

NTS Silicon Valley www.nts.com 41039 Boyce Road Fremont, CA 94538 510-578-3500 Phone 510-440-9525 Fax

EMC Test Report

Application for Grant of Equipment Authorization

Industry Canada RSS-Gen Issue 3 / RSS 210 Issue 8 FCC Part 15 Subpart C

Models: 7265D2W and 7265D2W AN

IC CERTIFICATION #: FCC ID:	1000M-7265D2 PD97265D2
APPLICANT:	Intel Mobile Communications 100 Center Point Circle, Suite 200 Columbia, SC 23210, USA
TEST SITE(S):	National Technical Systems - Silicon Valley 41039 Boyce Road. Fremont, CA. 94538-2435
IC SITE REGISTRATION #:	2845B-3; 2845B-4, 2845B-5, 2845B-7
REPORT DATE:	July 9, 2014
FINAL TEST DATES:	June 12 through 20, 2014
TOTAL NUMBER OF PAGES:	97

PROGRAM MGR / TECHNICAL REVIEWER:

David W. Bare Chief Engineer

QUALITY ASSURANCE DELEGATE / FINAL REPORT PREPARER:

David Guidotti Senior Technical Writer

National Technical Systems - Silicon Valley is accredited by the A2LA, certificate number 0214.26, to perform the test(s) listed in this report, except where noted otherwise. This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	July 9, 2014	First release	Бу

TABLE OF CONTENTS

REVISION HISTORY	
TABLE OF CONTENTS	3
SCOPE	4
OBJECTIVE	
STATEMENT OF COMPLIANCE	
DEVIATIONS FROM THE STANDARDS	5
TEST RESULTS SUMMARY	6
FREQUENCY HOPPING SPREAD SPECTRUM (2400 – 2483.5 MHZ)	6
GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS	6
MEASUREMENT UNCERTAINTIES	7
EQUIPMENT UNDER TEST (EUT) DETAILS	
GENERAL	
ANTENNA SYSTEM	
ENCLOSURE	8
MODIFICATIONS	8
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION	9
TEST SITE	10
GENERAL INFORMATION	10
CONDUCTED EMISSIONS CONSIDERATIONS	10
RADIATED EMISSIONS CONSIDERATIONS	10
MEASUREMENT INSTRUMENTATION	11
RECEIVER SYSTEM	
INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	
FILTERS/ATTENUATORS	
ANTENNAS	12
ANTENNA MAST AND EQUIPMENT TURNTABLE	12
INSTRUMENT CALIBRATION	12
TEST PROCEDURES	13
EUT AND CABLE PLACEMENT	13
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	14
CONDUCTED EMISSIONS FROM ANTENNA PORT	
BANDWIDTH MEASUREMENTS	
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN	
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	
OUTPUT POWER LIMITS – FHSS SYSTEMS	
TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS AND DTS SYSTEMS	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS.	
SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	
APPENDIX B TEST DATA	
END OF REPORT	97

SCOPE

An electromagnetic emissions test has been performed on the Intel Mobile Communications model 7265D2W, pursuant to the following rules:

Industry Canada RSS-Gen Issue 3

RSS 210 Issue 8 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in National Technical Systems - Silicon Valley test procedures:

ANSI C63.10-2009 FCC FHSS test procedure DA 00-0705A1

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Testing was performed only on model 7265D2W. This model was considered representative of the following models.

7265D2W and 7265D2W AN

STATEMENT OF COMPLIANCE

The tested sample of Intel Mobile Communications model 7265D2W complied with the requirements of the following regulations:

Industry Canada RSS-Gen Issue 3

RSS 210 Issue 8 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

The test results recorded herein are based on a single type test of Intel Mobile Communications model 7265D2W and therefore apply only to the tested sample. The sample was selected and prepared by Steven Hackett of Intel Mobile Communications.

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

TEST RESULTS SUMMARY

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.247	RSS 210	20dB Bandwidth	Basic rate: 982 kHz EDR: 1.48 MHz	Channel spacing > 2/3 of the 20dB bandwidth	Complies
(a) (1)	A8.1 (1)	Channel Separation	1000 kHz		Complies
15.247 (a) (1) (iii)	RSS 210 A8.1 (4)	Channel Dwell Time (<i>average time of</i> <i>occupancy</i>)	0.4 seconds per 31.6 seconds for 79 channels	<=0.4 second within a period of 0.4 x number of channels	Complies
15.247 (a) (1) (iii)	RSS 210 A8.1 (4)	Number of Channels	20-79	Minimum of 15	Complies
15.247 (a) (1)	RSS 210 A8.1 (1)	Channel Utilization	The system uses the Bluetooth algorithm and, therefore, meets all requirements for channel utilization.	All channels shall, on average, be used equally	Complies
15.247 (b) (3)	RSS 210 A8.4 (2)	Output Power (multipoint systems)	Basic rate: 5.1 dBm EDR: 1.8 dBm EIRP = 0.007 W ^{Note 1}	1Watt, EIRP limited to 4 Watts.	Complies
15.247(c)	RSS 210 A8.5	Spurious Emissions – 30MHz – 25GHz	All spurious emissions < -20dBc	< -20dBc	Complies
15.247(c) / 15.209	RSS 210 A8.5 Table 2, 3	Radiated Spurious Emissions 30MHz – 25GHz	46.1 dBµV/m @ 2366.1 MHz (-7.9 dB)	15.207 in restricted bands, all others < -20dBc	Complies
15.247 (a) (1)	RSS 210 A8.1(2)	Receiver bandwidth	Refer to operational description (Bluetooth FHSS description) page 2	Shall match the channel bandwidth	Complies
Note 1: EIRP c	alculated using ar	itenna gain of 3.2 dBi			

FREQUENCY HOPPING SPREAD SPECTRUM (2400 – 2483.5 MHz)

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	-	RF Connector	Unique iPex-4 connector	Unique or integral antenna required	Complies
15.207	RSS GEN Table 4	AC Conducted Emissions	62.0 dBµV @ 0.152 MHz (-3.9 dB)	Refer to page 17	Complies
15.247 (b) (5) 15.407 (f)	RSS 102	RF Exposure Requirements	Refer to SAR report and RSS 102 declaration and User Manual statements.	Refer to OET 65, FCC Part 1 and RSS 102	Complies
-	RSP 100 RSS GEN 7.1.3	User Manual	Refer to User Manual, Page 17	Statement required regarding non- interference	Complies
-	RSP 100 RSS GEN 7.1.2	User Manual	Refer to User Manual page 12	Statement for products with detachable antenna	Complies

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF power, conducted (power meter)	dBm	25 to 7000 MHz	± 0.52 dB
RF power, conducted (Spectrum analyzer)	dBm	25 to 7000 MHz	± 0.7 dB
Conducted emission of transmitter	dBm	25 to 26500 MHz	± 0.7 dB
Conducted emission of receiver	dBm	25 to 26500 MHz	± 0.7 dB
Radiated emission (substitution method)	dBm	25 to 26500 MHz	± 2.5 dB
Radiated emission (field strength)	dDu\//m	25 to 1000 MHz	± 3.6 dB
	dBµV/m	1000 to 40000 MHz	± 6.0 dB
Conducted Emissions (AC Power)	dBµV	0.15 to 30 MHz	± 2.4 dB

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Intel Mobile Communications model 7265D2W and 7265D2W AN is a 2x2 Wi-Fi and Bluetooth radio module which supports 802.11abgnac in 2x2 (MIMO) and 1x1 (SISO) modes & BT 4.0 (Basic rate, EDR and BLE modes). Since the EUT would be placed on a tabletop during operation, the EUT was treated as tabletop equipment during testing to simulate the end-user environment. The electrical rating of the EUT is 3.3 VDC.

The sample was received on June 5, 2014 and tested on June 12 through 20, 2014. The EUT consisted of the following component(s):

Manufacturer	Model	Description	Serial Number	FCC and Canada IDs
Intel Mobile Communications	7265D2W	M.2 Card form factor Bluetooth / IEEE 802.11a/b/g/n/ac wireless network adapter	00:15:00:F1:5B:5D or 00:15:00:F1:5B:3A	PD97265D2 1000M-7265D2

ANTENNA SYSTEM

The EUT antenna is a two-antenna PIFA antenna system – Shanghai Universe Communication Electron Co., Ltd. One or both antennas are used for WiFi operation and one for Bluetooth operation. For Bluetooth: Tx is chain B, Rx is chain B. For WiFi, only Chain A is used for transmit in the 2.4GHz band when Bluetooth is active, both chains can be used in 5GHz bands.

ENCLOSURE

The EUT has no enclosure. It is designed to be installed within the enclosure of a host computer.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at NTS Silicon Valley.

SUPPORT EQUIPMENT

The following equipment was used as support equipment for testing:

Company	Model	Description	Serial Number	FCC ID
Dell	DCCY	Desktop computer	BJYN64J	-
Hanns G	HX191DPBUFLF6	LCD monitor	017GR3XY00286	-
Logitech	5680157	Mouse	LNA20956449	-
Intel	NGFF Extension REV 01	Extension Board	4164912-200	-

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

Port	Port Connected To		Cable(s)			
T OIL	Connected 10	Description	Shielded or Unshielded	Length(m)		
Antenna (x2)	Antenna	RF cable	Shielded	0.3		
Desktop Mini PCIe Slot	Extension Board	Ribbon	Unshielded	0.8		
Desktop USB	Extension Board	Multiwire	Unshielded	1.2		
Desktop AC power supply	AC Main	power cable	Unshielded	2.3		
Power (test fixture)	Computer	Multiwire	Unshielded	1.5		
Desktop USB	Keyboard	Multiwire	Shielded	1.0		
Desktop USB	Mouse	Multiwire	Shielded	1.0		
Desktop Display	Monitor	Multiwire	Shielded	1.0		

EUT OPERATION

During emissions testing the EUT was transmitting on the frequency & at the power level selected in the proprietary DRTU control software.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission and with industry Canada.

Site	Site Designation / Regi		Location
Sile	FCC	Canada	Location
Chamber 3	US0027	2845B-3	11020 Davies David
Chamber 4	US0027	2845B-4	41039 Boyce Road
Chamber 5	US0027	2845B-5	 Fremont, CA 94538-2435
Chamber 7	US0027	2845B-7	CA 94330-2433

ANSI C63.4 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.10. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.10 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor as specified in ANSI C63.4. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.10, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

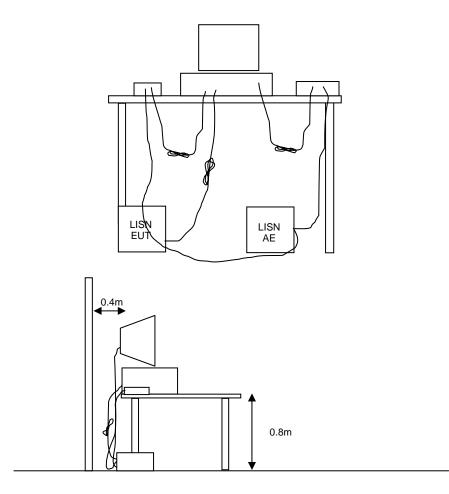
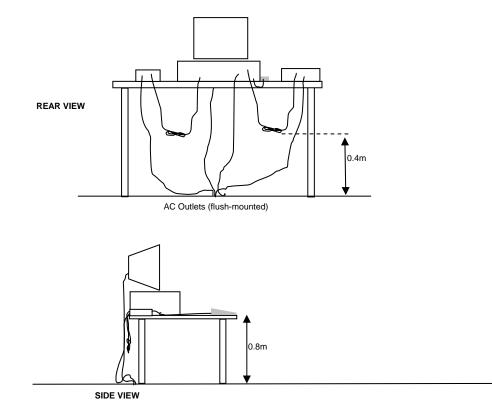
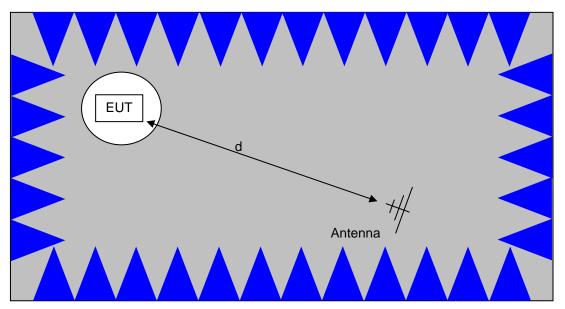


Figure 1 Typical Conducted Emissions Test Configuration

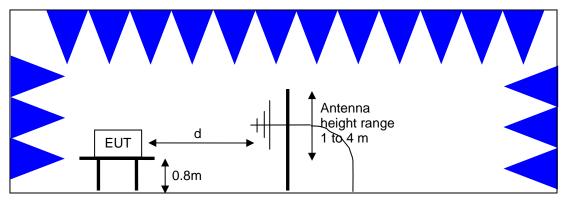

RADIATED EMISSIONS

A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.


A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

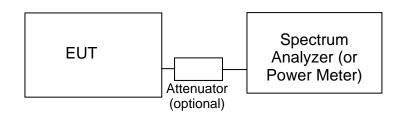
Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

When testing above 18 GHz, the receive antenna is located at 1 meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.



Typical Test Configuration for Radiated Field Strength Measurements

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.


Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

<u>Test Configuration for Radiated Field Strength Measurements</u> <u>Semi-Anechoic Chamber, Plan and Side Views</u>

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements of power, bandwidth and power spectral density are performed, where possible, with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Test Configuration for Antenna Port Measurements

Measurement bandwidths (video and resolution) are set in accordance with the relevant standards and NTS Silicon Valley's test procedures for the type of radio being tested. When power measurements are made using a resolution bandwidth less than the signal bandwidth the power is calculated by summing the power across the signal bandwidth using either the analyzer channel power function or by capturing the trace data and calculating the power using software. In both cases the summed power is corrected to account for the equivalent noise bandwidth (ENBW) of the resolution bandwidth used.

If power averaging is used (typically for certain digital modulation techniques), the EUT is configured to transmit continuously. Power averaging is performed using either the built-in function of the analyzer or, if the analyzer does not feature power averaging, using external software. In both cases the average power is calculated over a number of sweeps (typically 100). When the EUT cannot be configured to continuously transmit then either the analyzer is configured to perform a gated sweep to ensure that the power is averaged over periods that the device is transmitting or power averaging is disabled and a max-hold feature is used.

If a power meter is used to make output power measurements the sensor head type (peak or average) is stated in the test data table.

BANDWIDTH MEASUREMENTS

The 6dB, 20dB, 26dB and/or 99% signal bandwidth are measured using the bandwidths recommended by ANSI C63.10 and RSS GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(a), RSS GEN

The table below shows the limits for the emissions on the AC power line from an intentional radiator and a receiver.

Frequency (MHz)	Average Limit (dBuV)	Quasi Peak Limit (dBuV)
0.150 to 0.500	Linear decrease on logarithmic frequency axis between 56.0 and 46.0	Linear decrease on logarithmic frequency axis between 66.0 and 56.0
0.500 to 5.000	46.0	56.0
5.000 to 30.000	50.0	60.0

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

OUTPUT POWER LIMITS – FHSS SYSTEMS

The table below shows the limits for output power based on the number of channels available for the hopping system.

Operating Frequency (MHz)	Number of Channels	Output Power
902 – 928	≥ 50	1 Watt (30 dBm)
902 – 928	25 to 49	0.25 Watts (24 dBm)
2400 – 2483.5	≥ 75	1 Watt (30 dBm)
2400 – 2483.5	< 75	0.125 Watts (21 dBm)
5725 – 5850	75	1 Watt (30 dBm)

The maximum permitted output power is reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 - 5850 MHz band are not subject to this restriction.

TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS and DTS SYSTEMS

The limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands are those specified in the general limits sections of FCC Part 15 and RSS 210. All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest in-band signal level (30dB if the power is measured using the sample detector/power averaging method).

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

 $R_r - S = M$

where:

 $R_r =$ Receiver Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

 $F_d = 20*LOG_{10} (D_m/D_s)$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

 $F_d = 40*LOG_{10} (D_m/D_s)$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

and

 $M = R_c - L_s$

 $R_c = R_r + F_d$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_c = Corrected Reading in dBuV/m

 L_S = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of d (meters) from the equipment under test:

$E = \frac{1000000 \sqrt{30 P}}{d}$ microvolts per meter

where P is the eirp (Watts)

For a measurement at 3m the conversion from a logarithmic value for field strength (dBuV/m) to an eirp power (dBm) is -95.3dB.

Radiated Emissions,	1,000 - 6,500 MHz and 18,000 - 26,	000MHz, 12-Jun-14		
<u>Manufacturer</u> Hewlett Packard	<u>Description</u> SpecAn 9 kHz - 40 GHz, FT	<u>Model</u> 8564E (84125C)	<u>Asset #</u> 1393	<u>Cal Due</u> 5/6/2015
Rohde & Schwarz	(SA40) Blue EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1538	12/14/2014
EMCO	Antenna, Horn, 1-18 GHz	3115	1561	7/12/2014
Hewlett Packard	Head (Inc flex cable, (1742,1743) Blue)	84125C	1620	5/6/2015
Hewlett Packard	HF Amplifier, 45 MHz -50 GHz (with 1620)	83051A (84125C)	1742	5/6/2015
Hewlett Packard	HF Amplifier, 45 MHz -50 GHz (with 1620)	83051A (84125C)	1743	5/6/2015
A. H. Systems	Purple System Horn, 18-40GHz	SAS-574, p/n: 2581	2160	6/28/2014
	1,000 - 26,000 MHz, 16-Jun-14			
<u>Manufacturer</u>	Description	Model	Asset #	Cal Due
Hewlett Packard	SpecAn 9 KHz-26.5 GHz, Non- Program	8563E	284	2/26/2015
EMCO	Antenna, Horn, 1-18 GHz	3115	786	12/20/2015
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	870	2/20/2015
Micro-Tronics	Band Reject Filter, 2400-2500 MHz	BRM50702-02	1683	8/2/2014
Radio Antenna Port (Power and Spurious Emissions), [,]	19-Jun-14		
Manufacturer	Description	Model	Asset #	Cal Due
Rohde & Schwarz	Power Sensor, 1 uW-100 mW, DC-18 GHz, 50ohms	NRV-Z51	1070	6/6/2015
Rohde & Schwarz	Power Meter, Dual Channel	NRVD	1071	3/24/2015
Rohde & Schwarz	Power Sensor 100 uW - 2 Watts use with 20dB attenuator sn:1031.6959.00 only	NRV-Z32	1423	9/17/2014
Agilent Technologies	PSA, Spectrum Analyzer,	E4446A	2139	4/8/2015
0 0	(installed options, 111, 115, 123, 1DS, B7J, HYX,			
Radiated Emissions.	30 - 1,000 MHz, 17-Jun-14			
Manufacturer	<u>Description</u>	Model	Asset #	Cal Due
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	1548	8/9/2014
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1630	6/22/2014
Micro-Tronics	Band Reject Filter, 5470-5725 MHz	BRC50704-02	1730	8/2/2014
Micro-Tronics	Band Reject Filter, 2400-2500 MHz	BRM50702-02	2238	9/18/2014
Com-Power	Preamplifier, 1-1000 MHz	PAM-103	2885	11/1/2014
	1000 - 40,000 MHz, 17-Jun-14			
<u>Manufacturer</u> EMCO	Description	<u>Model</u> 3115	<u>Asset #</u> 487	<u>Cal Due</u> 7/19/2014
Micro-Tronics	Antenna, Horn, 1-18 GHz Band Reject Filter, 5470-5725 MHz	BRC50704-02	1681	8/20/2014
Hewlett Packard	Head (Inc W1-W4, 1946 , 1947) Purple	84125C	1772	4/25/2015
A. H. Systems	Blue System Horn, 18-40GHz	SAS-574, p/n: 2581	2159	8/8/2014
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	2199	2/20/2015

Appendix A Test Equipment Calibration Data

Test Report Report Date: July 9, 2014

	, <u>1</u>		Report Date: .	July 9, 2014
Micro-Tronics	Band Reject Filter, 5150-5350 MHz	BRC50703-02	2239	9/18/2014
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40) Purple	8564E (84125C)	2415	2/27/2015
Hewlett Packard	High Pass filter, 8.2 GHz (Purple System)	P/N 84300-80039	1767	11/26/2014
Radiated Emissions, 1	l,000- 15,000 MHz, 18-Jun-14			
Manufacturer	Description	Model	Asset #	Cal Due
EMCO	Antenna, Horn, 1-18 GHz	3115	487	7/19/2014
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1630	6/22/2014
Micro-Tronics	Band Reject Filter, 5470-5725 MHz	BRC50704-02	1681	8/20/2014
Micro-Tronics	Band Reject Filter, 5725-5875 MHz	BRC50705-02	1682	3/13/2015
Hewlett Packard	High Pass filter, 8.2 GHz (Purple System)	P/N 84300-80039	1767	11/26/2014
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	2199	2/20/2015
Micro-Tronics	Band Reject Filter, 2400-2500 MHz	BRM50702-02	2238	9/18/2014
Micro-Tronics	Band Reject Filter, 5150-5350 MHz	BRC50703-02	2239	9/18/2014
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40) Purple	8564E (84125C)	2415	2/27/2015
Dedicted Emissions (
	I,000- 15,000 MHz, 19-Jun-14 Description	Model	A a a a t #	
<u>Manufacturer</u> EMCO	Antenna, Horn, 1-18 GHz	<u>3115</u>	<u>Asset #</u> 487	<u>Cal Due</u> 7/19/2014
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1630	6/22/2014
Micro-Tronics	Band Reject Filter, 5470-5725	BRC50704-02	1681	8/20/2014
Micro-Tronics	Band Reject Filter, 5725-5875 MHz	BRC50705-02	1682	3/13/2015
Hewlett Packard	High Pass filter, 8.2 GHz (Purple System)	P/N 84300-80039	1767	11/26/2014
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	2199	2/20/2015
Micro-Tronics	Band Reject Filter, 2400-2500 MHz	BRM50702-02	2238	9/18/2014
Micro-Tronics	Band Reject Filter, 5150-5350 MHz	BRC50703-02	2239	9/18/2014
Howlett Deckard	SpecAn 9 kHz - 40 GHz, (SA40)	8564E (84125C)	2415	2/27/2015
	Purple	(011200)		
Conducted Emissions	Purple - AC Power Ports, 20-Jun-14			
Conducted Emissions <u>Manufacturer</u>	Purple - AC Power Ports, 20-Jun-14 <u>Description</u>	Model	<u>Asset #</u>	<u>Cal Due</u>
Conducted Emissions <u>Manufacturer</u> EMCO	Purple 5 - AC Power Ports, 20-Jun-14 <u>Description</u> LISN, 10 kHz-100 MHz	<u>Model</u> 3825/2	1293	2/13/2015
Conducted Emissions <u>Manufacturer</u> EMCO Rohde & Schwarz	Purple 5 - AC Power Ports, 20-Jun-14 <u>Description</u> LISN, 10 kHz-100 MHz Pulse Limiter	<u>Model</u> 3825/2 ESH3 Z2	1293 1401	2/13/2015 5/15/2015
Conducted Emissions <u>Manufacturer</u> EMCO Rohde & Schwarz	Purple 5 - AC Power Ports, 20-Jun-14 <u>Description</u> LISN, 10 kHz-100 MHz	<u>Model</u> 3825/2	1293	2/13/2015
Conducted Emissions <u>Manufacturer</u> EMCO Rohde & Schwarz Rohde & Schwarz Radio Antenna Port (F	Purple 5 - AC Power Ports, 20-Jun-14 <u>Description</u> LISN, 10 kHz-100 MHz Pulse Limiter EMI Test Receiver, 20 Hz-7 GHz Power and Spurious Emissions), 2	<u>Model</u> 3825/2 ESH3 Z2 ESIB7 20-Jun-14	1293 1401 1630	2/13/2015 5/15/2015 6/22/2014
Conducted Emissions <u>Manufacturer</u> EMCO Rohde & Schwarz Rohde & Schwarz Radio Antenna Port (F <u>Manufacturer</u>	Purple - AC Power Ports, 20-Jun-14 <u>Description</u> LISN, 10 kHz-100 MHz Pulse Limiter EMI Test Receiver, 20 Hz-7 GHz Power and Spurious Emissions), 2 <u>Description</u>	<u>Model</u> 3825/2 ESH3 Z2 ESIB7 20-Jun-14 <u>Model</u>	1293 1401 1630 <u>Asset #</u>	2/13/2015 5/15/2015 6/22/2014 <u>Cal Due</u>
<u>Manufacturer</u> EMCO Rohde & Schwarz Rohde & Schwarz	Purple 5 - AC Power Ports, 20-Jun-14 <u>Description</u> LISN, 10 kHz-100 MHz Pulse Limiter EMI Test Receiver, 20 Hz-7 GHz Power and Spurious Emissions), 2	<u>Model</u> 3825/2 ESH3 Z2 ESIB7 20-Jun-14	1293 1401 1630	2/13/2015 5/15/2015 6/22/2014

Appendix B Test Data

T95471 Pages 24 - 53 T95472 Pages 54 - 96

EMC Test Data

WE ENGINEER S	UCCESS		
Client:	Intel Corporation	Job Number:	J94914
Product	7265D2W	T-Log Number:	T95471
		Project Manager:	Christine Krebill
Contact:	Steve Hackett	Project Coordinator:	-
Emissions Standard(s):	FCC Part 15.247, 15.407, RSS-210	Class:	В
Immunity Standard(s):	-	Environment:	Radio

EMC Test Data

For The

Intel Corporation

Product

7265D2W

Date of Last Test: 6/26/2014

Client:	Intel Corporation	Job Number:	J94914
Model:	7265D2W/	T-Log Number:	T95471
	1203D2W	Project Manager:	Christine Krebill
Contact:	Steve Hackett	Project Coordinator:	-
Standard:	FCC Part 15.247, 15.407, RSS-210	Class:	N/A

FCC 15.247 FHSS - Power, Bandwidth and Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 6/19/2014 Test Engineer: John Caizzi Test Location: Lab 4A

UCCESS

Config. Used: 1 Config Change: none Host Unit Voltage

General Test Configuration

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators used.

