Setup

3.3.5 Test Result of Power Spectral Density

Please refer to Appendix A.

SPORTON INTERNATIONAL INC. TEL : 886-3-327-3456 FAX : 886-3-328-4978 FCC ID : PU5-TP00076BUC Page Number : 22 of 38 Report Issued Date : Feb. 05, 2016 Report Version : Rev. 01 Report Template No.: BU5-FR15EWLB4 AC MA Version 1.2

3.4 Unwanted Emissions Measurement

This section as specified in FCC Part 15.407(b) is to measure unwanted emissions through radiated measurement for band edge spurious emissions and out of band emissions measurement. The unwanted emissions shall comply with 15.407(b)(1) to (6), and restricted bands per FCC Part15.205.

3.4.1 Limit of Unwanted Emissions

- (1) For transmitters operating in the 5725-5850 MHz band: all emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an EIRP of -17 dBm/MHz (78.3dBµV/m); for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an EIRP of -27 dBm/MHz (68.3dBµV/m).
- (2) Unwanted spurious emissions fallen in restricted bands per FCC Part15.205 shall comply with the general field strength limits set forth in § 15.209 as below table,

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

Note: The following formula is used to convert the EIRP to field strength.

$$E = \frac{1000000\sqrt{30F}}{2}$$

µV/m, where P is the eirp (Watts)

EIRP (dBm)	Field Strength at 3m (dBµV/m)
-17	78.3
- 27	68.3

(3) KDB 789033 D02 General UNII Test Procedures New Rules v01r01 G)2)c) As specified in 15.407(b), emissions above 1000 MHz that are outside of the restricted bands are subject to a peak emission limit of -27 dBm/MHz (or -17 dBm/MHz as specified in 15.407(b)(4)). However, an out-of-band emission that complies with both the average and peak limits of 15.209 is not required to satisfy the -27 dBm/MHz or -17 dBm/MHz peak emission limit.

3.4.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.4.3 Test Procedures

 The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r01. Section G) Unwanted emissions measurement.

(1) Procedure for Unwanted Emissions Measurements Below 1000MHz

- RBW = 120 kHz
- VBW = 300 kHz
- Detector = Peak
- Trace mode = max hold

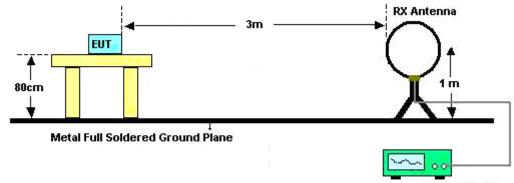
(2) Procedure for Peak Unwanted Emissions Measurements Above 1000 MHz

- RBW = 1 MHz
- VBW ≥ 3 MHz
- Detector = Peak
- Sweep time = auto
- Trace mode = max hold

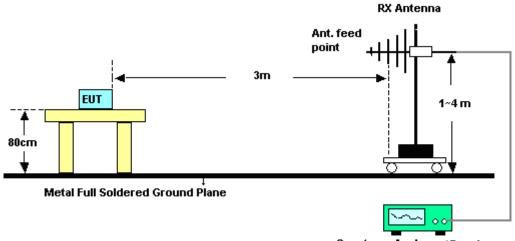
(3) Procedures for Average Unwanted Emissions Measurements Above 1000MHz

- RBW = 1 MHz
- VBW = 10 Hz, when duty cycle is no less than 98 percent.
- VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

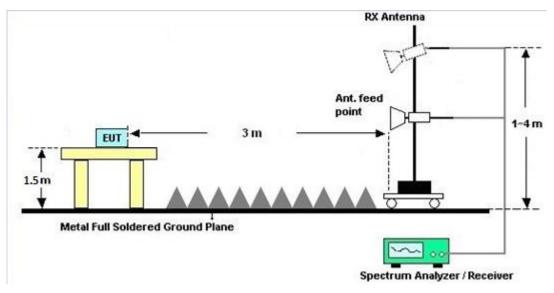
Antenna	Band	Duty Cycle(%)	T(us)	1/T(kHz)	VBW Setting
1	802.11a	98	-	-	10Hz
1	5GHz 802.11n HT20	98	-	-	10Hz
1	5GHz 802.11n HT40	97.69	1480	0.68	1kHz
2	802.11a	98	-	-	10Hz
2	5GHz 802.11n HT20	98.013	-	-	10Hz
2	5GHz 802.11n HT40	97.368	1480	0.68	1kHz
1+2	5GHz 802.11n HT20 for Ant 1	97.386	1490	0.67	1kHz
1+2	5GHz 802.11n HT20 for Ant 2	96.697	1485	0.67	1kHz
1+2	5GHz 802.11n HT40 for Ant 1	97.386	1490	0.67	1kHz
1+2	5GHz 802.11n HT40 for Ant 2	97.386	1490	0.67	1kHz
1	5GHz 802.11ac VHT20	97.368	1480	0.68	1kHz
1	5GHz 802.11ac VHT40	98.026	-	-	10Hz
1	5GHz 802.11ac VHT80	98.026	-	-	10Hz
2	5GHz 802.11ac VHT20	98.026	-	-	10Hz
2	5GHz 802.11ac VHT40	98.026	-	-	10Hz
2	5GHz 802.11ac VHT80	98.026	-	-	10Hz
1+2	5GHz 802.11ac VHT20 for Ant 1	97.386	1490	0.67	1kHz
1+2	5GHz 802.11ac VHT20 for Ant 2	97.386	1490	0.67	1kHz
1+2	5GHz 802.11ac VHT40 for Ant 1	97.386	1490	0.67	1kHz
1+2	5GHz 802.11ac VHT40 for Ant 2	97.377	1485	0.67	1kHz
1+2	5GHz 802.11ac VHT80 for Ant 1	97.386	1490	0.67	1kHz
1+2	5GHz 802.11ac VHT80 for Ant 2	96.732	1480	0.68	1kHz



