

SPORTON International Inc. No. 52, Hwa Ya 1st Rd., Kwei-Shan Hsiang, TaoYuan Hsien, Taiwan, R.O.C. Ph: 886-3-327-3456 / FAX: 886-3-327-0973 / www.sporton.com.tw

FCC RADIO TEST REPORT

Applicant's company	Broadcom Corporation
Applicant Address	190 Mathilda Place, Sunnyvale, CA 94086 USA
FCC ID	QDS-BRCM1067
Manufacturer's company	Hon Hai PRECISION IND. CO., LTD.
Manufacturer Address	5F-1, 5 Hsin-An road Hsinchu, Science-Based Industrial Park, Taiwan, R.O.C.

Product Name	802.11abgn WLAN + Bluetooth Card	
Brand Name	Broadcom	
Model Name	BCM94330LGA	
Test Rule	47 CFR FCC Part 15 Subpart C § 15.247	
Test Freq. Range	2400 ~ 2483.5MHz	
Received Date	Jun. 04, 2012	
Final Test Date	Jul. 17, 2012	
Submission Type	Original Equipment	

Statement

Test result included is only for the Bluetooth part of the product.

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in ANSI C63.10-2009 and 47 CFR FCC Part 15 Subpart C and KDB 558074 – 20120118.

The test equipment used to perform the test is calibrated and traceable to NML/ROC.

Table of Contents

1.	CE	RTIF	CATE OF COMPLIANCE	1
2.	SU	MMA	ARY OF THE TEST RESULT	2
3.	GE		AL INFORMATION	3
	3.1	I. P	Product Details	3
	3.2	2. A	Accessories	3
	3.3	З. T	able for Filed Antenna	4
	3.4	4. T	able for Carrier Frequencies	4
	3.5	5. T	able for Test Modes	5
	3.6	5. T	able for Testing Locations	5
	3.7	7. T	able for Supporting Units	5
	3.8	З. T	able for Parameters of Test Software Setting	6
	3.9	Э. T	est Configurations	7
4.	TES	ST RE	SULT	0
	4.1	I. A	AC Power Line Conducted Emissions Measurement1	0
	4.2	2. P	Peak Output Power Measurement	4
	4.3	3. н	lopping Channel Separation Measurement	6
	4.4	4. N	Number of Hopping Frequency Measurement	1
	4.5	5. C	Dwell Time Measurement	3
	4.6	5. R	Radiated Emissions Measurement	7
	4.7	7. B	3 and Edge Emissions Measurement	6
	4.8	3. A	Antenna Requirements	9
5.	LIS	t of	MEASURING EQUIPMENTS	0
6.	TES	ST LO	CATION	2
7.	TAI	F CEI	RTIFICATE OF ACCREDITATION	3
			(A. TEST PHOTOS	
Ał	ΨE	NDIX	(B. MAXIMUM PERMISSIBLE EXPOSURE	4
AF	PEI	NDIX	C. CO-LOCATION REPORT	3

History of This Test Report

Rev. 01	Initial issue of report	Jul. 25, 2012

Certificate No.: CB10107094

1. CERTIFICATE OF COMPLIANCE

Product Name	:	802.11abgn WLAN + Bluetooth Card
Brand Name	4	Broadcom
Model Name	:	BCM94330LGA
Applicant	:	Broadcom Corporation
Test Rule Part(s)	:	47 CFR FCC Part 15 Subpart C § 15.247

Sporton International as requested by the applicant to evaluate the EMC performance of the product sample received on Jun. 04, 2012 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature.

Icias

Jordan Hsiao SPORTON INTERNATIONAL INC.

2. SUMMARY OF THE TEST RESULT

	Applied Standard: 47 CFR FCC Part 15 Subpart C						
Part	Rule Section	Result	Under Limit				
4.1	15.207	AC Power Line Conducted Emissions	Complies	18.49 dB			
4.2	15.247(b)(1)	Maximum Peak Conducted Output Power	Complies	22.20 dB			
4.3	-	Average Output Power	-	-			
4.4	15.247(a)(1)	Hopping Channel Separation	Complies	-			
4.5	15.247(b)(1)	Number of Hopping Frequency	Complies	-			
4.6	15.247(a)(1)	Dwell Time	Complies	-			
4.7	15.247(d)	Radiated Emissions	Complies	4.46 dB			
4.8	15.247(d)	Band Edge Emissions	Complies	9.52 dB			
4.9	15.203	Antenna Requirements	Complies	-			

Test Items	Uncertainty	Remark
AC Power Line Conducted Emissions	±2.3dB	Confidence levels of 95%
Maximum Peak Conducted Output Power	±0.8dB	Confidence levels of 95%
Hopping Channel Separation	±8.5×10 ⁻⁸	Confidence levels of 95%
Radiated Emissions (9kHz~30MHz)	±0.8dB	Confidence levels of 95%
Radiated Emissions (30MHz~1000MHz)	±1.9dB	Confidence levels of 95%
Radiated / Band Edge Emissions (1GHz~18GHz)	±1.9dB	Confidence levels of 95%
Radiated Emissions (18GHz~40GHz)	±1.9dB	Confidence levels of 95%
Temperature	±0.7°C	Confidence levels of 95%
Humidity	±3.2%	Confidence levels of 95%
DC / AC Power Source	±1.4%	Confidence levels of 95%

3. GENERAL INFORMATION

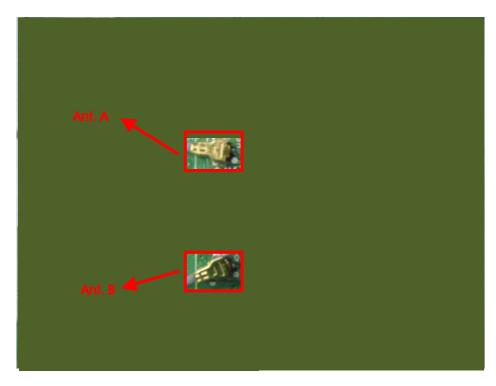
3.1. Product Details

Items	Description
Power Type	From host sysytem
Modulation	FHSS (GFSK / π/4-DQPSK / 8DPSK)
Data Rate (Mbps)	GFSK: 1 ; <i>π</i> /4-QPSK: 2 ; 8DPSK: 3
Frequency Range	2400 ~ 2483.5MHz
Channel Number	40 (37 hopping + 3 advertising channel)
Channel Band Width (99%)	1.05 MHz
Peak Conducted Output Power	7.80 dBm
Carrier Frequencies	Please refer to section 3.4
Antenna	Please refer to section 3.3

3.2. Accessories

N/A

3.3. Table for Filed Antenna


Ant.	Brand	Model Name	Antenna Type	Connector	Gain	(dBi)
А	WhaYu	-	PIFA Antenna	l-pex	2.4GHz	3
В	WhaYu	-	PIFA Antenna	l-pex	5GHz	4.3

Note: The EUT has two antennas. One for 2.4GHz band use, the other for 5GHz band use.

<2.4GHz WALN function with Bluetooth function:>

For IEEE 802.11b/g/n Mode: (1TX, 1RX)

Only Ant. A can be used as transmitting/receiving antenna.

3.4. Table for Carrier Frequencies

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
	0	2402 MHz	20	2442 MHz
	1	2404 MHz	:	:
0.400 0.483 ENALL-	2	2406 MHz	37	2476 MHz
2400~2483.5MHz	:	:	38	2478 MHz
	18	2438 MHz	39	2480 MHz
	19	2440 MHz	-	-

3.5. Table for Test Modes

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate	Channel	Antenna
AC Power Conducted Emissions	Normal Link	1 Mbps	Hopping 0~39	-
Max. Peak Conducted Output	GFSK	1 Mbps	0/19/39	А
Power				
Average Output Power	GFSK	1 Mbps	0/19/39	А
Hopping Channel Separation	GFSK	1 Mbps	0~1/19~20/38~39	А
Number of Hopping Frequency	GFSK	1 Mbps	0~39	А
Dwell Time	LBT	1 Mbps	0/19/39	А
Radiated Emissions Below 1GHz	GFSK	1 Mbps	19	А
Radiated Emissions Above 1GHz	GFSK	1 Mbps	0/19/39	А
Band Edge Emissions	GFSK	1 Mbps	0/39	A

3.6. Table for Testing Locations

Test Site No.	Site Category	Location	FCC Reg. No.	IC File No.
03CH01-CB	SAC	Hsin Chu	262045	IC 4086D
CO01-CB	Conduction	Hsin Chu	262045	IC 4086D
TH01-CB	OVEN Room	Hsin Chu	-	-

Open Area Test Site (OATS); Semi Anechoic Chamber (SAC); Fully Anechoic Chamber (FAC). Please refer section 6 for Test Site Address.