Unless stated otherwise the EUT was operating such that it constantly hopped on either the low, center or high channels.

Ambient Conditions:

Temperature:	23 °C
Rel. Humidity:	35 %

Summary of Results

MAC Address: 001500F15B5D DRTU Tool Version 1.7.3-935 Driver version 17.1.0.11

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	30 - 25,000 MHz - Transmitter Conducted Spurious Emissions	FCC Part 15.247(c)	Pass	All spurious emissions > -20 dBc.
2	Output Power	15.247(b)	Pace	Basic Rate: 5.1 dBm (.0032 W) EDR: 1.8 dBm (.0015 W)
3	20dB Bandwidth	15.247(a)	Pass	Basic Rate: 942 kHz EDR: 1483 kHz
3	99% bandwidth	15.247(a)	Pass	Basic Rate: 874 kHz EDR: 1356 kHz
3	Channel Occupancy	15.247(a)	Pass	Complies with Bluetooth protocol
3	Number of Channels	15.247(a)	Pass	79 channels

Modifications Made During Testing:

No modifications were made to the EUT during testing

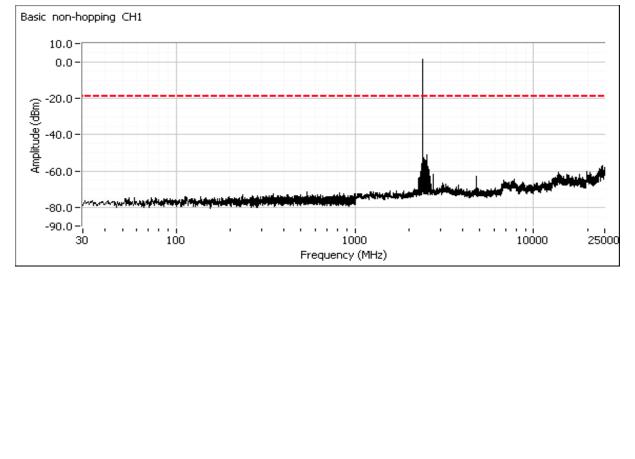
Deviations From The Standard

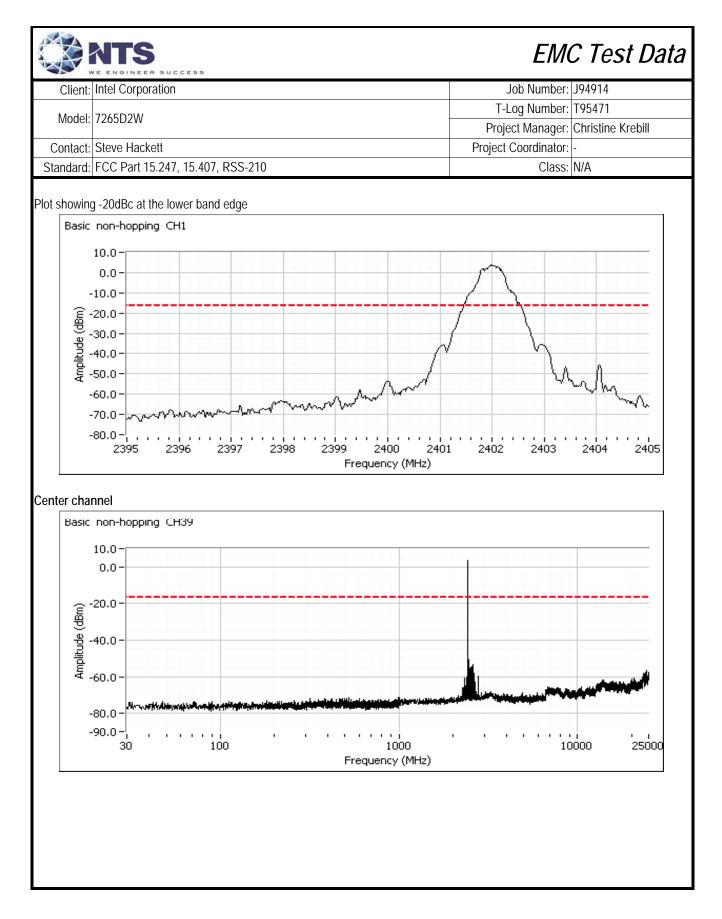
No deviations were made from the requirements of the standard.

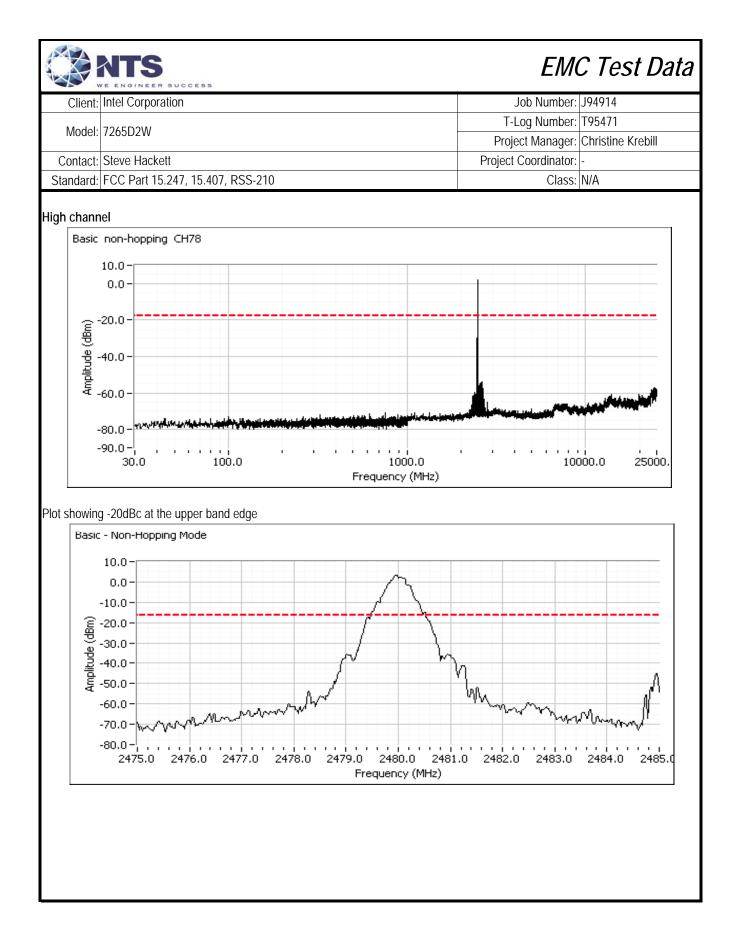
EMC Test Data

V	E ENGINEER SUCCESS		
Client:	Intel Corporation	Job Number:	J94914
Madal	7265D2W	T-Log Number:	T95471
wouer.	1203D2W	Project Manager:	Christine Krebill
Contact:	Steve Hackett	Project Coordinator:	-
Standard:	FCC Part 15.247, 15.407, RSS-210	Class:	N/A

Run #1: Antenna Conducted Spurious Emissions, 30 - 25,000 MHz.


Date of Test: 6/19/2020 Test Engineer: John Caizzi Test Location: Lab 4A

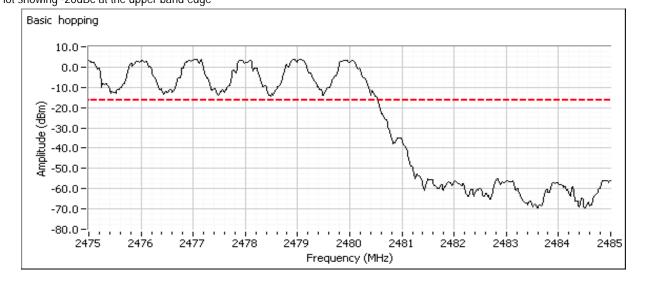

NTS

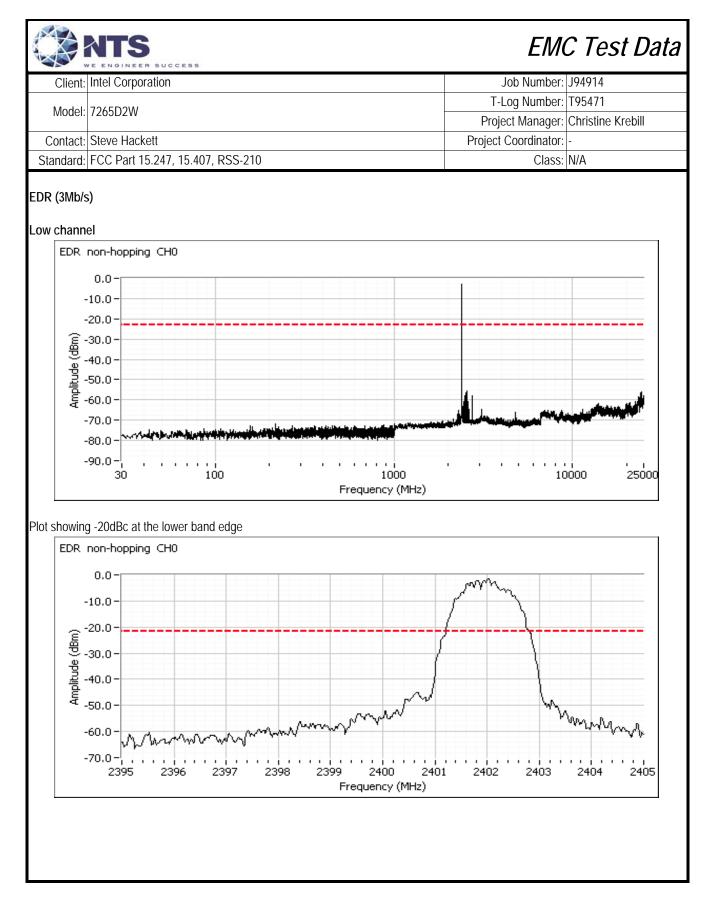

Refer to plots below. Scans made using RBW=VB=100 KHz with the limit line set at 20dB below the highest in-band signal level with the hopping feature disabled.

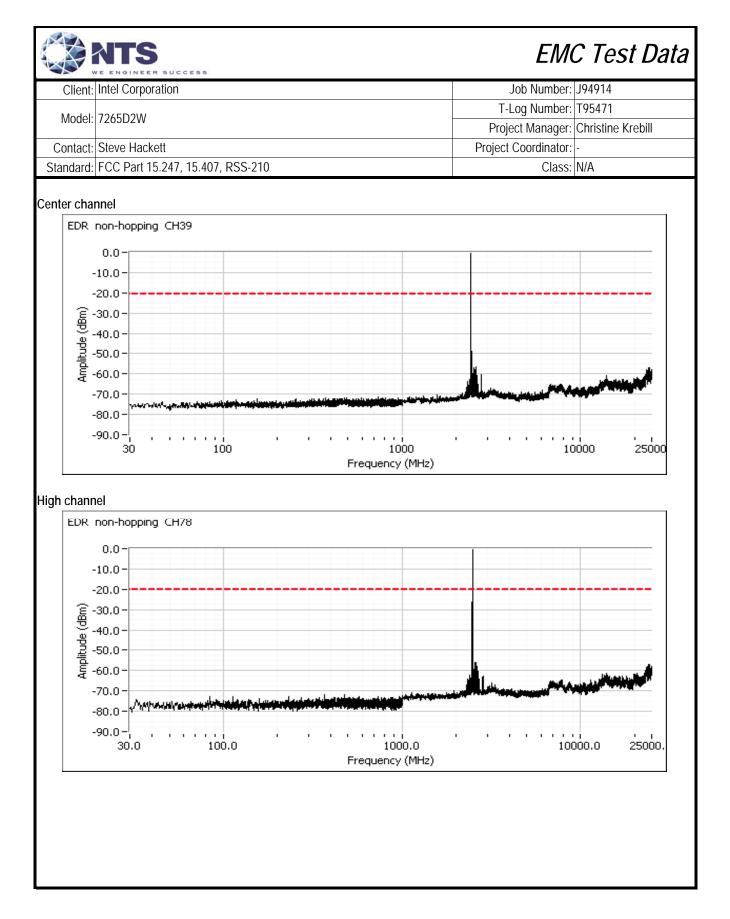
Basic rate (1Mb/s)

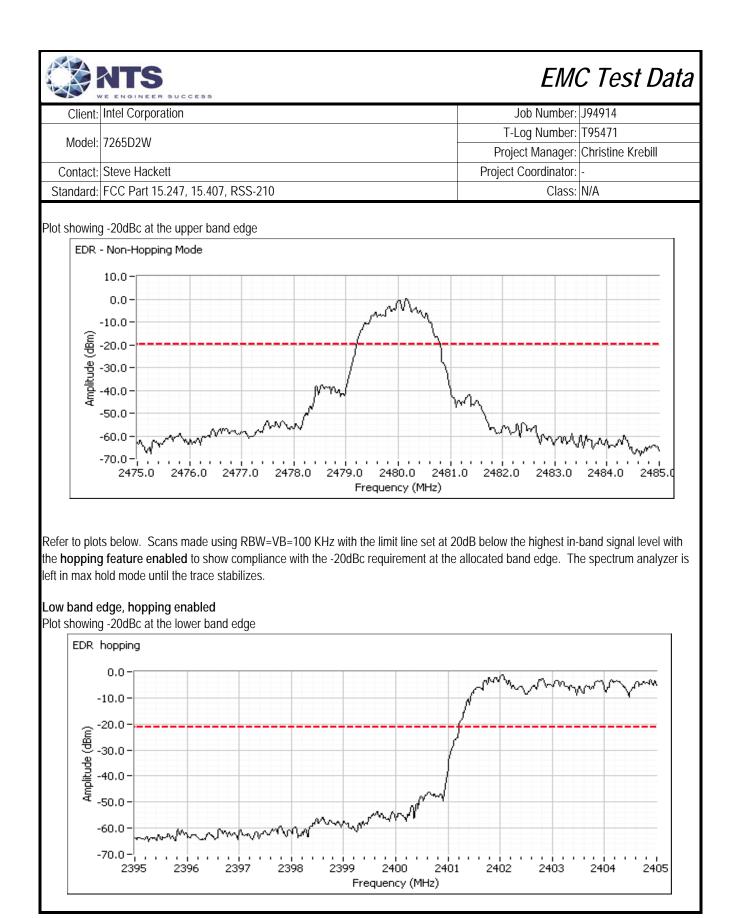
Low channel

N N	E ENGINEER SUCCESS		
Client:	Client: Intel Corporation		J94914
Madal	7265D2W	T-Log Number:	T95471
wouer.	7203D2W	Project Manager:	Christine Krebill
Contact:	Steve Hackett	Project Coordinator:	-
Standard:	FCC Part 15.247, 15.407, RSS-210	Class:	N/A

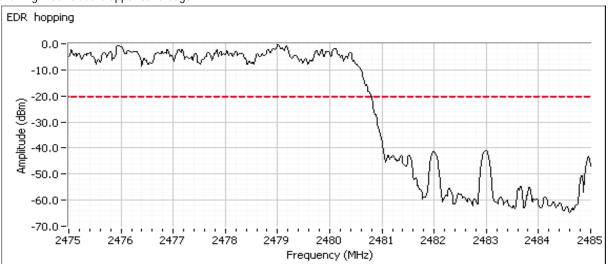

Refer to plots below. Scans made using RBW=VB=100 KHz with the limit line set at 20dB below the highest in-band signal level with the hopping feature enabled to show compliance with the -20dBc requirement at the allocated band edge. The spectrum analyzer is left in max hold mode until the trace stabilizes.

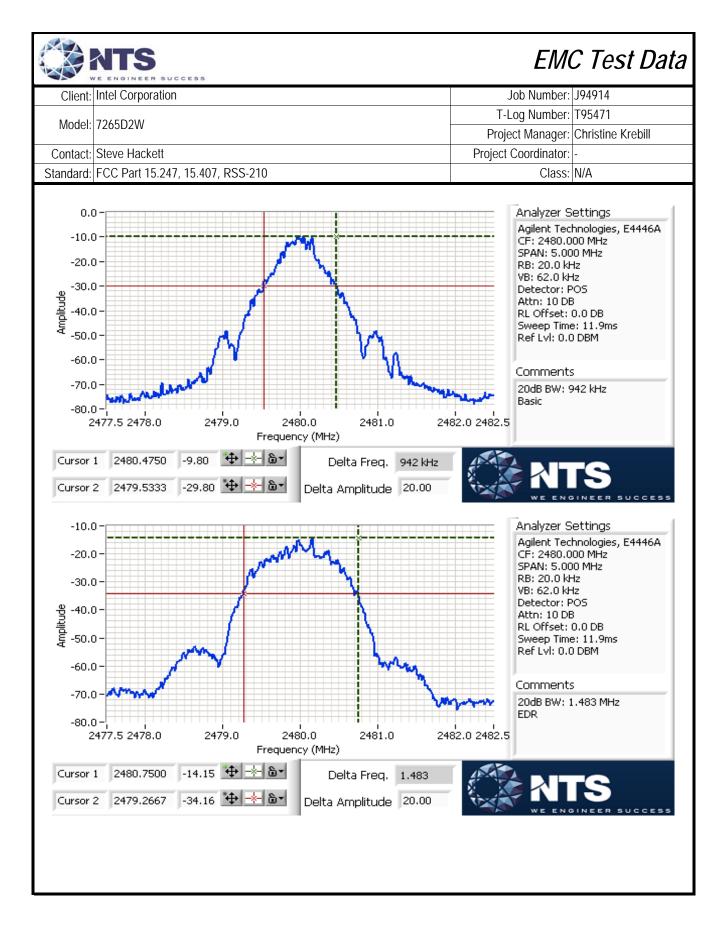

Low band edge, hopping enabled

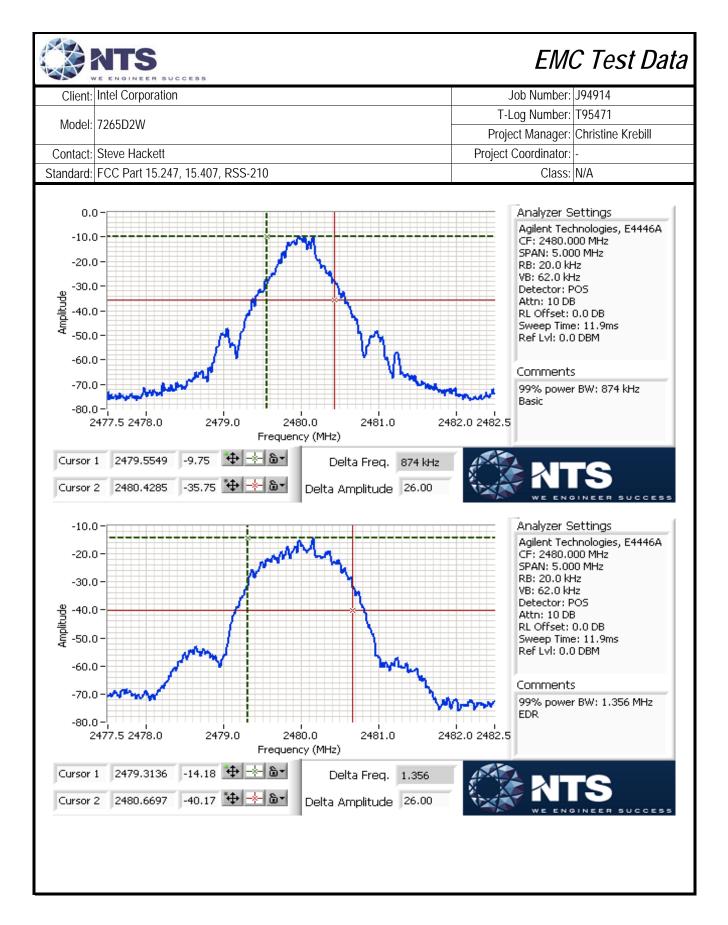

NTS

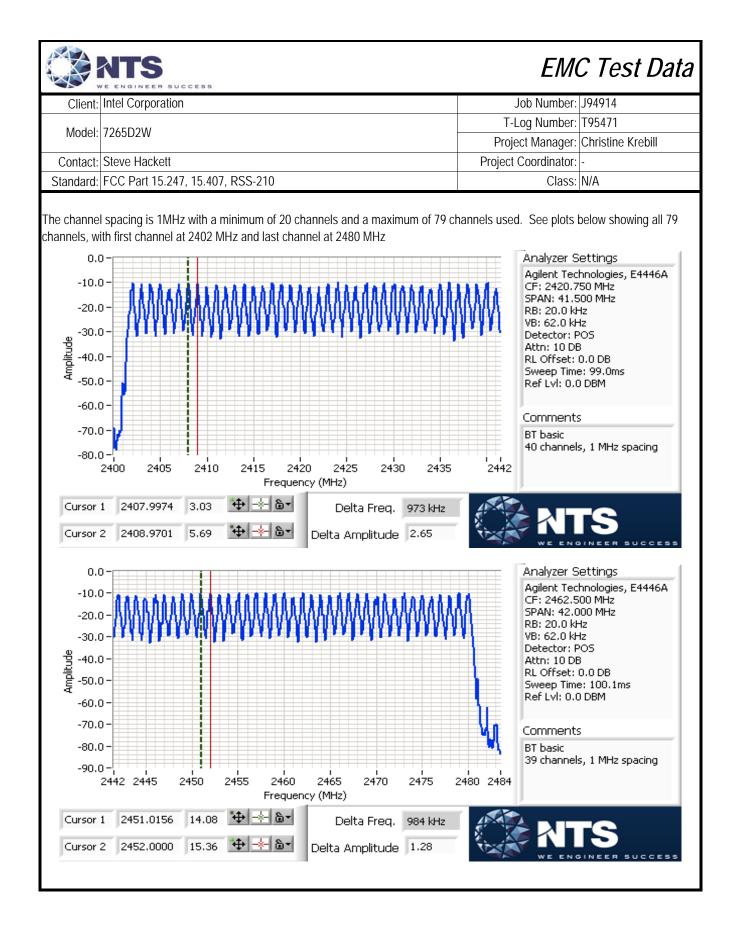


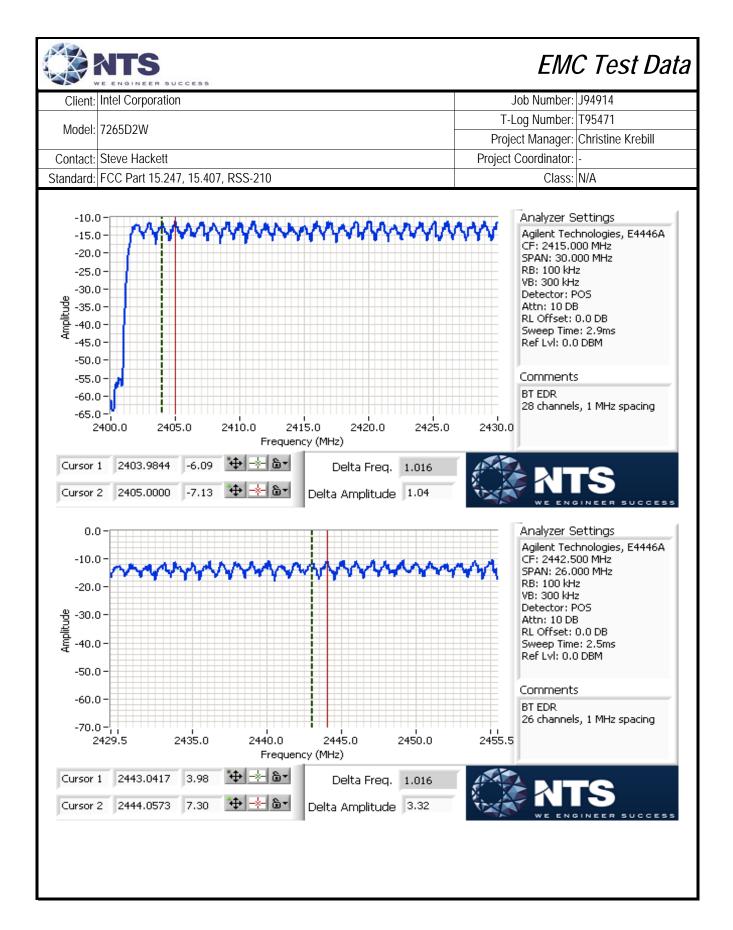
High band edge, hopping enabled Plot showing -20dBc at the upper band edge