- 2. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 3. The EUT was set 3 meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.
- 4. The antenna is a broadband antenna and its height is adjusted between one meter and four meters above ground to find the maximum value of the field strength for both horizontal polarization and vertical polarization of the antenna.
- 5. For each suspected emission, the EUT was arranged to its worst case and then adjust the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading.
- 6. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 7. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.


3.4.4 Test Setup

For radiated emissions below 30MHz


Spectrum Analyzer / Receiver

For radiated emissions from 30MHz to 1GHz

Spectrum Analyzer / Receiver

For radiated emissions above 1GHz

3.4.5 Test Results of Radiated Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

3.4.6 Test Result of Radiated Band Edges

Please refer to Appendix B and C.

3.4.7 Test Result of Unwanted Radiated Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix B and C.

3.5 AC Conducted Emission Measurement

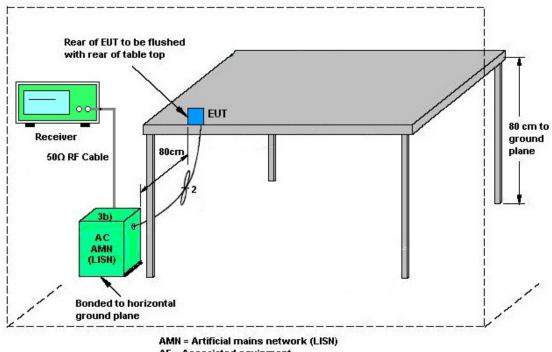
3.5.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of omission (MHz)	Conducted	limit (dBµV)
Frequency of emission (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

3.5.2 Measuring Instruments


The measuring equipment is listed in the section 4 of this test report.

3.5.3 Test Procedures

- The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.

3.5.4 Test Setup

- AE = Associated equipment EUT = Equipment under test
- ISN = Impedance stabilization network