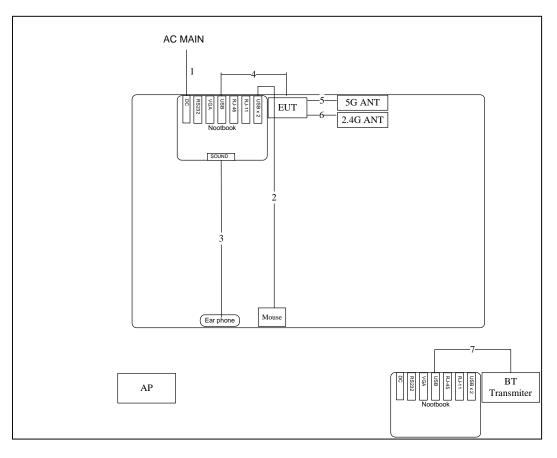
3.7. Table for Supporting Units

Support Unit	Brand	Model	FCC ID	
Notebook	DELL	M1330	E2K4965AGNM	
Notebook	DELL	LATITUDE E6500	PDN:5JNCT A00	
Mouse	Logitech M90	M-U0026	DoC	
Wireless AP	BELKIN	WG7016G22-LF-AK	DoC	
EARPHONES	E-books	E-EPC040	N/A	

3.8. Table for Parameters of Test Software Setting

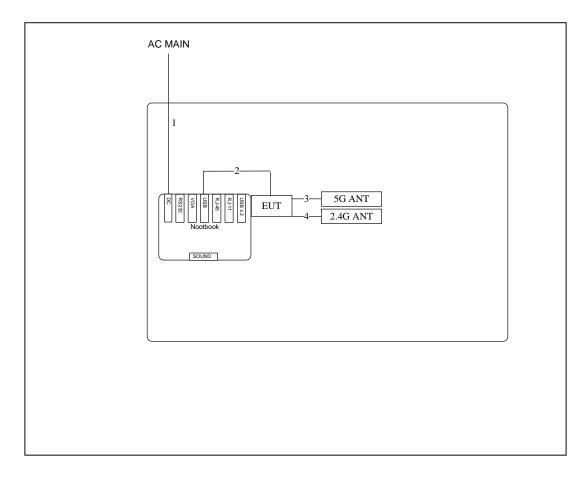
During testing, Channel & Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product. **Power Parameters of Bluetooth**

Test Software VersionBluetestFrequency2402 MHz2440 MHz2480 MHzPower ParametersDefaultDefaultDefault

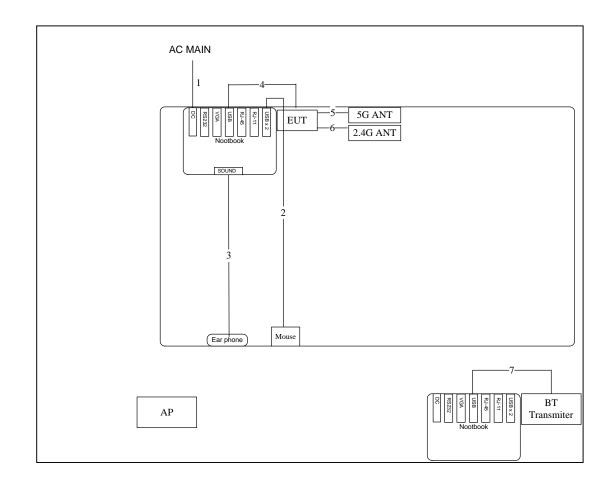

During the test, "Bluetest" under WIN XP was executed the test program to control the EUT continuously transmit RF signal.

3.9. Test Configurations

3.9.1. Radiation Emissions Test Configuration


Test Configuration: 30MHz~1GHz

Item	Connection	Shield	Length
1	Power cable	No	2.6M
2	USB cable	No	1.8M
3	Earphone cable	No	1.1M
4	RS-232 cable	Yes	1.95M
5	Antenna cable	Yes	0.11M
6	Antenna cable	Yes	1.8M
7	RS-232 cable	Yes	1.95M



Test Configuration: above 1GHz

Item	Connection	Shield	Length
1	Power cable	No	2.6M
2	Antenna cable	Yes	0.11M
3	Antenna cable	Yes	1.8M
4	RS-232 cable	Yes	1.95M

3.9.2. AC Power Line Conduction Emissions Test Configuration

Item	Connection	Shield	Length
1	Power cable	No	2.6M
2	USB cable	No	1.8M
3	Earphone cable	No	1.1M
4	RS-232 cable	Yes	1.95M
5	Antenna cable	Yes	0.11M
6	Antenna cable	Yes	1.8M
7	RS-232 cable	Yes	1.95M

4. TEST RESULT

4.1. AC Power Line Conducted Emissions Measurement

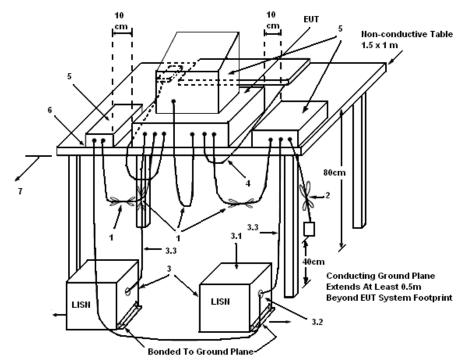
4.1.1. Limit

For a Low-power Radio-frequency Device which is designed to be connected to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

Frequency (MHz)	QP Limit (dBuV)	AV Limit (dBuV)
0.15~0.5	66~56	56~46
0.5~5	56	46
5~30	60	50

4.1.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the receiver.


Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

4.1.3. Test Procedures

- 1. Configure the EUT according to ANSI C63.10. The EUT or host of EUT has to be placed 0.4 meter far from the conducting wall of the shielding room and at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT or host of EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connected to the other LISNs. The LISN should provide 50uH/50ohms coupling impedance.
- 4. The frequency range from 150 KHz to 30 MHz was searched.
- 5. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. The measurement has to be done between each power line and ground at the power terminal.

4.1.4. Test Setup Layout

LEGEND:

(1) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

(2) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

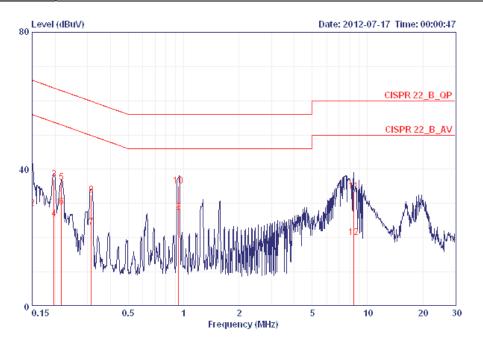
(3) EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50 Ω . LISN can be placed on top of, or immediately beneath, reference ground plane.

- (3.1) All other equipment powered from additional LISN(s).
- (3.2) Multiple outlet strip can be used for multiple power cords of non-EUT equipment.
- (3.3) LISN at least 80 cm from nearest part of EUT chassis.
- (4) Cables of hand-operated devices, such as keyboards, mice, etc., shall be placed as for normal use.
- (5) Non-EUT components of EUT system being tested.
- (6) Rear of EUT, including peripherals, shall all be aligned and flush with rear of tabletop.

(7) Rear of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane.