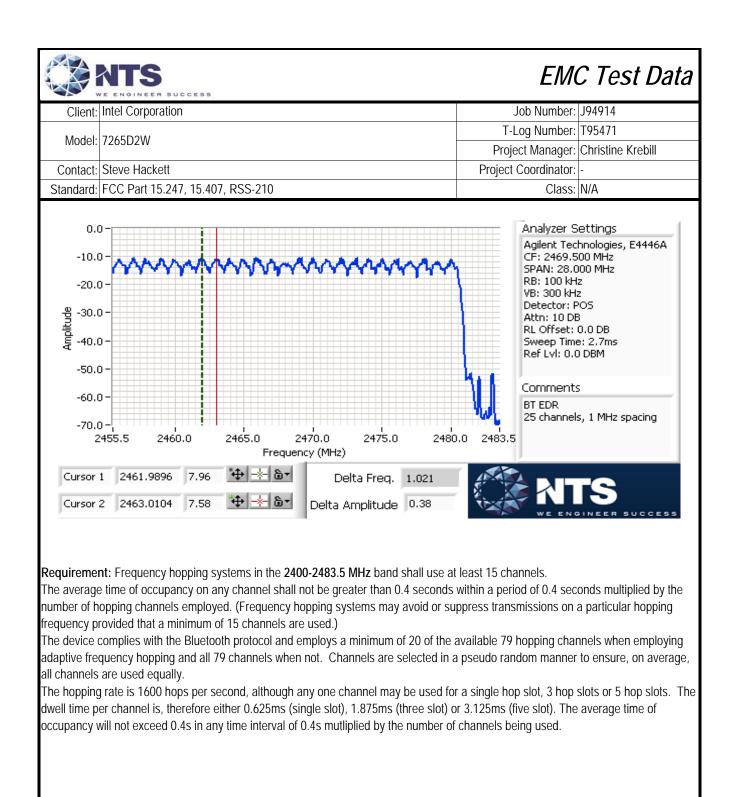





EMC Test Data
Job Number: J94914
T-Log Number: T95471
Project Manager: Christine Krebill
Project Coordinator: -
Class: N/A


High band edge, hopping enabled Plot showing -20dBc at the upper band edge




		SUCCESS					EMC Test	t Data	
Client:	nt: Intel Corporation Job Number: J94914								
						T-Log Number: T95471			
Model:	7265D2W					Proie	ct Manager: Christine Kr	ebill	
Contact.	Steve Hacke	11				Project Coordinator: -			
	rd: FCC Part 15.247, 15.407, RSS-210 Class: N/A								
Stariuaru.		1.247, 13.407, NSS-2 N	0						
For frequen all frequenc For all other	y hopping sys	stems in the 5725-5850 opping systems in the) MHz band: '	1 watt.		least 75 non	-overlapping hopping cha	annels, and	
Mode	Channel	Frequency (MHz)	Res BW	Pavg	Output Po	ower (dBm)	Output Power (W)	EIRP (W)	
NIUUE	Low	2402	IC2 DW	гачу		i.1	0.0032	0.0068	
Basic	Mid	2441	-			5.1	0.0032	0.0068	
	High	2480				.7	0.0030	0.0062	
	Low	2402	NA			.7	0.0015	0.0031	
EDR	Mid	2441	-			.8	0.0015	0.0032	
EBIX	High	2480	-			.5	0.0014	0.0030	
Note 2: Run #3: Ba	Setting is the average pow	bdB bandwidth. The ac e test utility software se ver meter and is provid annel Occupancy, Sp	etting and use led for referer	ed for referer nce only.	ice only. Pav		age output power measu	red with an	
Mode	Channel	Frequency (MHz)	Resolution Bandwidth	20dB Band	dwidth (kHz)	Resolution Bandwidth	99% Bandwidth (kHz)		
	Low	2402		9	33		874	1	
Basic	Mid	2441		9	42		865		
	High	2480	20111	9	42	20111-	874		
	Low	2402	20 kHz	14	183	20 kHz	1356		
EDR	Mid	2441		14	175		1356		
	High	2480		14	183		1356	1	
Note 1:		idth measured using F			1 /				
Note 2:	99% bandwi	dth measured using R	B = 20 kHz, V	<u>′B = 62 kHz</u>	(VB >=3RB)				

	VE ENGINEER SUCCESS		
Client:	Intel Corporation	Job Number:	J94914
Model: 7	7265D2W	T-Log Number:	T95471
Model.	1205D2W	Project Manager:	Christine Krebill
Contact:	Steve Hackett	Project Coordinator:	-
Standard:	FCC Part 15.247, 15.407, RSS-210	Class:	N/A

RSS 210 and FCC 15.247 (DSS) Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

ITS

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions:

Temperature:	24 °C
Rel. Humidity:	38 %

Summary of Results - Device Operating in the 2400-2483.5 MHz Band

MAC Address: 001500F15B5D DRTU Tool Version 1.7.3-935 Driver version 17.1.0.11

Run #	Mode	Channel	Power Setting	Measured Power	Test Performed	Limit	Result / Margin									
1a	Bluetooth	low		4.8 dBm	Restricted Band Edge (2390 MHz) Radiated Emissions, 1 - 26 GHz		34.1 dBµV/m @ 2342.1 MHz (-19.9 dB) No radio realated emissions									
1b	basic rate	center	10	5.1 dBm	Radiated Emissions, 1 - 26 GHz		No radio realated emissions									
1c	(1Mb/s)	high	-	5.0 dBm	Restricted Band Edge (2483.5 MHz) Radiated Emissions, 1 - 26 GHz	FCC Part 15.209 /	34.3 dBµV/m @ 2483.5 MHz (-19.7 dB) No radio realated emissions									
2a	Bluetooth	low		.8 dBm	Restricted Band Edge (2390 MHz) Radiated Emissions, 1 - 26 GHz	15.247(c)	39.2 dBµV/m @ 2248.8 MHz (-14.8 dB) 43.6 dBµV/m @ 2183.3 MHz (-10.4 dB)									
2b	EDR	center	6	6	6	6	6	6	6	6	6	6	1.2 dBm	Radiated Emissions, 1 - 26 GHz		No radio realated emissions
2c	(3 Mb/s)	high		1.4 dBm	Restricted Band Edge (2483.5 MHz) Radiated Emissions, 1 - 26 GHz		36.5 dBµV/m @ 2483.5 <u>MHz (-17.5 dB)</u> 42.8 dBµV/m @ 9000.6 MHz (-11.2 dB)									

	LE ENGINEER BUCCEBB		
Client:	Intel Corporation	Job Number:	J94914
Model	7265D2W	T-Log Number:	T95471
wouer.	12050210	Project Manager:	Christine Krebill
Contact:	Steve Hackett	Project Coordinator:	-
Standard:	FCC Part 15.247, 15.407, RSS-210	Class:	N/A

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Sample Notes

BT Address: 001500F15B61 DRTU Tool Version 1.7.3-935 Driver version 17.1.0.11

Note - the target and measured power are average powers (measured with average power sensor) and are used for reference purposes only. Power is set using " GAIN CONTROL" mode in the DRTU tool.

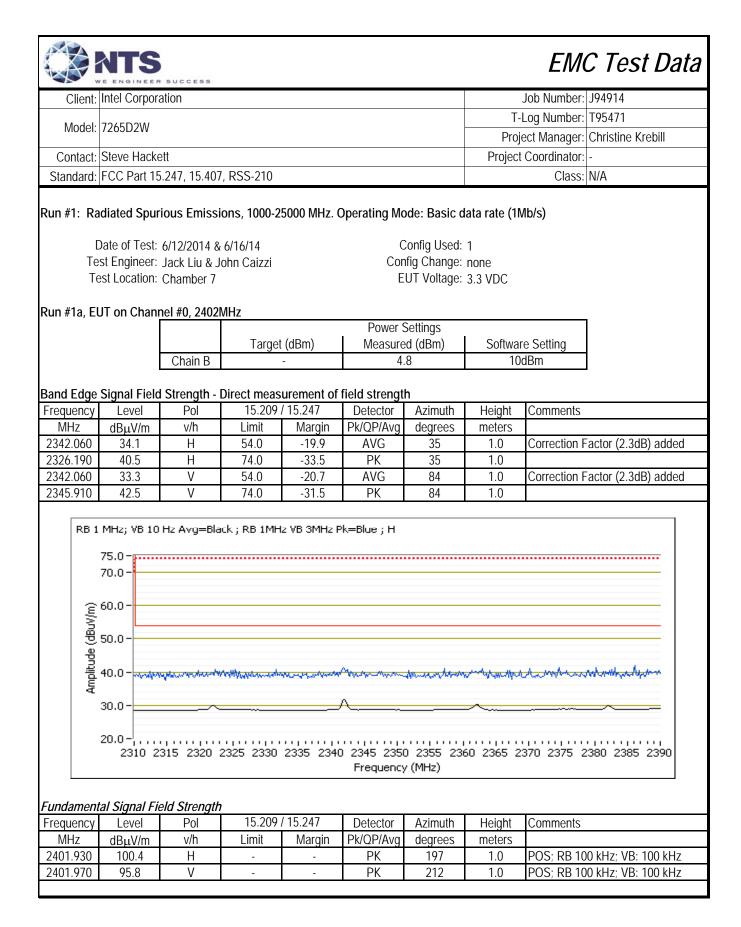
Antenna: a	intenna coni	nected.
------------	--------------	---------

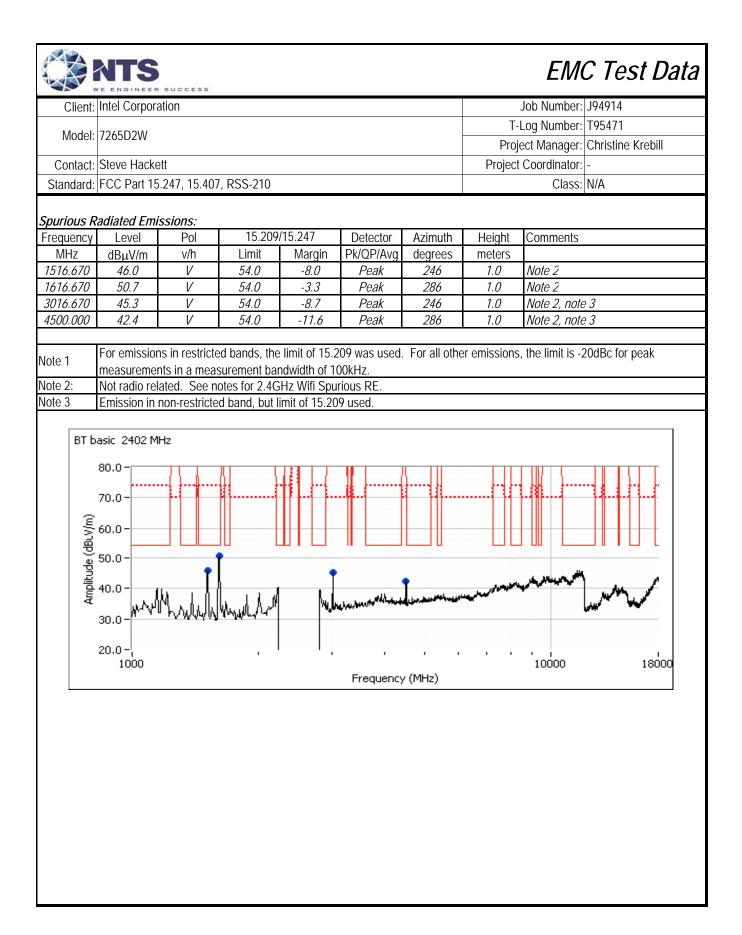
Basic data rate	Extended data rate
Duty Cycle: 0.770	Duty Cycle: 0.770
Correction Factor (dB) 2.3	Correction Factor (dB) 2.3

Notes:

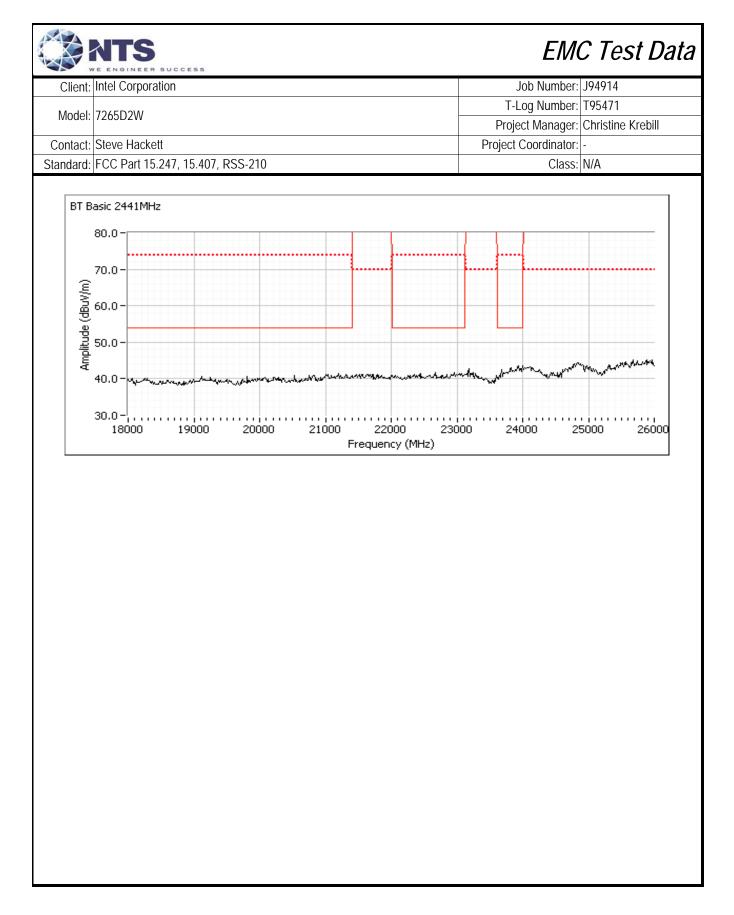
Bluetooth uses a frequency hopping algorithm that means that the device, during normal operation, is only on a specific channel for a short period of time. The average correction factor is calculated as follows:

A maximum length packet has a duration of 5 time slots.

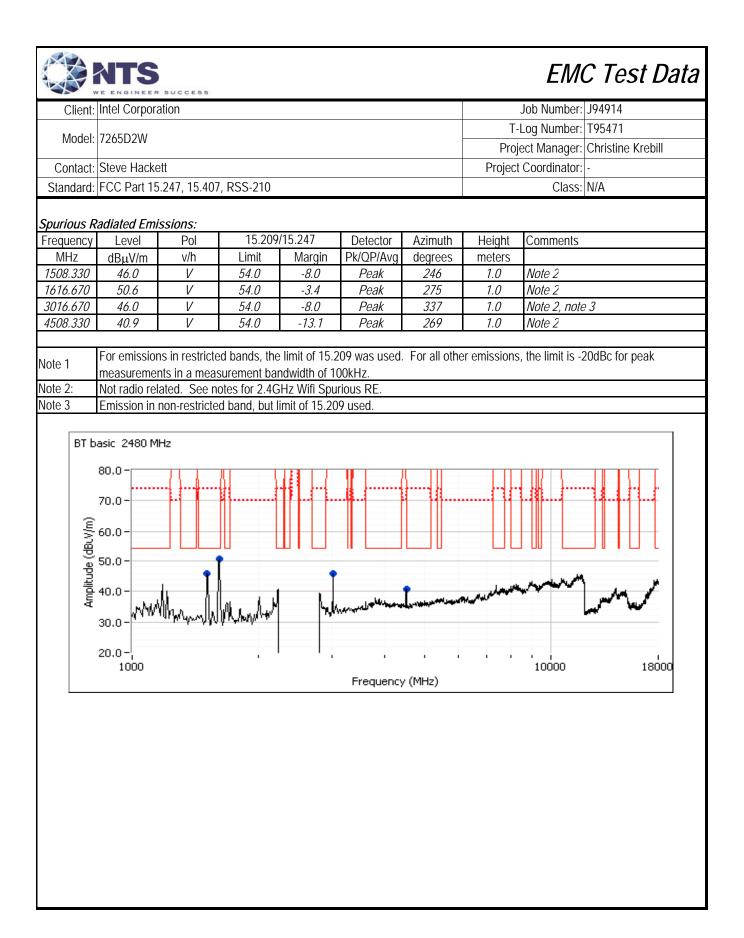

The hopping rate is 1600 hops/second so the maximum dwell time is 5/1600 seconds, or 3.125ms.


With a minimum of 20 hopping channels a channel will not be used more than 4 times in any 100ms period.

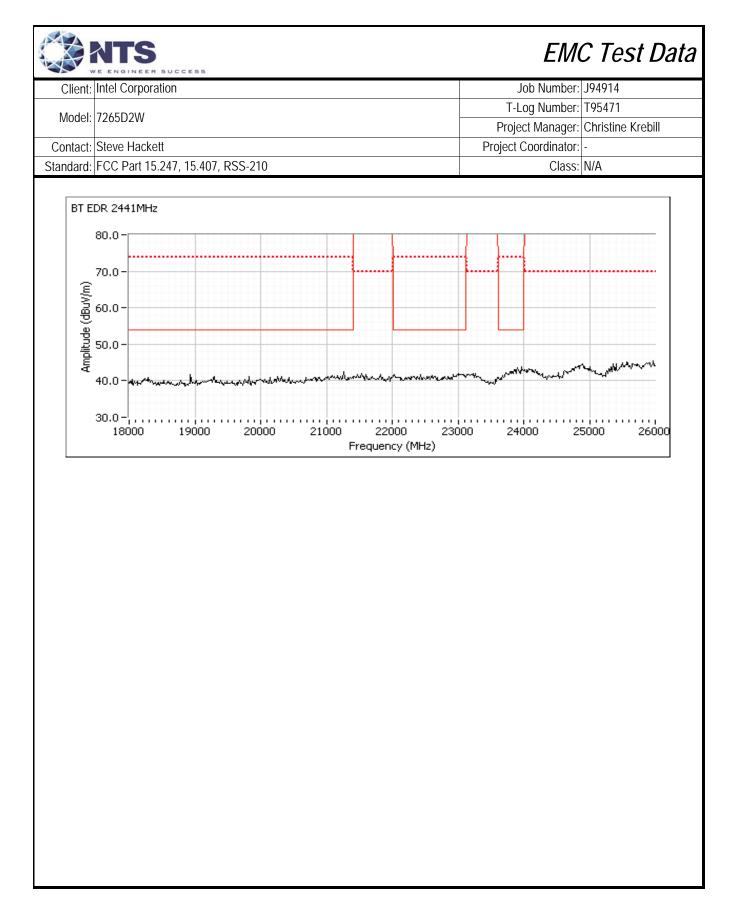
The maximum dwell time in a 100ms period is 4 x 3.125ms = 12.5ms.

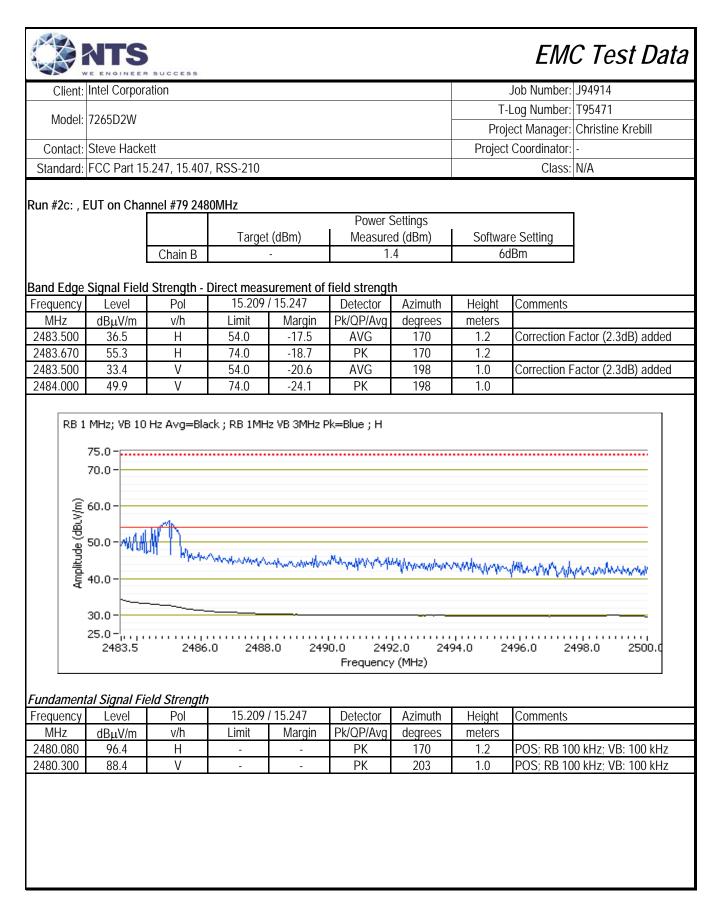

The average correction factor is, therefore, $20\log(12.5/100) = -18$ dB.

As this is a hopping radio this correction factor can be applied to the average value of the signal provided the average value was measured with the device continuously transmitting. DA 00-0705 permits the use of the average correction on the **measured average** value for frequency hopping radios.