3.5.5 Test Result of AC Conducted Emission

ode :		Mode 1			Tem	peratur	e :	23~24 ℃	
ngineer	r:	Derreck Che	n		Rela	Phase :		51~52% Line	
ltage :	-	120Vac / 60H	Ηz		Pha				
on Type	e:\	WLAN (5GH	z) Link	+ TC -	+ TF				
	Level in dBµV		Mr.wy	Ngrawaa				22-QP Limit at Main	
		0 150k 300	400 500	800 1M		2M 3M Jency in Hz	4M 5M 6	8 10M 20M	30M
		150k 300 : QuasiPea		800 1M	Frequ	uency in Hz		8 10M 20M	30M
Freque	ency	150k 300 : QuasiPea QuasiPeak		800 1M	Frequence	uency in Hz Margin	Limit	8 10M 20M	30M
	ency z)	150k 300 : QuasiPea	ak		Frequ	uency in Hz		8 10M 20M	30M
Freque (MHz	ency z) 000	150k 300 : QuasiPeak (dBµV)	ak Filter	Line	Frequ Corr. (dB)	Margin (dB)	Limit (dBµV)	8 10M 20M	30M
Freque (MHz 0.1580	ency z) 000 000	150k 300 : QuasiPeak (dBμV) 38.0	ak Filter Off	Line L1	Frequ Corr. (dB) 19.6	Margin (dB) 27.6	Limit (dBµV) 65.6	8 10M 20M	30M
Freque (MHz 0.1580 0.1900	ency z) 000 000 000	150k 300 : QuasiPeak (dBµV) 38.0 47.9	Filter Off Off	Line L1 L1	Frequ Corr. (dB) 19.6 19.6	Margin (dB) 27.6 16.1	Limit (dBµV) 65.6 64.0	8 10M 20M	30M
Freque (MHz 0.1580 0.1900 0.2460 0.3180 0.4060	ency z) 000 000 000 000	150k 300 : QuasiPeak QuasiPeak (dBμV) 38.0 47.9 41.0 37.5 32.2	Filter Off Off Off Off Off	Line L1 L1 L1 L1 L1	Frequ Corr. (dB) 19.6 19.6 19.6 19.6	Margin (dB) 27.6 16.1 20.9 22.3 25.5	Limit (dBµV) 65.6 64.0 61.9 59.8 57.7	8 10M 20M	30M
Freque (MHz 0.1580 0.1900 0.2460 0.3180 0.4060 3.8780	ency z) 000 000 000 000 000	150k 300 : QuasiPeak QuasiPeak (dBμV) 38.0 47.9 41.0 37.5 32.2 33.7 33.7	Filter Off Off Off Off Off Off	Line L1 L1 L1 L1 L1 L1 L1	Frequ Corr. (dB) 19.6 19.6 19.6 19.6 19.6 19.7	Margin (dB) 27.6 16.1 20.9 22.3 25.5 22.3	Limit (dBµV) 65.6 64.0 61.9 59.8 57.7 56.0	8 10M 20M	30M
Freque (MHz 0.1580 0.1900 0.2460 0.3180 0.4060 3.8780 15.678	ency z) 000 000 000 000 000 000 000	150k 300 : QuasiPeak QuasiPeak (dBμV) 38.0 47.9 41.0 37.5 32.2	Filter Off Off Off Off Off	Line L1 L1 L1 L1 L1	Frequ Corr. (dB) 19.6 19.6 19.6 19.6	Margin (dB) 27.6 16.1 20.9 22.3 25.5	Limit (dBµV) 65.6 64.0 61.9 59.8 57.7	8 10M 20M	30M
Freque (MHz 0.1580 0.1900 0.2460 0.3180 0.4060 3.8780 15.678	ency z) 000 000 000 000 000 000 000 esult	150k 300 : QuasiPeak QuasiPeak (dBμV) 38.0 47.9 41.0 37.5 32.2 33.7 33.2	Ak Filter Off Off Off Off Off Off Off	Line L1 L1 L1 L1 L1 L1 L1	Frequ Corr. (dB) 19.6 19.6 19.6 19.6 19.6 19.7	Margin (dB) 27.6 16.1 20.9 22.3 25.5 22.3	Limit (dBµV) 65.6 64.0 61.9 59.8 57.7 56.0	8 10M 20M	30M
Freque (MHz 0.1580 0.1900 0.2460 0.3180 0.4060 3.8780 15.678 inal Re Freque (MHz	ency z) 000 000 000 000 000 000 000 000 000	150k 300 : QuasiPeak QuasiPeak (dBμV) 38.0 47.9 41.0 37.5 32.2 33.7 33.2 : Average	Filter Off Off Off Off Off Off	Line L1 L1 L1 L1 L1 L1 L1	Frequ (dB) 19.6 19.6 19.6 19.6 19.6 19.7 19.8	Margin (dB) 27.6 16.1 20.9 22.3 25.5 22.3 26.8	Limit (dBµV) 65.6 64.0 61.9 59.8 57.7 56.0 60.0	8 10M 20M	30M
Freque (MHz 0.1580 0.1900 0.2460 0.3180 0.4060 3.8780 15.6780 inal Re Freque (MHz 0.1580	ency z) 000 000 000 000 000 000 000 000 000	150k 300 : QuasiPeak QuasiPeak (dBμV) 38.0 47.9 41.0 37.5 32.2 33.7 33.2 : Average (dBμV) 24.8	Filter Off	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Frequ (dB) 19.6 19.6 19.6 19.6 19.7 19.8 19.7 (dB) 19.6	Margin (dB) 27.6 16.1 20.9 22.3 25.5 22.3 26.8 Margin (dB) 30.8	Limit (dBµV) 65.6 64.0 61.9 59.8 57.7 56.0 60.0 Limit (dBµV) 55.6	8 10M 20M	30M