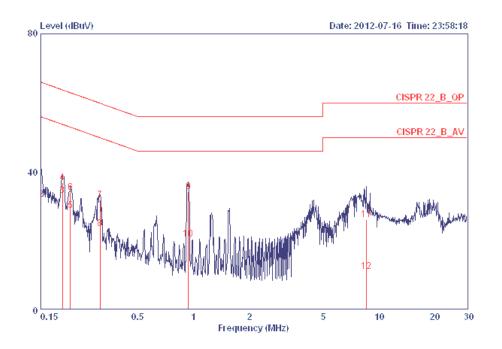
4.1.5. Test Deviation

There is no deviation with the original standard.


4.1.6. EUT Operation during Test

The EUT was placed on the test table and programmed in normal function.

4.1.7. Results of AC Power Line Conducted Emissions Measurement


Temperature	22°C	Humidity	57%
Test Engineer	Kane Liu	Phase	Line
Configuration	Normal Link		

		0ver	Limit	Read	LISN	Cable		
Freq	Level	Limit	Line	Level	Factor	Loss	Pol/Phase	Remark
MHz	dBu∛	dB	dBuV	dBuV	dB	dB		
0.15000	39.38	-26.62	66.00	39.02	0.16	0.20	LINE	QP
0.15000	28.47	-27.53	56.00	28.11	0.16	0.20	LINE	AVERAGE
0.19758	36.95	-26.76	63.71	36.60	0.15	0.20	LINE	QP
0.19758	25.45	-28.26	53.71	25.10	0.15	0.20	LINE	AVERAGE
0.21620	36.23	-26.73	62.96	35.88	0.15	0.20	LINE	QP
0.21620	28.93	-24.03	52.96	28.58	0.15	0.20	LINE	AVERAGE
0.31495	23.15	-26.69	49.84	22.80	0.15	0.20	LINE	AVERAGE
0.31495	32.58	-27.26	59.84	32.23	0.15	0.20	LINE	QP
0.94009	27.51	-18.49	46.00	27.14	0.17	0.20	LINE	AVERAGE
0.94009	35.20	-20.80	56.00	34.83	0.17	0.20	LINE	QP
8.412	33.56	-26.44	60.00	32.93	0.31	0.32	LINE	QP
8.412	20 08	-29 92	50.00	19 45	0 31	0 32	LINE	AVERAGE
	MHz 0.15000 0.15000 0.19758 0.21620 0.31495 0.31495 0.31495 0.94009 8.412	MHz dBuV 0.15000 39.38 0.15000 28.47 0.19758 36.95 0.19758 25.45 0.21620 36.23 0.31495 23.15 0.31495 32.58 0.94009 27.51 0.94009 35.20 8.412 33.56	Freq Level Limit MHz dBuV dB 0.15000 39.38 -26.62 0.15000 28.47 -27.53 0.19758 36.95 -26.76 0.19758 25.45 -28.26 0.21620 28.93 -24.03 0.31495 23.15 -26.69 0.31495 23.58 -27.26 0.94009 27.51 -18.49 0.94009 35.20 -20.80 8.412 33.56 -26.44	Freq Level Limit Line MHz dBuV dB dBuV 0.15000 39.38 -26.62 66.00 0.15000 28.47 -27.53 56.00 0.19758 36.95 -26.76 63.71 0.21620 36.23 -26.73 62.96 0.21620 28.93 -24.03 52.96 0.31495 23.15 -26.69 49.84 0.31495 32.58 -27.26 59.84 0.94009 27.51 -18.49 46.00 0.94009 35.20 -20.80 56.00	Freq Level Limit Line Level MHz dBuV dB dBuV dBuV dBuV 0.15000 39.38 -26.62 66.00 39.02 0.15000 28.47 -27.53 56.00 28.11 0.19758 36.95 -26.76 63.71 36.60 0.19758 25.45 -28.26 53.71 25.10 0.21620 36.23 -26.73 62.96 35.88 0.21620 28.93 -24.03 52.96 28.58 0.31495 23.15 -26.69 49.84 22.80 0.31495 32.58 -27.26 59.84 32.23 0.94009 27.51 -18.49 46.00 27.14 0.94009 35.20 -26.00 56.00 34.83 8.412 33.56 -26.44 60.00 32.93	Freq Level Limit Line Level Factor MHz dBuV dB dBuV dBuV dBuV dB 0.15000 39.38 -26.62 66.00 39.02 0.16 0.15000 28.47 -27.53 56.00 28.11 0.16 0.19758 36.95 -26.76 63.71 36.60 0.15 0.19758 25.45 -28.26 53.71 25.10 0.15 0.21620 36.23 -26.73 62.96 35.88 0.15 0.21620 28.93 -24.03 52.96 28.58 0.15 0.31495 23.15 -26.69 49.84 22.80 0.15 0.31495 32.58 -27.26 59.84 32.23 0.15 0.34090 27.51 -18.49 46.00 27.14 0.17 0.94009 35.20 -20.80 56.00 34.83 0.17 8.412 33.56 -26.44 60.00 32.93	Freq Level Limit Line Level Factor Loss MHz dBuV dB dBuV dBuV dB dBuV dB dB 0.15000 39.38 -26.62 66.00 39.02 0.16 0.20 0.15000 28.47 -27.53 56.00 28.11 0.16 0.20 0.19758 36.95 -26.76 63.71 36.60 0.15 0.20 0.21620 36.23 -26.73 62.96 35.88 0.15 0.20 0.21620 36.23 -26.73 62.96 35.88 0.15 0.20 0.21620 28.93 -24.03 52.96 28.58 0.15 0.20 0.31495 23.15 -26.69 49.84 22.80 0.15 0.20 0.31495 32.58 -27.26 59.44 32.23 0.15 0.20 0.94009 27.51 -18.49 46.00 27.14 0.17 0.20 0.94009<	Freq Level Limit Line Level Factor Loss Pol/Phase MHz dBuV dB dBuV dBuV dB dBuV dB dB 0.15000 39.38 -26.62 66.00 39.02 0.16 0.20 LINE 0.15000 28.47 -27.53 56.00 28.11 0.16 0.20 LINE 0.19758 36.95 -26.76 63.71 36.60 0.15 0.20 LINE 0.19758 25.45 -28.26 53.71 25.10 0.15 0.20 LINE 0.21620 36.23 -26.73 62.96 35.88 0.15 0.20 LINE 0.21620 28.93 -24.03 52.96 28.58 0.15 0.20 LINE 0.31495 23.15 -26.69 49.84 22.80 0.15 0.20 LINE 0.31495 32.58 -27.26 59.84 32.23 0.15 0.20 LINE <tr< td=""></tr<>

Temperature	22℃	Humidity	57%
Test Engineer	Kane Liu	Phase	Neutral
Configuration	Normal Link		

	Freq	Level	Over Limit	Limit Line	Read Level		Cable Loss	Pol/Phase	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	dB		
1	0.15000	38.47	-27.53	66.00	38.19	0.08	0.20	NEUTRAL	QP
2	0.15000	32.00	-24.00	56.00	31.72	0.08	0.20	NEUTRAL	AVERAGE
3	0.19654	33.16	-20.60	53.76	32.88	0.08	0.20	NEUTRAL	AVERAGE
4	0.19654	36.82	-26.94	63.76	36.54	0.08	0.20	NEUTRAL	QP
5	0.21620	28.77	-24.19	52.96	28.49	0.08	0.20	NEUTRAL	AVERAGE
6	0.21620	33.94	-29.02	62.96	33.66	0.08	0.20	NEUTRAL	QP
7	0.31328	31.88	-28.00	59.88	31.60	0.08	0.20	NEUTRAL	QP
8	0.31328	23.63	-26.25	49.88	23.35	0.08	0.20	NEUTRAL	AVERAGE
9	0.93810	34.19	-21.81	56.00	33.90	0.09	0.20	NEUTRAL	QP
10	0.93810	20.51	-25.49	46.00	20.22	0.09	0.20	NEUTRAL	AVERAGE
11	8.546	26.19	-33.81	60.00	25.68	0.21	0.30	NEUTRAL	QP
12	8.546	11.19	-38.81	50.00	10.68	0.21	0.30	NEUTRAL	AVERAGE

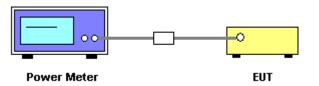
Note: Level = Read Level + LISN Factor + Cable Loss.