	NTS							EM	C Test Data
Client:	Intel Corpora	ation						Job Number:	J94914
							T-Log Number: T95471		
Model:	7265D2W							0	Christine Krebill
Contact	Steve Hacke						-	Coordinator:	
							FTUJECI		
Standard:	FCC Part 15	0.247, 15.407	, RSS-210					Class:	IN/A
Dun #1h. I	EUT on Cha	nnol #20 24	/1MU-						
Kull # 10. , I	EUT on Cha	IIIEI #39, Z4			Power S	Settinas			
			Target	(dBm)	Measure		Softwar	e Setting	
		Chain B		-	5.	, ,		dBm	
		2.10.10							I
	tal Signal Fi			-				1	
Frequency	Level	Pol		15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2440.880	100.6	H	-	-	PK	181	1.0		0 kHz; VB: 100 kHz
2440.880	94.4	V	-	-	PK	88	1.0	POS; RB 10	0 kHz; VB: 100 kHz
Snurious P	adiated Emi	iccionc							
Frequency	Level	Pol	15.209	/15 247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Comments	
1516.670	46.5	V	54.0	-7.5	Peak	246	1.0	Note 2	
1608.330	49.8	V	54.0	-4.2	Peak	281	1.0	Note 2	
3016.670	45.1	V	54.0	-8.9	Peak	246	1.0	Note 2, note	23
4508.330	42.6	V	54.0	-11.4	Peak	275	1.0	Note 2	
Note 1: Note 2: Note 3 Note 4	measureme Not radio rel Emission in Scans made	nts in a meas ated. See no non-restricte between 18	surement bar otes for 2.4G d band, but l - 26GHz wit	ndwidth of 10 Hz Wifi Spu imit of 15.20 h the measu	00kHz. rious RE. 9 used. irement anten	na moved ar			20dBc for peak ennas 20-50cm from the
вт Б	asic 2441 M		ere no signifo	ant emissioi	ns in this freq	uency range			
Amplitude (dBuV/m)	80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000	Manualy	Mungalant					10000	18000


J74714	Job Number:						ation	Intel Corpora	Client:
T95471	Log Number:	T-l							
Christine Krebill	0		-					7265D2W	Model:
-	Coordinator:						.tt	Steve Hacke	Contact
NI/A	Class:	TTOJECT				DSS_210		FCC Part 15	
	01033.							I	
			Settings	Power S			inei #79 240	EUT on Char	un # ic. , i
	e Setting	Softwar		Measure	(dBm)	Target			
	dBm		1 1	5.	- -	Turget	Chain B		
	Comments	Height	h Azimuth	field strengt		Direct meas 15.209	Strength - I Pol	Signal Field Level	and Edge requency
		meters	degrees	Pk/QP/Avg	Margin	Limit	v/h	dBµV/m	MHz
actor (2.3dB) added	Correction F	1.0	148	AVG	-19.7	54.0	Н	34.3	2483.500
		1.0	148	PK	-19.7	74.0	Н	54.3	2483.500
actor (2.3dB) added	Correction F	1.0 1.0	199 199	AVG PK	-21.2 -23.9	54.0 74.0	V V	32.8 50.1	2483.500 2485.120
								80.0-	
	1		2.0 249	0.0 249	.0 249	.0 2488	2486	70.0 - 60.0 - 50.0 - 40.0 - 30.0 -	Amplitude (dBuV/m)
 198.0 2500.0	1 96.0 24	14.0 24	2.0 249 (MHz)	0.0 249 Frequency	3.0 249	.0 2488	2486 eld Strength	70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 2483.5	Fundamen
	196.0 24 Comments	14.0 24 Height	2.0 249 (MHz) Azimuth	0.0 249 Frequency Detector	.0 249 / 15.247	.0 2488 15.209	2486 Pol	70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 2483.5 tal Signal Fie Level	<i>undamen</i>
98.0 2500.0	Comments	14.0 24	2.0 249 (MHz)	0.0 249 Frequency	3.0 249	.0 2488	2486 eld Strength	70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 2483.5	



								EMO	C Test Dat
Client	t: Intel Corpo	ration						Job Number:	J94914
Mada							T-l	og Number:	T95471
wode	l: 7265D2W						Proje	ect Manager:	Christine Krebill
Contac	t: Steve Hack	ett					Project	Coordinator:	-
Standard	d: FCC Part 1	5.247, 15.407	, RSS-210					Class:	N/A
2un #2: R	Radiated Spu			5000 MHz. ((3Mb/s)	
т		6/12/2014 &				Config Used:			
	est Engineer		ohn Caizzi			fig Change: UT Voltage:			
					E	UT VUILAYE.	3.3 VDC		
un #2a, E	EUT on Chan	nel #1 2402N	/IHz						
					Power S				
			Target	(dBm)				e Setting	
		Chain B		- 0.8		8	6d	Bm	
and Eda	e Signal Fiel	d Strenath -	Direct meas	urement of	field strenat	h			
requency		Pol		/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2248.780		Н	54.0	-14.8	AVG	299	1.01		
2245.170		Н	74.0	-26.9	PK	299	1.01		
2248.780		V	54.0	-16.7	AVG	212	1.08		
2246.050	45.7	V	74.0	-28.3	PK	212	1.08		
RB									
Amolify (dBr W (m)	80.0 - 70.0 - 60.0 - 50.0 - 40.0 -) Hz Blue =	A	₩~₩₩₩₩~~~~		300 23		۸۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰	
(m)	80.0 - 70.0 - 60.0 - 50.0 - 30.0 - 20.0 -	W	A	1	2280 2	300 23		۸ ۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰	,
Amolihində (ABuldhm)	80.0 - 70.0 - 60.0 - 50.0 - 30.0 - 20.0 - 2200	^w	A	1	2280 2	300 23	20 234	l,	
(w)//(lap) 	80.0 - 70.0 - 60.0 - 50.0 - 30.0 - 20.0 - 2200	2220	A	1. 2260	2280 2: Frequency	300 23 / (MHz)	20 234	0 2360	
Amolihində (ABuldhm)	80.0 - 70.0 - 60.0 - 50.0 - 30.0 - 20.0 - 2200	^w	A	1. 2260	2280 2	300 23	20 234		

Olicht.	Intel Corpora	success tion						Job Number: J94914
								Log Number: T95471
Model:	7265D2W							ect Manager: Christine Krebill
Contact	Steve Hacket	+						t Coordinator: -
	FCC Part 15.		PSS_210				Појссі	Class: N/A
Statiuaru.	TGG Fall 15.	247, 1J.407	, 133-210					Class. IN/A
nurious R	adiated Emis	sions						
requency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
183.330	43.6	Н	54.0	-10.4	Peak	296	1.0	Note 3
516.670	46.4	V	54.0	-7.6	Peak	246	1.0	Note 2
608.330	50.6	V	54.0	-3.4	Peak	286	1.0	Note 2
016.670	46.1	V	54.0	-7.9	Peak	275	1.0	Note 2, note 3
508.330	42.6	V	54.0	-11.4	Peak	281	1.0	Note 2
167.860	37.8	Н	54.0	-16.2	AVG	302	1.0	Note 3
156.130	53.5	Н	74.0	-20.5	PK	302	1.0	Note 3
	70.0 - 60.0 - 50.0 - 40.0 -							
le (d	50.0-	1						
		<u>†</u>	•	Ť		•		a provide
lituo	40.0- • Å	1. II	h d M		when we are when and		www	M
Amplitue	L 14 DU	ՄԿԴուհվակ	Manghar	-γv	A COLOR			Nat.
	A 4 44 1	a sa Mata at ana						
	30.0-VYVV	k , në Melle (di dovi						
	30.0- 20.0-	h , n Mille dhaini						
	30.0-	<u>, ,,,,,,,,,,,,,,,,</u> ,,,,,,,,,,,,,,,,,,,			Frequency	(MH=)		10000 18000

		SUCCESS						EMC Test	t Data
Client:	Intel Corpora	ation						Job Number: J94914	
Model	7265D2W						T-Log Number: T95471		
							Project Manager: Christine Krebill		
Contact:	Steve Hacke	ett					Project	Coordinator: -	
Standard:	FCC Part 15	5.247, 15.407	, RSS-210					Class: N/A	
2un #2b: , l	EUT on Char	nnel #39, 24 [,]	41MHz						
					Power S	•			
			Target	(dBm)	Measure	1 /		e Setting	
		Chain B		-	1.	2	60	IBm	
undamen	tal Signal Fie	Ŭ.							
requency	Level	Pol	15.209		Detector	Azimuth	Height	Comments	
MHz 2440.970	dBµV/m	v/h H	Limit	Margin	Pk/QP/Avg	degrees 187	meters		v.Dool
2440.970	98.9	Н	-	-	Pk	187	1.12	RB 100 kHz;VB 300 kHz	среак
Spurious R	Radiated Emi	ssions:							
requency	Level	Pol	15.209/	/15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
1516.670	45.0	V	54.0	-9.0	Peak	226	1.0	Note 2	
1616.670	50.7	V	54.0	-3.3	Peak	266	1.0	Note 2	
3016.670	46.0	V	54.0	-8.0	Peak	272	1.0	Note 2, note 3	
4500.000	43.4	V	54.0	-10.6	Peak	277	1.0	Note 2, note 3	
ote 1: ote 2: ote 3: ote 4:	measuremen Not radio rel Emission in Scans made	nts in a meas ated. See no non-restricte between 18	surement bar otes for 2.4G d band, but li - 26GHz wit	ndwidth of 10 Hz Wifi Spur mit of 15.20 h the measu	00kHz. rious RE. 9 used.	na moved a	round the ca	, the limit is -20dBc for pe	
Amplitude (dBuv/m)	DR 2441 MH 80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000		mandar		Frequency	(MHz)		10000	18000

Client:	Intel Corpora	ition						Job Number: J94914
Model	7265D2W							Log Number: T95471
							Proj	ect Manager: Christine Krebill
Contact:	Steve Hacke	tt					Project	Coordinator: -
Standard:	FCC Part 15	.247, 15.407	, RSS-210					Class: N/A
1	Radiated Emis		15 200	115 0 47		A 1 11		
Frequency	1	Pol		/15.247	Detector	Azimuth	Height	Comments
MHz 9000.600	dBµV/m 42.8	v/h V	Limit 54.0	Margin -11.2	Pk/QP/Avg AVG	degrees 284	meters 1.00	
9000.600	42.8 52.4	V V	54.0 74.0	-11.2 -21.6	PK	284	1.00	
1516.670	45.7	V V	54.0	-21.0	Peak	204	1.00	Note 2
1608.330	4 <i>5.7</i> 50.8	V	54.0 54.0	-3.2	Peak	252	1.0	Note 2 Note 2
3016.670	46.3	V	54.0	-7.7	Peak	272	1.0	Note 2, note 3
4508.330	43.1	V I	54.0	-10.9	Peak	272	1.0	Note 2
Note 1:						For all othe	er emissions	, the limit is -20dBc for peak
	measuremer							
lote 2:	Not radio rela							
lote 3:	Emission in r	non-restricte	d band, but l	imit of 15.20	19 used.			
Amplitude (dBuV/m)	80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000		Wlambullah		ut it out the former			
					Frequency	(MHz)		

WE ENGINEER S	UCCESS		
Client:	Intel Corporation	Job Number:	J94914
Product	7265D2W	T-Log Number:	T95472
		Project Manager:	Christine Krebill
Contact:	Steve Hackett	Project Coordinator:	-
Emissions Standard(s):	FCC Part 15.247, 15.407, RSS-210	Class:	В
Immunity Standard(s):	-	Environment:	Radio

EMC Test Data

For The

Intel Corporation

Product

7265D2W

Date of Last Test: 7/8/2014

	E ENGINEER BOOGEBB		
Client:	Intel Corporation	Job Number:	J94914
Model	7265D2W	T-Log Number:	T95472
wouer.	1203D2W	Project Manager:	Christine Krebill
Contact:	Steve Hackett	Project Coordinator:	-
Standard:	FCC Part 15.247, 15.407, RSS-210	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

SUCCESS

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

For Bluetooth: Tx is chain B, Rx is chain B. For WiFi, only Chain A is used for transmit in the 2.4GHz band when Bluetooth is active, both chains can be used in 5GHz bands.

Ambient Conditions:

Temperature:	24 °C
Rel. Humidity:	39 %

Summary of Results

MAC Address: 001500F15B3A DRTU Tool Version 1.7.3-935 Driver version 17.1.0.11

1 802.11b 2412MHz 14.5 17.6 2 BT 1Mb/s 2480MHz 10 5.0 3 BT 1Mb/s 2462MHz 14.0 17.7 3 BT 1Mb/s 2402MHz 10 4.8 24 BT 1Mb/s 2402MHz 10 4.8 3 BT 1Mb/s 2402MHz 20.5 17.7 A BT 1Mb/s 2480MHz 10 5.0 50 17.7 FCC 15.247 MHz (-17.2 dB) FCC 15.247 MHz (-10.5 dB) FCC 15.247 MHz (-10.5 dB) FCC 15.247 MHz (-17.7 dB) FCC 15.247 56.3 dBµV/m @ 1198 FCC 15.247 53.3 dBµV/m @ 1198	NIN IO Muure	33. 0013001	1909/01/10	1001 101310	11 1.7.5 755			
1 802.11b 2412MHz 14.5 17.6 2 BT 1Mb/s 2480MHz 10 5.0 3 BT 1Mb/s 2462MHz 14.0 17.7 3 BT 1Mb/s 2402MHz 10 4.8 24 BT 1Mb/s 2402MHz 10 4.8 3 BT 1Mb/s 2402MHz 20.5 17.7 A BT 1Mb/s 2480MHz 10 5.0 50 17.7 FCC 15.247 MHz (-17.2 dB) FCC 15.247 MHz (-10.5 dB) FCC 15.247 MHz (-10.5 dB) FCC 15.247 MHz (-17.7 dB) FCC 15.247 56.3 dBµV/m @ 1198 FCC 15.247 53.3 dBµV/m @ 1198	Run #	Mode	Channel			Test Performed	Limit	Result / Margin
2 802.11b 2462MHz 14.0 17.7 Radiated Emissions FCC 15.247 MHz (-10.5 dB) 3 BT 1Mb/s 2402MHz 10 4.8 1-10 GHz FCC 15.247 MHz (-10.5 dB) 4 BT 1Mb/s 2412MHz 20.5 17.7 FCC 15.247 56.3 dBµV/m @ 1196 4 BT 1Mb/s 2480MHz 10 5.0 FCC 15.247 53.3 dBµV/m @ 1198	1						FCC 15.247	56.8 dBµV/m @ 1199.1 MHz (-17.2 dB)
3 BT 1Mb/s 802.11g 2402MHz 2412MHz 10 4.8 17.7 1- 10 GHz FCC 15.247 56.3 dBμV/m @ 1196 MHz (-17.7 dB) 4 BT 1Mb/s 2480MHz 10 5.0 FCC 15.247 53.3 dBμV/m @ 1198	2						FCC 15.247	43.5 dBµV/m @ 4924.0 MHz (-10.5 dB)
	3						FCC 15.247	56.3 dBµV/m @ 1196.0 MHz (-17.7 dB)
002.11g 2402.0112 17.5 17.5	4	BT 1Mb/s 802.11g	2480MHz 2462MHz	10 19.5	5.0 17.5		FCC 15.247	53.3 dBµV/m @ 1198.7 MHz (-20.7 dB)

Client:	Intel Corpora	ation				Job Number:	J94914
						T-Log Number:	T95472
Model:	7265D2W					Project Manager:	
Contact:	Steve Hacke	ett				Project Coordinator:	
Standard:	FCC Part 15	5.247, 15.407	, RSS-210			Class:	N/A
	L						
Run #	Mode	Channel	Power Setting	Measured Power	Test Performed	Limit	Result / Margin
ViFi mode f	or the followi	ng runs base	ed on worst c	ase mode fro	m runs 1 through 4		
5	BT 1Mb/s 802.11b	2402MHz 2437MHz	10 14	4.8 17.7	Radiated Emissions	FCC 15.247	46.1 dBµV/m @ 2366 MHz (-7.9 dB)
6	BT 1Mb/s 802.11b	2440MHz 2412MHz	10 14.5	5.1 17.6	1- 10 GHz	FCC 15.247	41.9 dBµV/m @ 2356 MHz (-12.1 dB)
7	BT 1Mb/s 802.11b	2440MHz 2462MHz	10 14	5.1 17.7	Radiated	FCC 15.247	41.3 dBµV/m @ 4924 MHz (-12.7 dB)
8	BT 1Mb/s 802.11b	2480MHz 2437MHz	10 14	5.0 17.7	Emissions 1- 10 GHz	FCC 15.247	41.1 dBµV/m @ 4874 MHz (-12.9 dB)
ViFi mode a	and channel a	and Bluetoot	h channel ba	sed on the wo	orst case mode from run	s 1 through 8	
9	BT 3Mb/s 802.11b	2440 MHz 2462 MHz	6 14	1.2 17.7	Radiated	FCC 15.247	41.4 dBµV/m @ 4924 MHz (-12.6 dB)
10	BTLE 802.11b	2440 MHz 2462 MHz	Default 14	3.2 17.7	Emissions 1- 10 GHz	FCC 15.247	43.5 dBµV/m @ 4924 MHz (-10.5 dB)
NiFi mode - channel, 1N		MHz with bot	h chains acti	ve at 16.5 dB	m per chain, center char	nnel in each 5GHz band. E	Bluetooth on center
11	BT 1Mb/s 802.11n20	2440MHz 5200MHz	10 31.0 / 32.0	5.1 16.6 / 16.5		FCC 15.247	No intermodulation founded Other Emissions refer the spurious RE result
12	BT 1Mb/s 802.11n20	2440MHz 5300MHz	10 32.0 / 33.0	5.1 16.6 / 16.5	Radiated	FCC 15.247	No intermodulation founded Other Emissions refer the spurious RE result
13	BT 1Mb/s 802.11n20	2440MHz 5580MHz	10 28.5 / 29.5	5.1 16.5 / 16.6	Emissions 1- 15 GHz	FCC 15.247	No intermodulation founded Other Emissions refer the spurious RE result
14	BT 1Mb/s 802.11n20	2440MHz 5785MHz	10 34.5 / 35.5	5.1 16.7 / 16.5		FCC 15.247	No intermodulation founded Other Emissions refer the spurious RE resul

	E EROMEER BOOOEDD		
Client:	Intel Corporation	Job Number:	J94914
Model	7265D2W	T-Log Number:	T95472
wouer.	1203D2W	Project Manager:	Christine Krebill
Contact:	Steve Hackett	Project Coordinator:	-
Standard:	FCC Part 15.247, 15.407, RSS-210	Class:	N/A

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Notes:

Bluetooth uses a frequency hopping algorithm that means that the device, during normal operation, is only on a specific channel for a short period of time. The average correction factor is calculated as follows:

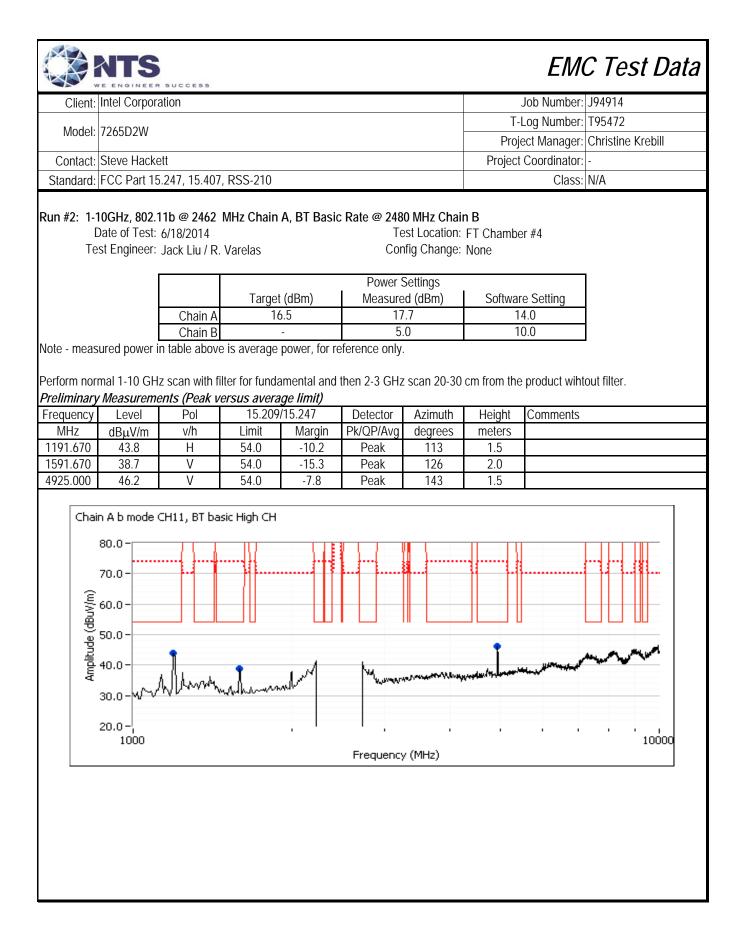
A maximum length packet has a duration of 5 time slots.

The hopping rate is 1600 hops/second so the maximum dwell time is 5/1600 seconds, or 3.125ms.

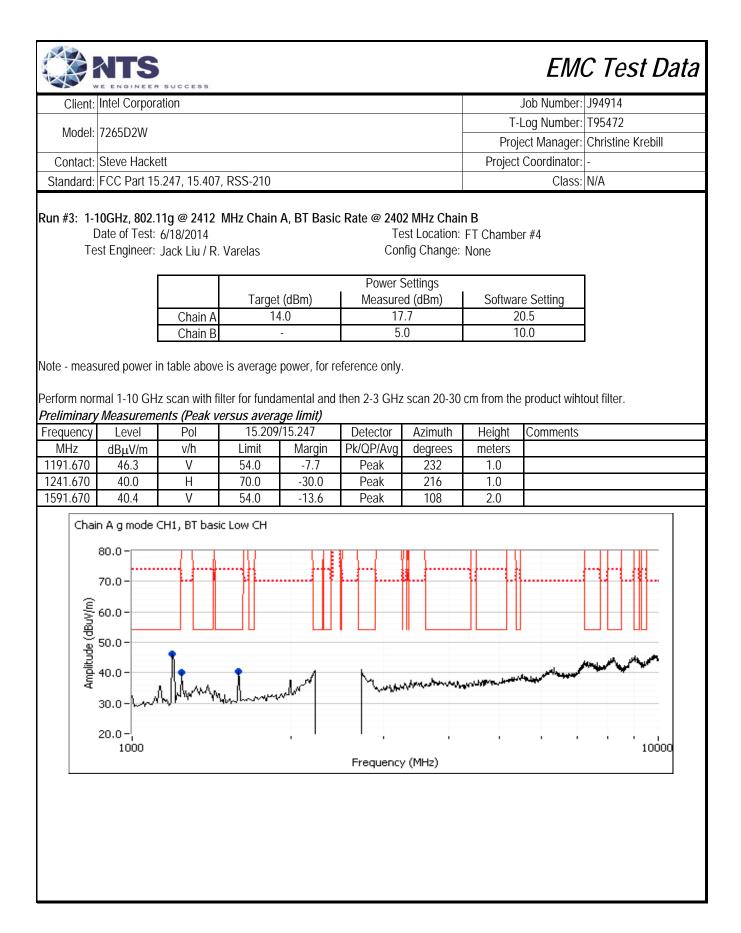
With a minimum of 20 hopping channels a channel will not be used more than 4 times in any 100ms period.

The maximum dwell time in a 100ms period is 4×3.125 ms = 12.5ms.

The average correction factor is, therefore, 20log(12.5/100) =-18dB


As this is a hopping radio this correction factor can be applied to the average value of the signal provided the average value was measured with the device continuously transmitting. DA 00-0705 permits the use of the average correction on the **measured average** value for frequency hopping radios.

All measurements in this data sheet do not include the average correction factor.


Antenna: Skycross WiMax/WLAN

Client:	Intel Corpora	ation						Job Number:	J94914
Model	7265D2W						T-	Log Number:	T95472
							Proj	ect Manager:	Christine Krebill
	Steve Hacke						Project	Coordinator:	
Standard:	FCC Part 15	5.247, 15.407	, RSS-210					Class:	N/A
un #1·1 [·]	10GH7 802 ·	11h @ 2/12	MHz Chain	Δ RT Raci	c Rate @ 240) MHz Chair	n R		
	Date of Test:					st Location:		er #4	
	est Engineer:					fig Change:			
		I			Dowor	Cottings			
			Tarne	t (dBm)	Power S Measure		Softwar	re Setting	
		Chain A		6.5	17	1		4.5	
		Chain B		-	4.			0.0	
ote - meas	sured power i	n table above	e is average	power, for re	eference only.				
erform nor	mal 1-10 GH	z scan with fi	lter for fund:	amental and	then 2-3 GHz	scan 20-30	cm from the	e product wibt	out filter
		ents (Peak v				50an 20-50			
				/15.247	Detector	Azimuth	Height	Comments	
	Level	Pol						0 01111101110	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
MHz 1200.000	dBμV/m 46.6	v/h V	Limit 54.0	Margin -7.4	Pk/QP/Avg Peak	degrees 220	meters 1.0		
MHz 1200.000 1825.000	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
1200.000 1825.000 1591.670	dBµV/m 46.6 52.6 42.4	v/h V V V	Limit 54.0 70.0 54.0	Margin -7.4 -17.4	Pk/QP/Avg Peak Peak	degrees 220 60	meters 1.0 2.2		
MHz 1200.000 1825.000 1591.670	dBµV/m 46.6 52.6 42.4	v/h V V	Limit 54.0 70.0 54.0	Margin -7.4 -17.4	Pk/QP/Avg Peak Peak	degrees 220 60	meters 1.0 2.2		
MHz 1200.000 1825.000 1591.670	dBµV/m 46.6 52.6 42.4	v/h V V V	Limit 54.0 70.0 54.0	Margin -7.4 -17.4	Pk/QP/Avg Peak Peak	degrees 220 60	meters 1.0 2.2		
MHz 1200.000 1825.000 1591.670	dBµV/m 46.6 52.6 42.4 in A b mode 80.0 -	v/h V V V	Limit 54.0 70.0 54.0	Margin -7.4 -17.4	Pk/QP/Avg Peak Peak	degrees 220 60	meters 1.0 2.2		
MHz 1200.000 1825.000 1591.670	dBμV/m 46.6 52.6 42.4 in A b mode 80.0 - 70.0 -	v/h V V V	Limit 54.0 70.0 54.0	Margin -7.4 -17.4	Pk/QP/Avg Peak Peak	degrees 220 60	meters 1.0 2.2		
MHz 200.000 825.000 1591.670	dBμV/m 46.6 52.6 42.4 in A b mode 80.0 - 70.0 -	v/h V V V	Limit 54.0 70.0 54.0	Margin -7.4 -17.4	Pk/QP/Avg Peak Peak	degrees 220 60	meters 1.0 2.2		
MHz 1200.000 1825.000 1591.670	dBμV/m 46.6 52.6 42.4 in A b mode 80.0 - 70.0 - 60.0 -	v/h V V V	Limit 54.0 70.0 54.0	Margin -7.4 -17.4	Pk/QP/Avg Peak Peak	degrees 220 60	meters 1.0 2.2		
MHz 1200.000 1825.000 1591.670	dBμV/m 46.6 52.6 42.4 in A b mode 80.0 - 70.0 - 60.0 -	v/h V V V	Limit 54.0 70.0 54.0	Margin -7.4 -17.4	Pk/QP/Avg Peak Peak	degrees 220 60	meters 1.0 2.2		
MHz 1200.000 1825.000 1591.670	dBμV/m 46.6 52.6 42.4 in A b mode 80.0 - 70.0 - 60.0 -	V/h V V CH1, BT basi	Limit 54.0 70.0 54.0	Margin -7.4 -17.4	Pk/QP/Avg Peak Peak	degrees 220 60	meters 1.0 2.2		
MHz 1200.000 1825.000 1591.670	dBμV/m 46.6 52.6 42.4 in A b mode 80.0 - 70.0 - 60.0 - 50.0 - 40.0 -	v/h V V V	Limit 54.0 70.0 54.0	Margin -7.4 -17.4	Pk/QP/Avg Peak Peak	degrees 220 60	meters 1.0 2.2		
MHz 1200.000 1825.000 1591.670	dBμV/m 46.6 52.6 42.4 in A b mode 80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 -	V/h V V CH1, BT basi	Limit 54.0 70.0 54.0	Margin -7.4 -17.4	Pk/QP/Avg Peak Peak	degrees 220 60	meters 1.0 2.2		
MHz 1200.000 1825.000 1591.670	dBµV/m 46.6 52.6 42.4 in A b mode 80.0 - 70.0 - 60.0 - 50.0 - 30.0 - 20.0 -	V/h V V CH1, BT basi	Limit 54.0 70.0 54.0	Margin -7.4 -17.4	Pk/QP/Avg Peak Peak	degrees 220 60	meters 1.0 2.2		
MHz 1200.000 1825.000 1591.670	dBμV/m 46.6 52.6 42.4 in A b mode 80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 -	V/h V V CH1, BT basi	Limit 54.0 70.0 54.0	Margin -7.4 -17.4	Pk/QP/Avg Peak Peak	degrees 220 60 260	meters 1.0 2.2		· 10000