Freque (MHz 0.1580 0.1900 0.2460 0.3180 0.4060 3.8780 15.6780 Freque (MHz 0.1580 0.1900	ency z) 000 000 000 000 000 000 000 esculit ency z) 000 000	150k 300 : QuasiPeak (dBμV) 38.0 47.9 41.0 37.5 32.2 33.7 33.2 : Average (dBμV) 24.8 33.6	Filter Off Off Off Off Off Off Off Off Filter	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Frequ (dB) 19.6 19.6 19.6 19.6 19.7 19.8 19.7 (dB) 19.6 19.6	Margin (dB) 27.6 16.1 20.9 22.3 25.5 22.3 26.8 Margin (dB) 30.8 20.4	Limit (dBµV) 65.6 64.0 61.9 59.8 57.7 56.0 60.0 Limit (dBµV) 55.6 54.0	8 10M 20M	30M
Freque (MHz 0.1580 0.2460 0.2460 0.3180 0.4060 3.8780 15.678 inal Re Freque (MHz 0.1580 0.1900 0.2460	ency z) 000 000 000 000 000 000 000 essuli ency z) 000 000 000	150k 300 : QuasiPeak (dBμV) 38.0 47.9 41.0 37.5 32.2 33.7 33.2 : Average (dBμV) 24.8 33.6 27.0	Filter Off	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Frequ (dB) 19.6 19.6 19.6 19.6 19.7 19.8 19.7 19.8 Corr. (dB) 19.6 19.6 19.6	Margin (dB) 27.6 16.1 20.9 22.3 25.5 22.3 26.8 Margin (dB) 30.8 20.4 24.9	Limit (dBμV) 65.6 64.0 61.9 59.8 57.7 56.0 60.0 Limit (dBμV) 55.6 54.0 51.9	8 10M 20M	30M
Freque (MHz 0.1580 0.1900 0.2460 0.3180 0.4060 3.8780 15.6780 inal Re Freque (MHz 0.1580 0.1900 0.2460 0.3180	ency z) 000 000 000 000 000 000 000 esuli ency z) 000 000 000 000	150k 300 : QuasiPeak (dBμV) 38.0 47.9 41.0 37.5 32.2 33.7 33.2 : Average (dBμV) 24.8 33.6 27.0 25.3	Filter Off Off	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Frequ (dB) 19.6 19.6 19.6 19.6 19.6 19.7 19.8 Corr. (dB) 19.6 19.6 19.6 19.6	Margin (dB) 27.6 16.1 20.9 22.3 25.5 22.3 26.8 Margin (dB) 30.8 20.4 24.9 24.5	Limit (dBμV) 65.6 64.0 61.9 59.8 57.7 56.0 60.0 Limit (dBμV) 55.6 54.0 51.9 49.8	8 10M 20M	30M
Freque (MHz 0.1580 0.1900 0.2460 0.3180 0.4060 3.8780 15.6780 inal Re Freque (MHz 0.1580 0.1900 0.2460 0.3180 0.4060	ency z) 000 000 000 000 000 000 000 000 000	150k 300 : QuasiPeak (dBμV) 38.0 47.9 41.0 37.5 32.2 33.7 33.2 : Average (dBμV) 24.8 33.6 27.0 25.3 23.2	Filter Off Off Off Off Off Off Off Off Off Of	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Frequ (dB) 19.6 19.6 19.6 19.6 19.6 19.7 19.8 Corr. (dB) 19.6 19.6 19.6 19.6 19.6	Margin (dB) 27.6 16.1 20.9 22.3 25.5 22.3 26.8 Margin (dB) 30.8 20.4 24.9 24.5 24.5	Limit (dBµV) 65.6 64.0 61.9 59.8 57.7 56.0 60.0 Limit (dBµV) 55.6 54.0 51.9 49.8 47.7	8 10M 20M	30M
Freque (MHz 0.1580 0.1900 0.2460 0.3180 0.4060 3.8780 15.6780 inal Re Freque (MHz 0.1580 0.1900 0.2460 0.3180	ency z) 000 000 000 000 000 000 000 000 000	150k 300 : QuasiPeak (dBμV) 38.0 47.9 41.0 37.5 32.2 33.7 33.2 : Average (dBμV) 24.8 33.6 27.0 25.3	Filter Off Off	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Frequ (dB) 19.6 19.6 19.6 19.6 19.6 19.7 19.8 Corr. (dB) 19.6 19.6 19.6 19.6	Margin (dB) 27.6 16.1 20.9 22.3 25.5 22.3 26.8 Margin (dB) 30.8 20.4 24.9 24.5	Limit (dBμV) 65.6 64.0 61.9 59.8 57.7 56.0 60.0 Limit (dBμV) 55.6 54.0 51.9 49.8	8 10M 20M	30M

