

SPORTON International Inc. No. 52, Hwa Ya 1st Rd., Kwei-Shan Hsiang, TaoYuan Hsien, Taiwan, R.O.C. Ph: 886-3-327-3456 / FAX: 886-3-327-0973 / www.sporton.com.tw

# FCC RADIO TEST REPORT

| Applicant's company    | Broadcom Corporation                                                        |
|------------------------|-----------------------------------------------------------------------------|
| Applicant Address      | 190 Mathilda Place, Sunnyvale, CA 94086 USA                                 |
| FCC ID                 | QDS-BRCM1067                                                                |
| Manufacturer's company | Hon Hai PRECISION IND. CO., LTD.                                            |
| Manufacturer Address   | 5F-1, 5 Hsin-An road Hsinchu, Science-Based Industrial Park, Taiwan, R.O.C. |

| Product Name                       | 802.11abgn WLAN + Bluetooth Card      |  |  |  |
|------------------------------------|---------------------------------------|--|--|--|
| Brand Name                         | Broadcom                              |  |  |  |
| Model Name BCM94330LGA             |                                       |  |  |  |
| Test Rule Part(s)                  | 47 CFR FCC Part 15 Subpart E § 15.407 |  |  |  |
| Test Freq. Range                   | 5150 ~ 5350MHz / 5470 ~ 5725MHz       |  |  |  |
| Received Date                      | Jun. 04, 2012                         |  |  |  |
| Final Test Date                    | Jul. 16, 2012                         |  |  |  |
| Submission Type Original Equipment |                                       |  |  |  |

## Statement

Test result included is for the IEEE 802.11n and IEEE 802.11a (5150  $\sim$  5350MHz / 5470  $\sim$  5725MHz) of the product.

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in ANSI C63.10-2009 and 47 CFR FCC Part 15 Subpart E and KDB 789033 – 20120305.

The test equipment used to perform the test is calibrated and traceable to NML/ROC.





## Table of Contents

| 1. | CER                                                                                                                        | RTIFICATE OF COMPLIANCE                                                                                                                                                             | 1                                      |
|----|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| 2. | SUN                                                                                                                        | IMARY OF THE TEST RESULT                                                                                                                                                            | 2                                      |
|    | <b>GEN</b><br>3.1.                                                                                                         | NERAL INFORMATION<br>Product Details<br>Accessories<br>Table for Filed Antenna<br>Table for Carrier Frequencies<br>Table for Test Modes<br>Table for Testing Locations              | 3<br>5<br>6<br>7<br>8                  |
|    | 3.8.<br>3.9.                                                                                                               | Test Configurations                                                                                                                                                                 | 10                                     |
| 4. | <ol> <li>4.1.</li> <li>4.2.</li> <li>4.3.</li> <li>4.4.</li> <li>4.5.</li> <li>4.6.</li> <li>4.7.</li> <li>4.8.</li> </ol> | Maximum Conducted Output Power Measurement<br>Power Spectral Density Measurement<br>Peak Excursion Measurement<br>Radiated Emissions Measurement<br>Band Edge Emissions Measurement | 13<br>30<br>34<br>42<br>49<br>73<br>83 |
| 5. | LIST                                                                                                                       | OF MEASURING EQUIPMENTS                                                                                                                                                             | 86                                     |
| 6. | TESI                                                                                                                       | I LOCATION                                                                                                                                                                          | 88                                     |
| 7. | TAF                                                                                                                        | CERTIFICATE OF ACCREDITATION                                                                                                                                                        | 89                                     |
| AF | PPEN                                                                                                                       | IDIX A. TEST PHOTOS                                                                                                                                                                 | A5                                     |
|    |                                                                                                                            | idix B. Maximum permissible exposureB1 $\sim$                                                                                                                                       |                                        |
| AF | PEN                                                                                                                        | IDIX C. CO-LOCATION REPORT                                                                                                                                                          | С3                                     |