4.2. Peak Output Power Measurement

4.2.1. Limit

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, the limit for peak output power is 1Watt (30dBm). For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts (21dBm). The limited has to be reduced by the amount in dB that the gain of the antenna exceed 6dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

4.2.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the power meter.

Power Meter Parameter	Setting		
Filter No.	Auto		
Measurement time	0.135 s ~ 26 s		
Used Peak Sensor	MA2411B		

4.2.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the power meter.
- 2. Turn on the EUT and power meter and then record the peak power value.
- 3. Repeat above procedures on all channels needed to be tested.

4.2.4. Test Setup Layout

4.2.5. Test Deviation

There is no deviation with the original standard.

4.2.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.2.7. Test Result of Maximum Peak Output Power

Temperature	24°C	Humidity	63%
Test Engineer	Satoshi Yang	Configurations	GFSK
Test Date	Jul. 20, 2012		

For Bluetooth 4.0 :

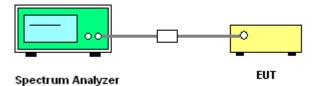
Channel	Frequency	Conducted Power (dBm)	Max. Limit (dBm)	Result
0	2402 MHz	6.98	30.00	Complies
19	2440 MHz	7.43	30.00	Complies
39	2480 MHz	7.80	30.00	Complies

4.3. Hopping Channel Separation Measurement

4.3.1. Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

4.3.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	> Measurement Bandwidth or Channel Separation
RB	30 kHz (20dB Bandwidth) / 100 kHz (Channel Separation)
VB	100 kHz (20dB Bandwidth) / 100 kHz (Channel Separation)
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

4.3.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer in peak hold mode.
- 2. The resolution bandwidth of 30 kHz and the video bandwidth of 100 kHz were utilized for 20 dB bandwidth measurement.
- 3. The resolution bandwidth of 100 kHz and the video bandwidth of 300 kHz were utilized for channel separation measurement.

4.3.4. Test Setup Layout

4.3.5. Test Deviation

There is no deviation with the original standard.

4.3.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.3.7. Test Result of Hopping Channel Separation

Temperature	24°C	Humidity	63%
Test Engineer	Satoshi Yang	Configurations	GFSK

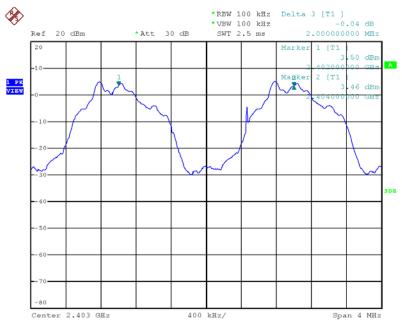
For Bluetooth 4.0 :

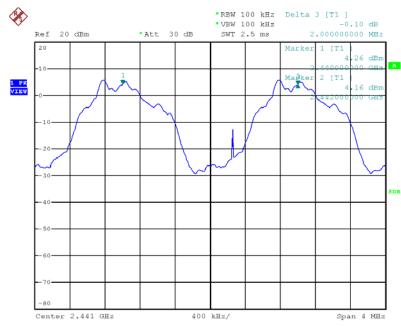
Frequency	Ch. Separation (MHz)	20dB Bandwidth (MHz)	2/3 of 20dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Result
2402 MHz	1.00	1.13	0.75	1.05	Complies
2440 MHz	1.00	1.13	0.75	1.05	Complies
2480 MHz	1.00	1.14	0.76	1.05	Complies

Ch. Separation Limits: >20dB bandwidth or >2/3 of 20dB bandwidth

20 dB Bandwidth Plot on Channel 0 / 2402 MHz

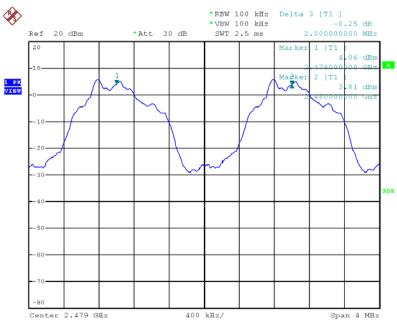
20 dB Bandwidth Plot on Channel 19 / 2440 MHz




20 dB Bandwidth Plot on Channel 39 / 2480 MHz

Channel Separation Plot on Channel 0~1 / 2402 MHz ~ 2404 MHz

Date: 4.JUL.2012 16:15:31



Channel Separation Plot on Channel 19 \sim 20 / 2440 MHz \sim 2442 MHz

Date: 4.JUL.2012 16:14:02

Channel Separation Plot on Channel 38~39 / 2478 MHz ~ 2480 MHz

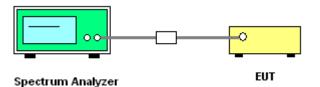
Date: 4.JUL.2012 16:11:47

4.4. Number of Hopping Frequency Measurement

4.4.1. Limit

At least 15 hopping frequencies, and should be equally spaced.

4.4.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer.

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	> Operating Frequency Range
RB	1MHz
VB	1MHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

4.4.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer in peak hold mode.
- 2. The resolution bandwidth of 1MHz and the video bandwidth of 1MHz were utilized.
- 3. Observe frequency hopping in 2400MHz~2483.5MHz, there are at least 75 non-overlapping channels.

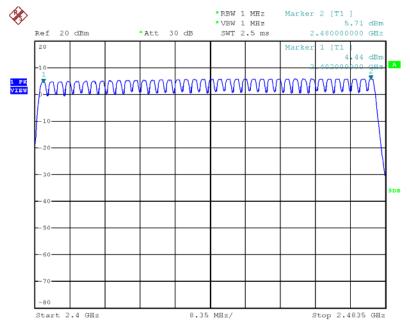
4.4.4. Test Setup Layout

4.4.5. Test Deviation

There is no deviation with the original standard.

4.4.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.


4.4.7. Test Result of Number of Hopping Frequency

Temperature	24°C	Humidity	63%
Test Engineer	Satoshi Yang	Configurations	GFSK

For Bluetooth 4.0 :

Modulation	Channel	Frequency	Hopping Ch.	Min. Limit	Test Result
Type	No.	(MHz)	(Channels)	(Channels)	
GFSK	0 ~ 39	2402 ~ 2480	40	15	Complies

Number of Hopping Channel Plot on Channel 0~39 / 2402 MHz ~ 2480 MHz

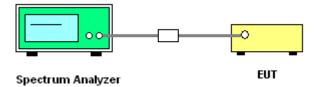
Date: 5.JUL.2012 07:24:59

4.5. Dwell Time Measurement

4.5.1. Limit

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

4.5.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	0 MHz
RB	1000 kHz
VB	1000 kHz
Detector	Peak
Trace	Single Trigger

4.5.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer
- 2. Set RBW of spectrum analyzer to 1000kHz and VBW to 1000kHz.
- 3. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- 4. Sweep Time is more than once pulse time.
- 5. Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- 6. Measure the maximum time duration of one single pulse.
- 7. Set the EUT for 3DH5, 3DH3 and 3DH1 packet transmitting.
- 8. Measure the maximum time duration of one single pulse.

4.5.4. Test Setup Layout

4.5.5. Test Deviation

There is no deviation with the original standard.