Node :	Mode 1			Tem	peratur	e :	23~24 ℃	
Engineer :	Derreck Che	en		Rela	ative Hu	midity :	51~52%	
/oltage :	120Vac / 60	Hz		Pha	se :		Neutral	
tion Type	WLAN (5GH	lz) Link	+ TC ·	+ TF				
	100							
	90							
	80							
	80							
	70		· [··]·					
						CISPR	22-QP Limit	at Main Ports
3	60							
Level in dBuV	50- 1-					CISPR	22-Ave Limit	at Main Ports
even and a second se			T		+	-		
2	40	MMM	A ALL	and the				A.
	30		M. Awak	ALM MALLE	A ANALY	• V	۵ A	A Shareh
		•				.		
	20		· [· ·]· ·]					
	10							
	10							
	0							
	0	400 500	800 1N			4M 5M 6	8 10M	20M 30M
	0	400 500	800 1N		2M 3M Jency in Hz		8 10M	20M 30M
Final Res	0		800 1N				8 10M	20M 30M
Final Res Frequence	ult : QuasiPer	ak					8 10M	20M 30M
	ult : QuasiPer		800 1M	Freq	uency in Hz	·	8 10M	20M 30M
Frequence	ult : QuasiPeak (dBµV)	ak		Frequence of Corr.	uency in Hz Margin	Limit	8 10M	20M 30M
Frequence (MHz)	ult : QuasiPeak (dBµV) 0 44.2	ak Filter	Line	Frequence (dB)	Margin (dB)	Limit (dBµV)	8 10M	20M 30M
Frequence (MHz) 0.182000	ult : QuasiPeak (dBμV) 0 44.2 0 44.4	ak Filter Off	Line	Frequence Corr. (dB) 19.6	Margin (dB) 20.2	Limit (dBµV) 64.4	8 10M	20M 30M
Frequence (MHz) 0.182000 0.206000 0.270000 0.318000	ult : QuasiPeak (dBμV) 0 44.2 0 44.4 0 39.3 0 37.3	ak Filter Off Off	Line N N	Freq (dB) 19.6 19.7 19.6 19.6	Margin (dB) 20.2 19.0 21.8 22.5	Limit (dBµV) 64.4 63.4	8 10M	20M 30M
Frequence (MHz) 0.182000 0.206000 0.270000 0.318000 0.430000	μlt QuasiPeak (dBμV) 0 44.2 0 44.4 0 39.3 0 37.3 0 36.1	Filter Off Off Off Off Off Off Off Off Off	Line N N N N N	Freq (dB) 19.6 19.7 19.6 19.6 19.6	Margin (dB) 20.2 19.0 21.8 22.5 21.2	Limit (dBµV) 64.4 63.4 61.1 59.8 57.3	8 10M	20M 30M
Frequence (MHz) 0.182000 0.206000 0.270000 0.318000 0.430000 3.862000	ult : QuasiPeak (dBμV) 0 44.2 0 44.4 0 39.3 0 37.3 0 36.1 0 33.5	ak Filter Off Off Off Off Off Off Off	Line N N N N N N	Freq (dB) 19.6 19.7 19.6 19.6 19.6 19.6	Margin (dB) 20.2 19.0 21.8 22.5 21.2 22.5	Limit (dBµV) 64.4 63.4 61.1 59.8 57.3 56.0	8 10M	20M 30M
Frequence (MHz) 0.182000 0.206000 0.270000 0.318000 0.430000	ult : QuasiPeak (dBμV) 0 44.2 0 44.4 0 39.3 0 37.3 0 36.1 0 33.5	Filter Off Off Off Off Off Off Off Off Off	Line N N N N N	Freq (dB) 19.6 19.7 19.6 19.6 19.6	Margin (dB) 20.2 19.0 21.8 22.5 21.2	Limit (dBµV) 64.4 63.4 61.1 59.8 57.3	8 10M	20M 30M
Frequence (MHz) 0.182000 0.206000 0.270000 0.318000 0.430000 3.862000 15.28600	ult : QuasiPeak (dBμV) 0 44.2 0 44.4 0 39.3 0 37.3 0 36.1 0 33.5 0 31.5	ak Filter Off Off Off Off Off Off Off	Line N N N N N N	Freq (dB) 19.6 19.7 19.6 19.6 19.6 19.6	Margin (dB) 20.2 19.0 21.8 22.5 21.2 22.5	Limit (dBµV) 64.4 63.4 61.1 59.8 57.3 56.0	8 10M	20M 30M
Frequence (MHz) 0.182000 0.206000 0.270000 0.318000 0.430000 3.862000 15.286000 Final Res	ult : QuasiPeak (dBµV)	ak Filter Off Off Off Off Off Off Off	Line N N N N N N	Freq (dB) 19.6 19.7 19.6 19.6 19.6 19.6 19.6 19.9	Margin (dB) 20.2 19.0 21.8 22.5 21.2 22.5 28.5	Limit (dBµV) 64.4 63.4 61.1 59.8 57.3 56.0 60.0	8 10M	20M 30M
Frequence (MHz) 0.182000 0.206000 0.270000 0.318000 0.430000 3.862000 15.286000 Final Res Frequence	0 300 150k 300 ult : QuasiPeak (dBμV) 44.2 0 44.4 0 39.3 0 37.3 0 36.1 0 33.5 0 31.5 ult : Average 2	ak Filter Off Off Off Off Off Off Off	Line N N N N N N	Freq (dB) 19.6 19.7 19.6 19.6 19.6 19.6 19.6 19.9	Margin (dB) 20.2 19.0 21.8 22.5 21.2 22.5 28.5 Margin	Limit (dBµV) 64.4 63.4 61.1 59.8 57.3 56.0 60.0	8 10M	20M 30M