## History of This Test Report

| REPORT NO. | VERSION | DESCRIPTION             | ISSUED DATE   |  |
|------------|---------|-------------------------|---------------|--|
| FR260412AB | Rev. 01 | Initial issue of report | Jul. 25, 2012 |  |
|            |         |                         |               |  |
|            |         |                         |               |  |
|            |         |                         |               |  |
|            |         |                         |               |  |
|            |         |                         |               |  |
|            |         |                         |               |  |
|            |         |                         |               |  |
|            |         |                         |               |  |
|            |         |                         |               |  |
|            |         |                         |               |  |
|            |         |                         |               |  |
|            |         |                         |               |  |
|            |         |                         |               |  |
|            |         |                         |               |  |



Report No.: FR260412AB

Certificate No.: CB10107098

## 1. CERTIFICATE OF COMPLIANCE

| Product Name      | ÷ | 802.11 abgn WLAN + Bluetooth Card     |
|-------------------|---|---------------------------------------|
| Brand Name        | ; | Broadcom                              |
| Model Name        | ; | BCM94330LGA                           |
| Applicant         | : | Broadcom Corporation                  |
| Test Rule Part(s) | ; | 47 CFR FCC Part 15 Subpart E § 15.407 |
|                   |   |                                       |

Sporton International as requested by the applicant to evaluate the EMC performance of the product sample received on Jun. 04, 2012 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature.

Jordan Hsiao SPORTON INTERNATIONAL INC.



## 2. SUMMARY OF THE TEST RESULT

|      | Applied Standard: 47 CFR FCC Part 15 Subpart E |                                   |             |          |  |  |
|------|------------------------------------------------|-----------------------------------|-------------|----------|--|--|
| Part | Rule Section                                   | Result                            | Under Limit |          |  |  |
| 4.1  | 15.207                                         | AC Power Line Conducted Emissions | Complies    | 18.49 dB |  |  |
| 4.2  | 15.407(a)                                      | 26dB Spectrum Bandwidth           | Complies    | -        |  |  |
| 4.3  | 15.407(a)                                      | Maximum Conducted Output Power    | Complies    | 3.64dB   |  |  |
| 4.4  | 15.407(a)                                      | Power Spectral Density            | Complies    | 5.02 dB  |  |  |
| 4.5  | 15.407(a)                                      | Peak Excursion                    | Complies    | 2.76 dB  |  |  |
| 4.6  | 15.407(b)                                      | Radiated Emissions                | Complies    | 2.10 dB  |  |  |
| 4.7  | 15.407(b)                                      | Band Edge Emissions               | Complies    | 0.53 dB  |  |  |
| 4.8  | 15.407(g)                                      | Frequency Stability               | Complies    | -        |  |  |
| 4.9  | 15.203                                         | Antenna Requirements              | Complies    | -        |  |  |

| Test Items                                    | Uncertainty           | Remark                   |
|-----------------------------------------------|-----------------------|--------------------------|
| AC Power Line Conducted Emissions             | ±2.3dB                | Confidence levels of 95% |
| Maximum Conducted Output Power                | ±0.5dB                | Confidence levels of 95% |
| Power Spectral Density                        | ±0.5dB                | Confidence levels of 95% |
| Peak Excursion                                | ±0.5dB                | Confidence levels of 95% |
| 26dB Spectrum Bandwidth / Frequency Stability | ±8.5×10 <sup>-8</sup> | Confidence levels of 95% |
| Radiated Emissions (9kHz~30MHz)               | ±0.8dB                | Confidence levels of 95% |
| Radiated Emissions (30MHz~1000MHz)            | ±1.9dB                | Confidence levels of 95% |
| Radiated / Band Edge Emissions (1GHz~18GHz)   | ±1.9dB                | Confidence levels of 95% |
| Radiated Emissions (18GHz~40GHz)              | ±1.9dB                | Confidence levels of 95% |
| Temperature                                   | ±0.7°C                | Confidence levels of 95% |
| Humidity                                      | ±3.2%                 | Confidence levels of 95% |
| DC / AC Power Source                          | ±1.4%                 | Confidence levels of 95% |