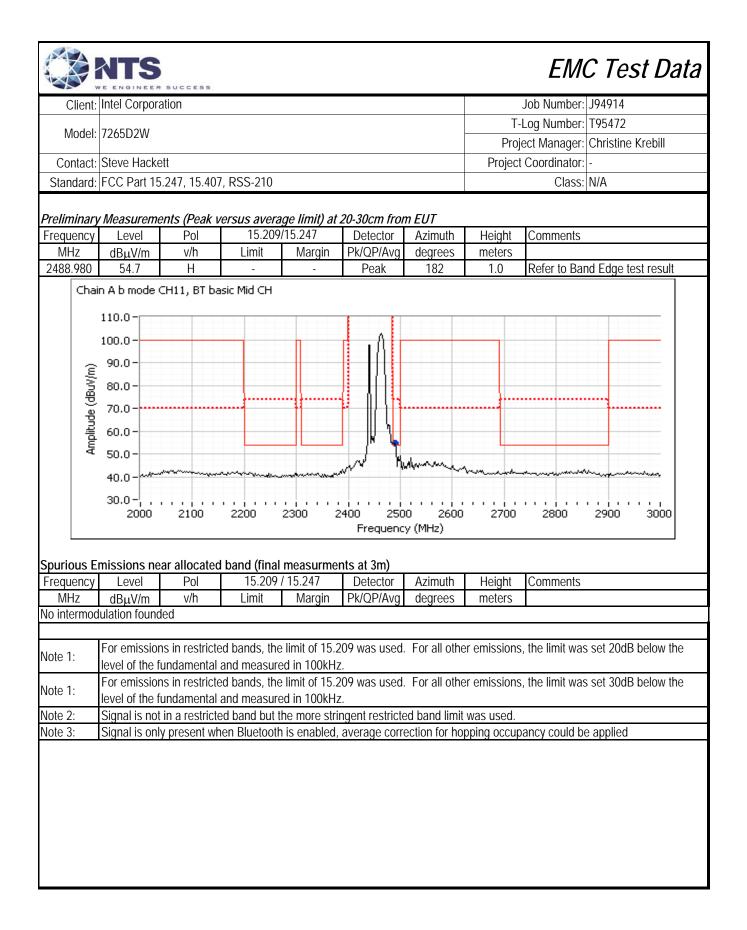
		SUCCESS						EMC Test Dat
Client:	Intel Corpora	ation						Job Number: J94914
	70/5001/						T-	Log Number: T95472
Model:	7265D2W						Proj	ect Manager: Christine Krebill
Contact	Steve Hacke	tt						Coordinator: -
	FCC Part 15		PSS_210				110,000	Class: N/A
Stanuaru.		.247, 13.407	, 135-210					
purious E	missions ex	cluding allo			urements at 3	3m)		
requency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
196.800	31.4	V	54.0	-22.6	AVG	237	1.0	RB 1 MHz;VB 10 Hz;Peak
199.130	56.8	V	74.0	-17.2	PK	237	1.0	RB 1 MHz;VB 3 MHz;Peak
819.800	27.3	V	54.0	-26.7	AVG	195	1.9	Note 2
319.600	39.2	V	74.0	-34.8	PK	195	1.9	Note 2
594.340	31.2	V	54.0	-22.8	AVG	61	1.6	RB 1 MHz;VB 10 Hz;Peak
594.940	47.0	V	74.0	-27.0	PK	61	1.6	RB 1 MHz;VB 3 MHz;Peak
diminar	Magguram	nte (Dook v	oreus auere	an limit) at	20 20cm from	n EUT		
equency	Level	Pol		<i>ge min) at .</i> /15.247	20-30cm from Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
60.920	<u>αβμν/m</u> 55.9	H	-	-	Peak	180	1.0	In band intermittent signal
573.150	43.6	H	54.0	-10.4	Peak	180	1.0	Note 2
	70.0-							
	60.0 - 50.0 - 40.0 - 30.0	2100	2200 2		400 2500 Frequency) 2600	***** ** ***	۲. 2800 2900 3000
urious E	30.0	2100	2200 2	2300 24 measurmer	400 2500 Frequency nts at 3m)) 2600 (MHz)	2700	2800 2900 3000
urious E equency	30.0	2100 ar allocated Pol	2200 2 band (final 15.209	2300 24 measurmei / 15.247	400 2500 Frequency nts at 3m) Detector	2600 7 (MHz)	2700 Height	
urious E equency MHz	30.0	ar allocated Pol V/h	2200 2 band (final 15.209 Limit	2300 24 measurmer / 15.247 Margin	400 2500 Frequency nts at 3m) Detector Pk/QP/Avg	2600 (MHz) Azimuth degrees	2700 Height meters	Comments
urious E equency MHz 573.150	30.0	ar allocated Pol V/h H	2200 2 band (final 15.209	2300 24 measurmei / 15.247	400 2500 Frequency nts at 3m) Detector	2600 7 (MHz)	2700 Height	2800 2900 3000
urious E equency MHz 573.150	30.0	ar allocated Pol V/h H	2200 2 band (final 15.209 Limit	2300 24 measurmer / 15.247 Margin	400 2500 Frequency nts at 3m) Detector Pk/QP/Avg	2600 (MHz) Azimuth degrees	2700 Height meters	Comments
urious E equency MHz 573.150 intermod	30.0	ar allocated Pol V/h H led	2200 2 band (final 15.209. Limit 54.0	2300 24 measurmer / 15.247 Margin -10.4	400 2500 Frequency nts at 3m) Detector Pk/QP/Avg Peak	Azimuth degrees 180	Height meters 1.0	Comments
urious E equency MHz 573.150 intermoc	30.0	ar allocated Pol v/h H led	2200 2 band (final 15.209 Limit 54.0 ed bands, the	measurmer / 15.247 Margin -10.4	400 2500 Frequency nts at 3m) Detector Pk/QP/Avg Peak 209 was used.	Azimuth degrees 180	Height meters 1.0	Comments Note 2
urious E equency MHz 573.150	30.0	ar allocated Pol V/h H led	2200 2 band (final 15.209 Limit 54.0 ed bands, the and measure	2300 24 measurmer / 15.247 Margin -10.4 e limit of 15.2 ed in 100kHz	400 2500 Frequency nts at 3m) Detector Pk/QP/Avg Peak 209 was used.	Azimuth degrees 180	Height Meters 1.0	Comments Note 2

v v		SUCCESS						EMC Test Dat
Client:	Intel Corpora	ation						Job Number: J94914
Madal							T-	Log Number: T95472
wodel:	7265D2W						Proj	ect Manager: Christine Krebill
Contact:	Steve Hacke	ett					Project	Coordinator: -
	FCC Part 15		. RSS-210				,	Class: N/A
otanuara			1.00 2.0					
Spurious F	missions ex	cluding allo	cated band	(final meas	urements at	3m)		
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
4923.980	43.5	V	54.0	-10.5	AVG	207	1.0	RB 1 MHz;VB 10 Hz;Peak
4924.070	49.0	V	74.0	-25.0	PK	207	1.0	RB 1 MHz;VB 3 MHz;Peak
1174.670	30.3	Н	54.0	-23.7	AVG	252	1.7	RB 1 MHz;VB 10 Hz;Peak
1195.670	48.7	Н	74.0	-25.3	PK	252	1.7	RB 1 MHz;VB 3 MHz;Peak
1597.800	30.3	V	54.0	-23.7	AVG	284	1.8	RB 1 MHz;VB 10 Hz;Peak
1597.470	48.6	V	74.0	-25.4	PK	284	1.8	RB 1 MHz;VB 3 MHz;Peak
Due Kees to s		anta (De el		and the state of	20.20.00			
	7			ige limit) at /15.247	20-30cm from		l laimht	Commonto
Frequency MHz	Level	Pol			Detector	Azimuth	Height	Comments
2488.980	dBμV/m 53.1	v/h H	Limit	Margin	Pk/QP/Avg Peak	degrees 180	meters 1.0	Refer to Band Edge test result
2623.250	41.0	H	54.0	-13.0	Peak	180	1.0	Note 2
Chai	in A b mode (80.0 -	CH11, BT ba	isic High CH		I Cak	100	1.0	
				Marine Marine				Marine Marine Marine
(July	80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 -	2100	2200 ' :	2300 24 measurme	400 2500 Frequency	о 2600 (MHz)		
(W/\Angp) Spurious E Frequency	80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 20.0 - 2000 missions ne Level	2100 ar allocated Pol	2200 : 2 band (final 15.209	measurmer / 15.247	400 2500 Frequency nts at 3m) Detector	0 2600 (MHz)	2700	the man and the second s
(w/\ngp Spurious E Frequency MHz	80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 20.0 - 2000 missions ne Level dBµV/m	2100 ar allocated Pol v/h	2200 2200 200 200 200 200 200 200 200 2	2300 24 measurmer / 15.247 Margin	400 2500 Frequency nts at 3m) Detector Pk/QP/Avg	MMM M 2600 (MHz) Azimuth degrees	2700	илиничинин 2800 2900 3000 Comments
(W/\ngp) Spurious E Frequency MHz 2623.250	80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 20.0 - 2000 missions ne Level dBµV/m 41.0	ar allocated V/h H	2200 : 2 band (final 15.209	measurmer / 15.247	400 2500 Frequency nts at 3m) Detector	0 2600 (MHz)	2700	
(W/\ngp) Spurious E Frequency MHz 2623.250	80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 20.0 - 2000 missions ne Level dBµV/m	ar allocated V/h H	2200 2200 200 200 200 200 200 200 200 2	2300 24 measurmer / 15.247 Margin	400 2500 Frequency nts at 3m) Detector Pk/QP/Avg	MMM M 2600 (MHz) Azimuth degrees	2700	илиничинин 2800 2900 3000 Comments
Spurious E Frequency MHz 2623.250 No intermod	80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 20.0 - 2000 missions ne Level dBµV/m 41.0 dulation founce	2100 ar allocated Pol V/h H led	2200 2 band (final 15.209 Limit 54.0	measurmer / 15.247 Margin -13.0	400 2500 Frequency nts at 3m) Detector Pk/QP/Avg Peak	Azimuth degrees 180	2700 Height neters 1.0	илиничинин 2800 2900 3000 Comments
(W/\ngp) Spurious E Frequency MHz 2623.250	80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 20.0 - 20.0 - 20.0 - 10.0 - 20.0 - 10.0 - 20.0 - 20.0 - 10.0 - 20.0 -	ar allocated Pol V/h H led	2200 2200 200 200 200 200 200 200 200 2	measurmer / 15.247 Margin -13.0 e limit of 15.2 ed in 100kHz	400 2500 Frequency nts at 3m) Detector Pk/QP/Avg Peak	Azimuth degrees 180	Height neters 1.0	Comments

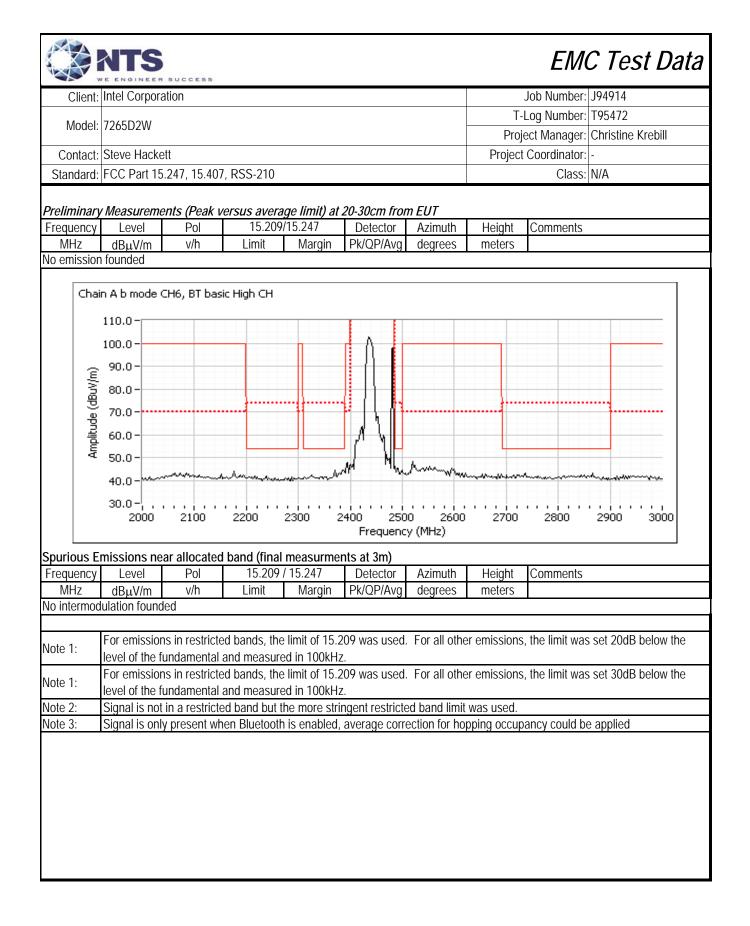
	WE ENGINEER	SUCCESS						EMC Test Dat
Client:	Intel Corpora	ition						Job Number: J94914
Model:	7265D2W							Log Number: T95472
								ect Manager: Christine Krebill
	Steve Hacke						Project	t Coordinator: -
Standard:	FCC Part 15	.247, 15.407	, RSS-210					Class: N/A
						_		
	missions ex				1 1		11.2.4.1	0
requency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h V	Limit	Margin -22.2	Pk/QP/Avg	degrees 227	meters	
197.000 196.000	31.8 56.3	V	54.0 74.0	-22.2 -17.7	AVG PK	227	1.0 1.0	RB 1 MHz;VB 10 Hz;Peak RB 1 MHz;VB 3 MHz;Peak
260.940	29.1	H	54.0	-17.7	AVG	129	1.0	Note 2
241.070	42.8	H	74.0	-24.9 -31.2	PK	129	1.4	Note 2
594.540	30.9	V	54.0	-23.1	AVG	80	1.4	RB 1 MHz;VB 10 Hz;Peak
594.070	46.2	V	74.0	-27.8	PK	80	1.5	RB 1 MHz;VB 3 MHz;Peak
					11			
reliminary	y Measureme	nts (Peak v	ersus avera	ge limit) at .	20-30cm from	n EUT		
requency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
462.930	55.3	V	-	-	Peak	180	1.0	In band intermittent signal
384.770	54.8	V	-	-	Peak	180	1.0	Refer to Band Edge test result
	80.0-	:H1, BT bas	ic Low CH					
	_		un mine de	W-1.44	100 2500 Frequency	2600	~%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Amplitude (dBuV/m)	80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 2000	2100	2200 ' 2		400 2500 Frequency) 2600	- White Mark	Manna Mana Mana Mana Mana Mana Mana Man
Amplitude (dBu//m)	80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 2000	2100	2200 2		400 2500 Frequency) 2600	- White Mark	Manna Mana Mana Mana Mana Mana Mana Man
purious E requency MHz	80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 2000 - missions nea Level dBµV/m	2100 ar allocated Pol v/h	2200 2	measurme	100 2500 Frequency nts at 3m)) 2600 (MHz)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	······································
(m/\/m) purious E requency MHz	80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 2000 -	2100 ar allocated Pol v/h	2200 2 band (final 15.209	measurmei / 15.247	+00 2500 Frequency nts at 3m) Detector	(MHz)		······································
(w/\/m) purious E <u>requency</u> MHz	80.0 - 70.0 - 60.0 - 50.0 - 30.0 - 20.0 - 2000 20.0 - 2000 2000	2100 ar allocated Pol V/h ed	2200 2 band (final 15.209 Limit	measurmer / 15.247 Margin	400 2500 Frequency nts at 3m) Detector Pk/QP/Avg	Azimuth degrees	2700 Height meters	Comments
purious E requency MHz o intermod	80.0 - 70.0 - 60.0 - 50.0 - 30.0 - 20.0 - 2000 20.0 - , , , 2000 5 missions nea Level dBµV/m dulation found	ar allocated Pol v/h ed	2200 22 band (final 15.209 Limit	measurmer / 15.247 Margin	100 2500 Frequency nts at 3m) Detector Pk/QP/Avg	Azimuth degrees	2700 Height meters	······································
purious E requency MHz o intermod	80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 20.0 - 2000 missions nea Level dBμV/m dulation found For emission level of the fu	2100 ar allocated Pol v/h ed s in restricte	2200 2 band (final 15.209 Limit	measurmer / 15.247 Margin e limit of 15.2 ed in 100kHz	100 2500 Frequency Detector Pk/QP/Avg	Azimuth degrees	Height meters	Comments
(w/\/m) purious E <u>requency</u> MHz	80.0 - 70.0 - 70.0 - 50.0 - 50.0 - 30.0 - 20.0 - 2000	2100 ar allocated Pol v/h ed s in restricte undamental in a restricte	2200 2 band (final 15.209 Limit ed bands, the and measure ed band but t	measurmer / 15.247 Margin e limit of 15.2 ed in 100kHz he more strii	400 2500 Frequency nts at 3m) Detector Pk/QP/Avg 209 was used. 2. ngent restricted	Azimuth degrees For all othe	Height meters er emissions was used.	Comments

		SUCCESS						EMO	C Test Data
Client:	Intel Corpora	ation					,	Job Number:	J94914
							T-L	og Number:	T95472
Model:	7265D2W							0	Christine Krebill
Contact	Steve Hacke	tte					•	Coordinator:	-
		5.247, 15.407	DCC 210				Појест	Class:	- NI/A
Stanuaru.	FUC Fait 13).247, 10.407	, KSS-210					Class.	IN/A
[Date of Test:			A, BT Basic			FT Chambe	r #4	
					Power S				
			Target		Measure	· /		e Setting	
		Chain A	12	2.5	17			9.5	
		Chain B		-	5.	0	1().0	
		z scan with fi e <i>nts (Peak v</i> Pol		ge limit)	then 2-3 GHz Detector	scan 20-30 Azimuth	cm from the Height	product wihte	out filter.
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
1600.000	40.2	V	54.0	-13.8	Peak	221	1.5		
1200.000	43.9	V	54.0	-10.1	Peak	259	1.0		
	-	CH11, BT ba	-						
Amplitude (dBuV/m)	80.0 - 70.0 - 60.0 - 50.0 - 40.0 -				Manapate				
Amplitude (dBuV/m)	70.0 - 60.0 - 50.0 - 40.0 - 30.0 -	Mum	uluum	www	Mandra Andre				
Amplitude (dBuV/m)	70.0 - 60.0 - 50.0 - 40.0 - 30.0 -	nlim	ul	un u	Frequency	//////////////////////////////////////			10000
Amplitude	70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000				Frequency urements at				· · · 10000
Amplitude	70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000	Cluding allo	cated band 15.209				Height		· · · 10000
Spurious E Frequency MHz	70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000 missions ex Level dBµV/m	Pol v/h	15.209 Limit		urements at Detector Pk/QP/Avg	3m)	meters		
Epurious E Frequency MHz 1598.670	70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000 missions ex Level dBµV/m 31.1	Pol v/h V	15.209 Limit 54.0	15.247 Margin -22.9	urements at Detector Pk/QP/Avg AVG	3m) Azimuth degrees 62	meters 1.5	RB 1 MHz;V	B 10 Hz;Peak
purious E Frequency MHz 1598.670 1593.930	70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000 missions ex Level dBµV/m 31.1 47.7	Pol v/h V V	15.209 Limit 54.0 74.0	15.247 Margin -22.9 -26.3	urements at Detector Pk/QP/Avg AVG PK	3m) Azimuth degrees 62 62	meters 1.5 1.5	RB 1 MHz;V RB 1 MHz;V	B 10 Hz;Peak B 3 MHz;Peak
purious E Frequency MHz 1598.670	70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000 missions ex Level dBµV/m 31.1	Pol v/h V	15.209 Limit 54.0	15.247 Margin -22.9	urements at Detector Pk/QP/Avg AVG	3m) Azimuth degrees 62	meters 1.5	RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V	B 10 Hz;Peak

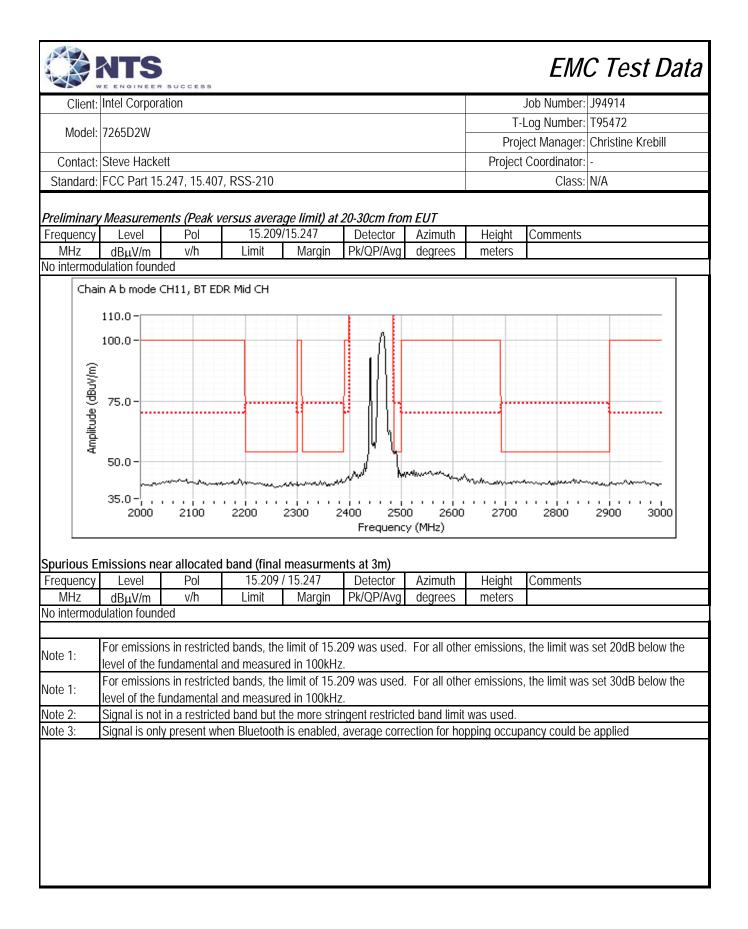
	NTS	SUCCESS						EMC Test Dat
Client:	Intel Corpora	ation						Job Number: J94914
Madal	7265D2W						Ţ.	Log Number: T95472
							Proj	ect Manager: Christine Krebill
Contact:	Steve Hacke	tt					Project	t Coordinator: -
tandard:	FCC Part 15	.247, 15.407	, RSS-210					Class: N/A
						<i>си</i> т		
equency	Level	Pol		<i>age limit) at</i> 9/15.247	20-30cm from Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
90.980	55.6	V	-	-	Peak	180	1.0	Refer to Band Edge test result
Amplitude (dBuV/m)						mmmun	Wolldow .	
	30.0 - , , , 20.0 - , , , 2000	2100	2200			2600		2800 2900 3000
	20.0 -	2100 ar allocated	l band (fina	2300 2	400 2500 Frequency nts at 3m)) 2600 / (MHz)	2700	2800 2900 3000
equency	20.0 - , , , 2000 missions ne	2100 ar allocated Pol	band (fina 15.209	2300 2 <u>I measurme</u> / 15.247	400 2500 Frequency nts at 3m) Detector) 2600 (MHz) Azimuth	2700 Height	
equency MHz	20.0 -	2100 ar allocated Pol v/h	l band (fina	2300 2	400 2500 Frequency nts at 3m)) 2600 (MHz) Azimuth	2700	2800 2900 3000