4.5.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

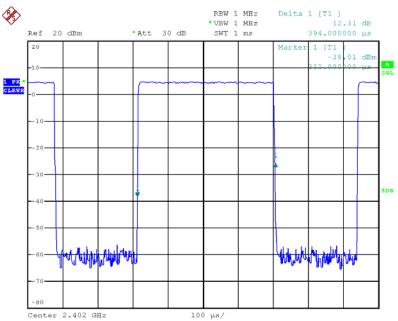
4.5.7. Test Result of Dwell Time

Temperature	24°C	Humidity	63%
Test Engineer	Satoshi Yang	Configurations	Bluetooth / LBT

Data Packet	Frequency (MHz)	Pulse Duration (ms)	Dwell Time (s)	Limits (s)	Test Result
LBT	2402 MHz	0.3940	0.1261	0.4000	Complies
LBT	2440 MHz	0.3940	0.1261	0.4000	Complies
LBT	2480 MHz	0.3940	0.1261	0.4000	Complies

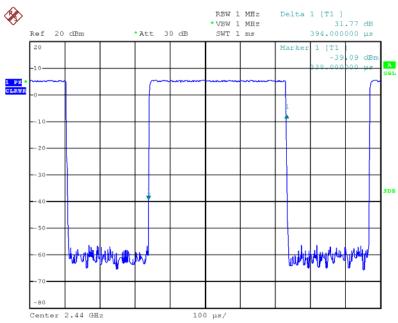
Note: Pulse Duration * Number of Pulses*(Dwell time / measure time)

Remark:

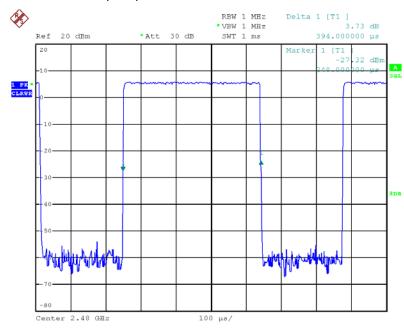

Dwell Time=40(channels) x 0.4(s) x average hopping channel x package transfer time (us)

40 channels come from the Hopping Channel number.

Average Hopping Channel = hops / sweep time



For Bluetooth 4.0 : Dwell Time Plot on Channel 0 / LBT / 2402 MHz


Date: 10.JUL.2012 12:47:36

Dwell Time Plot on Channel 19 / LBT / 2440 MHz

Date: 10.JUL.2012 12:48:51

Dwell Time Plot on Channel 39 / LBT / 2480 MHz

Date: 10.JUL.2012 12:49:47

4.6. Radiated Emissions Measurement

4.6.1. Limit

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

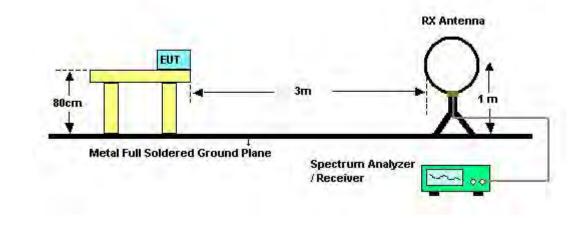
Frequencies	Field Strength Measurement Dist	
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

4.6.2. Measuring Instruments and Setting

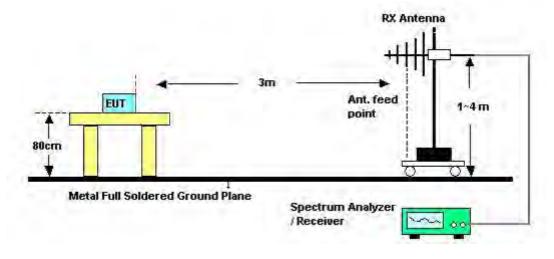
Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (Emission in restricted band)	1MHz / 3MHz for Peak, 1 MHz / 10Hz for Average
RB / VB (Emission in non-restricted band)	1MHz / 3MHz for peak

Receiver Parameter	Setting
Attenuation	Auto
Start \sim Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start \sim Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP


4.6.3. Test Procedures

- 1. Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and 3MHz RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- 8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.



4.6.4. Test Setup Layout

For radiated emissions below 1GHz

For radiated emissions above 1GHz

4.6.5. Test Deviation

There is no deviation with the original standard.

4.6.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

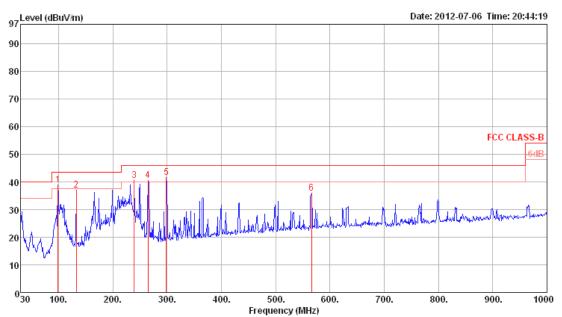
4.6.7. Results of Radiated Emissions (9kHz~30MHz)

Temperature	21°C	Humidity	56.4%
Test Engineer	Benson Peng	Configurations	Normal Link
Test Date	Jul. 06, 2012		

Freq.	Level	Over Limit	Limit Line	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

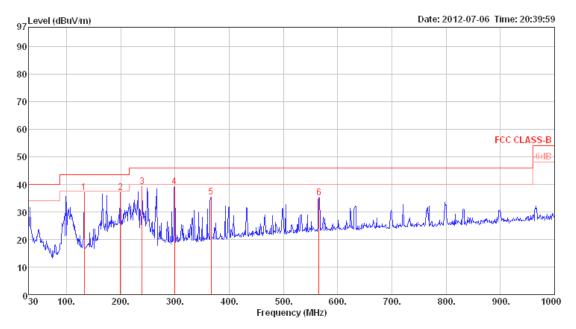
Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.


Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.

4.6.8. Results of Radiated Emissions (30MHz~1GHz)


Temperature	2 1℃	Humidity	56.4%						
Test Engineer	Benson Peng	Configurations	Normal Link						
Horizontal									

	Freq	Level	Limit Line	0∨er Limit	Read Level					A/Pos	T/Pos	Pol/Phase	
	MHz	dBu∀/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB		cm	deg		
1	98.87	38.89	43.50	-4.61	54.53	1.18	10.79	27.61	Peak	100	Ø	HORIZONTAL	
2	132.82	37.01	43.50	-6.49	50.83	1.33	12.28	27.43	Peak	100	0	HORIZONTAL	
3	239.52	40.60	46.00	-5.40	53.78	1.86	11.98	27.02	Peak	100	Ø	HORIZONTAL	
4	264.74	40.59	46.00	-5.41	52.66	1.96	12.94	26.97	Peak	100	0	HORIZONTAL	
5	298.69	41.54	46.00	-4.46	52.99	2.10	13.35	26.90	Peak	100	0	HORIZONTAL	
6	566.41	35.94	46.00	-10.06	42.83	2.83	18.38	28.10	Peak	100	0	HORIZONTAL	

Vertical

	Freq	Level	Limit Line		Read Level					A/Pos		Pol/Phase
	MHz	dBu∀/m	dBu\//m	dB	dBu∨	dB	dB/m	dB		cm	deg	
1	132.82	37.02	43.50	-6.48	50.84	1.33	12.28	27.43	Peak	400	Ø	VERTICAL
2	199.75	37.07	43.50	-6.43	53.42	1.70	9.05	27.10	Peak	400	0	VERTICAL
3	239.52	39.09	46.00	-6.91	52.27	1.86	11.98	27.02	Peak	400	0	VERTICAL
4	299.66	39.05	46.00	-6.95	50.49	2.10	13.36	26.90	Peak	400	Ø	VERTICAL
5	366.59	35.27	46.00	-10.73	45.24	2.23	15.17	27.37	Peak	400	0	VERTICAL
6	565.44	35.16	46.00	-10.84	42.06	2.83	18.37	28.10	Peak	400	0	VERTICAL

Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission level (uV/m)$.