## 3. GENERAL INFORMATION

## 3.1. Product Details

#### IEEE 802.11n

| Items                    | Description                          |
|--------------------------|--------------------------------------|
| Product Type             | WLAN (1TX, 1RX)                      |
| Radio Type               | Intentional Transceiver              |
| Power Type               | From host system                     |
| Modulation               | see the below table for IEEE 802.11n |
| Data Modulation          | OFDM (BPSK / QPSK / 16QAM / 64QAM)   |
| Data Rate (Mbps)         | see the below table for IEEE 802.11n |
| Frequency Range          | 5150 ~ 5350MHz / 5470 ~ 5725MHz      |
| Channel Number           | 19 for 20MHz bandwidth               |
| Channel Band Width (99%) | MCS0 (20MHz): 17.60 MHz              |
| Conducted Output Power   | Band 1: MCS0 (20MHz): 12.09 dBm      |
|                          | Band 2: MCS0 (20MHz): 12.17 dBm      |
|                          | Band 3: MCS0 (20MHz): 12.17 dBm      |
| Carrier Frequencies      | Please refer to section 3.4          |
| Antenna                  | Please refer to section 3.3          |

#### IEEE 802.11a

| Items                    | Description                                               |
|--------------------------|-----------------------------------------------------------|
| Product Type             | WLAN (1TX, 1RX)                                           |
| Radio Type               | Intentional Transceiver                                   |
| Power Type               | From host system                                          |
| Modulation               | OFDM for IEEE 802.11a                                     |
| Data Modulation          | OFDM (BPSK / QPSK / 16QAM / 64QAM)                        |
| Data Rate (Mbps)         | OFDM (6/9/12/18/24/36/48/54/108)                          |
| Frequency Range          | 5150 ~ 5350MHz / 5470 ~ 5725MHz                           |
| Channel Number           | 19                                                        |
| Channel Band Width (99%) | 11a: 16.64 MHz                                            |
| Conducted Output Power   | Band 1: 13.13 dBm ; Band 2: 13.21 dBm ; Band 3: 13.38 dBm |
| Carrier Frequencies      | Please refer to section 3.4                               |
| Antenna                  | Please refer to section 3.3                               |



#### Antenna & Band width

| Antenna         | Single (TX) |
|-----------------|-------------|
| Band width Mode | 20 MHz      |
| IEEE 802.11a    | V           |
| IEEE 802.11n    | V           |

#### IEEE 802.11n spec

| MCS   |     | lss Modulation | R NBP |       | C NCBPS | NDBPS | Datarate(Mbps) |         |
|-------|-----|----------------|-------|-------|---------|-------|----------------|---------|
| Index | Nss |                |       | NBPSC |         |       | 800nsGI        | 400nsGI |
| Index |     |                |       |       | 20MHz   | 20MHz | 20MHz          | 20MHz   |
| 0     | 1   | BPSK           | 1/2   | 1     | 52      | 26    | 6.5            | 7.200   |
| 1     | 1   | QPSK           | 1/2   | 2     | 104     | 52    | 13.0           | 14.400  |
| 2     | 1   | QPSK           | 3/4   | 2     | 104     | 78    | 19.5           | 21.700  |
| 3     | 1   | 16-QAM         | 1/2   | 4     | 208     | 104   | 26.0           | 28.900  |
| 4     | 1   | 16-QAM         | 3/4   | 4     | 208     | 156   | 39.0           | 43.300  |
| 5     | 1   | 64-QAM         | 2/3   | 6     | 312     | 208   | 52.0           | 57.800  |
| 6     | 1   | 64-QAM         | 3/4   | 6     | 312     | 234   | 58.5           | 65.000  |
| 7     | 1   | 64-QAM         | 5/6   | 6     | 312     | 260   | 65.0           | 72.200  |
| 8     | 2   | BPSK           | 1/2   | 1     | 104     | 52    | 13.0           | 14.444  |
| 9     | 2   | QPSK           | 1/2   | 2     | 208     | 104   | 26.0           | 28.889  |
| 10    | 2   | QPSK           | 3/4   | 2     | 208     | 156   | 39.0           | 43.333  |
| 11    | 2   | 16-QAM         | 1/2   | 4     | 416     | 208   | 52.0           | 57.778  |
| 12    | 2   | 16-QAM         | 3/4   | 4     | 416     | 312   | 78.0           | 86.667  |
| 13    | 2   | 64-QAM         | 2/3   | 6     | 624     | 416   | 104.0          | 115.556 |
| 14    | 2   | 64-QAM         | 3/4   | 6     | 624     | 468   | 117.0          | 130.000 |
| 15    | 2   | 64-QAM         | 5/6   | 6     | 624     | 520   | 130.0          | 144.444 |