Frequence (MHz) 0.182000 0.206000 0.270000 0.318000 0.430000 3.862000 15.286000 Final Res Frequence (MHz)	ult : QuasiPeak (dBµV) (0) 44.2 (0) 44.4 (0) 39.3 (0) 37.3 (0) 37.3 (0) 36.1 (0) 33.5 (0) 31.5 (0) 31.5 (0) 31.5 (0) 31.5	Filter Off	Line N N N N N N N	Freq (dB) 19.6 19.7 19.6 19.6 19.6 19.6 19.6 19.9 Corr. (dB)	Margin (dB) 20.2 19.0 21.8 22.5 21.2 22.5 28.5 Margin (dB)	Limit (dBµV) 64.4 63.4 61.1 59.8 57.3 56.0 60.0 Limit (dBµV)	8 10M	20M 30M
Frequence (MHz) 0.182000 0.206000 0.270000 0.318000 3.862000 15.286000 Final Res Frequence (MHz) 0.182000	ult : QuasiPeak (dBµV) (0) 44.2 (0) 44.4 (0) 39.3 (0) 37.3 (0) 37.3 (0) 37.3 (0) 33.5 (0) 31.5 (0) 31.5 (0) 31.5 (0) 31.5 (0) 28.5	Filter Off	Line N N N N N N Line N	Freq (dB) 19.6 19.7 19.6 19.6 19.6 19.6 19.9 Corr. (dB) 19.6	Margin (dB) 20.2 19.0 21.8 22.5 21.2 22.5 28.5 Margin (dB) 25.9	Limit (dBµV) 64.4 63.4 61.1 59.8 57.3 56.0 60.0 Limit (dBµV) 54.4	8 10M	20M 30M
Frequence (MHz) 0.182000 0.206000 0.270000 0.318000 3.862000 15.286000 Final Res Frequence (MHz) 0.182000 0.206000	ult : QuasiPeak (dBµV) 0 44.2 0 44.4 0 39.3 0 37.3 0 36.1 0 33.5 0 31.5 ult : Average (dBµV) 0 28.5 0 29.1	Filter Off	Line N N N N N N Line N N	Freq (dB) 19.6 19.7 19.6 19.6 19.6 19.6 19.6 19.9 Corr. (dB) 19.6 19.7	Margin (dB) 20.2 19.0 21.8 22.5 21.2 22.5 28.5 Margin (dB) 25.9 24.3	Limit (dBµV) 64.4 63.4 61.1 59.8 57.3 56.0 60.0 Limit (dBµV) 54.4 53.4	8 10M	20M 30M
Frequence (MHz) 0.182000 0.206000 0.270000 0.318000 0.430000 3.862000 15.286000 T5.286000 Final Res Frequence (MHz) 0.182000 0.206000 0.270000	ult : QuasiPeak (dBµV)	Filter Off	Line N N N N N N Line N N N N	Freq (dB) 19.6 19.7 19.6 19.6 19.6 19.6 19.6 19.9 Corr. (dB) 19.6 19.7 19.6	Margin (dB) 20.2 19.0 21.8 22.5 21.2 22.5 28.5 Margin (dB) 25.9 24.3 24.7	Limit (dBµV) 64.4 63.4 61.1 59.8 57.3 56.0 60.0 Limit (dBµV) 54.4 53.4 53.4 51.1	8 10M	20M 30M
Frequence (MHz) 0.182000 0.206000 0.270000 0.318000 0.430000 15.286000 15.286000 Final Res Frequence (MHz) 0.182000 0.206000 0.270000 0.318000	ult : QuasiPeak (dBµV) (0) 44.2 (0) 44.4 (0) 39.3 (0) 37.3 (0) 37.3 (0) 37.3 (0) 37.3 (0) 37.3 (0) 33.5 (0) 31.5 (0) 31.5 (0) 31.5 (0) 28.5 (0) 28.5 (0) 29.1 (0) 26.4 (0) 26.3	Filter Off Off	Line N N N N N N N Line N N N N N	Freq (dB) 19.6 19.7 19.6 19.6 19.6 19.6 19.9 Corr. (dB) 19.6 19.7 19.6 19.7	Margin (dB) 20.2 19.0 21.8 22.5 21.2 22.5 28.5 28.5 Margin (dB) 25.9 24.3 24.7 23.5	Limit (dBµV) 64.4 63.4 61.1 59.8 57.3 56.0 60.0 60.0 Limit (dBµV) 54.4 53.4 51.1 49.8	8 10M	20M 30M
Frequence (MHz) 0.182000 0.206000 0.270000 0.318000 0.430000 3.862000 15.286000 T5.286000 Final Res Frequence (MHz) 0.182000 0.206000 0.270000	ult : QuasiPeak (dBµV) (0) 44.2 (0) 44.2 (0) 44.4 (0) 39.3 (0) 37.3 (0) 37.3 (0) 36.1 (0) 33.5 (0) 31.5 (0) 31.5 (0) 31.5 (0) 31.5 (0) 21.5 (0) 28.5 (0) 29.1 (0) 26.4 (0) 26.3 (0) 24.6	Filter Off	Line N N N N N N Line N N N N	Freq (dB) 19.6 19.7 19.6 19.6 19.6 19.6 19.6 19.9 Corr. (dB) 19.6 19.7 19.6	Margin (dB) 20.2 19.0 21.8 22.5 21.2 22.5 28.5 Margin (dB) 25.9 24.3 24.7	Limit (dBµV) 64.4 63.4 61.1 59.8 57.3 56.0 60.0 Limit (dBµV) 54.4 53.4 53.4 51.1	8 10M	20M 30M