1								SUCCESS	E ENGINEER	N . Con
	ob Number:							ation	Intel Corpora	Client:
T95472	og Number:	T-L							7265D2W	Model
Christine Krebill	ct Manager:	Proje							72030200	MUUCI.
-	Coordinator:	Project (ett	Steve Hacke	Contact:
N/A	Class:						RSS-210	.247, 15.407	FCC Part 15	standard:
	Į	ו B	lz Chain	02 N	Rate @ 240	A, BT Basic	MHz Chain A	1b @ 2437	10GHz, 802. ⁻	n #5: 1-1
	r 4	FT Chamber							Date of Test:	
		None	hange:	onfig	Col		Varelas	Jack Liu / R.	st Engineer:	Те
7	1									
	C allin a	Cathuran	· .		Power	(40)	Tanad			
4	Ŭ	Software 14	sm)	ed (7.7	Measure		Target 17	Chain A		
4		14		7.7 4.8		5	17	Chain A Chain B		
J		10			-	nwer for re	is averane i	n table above	ured nower i	te - meas
				<i>.</i>	i ci ci loc o lily		is avoidyo j			to mous
tout filter.	product wihte	cm from the	ו 20-30 מ	lz sc	then 2-3 GH	mental and	er for funda	z scan with fi	mal 1-10 GH	rform nor
								ents (Peak v	Measurem	eliminary
	Comments	ě.	imuth	_	Detector		15.209/	Pol	Level	equency
		meters	grees) C	Pk/QP/Avg	Margin	Limit	v/h	dBµV/m	MHz
		1.3	114		Peak	-9.4	54.0	H	44.6	95.120
		1.6	227	_	Peak	-12.8	54.0	V	41.2	594.440
		1.3	141		Peak	-11.6	54.0	V CH6, BT Basi	42.4	874.170
	المسحر	• • • • • • • • • • • • • • • • • • •			N.			Inn	80.0 - 70.0 - 60.0 - 50.0 - 40.0 -	
		an a	⊿≁≁ ∿ ₽∳ţ₿₰ _{₽₽}	\$ } \$*	N BRANNE		Mann	VII.Mu	30.0-~/~	4
10000					' '				20.0-¦ 1000	
10000			lz)	:y (N	Frequenc				1000	
1				t 3m	irements at	final measu		cluding allo		
	-	Height	imuth		Detector		15.209 /	Pol	Level	equency
	Comments			-	Pk/QP/Avg	Margin	Limit	v/h	dBµV/m	MHz
	Comments	meters	grees		I N/QI /AVU					
/B 10 Hz;Peak		meters	grees 154		AVG	-13.8	54.0	V	40.2	873.970
/B 10 Hz;Peak /B 3 MHz;Peak	RB 1 MHz;V	meters 1.9	4		Ŭ		54.0 74.0	V V	40.2 46.9	
	RB 1 MHz;V RB 1 MHz;V	meters 1.9 1.9	154		AVG	-13.8				373.870
/B 3 MHz;Peak	RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V	meters 1.9 1.9 1.3 1.3	154 154		AVG PK	-13.8 -27.1	74.0	V	46.9	873.970 873.870 594.510 596.370 196.570

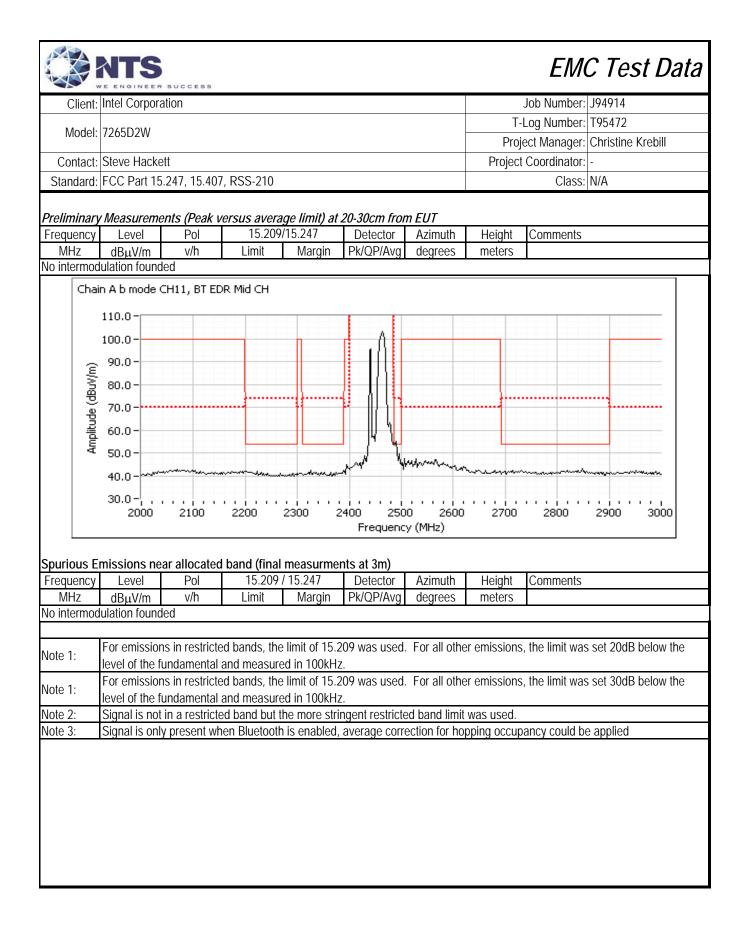
	: Intel Corpora	ation						Job Number: Log Number:	
Model	: 7265D2W							-	Christine Krebill
Contact	: Steve Hacke	ett						Coordinator:	
	FCC Part 15		RSS-210					Class:	
olunuuru		.2 17, 10.107	1100 210					010001	
reliminar	y Measureme	ents (Peak v			100cm from	EUT			
requency		Pol	15.209/	1	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2368.740	49.2	Н	54.0	-4.8	Peak	210	1.5		
Amplitude (dBuV/m)	90.0 - 80.0 - 70.0 - 50.0 - 40.0 - 30.0 - 2000	2100			2400 250 Frequenc			* ' _ 2800	
requency		Pol	15.209/		Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2366.050	46.1	Н	54.0	-7.9	AVG	155	1.4	POS; RB11	MHz; VB: 10 Hz
366.300	54.2	Н	74.0	-19.8	PK	155	1.4	POS; RB 1 I	MHz; VB: 3 MHz
ote 1:	level of the f For emission level of the f	undamental ans in restricte undamental a	and measure d bands, the and measure	ed in 100kHz limit of 15.2 ed in 100kHz	z. 209 was used.	For all othe	r emissions		s set 20dB below the
ote 1: ote 2:	Signal is not	III a resulcte							


							SUCCESS	EENGINEER	- W
	lob Number:						ation	Intel Corpora	Client:
	og Number:							7265D2W	Model
Christine Krebill	ect Manager:	Proje	-					12030211	would.
-	Coordinator:	Project					ett	Steve Hacke	Contact:
N/A	Class:					, RSS-210	5.247, 15.407	FCC Part 15	Standard:
				: Rate @ 244	A, BT Basic	MHz Chain			
	r 4		st Location:					ate of Test:	
		None	fig Change:	Con			Jack Liu	st Engineer:	le
1			Settinas	Power S				I	
	e Setting	Software		Measure	(dBm)	Target			
1	l.5			17	b.5		Chain A		
	0.0	10	1	5.	-		Chain B		
				eference only.	power, for re	e is average	n table above	ured power i	ote - meas
		f 11-				liter for from 1			
out filter.	product wiht	cm from the	scan 20-30	then 2-3 GHz					
	Comments	Height	Azimuth	Detector		<i>ersus avera</i> 15.209	Pol	Level	requency
	Commento	meters	degrees	Pk/QP/Avg	Margin	Limit	v/h	dBµV/m	MHz
		1.3	275	Peak	-9.3	54.0	V	44.7	
			275				v	44.7	1198.140
		1.9	87	Peak	-13.3	54.0	V CH1, BT Bas	40.7	1590.120 Chair
· 10000			87	Peak	-13.3	54.0	V	40.7 n A b mode (Chair (m/\ngp) apn1ldww
· · · 10000			87	Frequency	,		V CH1, BT Bas	40.7 A b mode (80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000	Chair (W/\ngp) aphilitude
			87	Peak	(final measu	54.0	CH1, BT Bas	40.7 A b mode (80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 1000 missions ex	(W/\ngp) apnalidume purious Er
· · · 10000	Comments	Height	87	Peak	(final measu (15.247	54.0 ic Mid CH	CH1, BT Bas	40.7 A b mode of 80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000 missions ex Level	Chair (m/\ngp) purious Er requency
	Comments	Height meters	87	Peak Peak Frequency urements at Detector Pk/QP/Avg	(final measure) (final measure) (15.247 Margin	54.0 ic Mid ⊂H	V CH1, BT Bas	40.7 A b mode 0 80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000 missions ex Level dBμV/m	Chair (m/\ngp) purious Er requency MHz
/B 10 Hz;Peak	Comments RB 1 MHz;V	Height neters 1.0	87 AMAGE AND	Peak Peak	(final measure / 15.247 Margin -23.0	54.0 ic Mid ⊂H	V CH1, BT Bas	40.7 A b mode of 80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000 missions ex Level dBµV/m 31.0	Chair (W/Mgp) Phana (W/Mgp) Phana (W/Mgp) Phana (W/Mgp) (W/Mgp
	Comments RB 1 MHz;V RB 1 MHz;V	Height neters 1.0	87	Peak Peak Frequency urements at Detector Pk/QP/Avg	(final measure) (final measure) (15.247 Margin	54.0 ic Mid ⊂H	V CH1, BT Bas	40.7 A b mode 0 80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000 missions ex Level dBμV/m	Chair (m/\ngp) apn1ldww purious Er requency

Client:	Intel Corpora	ition						Job Number:	J94914
Model	72450210/						T-	Log Number:	T95472
would:	7265D2W						Proj	ect Manager:	Christine Krebill
Contact:	Steve Hacke	tt					Project	oject Coordinator: -	
Standard:	FCC Part 15	.247, 15.407	, RSS-210					Class:	N/A
Preliminary Frequency MHz 2386.770 2352.710	<i>Measureme</i> Level dBµV/m 52.5 44.9	nts (Peak v Pol v/h H H		age limit) at 0/15.247 Margin - -9.1	100cm from Detector Pk/QP/Avg Peak Peak	Azimuth degrees 203 204	Height meters 1.0 1.5	Comments Refer to Bar	nd Edge test result
	n A b mode (<u> </u>	<u> </u>				
Amplitude (dBuV/m)	100.0 - 90.0 - 80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - , , , 2000	- h 		2300 2	2400 250 Frequency	0 2600			· 2900 · 3000
Spurious E	missions nea	ar allocated	band (final	measurme	nts at 3m)				
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2356.760 2356.600	41.9 51.1	H H	54.0 74.0	-12.1 -22.9	AVG PK	204 204	1.6 1.6		MHz; VB: 10 Hz MHz; VB: 3 MHz
2330.000	31.1	Π	74.0	-22.9	PN	204	1.0	PU3, KD I	
Note 1: Note 1:	level of the fu For emission	undamental s in restricte	and measure d bands, the	ed in 100kHz e limit of 15.2	z. 209 was used.				s set 20dB below the
	level of the fu				<u>z.</u> ngent restricte	d hand limit	hasu sew		
lote 2:		in a restrict				ection for ho			