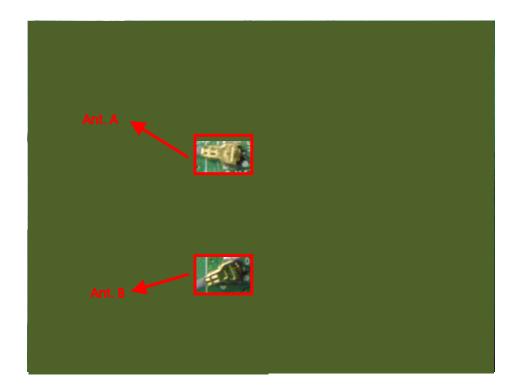
| Symbol | Explanation                             |
|--------|-----------------------------------------|
| NSS    | Number of spatial streams               |
| R      | Code rate                               |
| NBPSC  | Number of coded bits per single carrier |
| NCBPS  | Number of coded bits per symbol         |
| NDBPS  | Number of data bits per symbol          |
| GI     | guard interval                          |



## 3.2. Accessories

NA

## 3.3. Table for Filed Antenna


| Ant. | Brand | Model Name | Model Name Antenna Type Connector |       | Gain (dBi) |     |
|------|-------|------------|-----------------------------------|-------|------------|-----|
| Α    | WhaYu | -          | PIFA Antenna                      | l-pex | 2.4GHz     | 3   |
| В    | WhaYu | -          | PIFA Antenna                      | l-pex | 5GHz       | 4.3 |

Note: The EUT has two antennas. One for 2.4GHz band use, the other for 5GHz band use.

<5GHz WALN function>

For IEEE 802.11a/n Mode: (1TX, 1RX)

Only Ant. B can be used as transmitting/receiving antenna.





### 3.4. Table for Carrier Frequencies

For IEEE 802.11a, use Channel 36, 40, 44, 48, 52, 56, 60, 64, 100, 104, 108, 112, 116, 132, 136, 140. There is one bandwidth systems for IEEE 802.11n.

For both 20MHz bandwidth systems, use Channel 36, 40, 44, 48, 52, 56, 60, 64, 100, 104, 108, 112, 116, 132, 136, 140.

| Frequency Band | Channel No. | Frequency | Channel No. | Frequency |
|----------------|-------------|-----------|-------------|-----------|
| 5150~5250 MHz  | 36          | 5180 MHz  | 44          | 5220 MHz  |
| Band 1         | 40          | 5200 MHz  | 48          | 5240 MHz  |
| 5250~5350 MHz  | 52          | 5260 MHz  | 60          | 5300 MHz  |
| Band 2         | 56          | 5280 MHz  | 64          | 5320 MHz  |
|                | 100         | 5500 MHz  | 116         | 5580 MHz  |
| 5470~5725 MHz  | 104         | 5520 MHz  | 132         | 5660 MHz  |
| Band 3         | 108         | 5540 MHz  | 136         | 5680 MHz  |
|                | 112         | 5560 MHz  | 140         | 5700 MHz  |