3.6 Frequency Stability Measurement

3.6.1 Limit of Frequency Stability

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.


3.6.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.6.3 Test Procedures

- To ensure emission at the band edge is maintained within the authorized band, those values shall be measured by radiation emissions at upper and lower frequency points, and finally compensated by frequency deviation as procedures below.
- 2. The EUT was operated at the maximum output power, and connected to the spectrum analyzer, which is set to maximum hold function and peak detector. The peak value of the power envelope was measured and noted. The upper and lower frequency points were respectively measured relatively 10dB lower than the measured peak value.
- The frequency deviation was calculated by adding the upper frequency point and the lower frequency point divided by two. Those detailed values of frequency deviation are provided in table below.

3.6.4 Test Setup

3.6.5 Test Result of Frequency Stability

Please refer to Appendix A.

3.7 Automatically Discontinue Transmission

3.7.1 Limit of Automatically Discontinue Transmission

The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude the transmission of control or signaling information or the use of repetitive codes used by certain digital technologies to complete frame or burst intervals. Applicants shall include in their application for equipment authorization to describe how this requirement is met.

3.7.2 Measuring Instruments

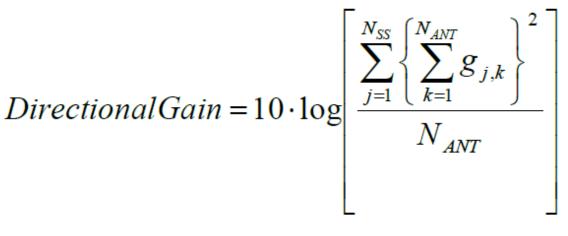
The measuring equipment is listed in the section 4 of this test report.

3.7.3 Test Result of Automatically Discontinue Transmission

While the EUT is not transmitting any information, the EUT can automatically discontinue transmission and become standby mode for power saving. The EUT can detect the controlling signal of ACK message transmitting from remote device and verify whether it shall resend or discontinue transmission.

3.8 Antenna Requirements

Standard Applicable 3.8.1


According to FCC 47 CFR Section 15.407(a)(1)(2), if transmitting antenna directional gain is greater than 6 dBi, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.8.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.8.3 Antenna Gain

FCC KDB 662911 D01 Multiple Transmitter Output v02r01 For CDD transmissions, directional gain is calculated as

where

Each antenna is driven by no more than one spatial stream;

 N_{SS} = the number of independent spatial streams of data;

 N_{ANT} = the total number of antennas

 $g_{j,k} = 10^{G_k/20}$ if the *k*th antenna is being fed by spatial stream *j*, or zero if it is not; G_k is the gain in dBi of the kth antenna.

The EUT supports CDD mode.

The power and PSD limit should be modified if the directional gain of EUT is over 6 dBi,

The directional gain "DG" is calculated as following table.