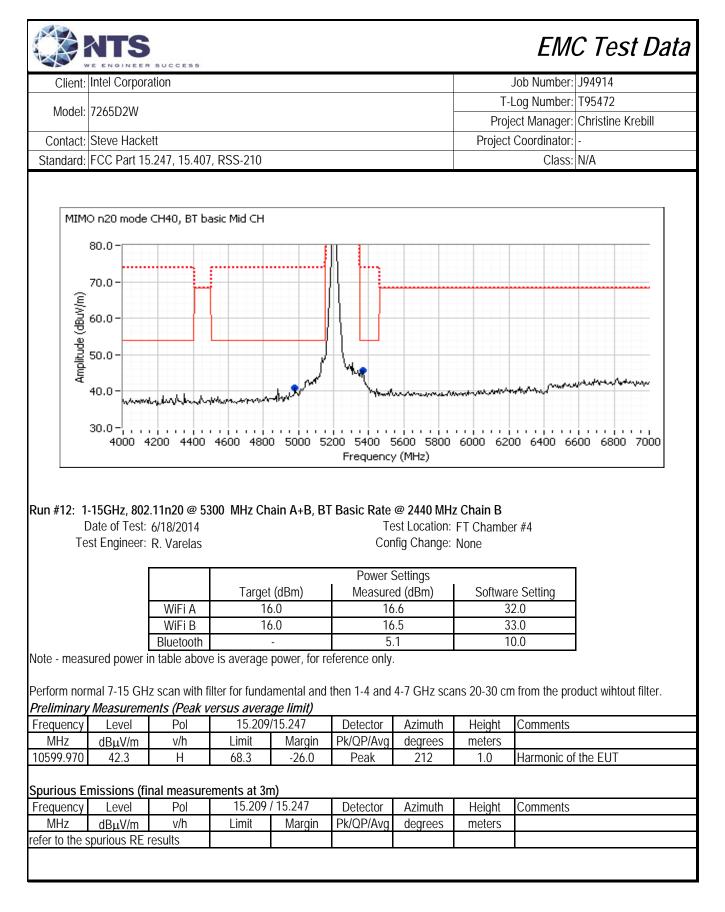

C Test Da							SUCCESS	VE ENGINEER	
J94914	ob Number:	J					ation	Intel Corpora	Client:
T95472	og Number:	T-L						70/5001/	
Christine Krebill	0							7265D2W	Model:
-	Coordinator:						ett	Steve Hacke	Contact:
N/A	Class:					. RSS-210	5.247, 15.407		
	2.0001	ו B	0 MHz Chair	Rate @ 244	A. BT Rasin	MHz Chain			
	- 4	FT Chamber						Date of Test:	
			fig Change:					est Engineer:	
			0 0					-	
			· ·	Power S					
	•	Software	1 1	Measure		Target			
		14		17	0.5	16	Chain A		
	0.0	10		5.	-		Chain B		-l- ··
				elerence only	power, for re	e is average	II LADIE ADOVE	surea power i	ule - meas
out filter.					ge limit)	ilter for funda <i>ersus avera</i>	ents (Peak v	/ Measurem	Preliminary
	Comments	5	Azimuth	Detector		15.209/	Pol	Level	requency
		meters	degrees	Pk/QP/Avg	Margin	Limit	v/h	dBµV/m	MHz
		1.3	111	Peak	-8.7	54.0	H	45.3	1195.250
		1.0 1.6	103 189	Peak Peak	-14.5 -10.3	54.0 54.0	H	39.5 43.7	1590.780 4924.000
		1.0	107	TCAN	-10.3		сн11, ВТ Ва		
								80.0 - 70.0 - 60.0 - 50.0 -	ide (dBuV/m)
									tude
~~~	محموسا بماسيك فالمحمد اليهدر	Landervorgeneration	برو و معروم مرد مرد مرد مرد مرد مرد مرد مرد مرد مر	hurd	udard	ulmm	4).	40.0- 30.0-	Ampli
 10000		Luidererader	, <b>"_Мињи Јалија</b> , (MHz)	Frequency	udwal	ulmm	4). Marina	$\sim$	Ampli
· · · 10000			3m)	urements at		cated band	<u> </u>	30.0	purious E
· · · 10000	Comments	3	<b>3m)</b> Azimuth	urements at Detector	/ 15.247	15.209/	Pol	30.0	purious E
		meters	3m) Azimuth degrees	Detector Pk/QP/Avg	15.247 Margin	15.209 / Limit	Pol v/h	30.0	purious E Frequency MHz
B 10 Hz;Peak	RB 1 MHz;V	meters 1.0	3m) Azimuth degrees 147	Detector Pk/QP/Avg AVG	15.247 Margin -12.7	15.209 / Limit 54.0	Pol v/h H	30.0 - 20.0 - 1000 missions ex Level dBµV/m 41.3	purious E requency MHz 4923.960
B 10 Hz;Peak B 3 MHz;Peak	RB 1 MHz;V RB 1 MHz;V	meters 1.0 1.0	3m) Azimuth degrees 147 147	Detector Pk/QP/Avg AVG PK	15.247 Margin -12.7 -27.1	15.209 / Limit 54.0 74.0	Pol v/h H H	30.0 - 20.0 - 1000 missions ex Level dBµV/m 41.3 46.9	purious E Frequency MHz 4923.960 4924.020
B 10 Hz;Peak B 3 MHz;Peak B 10 Hz;Peak	RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V	meters 1.0 1.0 1.6	3m) Azimuth degrees 147 147 116	Detector Pk/QP/Avg AVG PK AVG	15.247 Margin -12.7 -27.1 -24.1	15.209 / Limit 54.0 74.0 54.0	Pol V/h H H H	30.0 - 20.0 - 1000 missions ex Level dBµV/m 41.3 46.9 29.9	purious E requency MHz 4923.960 4924.020 1196.560
B 10 Hz;Peak B 3 MHz;Peak B 10 Hz;Peak B 3 MHz;Peak	RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V	meters 1.0 1.0 1.6 1.6	3m) Azimuth degrees 147 147 116 116	Detector Pk/QP/Avg AVG PK AVG PK	7 15.247 Margin -12.7 -27.1 -24.1 -20.4	15.209 / Limit 54.0 74.0 54.0 74.0	Pol V/h H H H H	30.0 - 20.0 - 1000 missions ex Level dBµV/m 41.3 46.9 29.9 53.6	Epurious E Frequency MHz 4923.960 4924.020 1196.560 1196.320
B 10 Hz;Peak B 3 MHz;Peak B 10 Hz;Peak	RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V	meters 1.0 1.0 1.6 1.6 1.0	3m) Azimuth degrees 147 147 116	Detector Pk/QP/Avg AVG PK AVG	15.247 Margin -12.7 -27.1 -24.1	15.209 / Limit 54.0 74.0 54.0	Pol V/h H H H	30.0 - 20.0 - 1000 missions ex Level dBµV/m 41.3 46.9 29.9	Spurious E Frequency



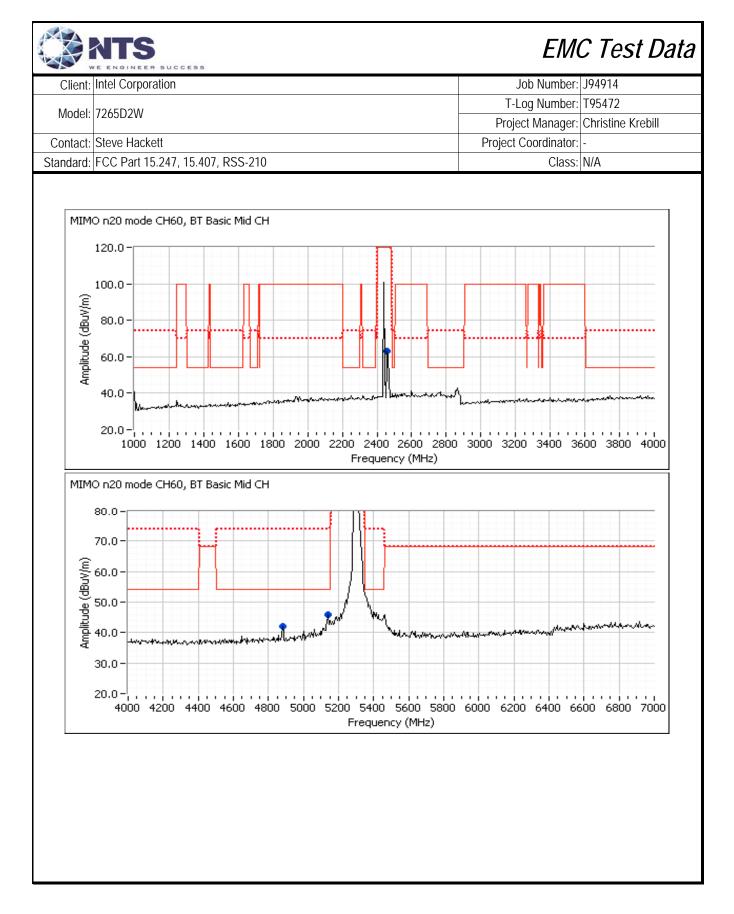

C Test Da							SUCCESS	E ENGINEER	- v
J94914	Job Number:						ation	Intel Corpora	Client:
T95472	-Log Number:	T-L						70/5000	
Christine Krebill								7265D2W	Model:
-	t Coordinator:	Project					ett	Steve Hacke	Contact:
	Class:	,				, RSS-210	.247, 15.407	FCC Part 15	Standard:
		۱B	0 MHz Chaiı	: Rate @ 248	A, BT Basic				
	per 4		est Location:					Date of Test:	
		None	fig Change:	Cor			Jack Liu	st Engineer:	Те
1			2						
	ara Catting	Coffwor	· ·	Power S	(dDm)	Torgot			
	are Setting 14.0		, ,	Measure 17		Target 16	Chain A		
	10.0		.7		-		Chain A Chain B		
1			-	eference only	power, for re			ured power i	ote - meas
out filter	ne product wiht	cm from th≏		5		0		·	
			. Joan 20-00			ersus avera			
	Comments	Height	Azimuth	Detector		15.209	Pol	Level	Frequency
		meters	degrees	Pk/QP/Avg	Margin	Limit	v/h	dBµV/m	MHz
		1.0	224	Peak	-9.3	54.0	V	44.7	1192.970
		1.0	120	Peak	-13.0	54.0	Н	41.0	1594.110
		1.9	154	Peak	-11.4	54.0	V	41.0 42.6 n A b mode (	4874.080
						54.0	V	42.6	4874.080 Chai (@,\ngp) epi
						54.0	V	42.6 n A b mode ( 80.0 - 70.0 - 60.0 - 50.0 -	4874.080 Chai (m/\/m) Wultrude (dBu//m)
						54.0	V	42.6 n A b mode ( 80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 -	4874.080 Chai (W/\/mgp) aphilitude
10000						54.0	V	42.6 n A b mode ( 80.0 - 70.0 - 60.0 - 50.0 - 40.0 -	4874.080 Chai (W/\/mgp) aphilitude
· · · 10000			154			54.0	V	42.6 n A b mode ( 80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 -	4874.080 Chai (W/\nngp) aphilitume
· 10000			154	Peak	-11.4	54.0 ic High CH		42.6 n A b mode ( 80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000	4874.080 Chai (@/\/ngp) Hublitude
· 10000	Comments		154	Peak	-11.4	54.0 ic High CH	V CH6, BT Basi	42.6 n A b mode ( 80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000	4874.080 Chai (W/\ngp) purious E Frequency
		1.9	154	Peak	-11.4	54.0 ic High CH	V CH6, BT Basi	42.6 n A b mode ( 80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 1000 missions ex Level dBµV/m	4874.080 Chai (w/\ngp) purious E Frequency MHz
/B 10 Hz;Peak	RB 1 MHz;V	1.9	154	Peak	-11.4	54.0 ic High ⊂H	V CH6, BT Basi	42.6 n A b mode 0 80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 30.0 - 1000 missions ex Level dBμV/m 41.1	4874.080 Chai (@/\ngp) purious E -requency MHz 4874.020
/B 10 Hz;Peak /B 3 MHz;Peak	RB 1 MHz;V RB 1 MHz;V	1.9 Height meters 1.9 1.9	154 (MHz) 3m) Azimuth degrees 154 154	Peak	-11.4	54.0 ic High ⊂H	V CH6, BT Basi	42.6 n A b mode ( 80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000 missions ex Level dBµV/m 41.1 47.0	4874.080 Chai (W/Angp) phana (W/Angp) phana (W/Angp) chai (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp) (W/Angp)
/B 10 Hz;Peak /B 3 MHz;Peak /B 10 Hz;Peak	RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V	1.9 Height meters 1.9 1.9 1.0	154 (MHz) 3m) Azimuth degrees 154 154 154 121	Peak	-11.4	54.0 ic High ⊂H	V CH6, BT Basi	42.6 n A b mode 0 80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 1000 missions ex Level dBμV/m 41.1 47.0 31.7	4874.080 Chai (W/MgP) apn11 dww Spurious E Frequency MHz 4874.020 4874.190 1595.050
/B 10 Hz;Peak /B 3 MHz;Peak	RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V	1.9 Height meters 1.9 1.9	154 (MHz) 3m) Azimuth degrees 154 154	Peak	-11.4	54.0 ic High ⊂H	V CH6, BT Basi	42.6 n A b mode ( 80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000 missions ex Level dBµV/m 41.1 47.0	4874.080 Chai (W/\ngp) Spurious E Frequency

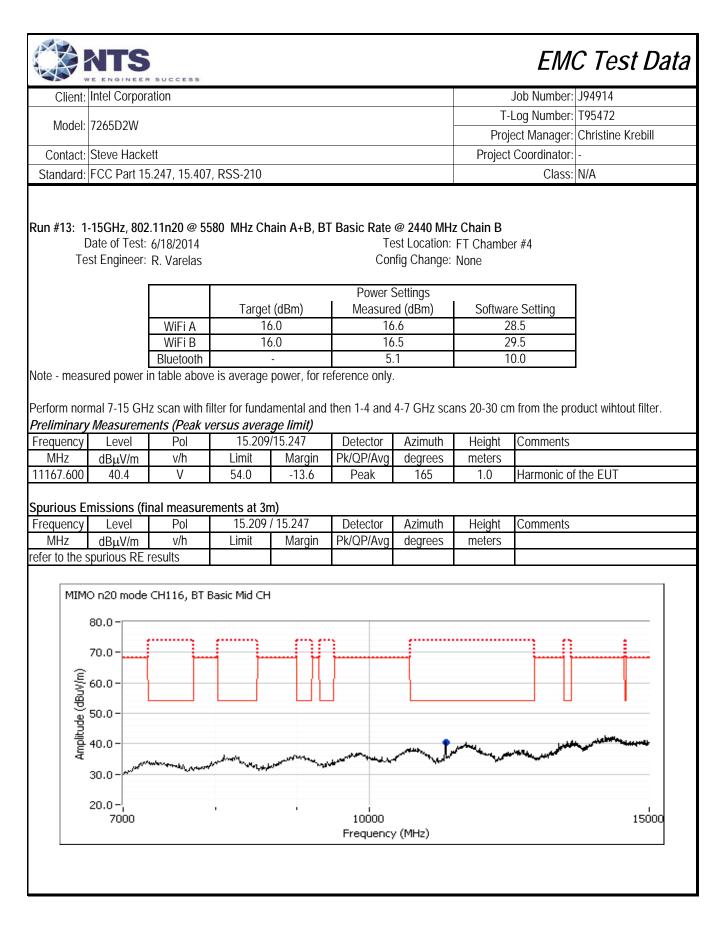


C Test Da		r.					SUCCESS		
	Job Number:						ation	Intel Corpora	Client:
T95472	Log Number:	T-L						72650211/	Model
Christine Krebill	ect Manager:	Proje						7265D2W	wodel:
-	Coordinator:	-					ett	Steve Hacke	Contact:
N/A	Class:	,,				, RSS-210	.247, 15.407		
I		B	MHz Chain	Rate @ 2440	A. BT FDR				
	er 4	FT Chamber						Date of Test:	
			fig Change:					st Engineer:	
_			<u> </u>					Ŭ	
			•	Power					
	re Setting		, ,	Measure		Target			
	4.0			17	b.5	16	Chain A		
l	5.0	6	.2		-		Chain B		
				ference only	power, for re	e is average	n table above	ured power i	lote - meas
ıt filtor	roduct wihtou	n from the pr	, scan 100 cr	hon 2 2 CU-	montal and	iltor for funda	z scan with fi	mal 1 10 CU	Orform por
		n nom me pi	. scan 100 Cl				ents (Peak v		
	Comments	Height	Azimuth	Detector		15.209	Pol	Level	-requency
	Johnnonto	meters	degrees	Pk/QP/Avg	Margin	Limit	v/h	dBµV/m	MHz
	1	1.3	119	Peak	-23.8	70.0	H	46.2	1245.000
		1.0	124	Peak	-16.0	54.0	Н	38.0	1593.170
		1.3	115	Peak	-8.8	54.0	V	45.2	4924.030
								on n	
· · 10000			алинан Аналинан Алинан Аналинан И (MHz)	Frequenci	·	- Hanner	Mini	80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000	Amplitude (dBuV/m)
· · · 10000		Height	3m)	Frequency urements at	(final measu		<u>u</u>	70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000	Amplitude (dBuv/m)
· · · 10000		Height meters	<b>3m)</b> Azimuth	urements at Detector	<b>(final meas</b> ) / 15.247	15.209	Pol	70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000 missions ex Level	(m)(m) multitude (dBuv/m) Frequency
		meters	3m) Azimuth degrees	urements at Detector Pk/QP/Avg	<b>(final meası</b> / 15.247 Margin	15.209 / Limit	Pol v/h	70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000 missions ex Level dBµV/m	(m)(m) purious E Frequency MHz
/B 10 Hz;Peak	RB 1 MHz;V	U U	3m) Azimuth degrees 146	urements at Detector	<b>(final meas</b> ) / 15.247	15.209 / Limit 54.0	Pol	70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000 missions ex Level	Epurious E Frequency MHz 4923.970
	RB 1 MHz;V RB 1 MHz;V	meters 1.9 1.9	3m) Azimuth degrees	urements at Detector Pk/QP/Avg AVG	(final measu / 15.247 Margin -12.6	15.209 / Limit	Pol v/h V	70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000 missions ex Level dBµV/m 41.4	Spurious E Frequency MHz 4923.970 4923.840
/B 10 Hz;Peak /B 3 MHz;Peak	RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V	meters 1.9 1.9	3m) Azimuth degrees 146 146	Detector Pk/QP/Avg AVG PK	(final mease / 15.247 Margin - 12.6 - 26.9	15.209 / Limit 54.0 74.0	Pol v/h V V	70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000 missions ex Level dBµV/m 41.4 47.1	(w/\ngp Spurious E Frequency




	NTS	SUCCESS						EM	C Test Da
Client:	Intel Corpora							Job Number:	J94914
								Log Number:	
Model:	7265D2W							•	Christine Krebill
Contact	Steve Hacke	ett					-	Coordinator:	
	FCC Part 15		RSS-210				110,000	Class:	
				A BTLF @	2440 MHz 0	Chain B		010001	
	Date of Test:					est Location:	FT Chambe	er 4	
Те	est Engineer:	Jack Liu			Cor	nfig Change:	None		
					Power S			<b>a</b>	
			Target		Measure	( )		e Setting	
		Chain A Chain B	16	o.5	17			4.0 fault	
nte - mese	ured nower i		o is averano	- nower for ro	eference only.		De	idult	l
requency	/ Measureme	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
242.560	45.5	H V	70.0	-24.5	Peak	308 60	1.6 1.6		
	38.2	V	54.0	-15.8	Peak	00	10		
924.030	46.4	V	54.0 Mid CH	-7.6	Peak	125	2.2		
1924.030 Chai	46.4 in A b mode ( 80.0 - 70.0 - 60.0 -								
1924.030 Chai	46.4 in A b mode ( 80.0 - 70.0 - 60.0 -							Magan Juneting and and	
UP24.030 Chai (m/Angp (m/Angp (m/ W	46.4 in A b mode ( 80.0 - 70.0 - 60.0 -								
Hittinde (dBuV/m)	46.4 in A b mode 80.0 - 70.0 - 60.0 - 50.0 - 40.0 -								
P24.030 Chai	46.4 in A b mode 80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 -				Peak	125			· · · 10000
Chai (W)(Mgp) whithde	46.4 in A b mode ( 80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000		Mid CH	-7.6	Peak	125			
924.030 Chai (///ngp) gurious E	46.4 n A b mode 80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000 missions ex	CH11, BTLE	Mid CH	-7.6	Peak	125	2.2		· 10000
Durrious El requency	46.4 n A b mode ( 80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000 missions ex Level	CH11, BTLE	Mid CH	-7.6	Peak	125	2.2	Comments	· · · 10000
UP24.030 Chai (W/Angp) phonging pourious El requency MHz	46.4 n A b mode ( 80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000 missions ex Level dBµV/m	CH11, BTLE	Mid CH	-7.6	Peak	125	2.2		
Chai (m/\ngp) pnniiduw purious Ei requency MHz 1923.990	46.4 in A b mode ( 80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000 missions ex Level dBµV/m 43.5	CH11, BTLE	Mid ⊂H	-7.6	Peak	125	2.2 Height meters 1.9	RB 1 MHz;V	'B 10 Hz;Peak
1924.030 Chai (W/Mgp) apn1 pourious El requency MHz 1923.990 1923.950	46.4 n A b mode 80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000 missions ex Level dBμV/m 43.5 48.4	CH11, BTLE	Mid ⊂H	-7.6	Peak Peak Frequency urements at Detector Pk/QP/Avg AVG PK	125	2.2 Height meters 1.9 1.9	RB 1 MHz;V RB 1 MHz;V	/B 10 Hz;Peak /B 3 MHz;Peak
Chai Chai (m/\ngp) phnjiduw Uurious Ei requency MHz 1923.990	46.4 in A b mode ( 80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000 missions ex Level dBµV/m 43.5	CH11, BTLE	Mid ⊂H	-7.6	Peak	125	2.2 Height meters 1.9	RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V	'B 10 Hz;Peak

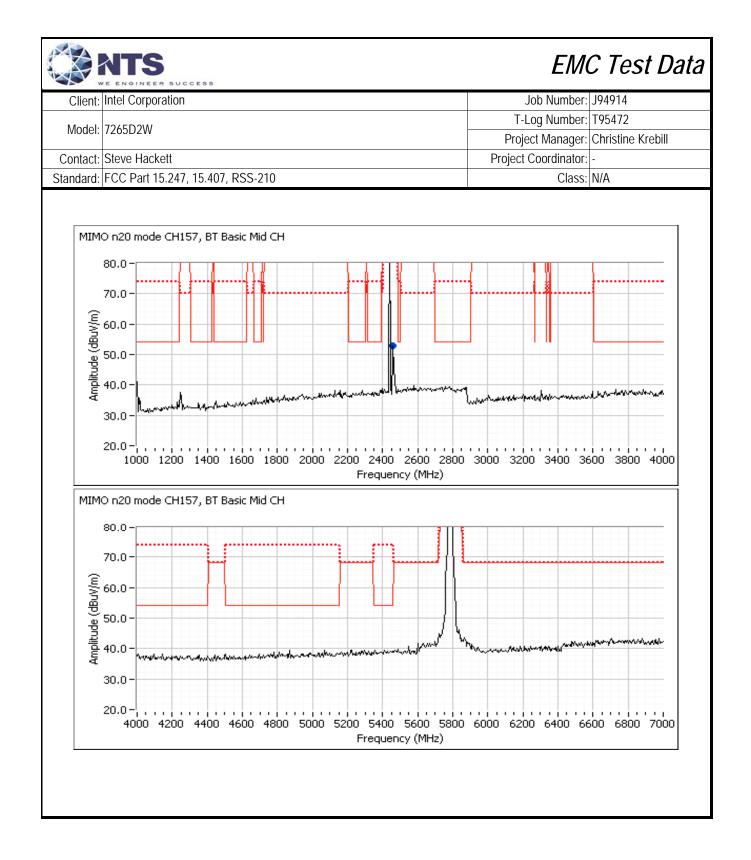




Client:	Intel Corpor	ation						Job Number:	J94914
	-						T-	Log Number:	T95472
wodel:	7265D2W						Proj	ect Manager:	Christine Krebill
Contact:	Steve Hack	ett					Project	Coordinator:	-
Standard:	FCC Part 15	5.247, 15.407	, RSS-210					Class:	N/A
[	Date of Test:			iain A+B, B1		@ 2440 MH st Location: fig Change:	FT Chambe	er #4	
					Power S				
			°	t (dBm)	Measure	( )		re Setting	
		WiFi A WiFi B		5.0 5.0	16 16			1.0 2.0	
		Bluetooth		-	5.			0.0	
lote - meas	ured power i		e is average	power, for re	eference only.				I
MHz 0401.330	dBµV/m 39.0	v/h H	Limit 68.3	Margin -29.3	Pk/QP/Avg Peak	degrees 126	meters 1.0	Harmonic of	the EUT
Frequency	missions (fi Level	nal measure Pol		<b>n)</b> / 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Comments	
efer to the s	spurious RE	results		Ŭ	Ŭ	•			
Amplitude (dBuV/m)	0 n20 mode 80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 7000	• CH40, BT ba	asic Mid CH		10000		~~~		15000
					Frequency	(MHZ)			

Client	Intel Corpora	ation						Job Number:	194914
								Log Number:	
Model:	7265D2W							0	Christine Krebill
Contact.	Steve Hacke	ett						Coordinator:	
	FCC Part 15		. RSS-210				110,000	Class:	
requency	Level	Pol	15.209	/15.247	20-30cm from Detector	Azimuth	Height	Comments	
MHz 5370.000	dBμV/m 45.6	v/h V	Limit 54.0	Margin	Pk/QP/Avg	degrees 180	meters		
4980.000	45.6 40.9	V	54.0 54.0	-8.4 -13.1	Peak Peak	180	1.0 1.0		
2460.000	59.6	V	120.0	-60.4	Peak	180	1.0	emission is	in band
purious E	missions (fi Level	n <mark>al measurr</mark> Pol		<b>)</b> / 15.247	Detector	Azimuth	Height	Comments	
			l imit	Margin	Pk/OP/Ava	dearees	meters		
MHz o emisison lote 1: lote 2:	dBµV/m s found abov For emissior level of the f Signal is not	v/h e the noise f ns in restricte undamental in a restricte	ed bands, the and measure ed band but t	ed in 100kHz he more strii		ed band limit	was used.		s set 20dB below t e applied
MHz no emisison Note 1: Note 2: Note 3: MIM4	dBµV/m s found abov For emissior level of the f Signal is not Signal is onl O n20 mode	v/h e the noise f ns in restricte undamental in a restricte y present wh	loor ed bands, the and measure ed band but t een Bluetooth	e limit of 15.2 ed in 100kHz he more strir	09 was used.	For all othe	er emissions was used.		
MHz no emisison Note 1: Note 2: Note 3: MIM	dBµV/m s found abov For emissior level of the f Signal is not Signal is onl O n20 mode 80.0 - 70.0 - 60.0 -	v/h e the noise f ns in restricte undamental in a restricte y present wh	loor ed bands, the and measure ed band but t een Bluetooth	e limit of 15.2 ed in 100kHz he more strir	09 was used.	For all othe	er emissions was used.		



Client	Intel Corpora	ation						Job Number:	J94914
		-						Log Number:	
Model:	7265D2W					-		0	Christine Krebill
Contact	Steve Hacke	stt						Coordinator:	
	FCC Part 15		DSS 210				Појссі	Class:	
Stanuaru.	I CC Fall 15	.247, 13.407	, 133-210					Class.	IN/A
MIM	O n20 mode	CH60, BT b/	asic Mid CH						
		cribb, b1 b.							
	80.0-								
	70.0-			n				- n	
	60.0-			-111					
	50.0							U	•
Amplitude (dBuV/m)	50.0-								
n plit	40.0-					Jun -	114	الجيرين والمراد	and the second second
독	1. Same	when he was a show	and a service and	and the second and the second s	water and a second	Mar A war	and the state of t		
	30.0-1		- ÇH'						
	00.0								
	20.0-¦ 7000			,	10000				15000
	20.0-			,	10000 Frequency	/ (MHz)			15000
	20.0-					/ (MHz)			15000
Preliminar	20.0 -   7000	ents (Peak v		nge limit) at	Frequency				15000
	20.0 -   7000				Frequency 20-30cm froi	n EUT	Height	Comments	15000
	20.0 -   7000 / <i>Measureme</i> Level	e <b>nts (Peak v</b> Pol v/h		<i>ge limit) at</i> /15.247 Margin	Frequency 20-30cm from Detector	<i>n EUT</i> Azimuth	Height	Comments	15000
Frequency MHz	20.0 -   7000	Pol	15.209	/15.247	Frequency 20-30cm froi	n EUT	Height meters 1.0		15000
Frequency MHz 2460.000	20.0 -   7000 / <i>Measureme</i> Level dBµV/m	Pol v/h	15.209 Limit	/15.247 Margin	Frequency 20-30cm fron Detector Pk/QP/Avg	<i>n EUT</i> Azimuth degrees	meters		
Frequency	20.0 - 7000 / <i>Measureme</i> Level dBµV/m 63.3	Pol v/h V	15.209 Limit 120.0	/15.247 Margin -56.7	Frequency 20-30cm from Detector Pk/QP/Avg Peak	n EUT Azimuth degrees 180	meters 1.0		
Frequency MHz 2460.000 5140.000 4880.000	20.0 - 7000 / <i>Measureme</i> Level dBμV/m 63.3 45.8 42.0	Pol v/h V V V	15.209 Limit 120.0 54.0 54.0	/15.247 Margin -56.7 -8.2 -12.0	Frequency 20-30cm fron Detector Pk/QP/Avg Peak Peak	n EUT Azimuth degrees 180 180	meters 1.0 1.0		
Frequency MHz 2460.000 5140.000 4880.000 Spurious E	20.0 – 7000 / <i>Measureme</i> Level dBµV/m 63.3 45.8 42.0 missions (fi	Pol v/h V V V	15.209 Limit 120.0 54.0 54.0 nents at 3m	/15.247 Margin -56.7 -8.2 -12.0	Frequency 20-30cm from Detector Pk/QP/Avg Peak Peak Peak	n EUT Azimuth degrees 180 180 180	meters 1.0 1.0 1.0	In band inte	
Frequency MHz 2460.000 5140.000 4880.000 Spurious E Frequency	20.0 - 7000 / <i>Measureme</i> Level dBµV/m 63.3 45.8 42.0 missions (fin Level	Pol v/h V V V nal measurr Pol	15.209 Limit 120.0 54.0 54.0 nents at 3m 15.209	/15.247 Margin -56.7 -8.2 -12.0 ) / 15.247	Frequency 20-30cm from Detector Pk/QP/Avg Peak Peak Peak Detector	n EUT Azimuth degrees 180 180 180 Azimuth	meters 1.0 1.0 1.0 Height		
Frequency           MHz           2460.000           5140.000           4880.000           Spurious E           Frequency           MHz	20.0 – 7000 / <i>Measureme</i> Level dBµV/m 63.3 45.8 42.0 missions (fin Level dBµV/m	Pol v/h V V v nal measurr Pol v/h	15.209 Limit 120.0 54.0 54.0 nents at 3m 15.209 Limit	/15.247 Margin -56.7 -8.2 -12.0	Frequency 20-30cm from Detector Pk/QP/Avg Peak Peak Peak	n EUT Azimuth degrees 180 180 180	meters 1.0 1.0 1.0	In band inte	
Frequency           MHz           2460.000           5140.000           4880.000           Spurious E           Frequency           MHz	20.0 - 7000 / <i>Measureme</i> Level dBµV/m 63.3 45.8 42.0 missions (fin Level	Pol v/h V V v nal measurr Pol v/h	15.209 Limit 120.0 54.0 54.0 nents at 3m 15.209 Limit	/15.247 Margin -56.7 -8.2 -12.0 ) / 15.247	Frequency 20-30cm from Detector Pk/QP/Avg Peak Peak Peak Detector	n EUT Azimuth degrees 180 180 180 Azimuth	meters 1.0 1.0 1.0 Height	In band inte	
Frequency MHz 2460.000 5140.000 4880.000 Spurious E Frequency MHz no emission	20.0 – 7000 / <i>Measureme</i> Level dBµV/m 63.3 45.8 42.0 missions (fin Level dBµV/m s found abov	Pol v/h V V v nal measurr Pol v/h e the noise f	15.209 Limit 120.0 54.0 54.0 nents at 3m 15.209 Limit loor	/15.247 Margin -56.7 -8.2 -12.0 / 15.247 Margin	Frequency 20-30cm from Detector Pk/QP/Avg Peak Peak Peak Detector Pk/QP/Avg	n EUT Azimuth degrees 180 180 180 Azimuth degrees	meters 1.0 1.0 1.0 Height meters	In band inte	rmittent signal
Frequency           MHz           2460.000           5140.000           4880.000           Spurious E           Frequency           MHz	20.0 – 7000 / <i>Measureme</i> Level dBµV/m 63.3 45.8 42.0 missions (fin Level dBµV/m s found abov	Pol v/h V V v nal measurr Pol v/h e the noise f	15.209 Limit 120.0 54.0 54.0 nents at 3m 15.209 Limit loor	/15.247 Margin -56.7 -8.2 -12.0 ) / 15.247 Margin	Frequency 20-30cm from Detector Pk/QP/Avg Peak Peak Peak Detector Pk/QP/Avg 209 was used	n EUT Azimuth degrees 180 180 180 Azimuth degrees	meters 1.0 1.0 1.0 Height meters	In band inte	
Frequency MHz 2460.000 5140.000 4880.000 Spurious E Frequency MHz no emission	20.0 – 7000 / <i>Measureme</i> Level dBµV/m 63.3 45.8 42.0 missions (fin Level dBµV/m s found abov	Pol v/h V V v nal measurr Pol v/h e the noise f ns in restricte undamental	15.209 Limit 120.0 54.0 54.0 nents at 3m 15.209 Limit loor ed bands, the and measure	/15.247 Margin -56.7 -8.2 -12.0 / 15.247 Margin e limit of 15.2 ed in 100kHz	Frequency 20-30cm from Detector Pk/QP/Avg Peak Peak Peak Detector Pk/QP/Avg 209 was used	<i>n EUT</i> Azimuth degrees 180 180 180 180 Azimuth degrees For all othe	meters 1.0 1.0 1.0 Height meters r emissions	In band inte	rmittent signal






Cliont.	Intel Corpora	ation						Job Number:	J94914
Client.								Log Number:	
Model:	7265D2W							0	Christine Krebill
Contact.	Steve Hacke	ett						Coordinator:	
	FCC Part 15		. RSS-210					Class:	
requency	Level	Pol	15.209	/15.247	20-30cm from	Azimuth	Height	Comments	
MHz	dBμV/m 43.5	v/h V	Limit	Margin	Pk/QP/Avg	degrees 180	meters		
4880.000 5425.000	43.5 46.2	V	54.0 54.0	-10.5 -7.8	Peak Peak	180	1.0 1.0		
2460.000	40.2 59.8	V	120.0	-60.2	Peak	180	1.0	In band inte	rmittent signal
	missions (fir Level	n <mark>al measurr</mark> Pol		<b>)</b> / 15.247	Detector	Azimuth	Height	Comments	
Frequency MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
MHz no emisison Note 1: Note 2:	dBµV/m s found abov For emissior level of the fi Signal is not	e the noise f ns in restricte undamental in a restricte	loor ed bands, the and measure ed band but t	e limit of 15.2 ed in 100kHz he more strir	209 was used.	For all othe	er emissions was used.		s set 20dB below t
Note 1: Note 2: Note 3: MIM	dBµV/m s found abov For emissior level of the fi Signal is not	e the noise f ns in restricte undamental in a restricte y present wh	loor ed bands, the and measure ed band but t een Bluetooth	e limit of 15.2 ed in 100kHz he more strin n is enabled,	209 was used.	For all othe	er emissions was used.		
MHz no emisison Note 1: Note 2: Note 3: MIM	dBµV/m s found abov For emissior level of the fi Signal is not Signal is only	e the noise f ns in restricte undamental in a restricte y present wh	loor ed bands, the and measure ed band but t een Bluetooth	e limit of 15.2 ed in 100kHz he more strin n is enabled,	109 was used.	For all othe	er emissions was used.		

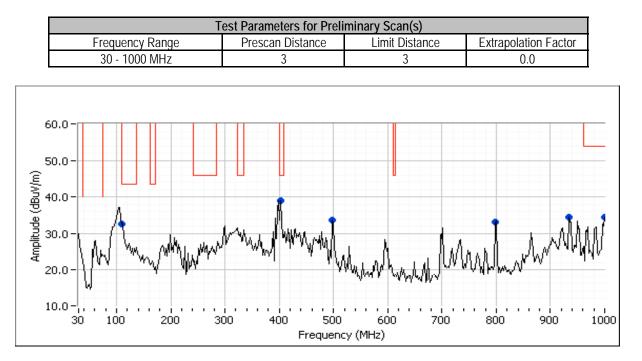


		S						EMO	C Test Dat
Client:	Intel Co	rporation						Job Number:	J94914
Madal	7265D2	۵\۸ <i>/</i>					T-	Log Number:	T95472
wouer.	120002	. VV					Proj	ect Manager:	Christine Krebill
Contact:	Steve H	lackett					Project	Coordinator:	
Standard:	FCC Pa	art 15.247, 15.4	407, RSS-210					Class:	N/A
MIM	IO n20 m	ode CH157, B	T Basic Mid CH						
		1000 Ci 1107, D							
	80.0-					,			
	70.0-							-	
Ē									
BuV,	60.0-								
) e	50.0-								
Amplitude (dBuV/m)	40.0-						I.	المريق	