## 3.5. Table for Test Modes

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

| Test Items              | Mod           | Mode        |         | Channel           | Antenna |
|-------------------------|---------------|-------------|---------|-------------------|---------|
| AC Power Conducted      | Normal Link   | Normal Link |         | -                 | -       |
| Emission                |               |             |         |                   |         |
| Max. Conducted Output   | MCS0/20MHz    | Band 1~2    | 6.5Mbps | 36/40/48/52/60/64 | В       |
| Power                   |               | Band 3      | 6.5Mbps | 100/116/140       | В       |
| Power Spectral Density  | 11a/BPSK      | Band 1~2    | 6Mbps   | 36/40/48/52/60/64 | В       |
|                         |               | Band 3      | 6Mbps   | 100/116/140       | В       |
| 26dB Spectrum Bandwidth | MCS0/20MHz    | Band 1~2    | 6.5Mbps | 36/40/48/52/60/64 | В       |
| 99% Occupied Bandwidth  |               | Band 3      | 6.5Mbps | 100/116/140       | В       |
| Measurement             | 11a/BPSK      | Band 1~2    | 6Mbps   | 36/40/48/52/60/64 | В       |
| Peak Excursion          |               | Band 3      | 6Mbps   | 100/116/140       | В       |
| Radiated Emission Below | Normal Link   |             | Auto    | -                 | -       |
| 1GHz                    |               |             |         |                   |         |
| Radiated Emission Above | MCS0/20MHz    | Band 1~2    | 6.5Mbps | 36/40/48/52/60/64 | В       |
| 1GHz                    |               | Band 3      | 6.5Mbps | 100/116/140       | В       |
|                         | 11a/BPSK      | Band 1~2    | 6Mbps   | 36/40/48/52/60/64 | В       |
|                         |               | Band 3      | 6Mbps   | 100/116/140       | В       |
| Band Edge Emission      | MCS0/20MHz    | Band 1~2    | 6.5Mbps | 36/40/48/52/60/64 | В       |
|                         |               | Band 3      | 6.5Mbps | 100/116/140       | В       |
|                         | 11a/BPSK      | Band 1~2    | 6Mbps   | 36/40/48/52/60/64 | В       |
|                         |               | Band 3      | 6Mbps   | 100/116/140       | В       |
| Frequency Stability     | Un-modulation | 1           | -       | 40/60             | N/A     |



## **3.6.** Table for Testing Locations

| Test Site No. | Site Category | Location | FCC Reg. No. | IC File No. | VCCI Reg. No |
|---------------|---------------|----------|--------------|-------------|--------------|
| 03CH01-CB     | SAC           | Hsin Chu | 262045       | IC 4086D    | -            |
| CO01-CB       | Conduction    | Hsin Chu | 262045       | IC 4086D    | -            |
| TH01-CB       | OVEN Room     | Hsin Chu | -            | -           | -            |

Open Area Test Site (OATS); Semi Anechoic Chamber (SAC); Fully Anechoic Chamber (FAC). Please refer section 6 for Test Site Address.

## 3.7. Table for Supporting Units

| Support Unit | Brand        | Model           | FCC ID        |
|--------------|--------------|-----------------|---------------|
| Notebook     | DELL         | M1330           | E2K4965AGNM   |
| Notebook     | DELL         | LATITUDE E6500  | PDN:5JNCT A00 |
| Mouse        | Logitech M90 | M-U0026         | DoC           |
| Wireless AP  | BELKIN       | WG7016G22-LF-AK | DoC           |
| EARPHONES    | E-books      | E-EPC040        | N/A           |



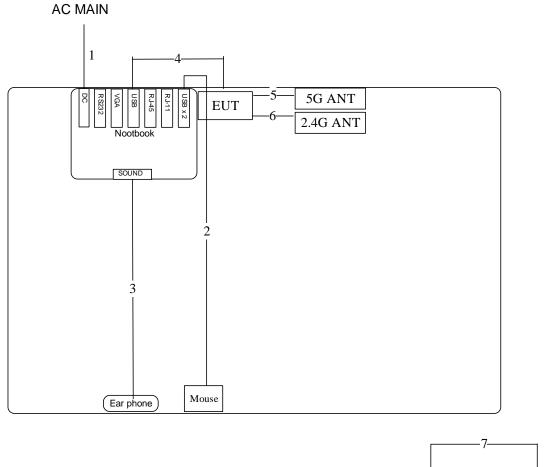
## 3.8. Table for Parameters of Test Software Setting