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

100

100

121 HORIZONTAL

121 HORIZONTAL

4.6.9. Results for Radiated Emissions (1GHz~10th Harmonic)

Temperature	21°C	Humidity	56.4%
Test Engineer	Benson Peng	Configurations	Channel 0
Test Date	Jul. 09, 2012		
·	Limit Over Re evel Line Limit Lev uV/m dBuV/m dB dB		

4803.12 32.76 54.00 -21.24 28.39 6.21 33.36 35.20 Average 4803.36 46.14 74.00 -27.86 41.77 6.21 33.36 35.20 Peak

Vertical

1

2

	Freq	Level					Antenna Factor		Remark	A/Pos	T/Pos Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB		cm	deg
1 2	4803.13 4804.73								Avenage Peak	100 100	124 VERTICAL 124 VERTICAL

Tem	perature		21°C			Humidi	ty	56	5.4%			
Test	Engineer		Benson Pe	eng		Config	urations	; C	hannel 19			
Test	Date		Jul. 09, 20	012								
Horiz	ontal											
	Freq	Leve	Limit l Line	0∨er Limit			Antenna Factor		Remark	A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/	m dBu∀/m	dB	dBu∨	dB	dB/m	dB			deg	
1 2	4879.00 4879.24	33.0 49.1	3 54.00 0 74.00	-20.97 -24.90			33.48 33.48		Avenage Peak	112 112		HORIZONTAL HORIZONTAL

Vertical

	Freq	Level	Limit Line	Over Limit						A/Pos	T/Pos Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB		cm	deg
1 2	4879.50 4880.47								Peak Avenage	101 101	298 VERTICAL 298 VERTICAL

Temperature	21℃	Humidity	56.4%
Test Engineer	Benson Peng	Configurations	Channel 39
Test Date	Jul. 09, 2012		

Horizontal

	Freq	Level	Limit Line	0∨er Limit					A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB	 cm	deg	
1 2	4959.60 4960.94								100 100		HORIZONTAL HORIZONTAL

Vertical

	Freq	Level	Limit Line	Over Limit					A/Pos	T/Pos Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB	 cm	deg
1 2	4959.00 4959.68								100 100	171 VERTICAL 171 VERTICAL

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission level (uV/m)$.

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

4.7. Band Edge Emissions Measurement

4.7.1. Limit

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

4.7.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	100 MHz
RB / VB (Emission in restricted band)	1MHz / 3MHz for Peak, 1 MHz / 10Hz for Average
RB / VB (Emission in non-restricted band)	100 KHz /100 KHz for Peak

4.7.3. Test Procedures

1. The test procedure is the same as section 4.5.3, only the frequency range investigated is limited to 100MHz around bandedges.

4.7.4. Test Setup Layout

This test setup layout is the same as that shown in section 4.6.4.

4.7.5. Test Deviation

There is no deviation with the original standard.

4.7.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.7.7. Test Result of Band Edge and Fundamental Emissions

Temperature	2 1°C	Humidity	56.4%
Test Engineer	Benson Peng	Configurations	Channel 0, 19, 39
Test Date	Jul. 09, 2012		

Channel 0

	Freq	Level	Limit Line	0∨er Limit						A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB		cm	deg	
1 2 3 4	2388.60 2390.00 2401.90 2402.30		74.00 54.00		11.50 19.80	$4.14 \\ 4.14$		0.00	Peak Avenage Avenage Peak	134 134 134 134	162 162	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

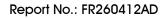
Item 3, 4 are the fundamental frequency at 2402 MHz.

Channel 19

			Limit	0ver	Read	Cable	Antenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu√/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB			deg	
1	2387.90	55.21	74.00	-18.79	23.02	4.14	28.05	0.00	Peak	100	99	VERTICAL
2	2390.00	43.67	54.00	-10.33	11.48	4.14	28.05	0.00	Avenage	100	99	VERTICAL
3	2440.00				20.08	4.18	28.18	0.00	Average	100	99	VERTICAL
4	2440.30				69.50	4.18	28.18	0.00	Peak	100	99	VERTICAL
5	2483.50	44.03	54.00	-9.97	11.56	4.21	28.26	0.00	Avenage	100	99	VERTICAL
6	2485.30	55.82	74.00	-18.18	23.31	4.21	28.30	0.00	Peak	100	99	VERTICAL

Item 3, 4 are the fundamental frequency at 2440 MHz.

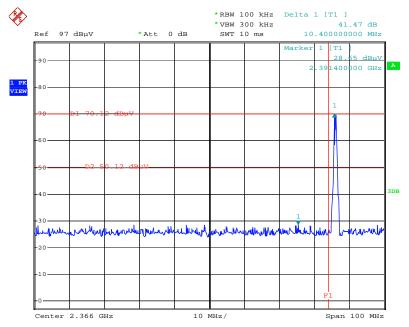
Channel 39

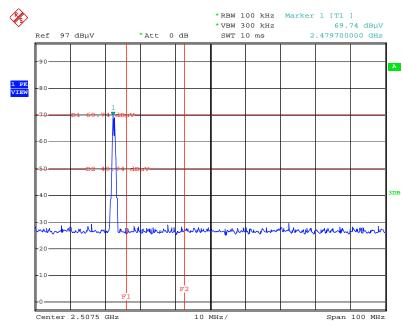

		Freq	Level	Limit Line		Read Level					A/Pos	T/Pos	Pol/Phase
		MHz	dBu∀/m		dB	dBu∨	dB	dB/m	dB		cm	deg	
	1	2480.00				20.12	4.21	28.26	0.00	Average	100	96	VERTICAL
	2	2480.30				69.28	4.21	28.26	0.00	Peak	100	96	VERTICAL
E	3	2483.50	44.48	54.00	-9.52	12.01	4.21	28.26	0.00	Average	100	96	VERTICAL
	4	2483.60	56.52	74.00	-17.48	24.05	4.21	28.26	0.00	Peak	100	96	VERTICAL

Item 1, 2 are the fundamental frequency at 2480 MHz.

Note:

Emission level (dBuV/m) = $20 \log Emission level (uV/m)$.


Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.



For Emission not in Restricted Band

Plot on Channel 0 / 2402 MHz

Date: 7.JUL.2012 00:04:53

Plot on Channel 39 / 2480 MHz

Date: 7.JUL.2012 00:01:32

4.8. Antenna Requirements

4.8.1. Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

4.8.2. Antenna Connector Construction

Please refer to section 3.3 in this test report, antenna connector complied with the requirements.

5. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMI Test Receiver	R&S	ESCS 30	100377	9kHz ~ 2.75GHz	Sep. 14, 2011	Conduction (CO01-CB)
LISN	F.C.C.	FCC-LISN-50-16-2	04083	150kHz ~ 100MHz	Nov. 14, 2011	Conduction (CO01-CB)
V- LISN	Schwarzbeck	NSLK 8127	8127-478	9K ~ 30MHz	Jun. 22, 2012	Conduction (CO01-CB)
PULSE LIMITER	R&S	ESH3-Z2	100430	9K~30MHz	Feb. 03, 2012	Conduction (CO01-CB)
COND Cable	Woken	Cable	01	0.15MHz~30MHz	Dec. 4, 2011	Conduction (CO01-CB)
BILOG ANTENNA	Schaffner	CBL6112D	22021	20MHz ~ 2GHz	Jan. 11, 2012	Radiation (03CH01-CB)
Horn Antenna	EMCO	3115	00075790	750MHz~18GHz	Nov. 25, 2011	Radiation (03CH01-CB)
Horn Antenna	SCHWARZBEAK	BBHA 9170	BBHA9170252	15GHz ~ 40GHz	Nov. 22, 2011	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8447D	2944A10991	0.1MHz ~ 1.3GHz	Nov. 17, 2011	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8449B	3008A02310	1GHz ~ 26.5GHz	Nov. 29, 2011	Radiation (03CH01-CB)
Pre-Amplifier	WM	TF-130N-R1	923365	26.5GHz ~ 40GHz	Jul. 29, 2011	Radiation (03CH01-CB)
Spectrum analyzer	R&S	FSP40	100056	9KHz~40GHz	Nov. 03, 2011	Radiation (03CH01-CB)
EMI Test Receiver	R&S	ESCS 30	100355	9KHz ~ 2.75GHz	Mar. 20, 2012	Radiation (03CH01-CB)
Loop Antenna	Teseq	HLA 6120	24155	9 kHz - 30 MHz	Sep. 09, 2010*	Radiation (03CH01-CB)
Turn Table	INN CO	CO 2000	N/A	0 ~ 360 degree	N/A	Radiation (03CH01-CB)
Antenna Mast	INN CO	CO2000	N/A	1 m - 4 m	N/A	Radiation (03CH01-CB)
RF Cable-low	Woken	Low Cable-1	N/A	30 MHz - 1 GHz	Nov. 17, 2011	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-1	N/A	1 GHz – 26.5 GHz	Nov. 17, 2011	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-2	N/A	1 GHz – 26.5 GHz	Nov. 17, 2011	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-3	N/A	1 GHz - 40 GHz	Nov. 17, 2011	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-4	N/A	1 GHz - 40 GHz	Nov. 17, 2011	Radiation (03CH01-CB)
Signal analyzer	R&S	FSV40	100979	9KHz~40GHz	Sep. 26, 2011	Conducted (TH01-CB)
Temp. and Humidity Chamber	Ten Billion	TTH-D3SP	TBN-931011	-30~100 degree	Jun. 05, 2012	Conducted (TH01-CB)
Thermo-Hygro Meter	N/A	HC 520	#1	15~70 degree	Nov. 02, 2011	Conducted (TH01-CB)
Signal Generator	R&S	SMR40	100302	10MHz-40GHz	Nov. 22, 2011	Conducted (TH01-CB)