			DG	DG	Power	PSD
			for	for	Limit	Limit
	Ant 1	Ant 2	Power	PSD	Reduction	Reduction
	(dBi)	(dBi)	(dBi)	(dBi)	(dB)	(dB)
Band IV	0.40	0.95	3.69	3.69	0.00	0.00

Power Limit Reduction = DG(Power) - 6dBi, (min = 0) PSD Limit Reduction = DG(PSD) - 6dBi, (min = 0)

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Power Meter	Anritsu	ML2495A	1132003	300MHz~40GHz	Aug. 12, 2015	Jan. 13, 2016~ Jan. 25, 2016	Aug. 11, 2016	Conducted (TH05-HY)
Power Sensor	Anritsu	MA2411B	1126017	300MHz~40GHz	Aug. 12, 2015	Jan. 13, 2016~ Jan. 25, 2016	Aug. 11, 2016	Conducted (TH05-HY)
Spectrum Analyzer	Rohde & Schwarz	FSP40	100057	9kHz-40GHz	Nov. 23, 2015	Jan. 13, 2016~ Jan. 25, 2016	Nov. 22, 2016	Conducted (TH05-HY)
Temperature Chamber	ESPEC	SU-241	92003713	-30℃ ~95℃	Jun. 15, 2015	Jan. 13, 2016~ Jan. 25, 2016	Jun. 14, 2016	Conducted (TH05-HY)
Programmable Power Supply	GW Instek	PSS-2005	EL890001	1V~20V 0.5A~5A	Oct. 05, 2015	Jan. 13, 2016~ Jan. 25, 2016	Oct. 04, 2016	Conducted (TH05-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100315	9 kHz~30 MHz	Sep. 02, 2015	Jan. 21, 2016	Sep. 01, 2016	Radiation (03CH12-HY)
Spectrum Analyzer	Keysight	N9010A	MY54200485	10Hz ~ 44GHZ	Oct. 15, 2015	Jan. 21, 2016	Oct. 14, 2016	Radiation (03CH12-HY)
Amplifier	Sonoma-Instru ment	310 N	187282	10MHz~1GHz	Dec. 31, 2015	Jan. 21, 2016	Dec. 30, 2016	Radiation (03CH12-HY)
Bilog Antenna	TESEQ	CBL 6111D	37059	30MHz~1GHz	Dec. 29, 2015	Jan. 21, 2016	Dec. 28, 2016	Radiation (03CH12-HY)
EMI Test Receiver	Rohde & Schwarz	ESU26	100390	20Hz~26.5GHz	Dec. 21, 2015	Jan. 21, 2016	Dec. 20, 2016	Radiation (03CH12-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120D	9120D-1328	1GHz ~ 18GHz	Nov. 02, 2015	Jan. 21, 2016	Nov. 01, 2016	Radiation (03CH12-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA917058 4	18GHz- 40GHz	Nov. 02, 2015	Jan. 21, 2016	Nov. 01, 2016	Radiation (03CH12-HY)
Preamplifier	COM-POWER	PA-103A	161075	10MHz~1GHz	Apr. 09, 2015	Jan. 21, 2016	Apr. 08, 2016	Radiation (03CH12-HY)
Preamplifier	MITEQ	AMF-7D-0010 1800-30-10P	1815698	1GHz~18GHz	Dec. 14, 2015	Jan. 21, 2016	Dec. 13, 2016	Radiation (03CH12-HY)
Preamplifier	Agilent	8449B	3008A02375	1GHz~26.5GHz	Jan. 05, 2016	Jan. 21, 2016	Jan. 04, 2017	Radiation (03CH12-HY)
Antenna Mast	EMEC	AM-BS-4500-B	N/A	1m~4m	N/A	Jan. 21, 2016	N/A	Radiation (03CH12-HY)
Turn Table	EMEC	TT2000	N/A	0-360 degre	N/A	Jan. 21, 2016	N/A	Radiation (03CH12-HY)
Preamplifier	MITEQ	JS44-1800400 0-33-8P	1840917	18GHz ~ 40GHz	Jun. 02, 2015	Jan. 21, 2016	Jun. 01, 2016	Radiation (03CH12-HY)
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	Jan. 18, 2016	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESCI 7	100724	9kHz~7GHz	Aug. 26, 2015	Jan. 18, 2016	Aug. 25, 2016	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100080	9kHz~30MHz	Dec. 02, 2015	Jan. 18, 2016	Dec. 01, 2016	Conduction (CO05-HY)
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100851	N/A	Jan. 08, 2016	Jan. 18, 2016	Jan. 07, 2017	Conduction (CO05-HY)


5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150kHz ~ 30MHz)

Measuring Uncertainty for a Level of Confidence	2.26	
of 95% (U = 2Uc(y))	2.20	

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5.10
of 95% (U = 2Uc(y))	5.10

Appendix A. Conducted Test Results