a a	.0.0	and the second second	a server and	Marchadomer	Marria Sera	and the second	and a start and a start and a start as a sta	and an all and a second second	
	30.0-	N. M.	aur mai	//* · · ·	*				
	20.0-								
	700	10	·	·	10000				15000
					Frequency	/ (MHz)			
reliminar	v Measu	rements (Peal	k versus avera	age limit) at	20-30cm froi	n FIIT			
requency	Leve			9/15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV		Limit	Margin	Pk/QP/Avg	degrees	meters		
460.000	52.8	3 V	120.0	-67.2	Peak	180	1.0	In band inter	rmittent signal
			urments at 3m	n)					
ourious F	missior	es (final measi							
ourious E requency	missior Leve		15.209	/ 15.24/	Detector	Azimuth	Height	Comments	
requency MHz	Leve dBµV	el Pol /m v/h		/ 15.247 Margin	Detector Pk/QP/Avg	Azimuth degrees	Height meters	Comments	
equency MHz	Leve dBµV	el Pol /m v/h	15.209				ě.	Comments	
requency MHz	Leve dBµV is in ban	el Pol /m v/h d	15.209 Limit	Margin	Pk/QP/Avg	degrees	meters		sot 20dR bolow the
equency MHz missions	Leve dBµV is in ban For em	el Pol /m v/h d	15.209 Limit	Margin e limit of 15.2	Pk/QP/Avg 209 was used	degrees	meters		s set 20dB below the
requency	Leve dBµV is in ban For em level of	el Pol /m v/h d ssions in restri the fundament	15.209 Limit	Margin e limit of 15.2 ed in 100kHz	Pk/QP/Avg 209 was used. z.	degrees . For all othe	meters er emissions		s set 20dB below the



T-L Project Project choic Chamb ion testing of 1 none	Coordinator: - Class: N	95472 Christine Krebill
Project Project choic Chamb ion testing of 1 none	ect Manager: C Coordinator: - Class: N ber)	Christine Krebill
Project Choic Chamb ion testing of 1 none	Coordinator: - Class: N	I/A
choic Chamb ion testing of 1 none	Class: N	
ion testing of 1 none	ber)	
ion testing of 1 none		respect to the
ion testing of 1 none		respect to the
1 none	the EUT with i	respect to the
1 none	the EUT with i	respect to the
none		
none		
1001///011-		
120V/60Hz		
on of the EU ⁻	T, elevation of	the measuremen
11		
Result		Margin
Pass		@ 112.94 MHz
Pass	See above	
e f	escription. f the EUT ar on of the EU n of the EU	f the EUT and elevation of on of the EUT, elevation of 1 <u>Result</u> 30.9 dBuV//m

Deviations From The Standard No deviations were made from the requirements of the standard.


EMO	C Test Data
Job Number:	J94914
T-Log Number:	T95472

Client:	Intel Corporation	Job Number:	J94914
Model	7265D2W	T-Log Number:	Т95472
would.	1203D2W	Project Manager:	Christine Krebill
Contact:	Steve Hackett	Project Coordinator:	-
Standard:	FCC Part 15.247, 15.407, RSS-210	Class:	N/A

Run #1: Preliminary Radiated Emissions, 30 - 1000 MHz

SUCCESS

Configured to Tx , 802.11b, 16.5 dBm on chain A (setting = 13.5) on channel 6, Bluetooth 5.1 dBm, 1Mb/s (setting 10 dBm) on channel 0



## Preliminary peak readings captured during pre-scan

Frequency	Level	Pol	FCC 15.209	9 / RSS 210	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
112.935	32.7	V	43.5	-10.8	Peak	330	1.0	
399.925	38.9	Н	46.0	-7.1	Peak	178	1.0	
497.952	33.8	Н	46.0	-12.2	Peak	193	1.0	Note 1
799.457	33.2	V	46.0	-12.8	Peak	236	1.0	Note 1
933.500	34.6	Н	46.0	-11.4	Peak	247	1.0	Note 1
999.347	34.5	V	54.0	-19.5	Peak	176	1.0	

NTS
WE ENGINEER SUCCESS

# EMC Test Data

Client:	Intel Corporation	Job Number:	J94914
Madal	7265D2W	T-Log Number:	T95472
would.	1203D210	Project Manager:	T95472 Christine Krebill -
Contact:	Steve Hackett	Project Coordinator:	-
Standard:	FCC Part 15.247, 15.407, RSS-210	Class:	N/A

## Preliminary quasi-peak readings (no manipulation of EUT interface cables)

· · · · · · · · · · · · · · · · · · ·		readinge	(					
Frequency	Level	Pol	FCC 15.209	9 / RSS 210	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
112.935	30.9	V	43.5	-12.6	QP	45	1.00	
933.500	32.4	Н	46.0	-13.6	QP	245	1.58	Note 1
799.457	30.6	V	46.0	-15.4	QP	151	1.04	Note 1
497.952	32.2	Н	46.0	-13.8	QP	198	1.00	Note 1
399.925	33.3	Н	46.0	-12.7	QP	182	1.00	
999.347	32.4	V	54.0	-21.6	QP	179	1.00	

Note 1: Emission in non-restricted band, but limit of 15.209 used.

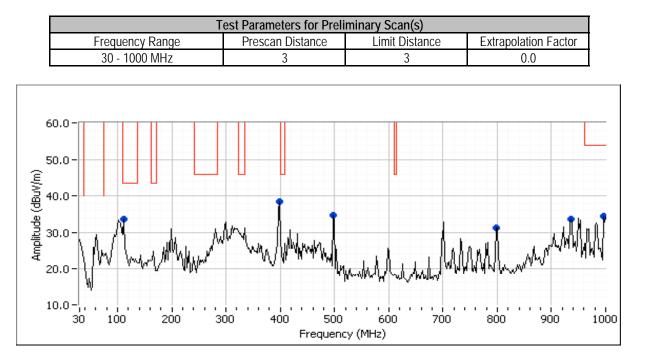
# Run #2: Maximized Readings From Run #1

Те	st Parameters for Maxin	nized Reading(s)	
Frequency Range	Test Distance	Limit Distance	Extrapolation Factor
30 - 1000 MHz	3	3	0.0

#### Maximized quasi-peak readings (includes manipulation of EUT interface cables)

		l'éadinge				acc can.cc)		
Frequency	Level	Pol	FCC 15.20	9 / RSS 210	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
112.935	30.9	V	43.5	-12.6	QP	45	1.00	
933.500	32.4	Н	46.0	-13.6	QP	245	1.58	Note 1
799.457	30.6	V	46.0	-15.4	QP	151	1.04	Note 1
497.952	32.2	Н	46.0	-13.8	QP	198	1.00	Note 1
399.925	33.3	Н	46.0	-12.7	QP	182	1.00	
999.347	32.4	V	54.0	-21.6	QP	179	1.00	

Note 1: Emission in non-restricted band, but limit of 15.209 used.


# EMC Test Data

N N	E ENGINEER SUCCESS		
Client:	Intel Corporation	Job Number:	J94914
Madal	7265D2W	T-Log Number:	T95472
wouer.	1203D2W	Project Manager:	Christine Krebill
Contact:	Steve Hackett	Project Coordinator:	-
Standard:	FCC Part 15.247, 15.407, RSS-210	Class:	N/A

Run #3: Preliminary Radiated Emissions, 30 - 1000 MHz

NTS

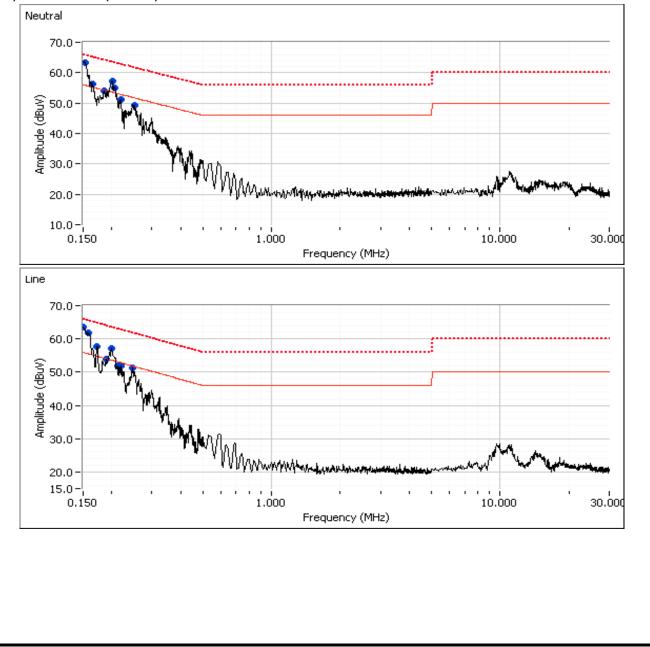
Configured to Tx , 802.11a, 16.5 dBm on each chain (settings 25.5, 26.0) on channel 116, Bluetooth 4.7 dBm, 1Mb/s (setting 10 dBm) on Channel 78.



## Preliminary peak readings captured during pre-scan

Frequency	Level	Pol	FCC 15.209	9 / RSS 210	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
111.643	33.8	Н	43.5	-9.7	Peak	89	3.0	
399.339	38.5	Н	46.0	-7.5	Peak	169	1.0	Note 1
<i>498.477</i>	34.8	Н	46.0	-11.2	Peak	199	1.0	Note 1
797.836	31.4	Н	46.0	-14.6	Peak	79	1.0	Note 1
935.852	<i>33.</i> 7	Н	46.0	-12.3	Peak	249	1.0	Note 1
996.112	34.4	Н	54.0	-19.6	Peak	319	1.0	

Note 1: Emission in non-restricted band, but limit of 15.209 used.


	NTS	SUCCESS						EMO	C Test
Client:	Intel Corpora		й.					Job Number:	J94914
Madal	70/500//						T-	Log Number:	T95472
Model:	7265D2W					-	Proj	ect Manager:	Christine Kreb
Contact:	Steve Hacke	₂tt					Project	Coordinator:	-
Standard:	FCC Part 15	.247, 15.4	07, RSS-210					Class:	N/A
					T interface c		Llaight	Commonto	
requency MHz	Level	Pol v/h	FCC 15.209 Limit	Margin	Detector Pk/QP/Avg	Azimuth degrees	Height meters	Comments	
IVIFIZ	dBµV/m	V/11	LIIIIIL	wargin	PK/QP/AVg	uegrees	meters		
	Free	quency Ra			rs for Maxin istance	n <mark>ized Readin</mark> Limit Di		Extrapolat	ion Factor
ŀ		P							
		) - 1000 MI			3	3		Extrapolat	
L					-		·		<u> </u>
					of EUT interf			1.	
equency MHz	Level	Pol v/h	FCC 15.209		Detector	Azimuth	Height	Comments	
	dBµV/m	V/11	Limit	Margin	Pk/QP/Avg	degrees	meters		

	ITS				EMC Test Data
Client: Ir	ntel Corporatio	n			Job Number: J94914
Model: 7	245D2W			Т	-Log Number: T95472
					ject Manager: Christine Krebill
	Steve Hackett			Projec	t Coordinator: -
Standard: F	CC Part 15.2	47, 15.407, RSS-210			Class: N/A
		Conduc (Elliott Laboratories Fremo	cted Emissions ont Facility, Semi-Aneci	hoic Cham	ber)
Test Speci	fic Details				
		e objective of this test session is to ecification listed above.	perform final qualification	n testing of	the EUT with respect to the
	ate of Test: 6/2		Config. Used:		
	t Engineer: Ja		Config Change:		
Tes	t Location: F1	Champer# 4	Host Unit Voltage	120V/60H2	2
Ambient Co Summary o		Temperature: Rel. Humidity:	24 °C 38 %		
Run	#	Test Performed	Limit	Result	Margin
1	"	CE, AC Power, 120V/60Hz	RSS 210 / 15.207	Pass	62.0 dBµV @ 0.152 MHz (-3.9 dB)
No modification Deviations No deviations Sample No	ons were mad From The were made fr otes	During Testing e to the EUT during testing Standard om the requirements of the standard 33A DRTU Tool Version 1.7.3-935			

	E ENGINEER SUCCESS	EMO	C Test Data
Client:	Intel Corporation	Job Number:	J94914
Madal	7265D2W	T-Log Number:	Т95472
wouer.	7203D21V	Project Manager:	Christine Krebill
Contact:	Steve Hackett	Project Coordinator:	-
Standard:	FCC Part 15.247, 15.407, RSS-210	Class:	N/A

Run #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz

Configured to Tx , 802.11a, 16.5 dBm on each chain (settings 25.5, 26.0) on channel 116, Bluetooth 5.1dBm, 1Mb/s (setting 10 dBm) on Mid Channel (2440MHz).



Client:       Intel Corporation       Job Number:       J94914         Model: $7265D2W$ T-Log Number:       T95472         Project Manager:       Christine Kreb         Contact:       Steve Hackett       Project Coordinator:       -         Standard:       FCC Part 15.247, 15.407, RSS-210       Class:       N/A         Preliminary peak readings captured during pre-scan (peak readings vs. average limit)       Class:       N/A         Preleminary peak readings captured during pre-scan (peak readings vs. average limit)       Class:       N/A         MHZ       dBµV       Line       Limit       Margin       QP/Ave         0.160       63.2       Neutral       55.8       7.4       Peak         0.162       56.2       Neutral       55.2       1.0       Peak         0.207       55.0       Neutral       55.2       1.0       Peak         0.219       51.3       Neutral       51.7       -2.4       Peak	Model: 7		aliun					Job Number:	J94914
Model:ZdsD2WProject Manager:Christine KrebContact:Steve HackettProject Coordinator:-Standard:FCC Part 15.247, 15.407, RSS-210Class:N/APreliminary peak readings captured during pre-scan (peak readings vs. average limit)FrequencyLevelACRSS 210 / 15.207DetectorMHzdBµVLineLimitMarginOP/Ave0.20057.1Neutral53.63.5Peak0.15063.2Neutral55.87.4Peak0.16256.2Neutral55.21.0Peak0.20755.0Neutral53.31.7Peak0.21951.3Neutral52.9-1.6Peak0.25149.3Neutral51.7-2.4Peak0.15263.6Line56.07.6Peak0.16061.9Line55.66.3Peak0.17457.7Line54.82.9Peak0.19054.0Line53.63.4Peak0.19054.0Line53.1-1.1Peak0.21052.0Line53.1-1.1Peak0.22251.9Line52.8-0.9Peak								T-Log Number:	T95472
Contact: Steve HackettProject Coordinator: -Standard: FCC Part 15.247, 15.407, RSS-210Class: N/AClass: N/APreliminary peak readings captured during pre-scan (peak readings vs. average limit)FrequencyLevelACRSS 210 / 15.207DetectorCommentsMHzdB $\mu$ VLineLimitMarginQP/AveComments0.20057.1Neutral53.63.5Peak0.15063.2Neutral55.87.4Peak0.16256.2Neutral55.21.0Peak0.20755.0Neutral53.31.7Peak0.20755.0Neutral52.9-1.6Peak0.21951.3Neutral52.9-1.6Peak0.15263.6Line56.07.6Peak0.16061.9Line55.66.3Peak0.17457.7Line54.82.9Peak0.19857.0Line53.63.4Peak0.19054.0Line53.63.4Peak0.19054.0Line53.63.4Peak0.19054.0Line53.63.4Peak0.21052.0Line53.1-1.1Peak0.22251.9Line52.8-0.9Peak		/265D2W						•	
Standard: FCC Part 15.247, 15.407, RSS-210         Class: N/A           Preliminary peak readings captured during pre-scan (peak readings vs. average limit)           Frequency         Level         AC         RSS 210 / 15.207         Detector         Comments           MHz         dBµV         Line         Limit         Margin         QP/Ave         Comments         Comments           0.200         57.1         Neutral         53.6         3.5         Peak         Comments         Comments           0.150         63.2         Neutral         55.8         7.4         Peak         Comments         Comments	Contact: S	Steve Hack	ett					, ,	
Preliminary peak readings captured during pre-scan (peak readings vs. average limit)           Frequency         Level         AC         RSS 210 / 15.207         Detector         Comments           MHz $dB_{\mu}V$ Line         Limit         Margin         QP/Ave         Comments           0.200         57.1         Neutral         53.6         3.5         Peak         Comments           0.150         63.2         Neutral         55.8         7.4         Peak         Comments           0.162         56.2         Neutral         55.2         1.0         Peak         Comments         Comments           0.162         56.2         Neutral         54.2         -0.3         Peak         Comments         Comments           0.207         55.0         Neutral         52.9         -1.6         Peak         Comments         Comments           0.219         51.3         Neutral         51.7         -2.4         Peak         Comments         Comments           0.152         63.6         Line         56.0         7.6         Peak         Comments         Comments         Comments           0.160         61.9         Line         55.6         6.3         Pe				RSS-210				•	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	otandara			1100 210				0.000	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Preliminary	peak readi	nas captured	durina pre	e-scan (peak	creadings v	s. average lim	nit)	
$MHz$ $dB_{\mu}V$ LineLimitMarginQP/Ave0.20057.1Neutral53.63.5Peak0.15063.2Neutral55.87.4Peak0.16256.2Neutral55.21.0Peak0.18853.9Neutral54.2-0.3Peak0.20755.0Neutral53.31.7Peak0.21951.3Neutral52.9-1.6Peak0.25149.3Neutral51.7-2.4Peak0.15263.6Line56.07.6Peak0.16061.9Line55.66.3Peak0.17457.7Line54.82.9Peak0.19857.0Line53.63.4Peak0.19054.0Line54.00.0Peak0.21052.0Line53.1-1.1Peak0.22251.9Line52.8-0.9Peak									
0.200         57.1         Neutral         53.6         3.5         Peak           0.150         63.2         Neutral         55.8         7.4         Peak           0.162         56.2         Neutral         55.2         1.0         Peak           0.188         53.9         Neutral         54.2         -0.3         Peak           0.207         55.0         Neutral         53.3         1.7         Peak           0.207         55.0         Neutral         52.9         -1.6         Peak           0.219         51.3         Neutral         52.9         -1.6         Peak           0.251         49.3         Neutral         51.7         -2.4         Peak           0.152         63.6         Line         56.0         7.6         Peak           0.152         63.6         Line         55.6         6.3         Peak           0.160         61.9         Line         53.6         3.4         Peak           0.174         57.7         Line         53.6         3.4         Peak           0.190         54.0         Line         53.1         -1.1         Peak           0.210         52.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
0.162         56.2         Neutral         55.2         1.0         Peak           0.188         53.9         Neutral         54.2         -0.3         Peak           0.207         55.0         Neutral         53.3         1.7         Peak           0.219         51.3         Neutral         52.9         -1.6         Peak           0.251         49.3         Neutral         51.7         -2.4         Peak           0.152         63.6         Line         56.0         7.6         Peak           0.160         61.9         Line         55.6         6.3         Peak           0.174         57.7         Line         54.8         2.9         Peak           0.178         57.0         Line         53.6         3.4         Peak           0.190         54.0         Line         53.6         3.4         Peak           0.190         54.0         Line         53.1         -1.1         Peak           0.210         52.0         Line         53.1         -1.1         Peak           0.222         51.9         Line         52.8         -0.9         Peak	0.200		Neutral	53.6		Peak			
0.188         53.9         Neutral         54.2         -0.3         Peak           0.207         55.0         Neutral         53.3         1.7         Peak           0.219         51.3         Neutral         52.9         -1.6         Peak           0.251         49.3         Neutral         51.7         -2.4         Peak           0.152         63.6         Line         56.0         7.6         Peak           0.160         61.9         Line         55.6         6.3         Peak           0.174         57.7         Line         54.8         2.9         Peak           0.178         57.0         Line         53.6         3.4         Peak           0.190         54.0         Line         54.0         0.0         Peak           0.190         54.0         Line         53.1         -1.1         Peak           0.210         52.0         Line         53.1         -1.1         Peak           0.222         51.9         Line         52.8         -0.9         Peak	0.150	63.2	Neutral	55.8	7.4	Peak			
0.207         55.0         Neutral         53.3         1.7         Peak           0.219         51.3         Neutral         52.9         -1.6         Peak           0.251         49.3         Neutral         51.7         -2.4         Peak           0.152         63.6         Line         56.0         7.6         Peak           0.160         61.9         Line         55.6         6.3         Peak           0.174         57.7         Line         54.8         2.9         Peak           0.198         57.0         Line         53.6         3.4         Peak           0.190         54.0         Line         53.1         -1.1         Peak           0.210         52.0         Line         53.1         -1.1         Peak           0.222         51.9         Line         52.8         -0.9         Peak	0.162	56.2	Neutral	55.2	1.0	Peak			
0.219         51.3         Neutral         52.9         -1.6         Peak           0.251         49.3         Neutral         51.7         -2.4         Peak           0.152         63.6         Line         56.0         7.6         Peak           0.160         61.9         Line         55.6         6.3         Peak           0.174         57.7         Line         54.8         2.9         Peak           0.198         57.0         Line         53.6         3.4         Peak           0.190         54.0         Line         53.1         -1.1         Peak           0.210         52.0         Line         53.1         -1.1         Peak           0.222         51.9         Line         52.8         -0.9         Peak	0.188	53.9	Neutral	54.2	-0.3	Peak			
0.251       49.3       Neutral       51.7       -2.4       Peak         0.152       63.6       Line       56.0       7.6       Peak         0.160       61.9       Line       55.6       6.3       Peak         0.174       57.7       Line       54.8       2.9       Peak         0.198       57.0       Line       53.6       3.4       Peak         0.190       54.0       Line       54.0       0.0       Peak         0.210       52.0       Line       53.1       -1.1       Peak         0.222       51.9       Line       52.8       -0.9       Peak									
0.152       63.6       Line       56.0       7.6       Peak         0.160       61.9       Line       55.6       6.3       Peak         0.174       57.7       Line       54.8       2.9       Peak         0.198       57.0       Line       53.6       3.4       Peak         0.190       54.0       Line       54.0       0.0       Peak         0.210       52.0       Line       53.1       -1.1       Peak         0.222       51.9       Line       52.8       -0.9       Peak									
0.160         61.9         Line         55.6         6.3         Peak           0.174         57.7         Line         54.8         2.9         Peak           0.198         57.0         Line         53.6         3.4         Peak           0.190         54.0         Line         54.0         0.0         Peak           0.210         52.0         Line         53.1         -1.1         Peak           0.222         51.9         Line         52.8         -0.9         Peak									
0.174         57.7         Line         54.8         2.9         Peak           0.198         57.0         Line         53.6         3.4         Peak           0.190         54.0         Line         54.0         0.0         Peak           0.190         54.0         Line         54.0         0.0         Peak           0.210         52.0         Line         53.1         -1.1         Peak           0.222         51.9         Line         52.8         -0.9         Peak									
0.198         57.0         Line         53.6         3.4         Peak           0.190         54.0         Line         54.0         0.0         Peak           0.210         52.0         Line         53.1         -1.1         Peak           0.222         51.9         Line         52.8         -0.9         Peak									
0.190         54.0         Line         54.0         0.0         Peak           0.210         52.0         Line         53.1         -1.1         Peak           0.222         51.9         Line         52.8         -0.9         Peak									
0.210         52.0         Line         53.1         -1.1         Peak           0.222         51.9         Line         52.8         -0.9         Peak									
0.222 51.9 Line 52.8 -0.9 Peak									
0.246 51.2 Line 51.9 -0.7 Peak	0.246	51.2	Line	51.9	-0.7	Peak			

		R SUCCESS					EM	C Test D
Client	Intel Corpor	ation					Job Number:	J94914
							T-Log Number:	
Model:	7265D2W					_	Project Manager:	
Contoot	Stove Lleek	o##					, ,	
	Steve Hack						Project Coordinator:	
Standard:	FCC Part 1	5.247, 15.407	, RSS-210				Class:	N/A
		verage read	<u> </u>	145 007				
Frequency		AC		) / 15.207	Detector	Comments		
MHz	dBµV	Line	Limit	Margin	QP/Ave	OD(1.00c)		
<b>0.152</b> 0.152	<b>62.0</b> 47.8	Line Line	65.9 55.9	<b>-3.9</b> -8.1	QP AVG	QP (1.00s) AVG (0.10s)		
0.152	47.0 54.7	Neutral	63.6	-o.1 -8.9	QP	QP (1.00s)		
0.200	54.7	Line	63.7	-0.9	QP QP	QP (1.00s)		
0.160	46.1	Line	55.5	-9.4	AVG	AVG (0.10s)		
0.160	56.0	Line	65.5	-9.5	QP	QP (1.00s)		
0.162	55.3	Neutral	65.4	-10.1	QP	QP (1.00s)		
0.210	51.6	Line	63.2	-11.6	QP	QP (1.00s)		
0.190	52.3	Line	64.0	-11.7	QP	QP (1.00s)		
0.162	43.1	Neutral	55.4	-12.3	AVG	AVG (0.10s)		
0.174	51.9	Line	64.8	-12.9	QP	QP (1.00s)		
0.150	52.9	Neutral	66.0	-13.1	QP	QP (1.00s)		
0.207	50.1	Neutral	63.3	-13.2	QP	QP (1.00s)		
0.200	39.6	Neutral	53.6	-14.0	AVG	AVG (0.10s)		
0.188	50.1	Neutral	64.1	-14.0	QP	QP (1.00s)		
0.246	47.7	Line	61.9	-14.2	QP	QP (1.00s)		
0.251	47.2	Neutral	61.7	-14.5	QP	QP (1.00s)		
0.174	39.2	Line	54.8	-15.6	AVG	AVG (0.10s)		
0.198	37.9	Line	53.7	-15.8	AVG	AVG (0.10s)		
0.210	36.8	Line	53.2	-16.4	AVG	AVG (0.10s)		
0.150	39.0	Neutral	56.0	-17.0	AVG	AVG (0.10s)		
0.219	45.2	Neutral	62.9	-17.7	QP	QP (1.00s)		
0.222	44.8	Line	62.7	-17.9	QP	QP (1.00s)		
0.207	34.7	Neutral	53.3	-18.6	AVG	AVG (0.10s)		
0.251	32.0	Neutral	51.7	-19.7	AVG	AVG (0.10s)		
0.190	34.2	Line	54.0	-19.8	AVG	AVG (0.10s)		
0.188	34.1	Neutral	54.1	-20.0	AVG	AVG (0.10s)		
0.219	32.5	Neutral	52.9	-20.4	AVG	AVG (0.10s)		
0.246	31.5 30.9	Line Line	51.9 52.7	-20.4 -21.8	AVG AVG	AVG (0.10s) AVG (0.10s)		

# End of Report

This page is intentionally blank and marks the last page of this test report.