Report Format Version: 01 FCC ID: QDS-BRCM1067

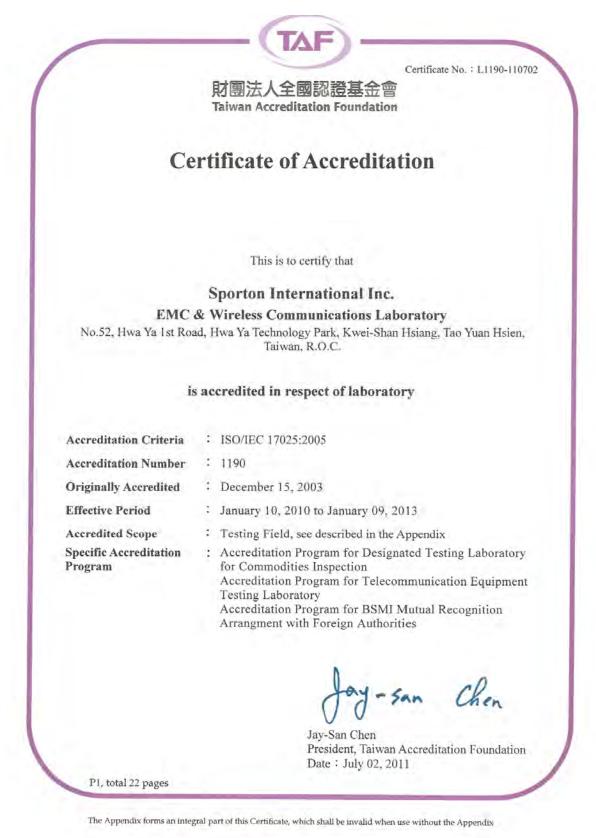
 Page No.
 : 40 of 43

 Issued Date
 : Jul. 25, 2012

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
RF Power Divider	HP	11636A	00306	2GHz ~ 18GHz	N/A	Conducted
		11000/1			1477	(TH01-CB)
RF Power Splitter	Anaren	44100	1839	2GHz ~ 18GHz	N/A	Conducted
						(TH01-CB)
RF Power Splitter	Anaren	42100	17930	2GHz ~ 18GHz	N/A	Conducted
						(TH01-CB)
Signal generator	R&S	SMU200A	102782	10MHz-40GHz	Jun. 07, 2012	Conducted
- 5 - 5 - 5						(TH01-CB)
Horn Antenna	COM-POWER	AH-118	071187	1GHz – 18GHz	May 09, 2012	Conducted
		-				(TH01-CB)
Horn Antenna	COM-POWER	AH-118	071042	1GHz – 18GHz	Nov. 01, 2011	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-7	-	1 GHz – 26.5 GHz	Nov. 17, 2011	Conducted
Ki Cable-Iligii	vvoken		-	1 GHZ - 20.5 GHZ	NOV. 17, 2011	(TH01-CB)
RF Cable-high	Woken	High Cable-8	-	1 GHz – 26.5 GHz	Nov. 17, 2011	Conducted
	VVOKen	Tigit Cable-6	-	1 GHZ = 20.5 GHZ	NOV. 17, 2011	(TH01-CB)
RF Cable-high	Woken	High Cable-9	-	1 GHz – 26.5 GHz	Nov. 17, 2011	Conducted
Ni Gable high	WOREIT	Tigit Cable-9	_	1 0112 - 20.3 0112	100.17,2011	(TH01-CB)
RF Cable-high	Woken	High Cable-10	-	1 GHz – 26.5 GHz	Nov. 17, 2011	Conducted
The ousioningh	Woken	Thigh Gable To	_		100. 17, 2011	(TH01-CB)
RF Cable-high	Woken	High Cable-11	_	1 GHz – 26.5 GHz	Nov. 17, 2011	Conducted
Ni Gable high	WOREIT	Tigh Cable-11	_	1 0112 - 20.3 0112	100.17,2011	(TH01-CB)
RF Cable-high	Woken	High Cable-12	-	1 GHz – 26.5 GHz	Nov. 17, 2011	Conducted
Ni Gable High	VVOKen	Tilgit Cable-12	-	1 GHZ = 20.5 GHZ	NOV. 17, 2011	(TH01-CB)
RF Cable-high	Woken	High Cable-13	_	1 GHz – 26.5 GHz	Nov. 17, 2011	Conducted
	Woken	Thigh Gable 10	_	1 0112 20.0 0112	100. 17, 2011	(TH01-CB)
Power Sensor	Anritsu	MA2411B	0917223	300MHz~40GHz	Nov. 01, 2011	Conducted
	,	110 (24110	0,1,220		1400.01,2011	(TH01-CB)
Power Meter	Anritsu	ML2495A	1035008	300MHz~40GHz	Nov. 01, 2011	Conducted
					1.00.01,2011	(TH01-CB)

Note: Calibration Interval of instruments listed above is one year.

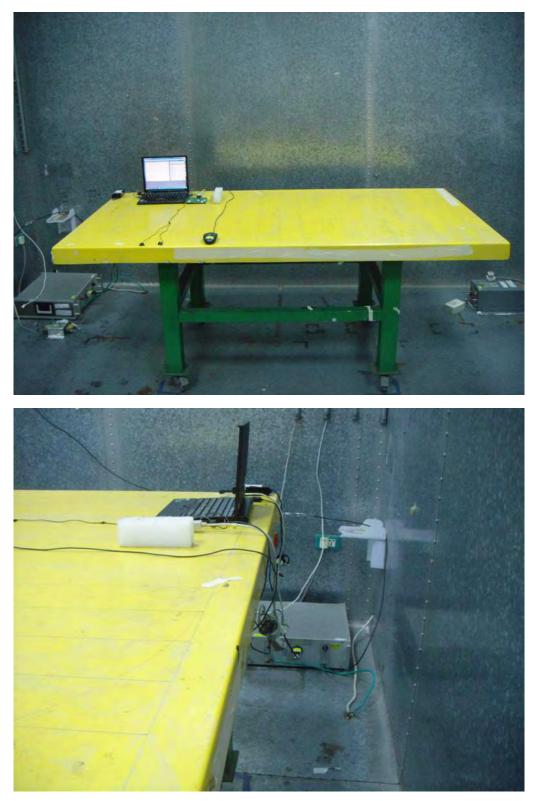
Note: "*" Calibration Interval of instruments listed above is two years.



6. TEST LOCATION

SHIJR	ADD	:	6Fl., No. 106, Sec. 1, Shintai 5th Rd., Shijr City, Taipei, Taiwan 221, R.O.C.
	TEL	:	886-2-2696-2468
	FAX	:	886-2-2696-2255
HWA YA	ADD	:	No. 52, Hwa Ya 1st Rd., Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.
	TEL	:	886-3-327-3456
	FAX	:	886-3-318-0055
LINKOU	ADD	:	No. 30-2, Dingfu Tsuen, Linkou Shiang, Taipei, Taiwan 244, R.O.C
	TEL	:	886-2-2601-1640
	FAX	:	886-2-2601-1695
DUNGHU	ADD	:	No. 3, Lane 238, Kangle St., Neihu Chiu, Taipei, Taiwan 114, R.O.C.
	TEL	:	886-2-2631-4739
	FAX	:	886-2-2631-9740
JUNGHE	ADD	:	7Fl., No. 758, Jungjeng Rd., Junghe City, Taipei, Taiwan 235, R.O.C.
	TEL	:	886-2-8227-2020
	FAX	:	886-2-8227-2626
NEIHU	ADD	:	4FI., No. 339, Hsin Hu 2 nd Rd., Taipei 114, Taiwan, R.O.C.
	TEL	:	886-2-2794-8886
	FAX	:	886-2-2794-9777
JHUBEI	ADD	:	No.8, Lane 724, Bo-ai St., Jhubei City, HsinChu County 302, Taiwan, R.O.C.
	TEL	:	886-3-656-9065
	FAX	:	886-3-656-9085

7. TAF CERTIFICATE OF ACCREDITATION



Appendix A. Test Photos

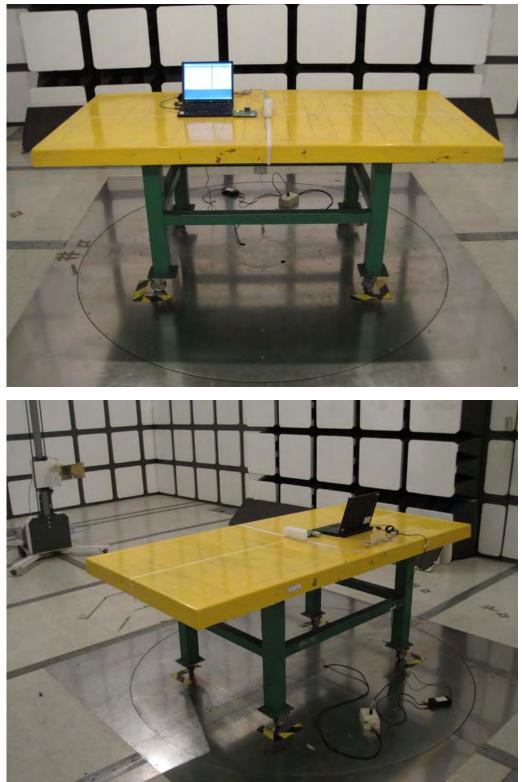
1. Photographs of Conducted Emissions Test Configuration

FRONT VIEW

2. Photographs of Radiated Emissions Test Configuration

Test Configuration: 9kHz ~30MHz

FRONT VIEW


Test Configuration: 30MHz~1GHz

FRONT VIEW

Test Configuration: Above 1GHz

FRONT VIEW

Appendix B. Maximum Permissible Exposure

1. Maximum Permissible Exposure

1.1. Applicable Standard

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.25 m normally can be maintained between the user and the device.

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ² , H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

(A) Limits for Occupational / Controlled Exposure

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)			Power Density (S) (mW/ cm²)	Averaging Time E ² , H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz ; *Plane-wave equivalent power density

1.2. MPE Calculation Method

$$E (V/m) = \frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density: $Pd (W/m^2) = \frac{E^2}{377}$

E = Electric field (V/m)

P = Average RF output power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained.

1.3. Calculated Result and Limit

For 5GHz UNII Band:

Antenna Type : PIFA Antenna

Max Conducted Power for IEEE 802.11a : 13.38dBm

Directional Antenna Gain (dBi)	Antenna Gain (numeric) Average Output Powe (dBm)		Average Output Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm ²)	Test Result
4.30	2.6915	13.3800	21.7771	0.011667	1	Complies

Note: Directional Antenna Gain = Test Antenna Gain + 10 log (Antenna quantity)

For 5GHz ISM Band:

Antenna Type : PIFA Antenna

Max Conducted Power for IEEE 802.11a: 13.25dBm

Directional Antenna Gain (dBi)	Antenna Gain (numeric)	AverageAverageOutput PowerOutput Power(dBm)(mW)		Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm ²)	Test Result
4.30	2.6915	13.2500	21.1349	0.011323	1	Complies

Note: Directional Antenna Gain = Test Antenna Gain + 10 log (Antenna quantity)

For 2.4GHz Band:

Antenna Type : PIFA Antenna

Max Conducted Power for IEEE 802.11b : 15.82 dBm

Directional Antenna Gain (dBi)	Antenna Gain (numeric)	AverageAverageOutput PowerOutput Power(dBm)(mW)		Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm ²)	Test Result
3	1.9953	15.8200	38.1944	0.015169	1	Complies

Note: Directional Antenna Gain = Test Antenna Gain + 10 log (Antenna quantity)

For Bluetooth 1.0 :

Antenna Type : PIFA Antenna

Max Conducted Power for Bluetooth : 9.32 dBm

Antenna Gain (dBi)	Antenna Gain (numeric)	AverageAverageOutput PowerOutput Power(dBm)(mW)		Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm ²)	Test Result
3	1.9953	9.3200	8.5507	0.003396	1	Complies

For Bluetooth 2.1+EDR :

Antenna Type : PIFA Antenna

Max Conducted Power for Bluetooth : 9.50 dBm

Antenna Gain (dBi)	Antenna Gain (numeric)	Average Output Power (dBm)	Average Output Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm ²)	Test Result
3	1.9953	9.5000	8.9125	0.003540	1	Complies

For Bluetooth 4.0 :

Antenna Type : PIFA Antenna

Max Conducted Power for Bluetooth : 7.80 dBm

Antenna Gain (dBi)	Antenna Gain (numeric)	Average Output Power (dBm)	Average Output Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm ²)	Test Result
3	1.9953	7.8000	6.0256	0.002393	1	Complies

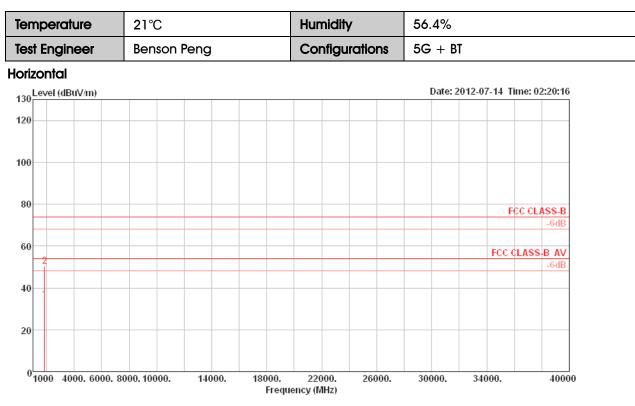
CONCULSION:

Both of the WLAN 5GHz Band and Bluetooth can transmit simultaneously, the formula of calculated the MPE is:

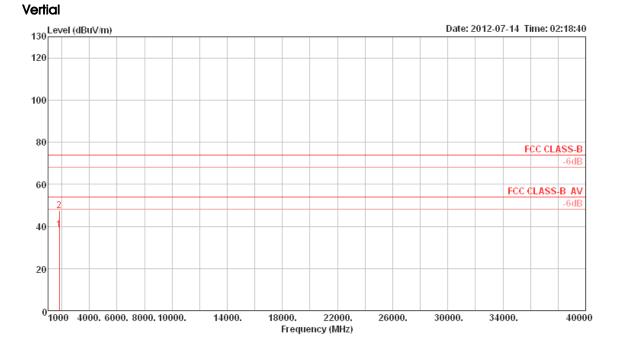
CPD1 / LPD1 + CPD2 / LPD2 +etc. < 1

CPD = Calculation power density

LPD = Limit of power density


Therefore, the worst-case situation is 0.011667 / 1 + 0.003540 / 1 = 0.015207, which isless than "1". This confirmed that the device comply with FCC 1.1310 MPE limit.

Appendix C. Co-location



1. Results of Radiated Emissions for Co-located

	Freq	Level	Limit Line	Over Limit						A/Pos		Pol/Phase
	MHz	dBuV/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB		cm	deg	
1	1842.20 1842.20								Average	100 100		HORIZONTAL HORIZONTAL

			Limit	0ver	Read	CableA	htenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB		cm	deg	
1	1808.20	38.45	54.00	-15.55	43.02	3.80	26.53	34.90	Average	105	228	VERTICAL
2	1808.20	47.60	74.00	-26.40	52.17	3.80	26.53	34.90	Peak	105	228	VERTICAL