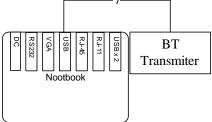
During testing, Channel & Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product. **Power Parameters of IEEE 802.11n MCS0 20MHz** 

| Test Software Version | DOS   |       |       |       |       |       |       |       |       |
|-----------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Frequency             | 5180  | 5200  | 5240  | 5260  | 5300  | 5320  | 5500  | 5580  | 5700  |
|                       | MHz   |
| Ant. B                | 52.00 | 52.00 | 52.00 | 52.00 | 52.00 | 52.00 | 46.00 | 46.00 | 48.00 |

#### Power Parameters of IEEE 802.11a

| Test Software Version |       |       |       |       | DOS   |       |       |       |       |
|-----------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Frequency             | 5180  | 5200  | 5240  | 5260  | 5300  | 5320  | 5500  | 5580  | 5700  |
|                       | MHz   |
| Ant. B                | 56.00 | 56.00 | 56.00 | 56.00 | 56.00 | 56.00 | 50.00 | 50.00 | 54.00 |


During the test, "DOS" under WIN XP was executed the test program to control the EUT continuously transmit RF signal.

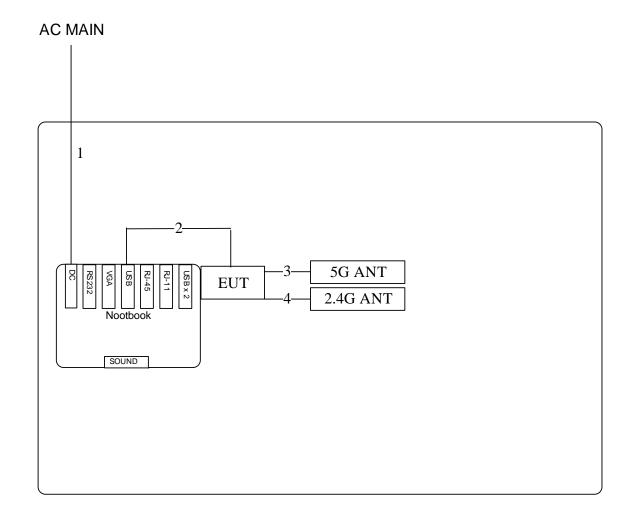



## 3.9. Test Configurations

## 3.9.1. Radiation Emissions Test Configuration

Test Configuration: 30MHz  $\sim$  1GHz

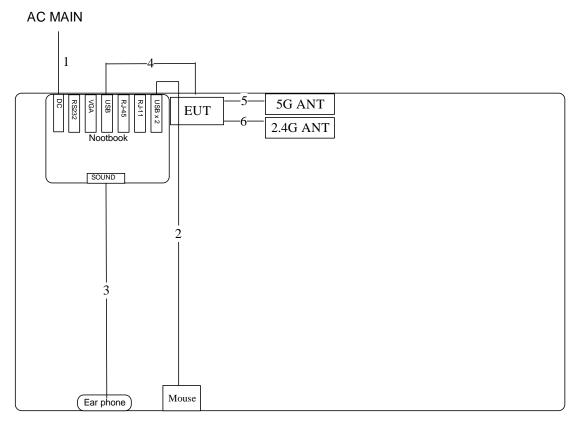




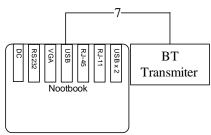

| ltem | Connection     | Shield | Length |
|------|----------------|--------|--------|
| 1    | Power cable    | No     | 2.6M   |
| 2    | USB cable      | No     | 1.8M   |
| 3    | Earphone cable | No     | 1.1M   |
| 4    | RS-232 cable   | Yes    | 1.95M  |
| 5    | Antenna cable  | Yes    | 0.11M  |
| 6    | Antenna cable  | Yes    | 1.8M   |
| 7    | RS-232 cable   | Yes    | 1.95M  |

AP




Test Configuration: above 1GHz




| ltem | Connection    | Shield | Length |
|------|---------------|--------|--------|
| 1    | Power cable   | No     | 2.6M   |
| 2    | Antenna cable | Yes    | 0.11M  |
| 3    | Antenna cable | Yes    | 1.8M   |
| 4    | RS-232 cable  | Yes    | 1.95M  |



## 3.9.2. AC Power Line Conduction Emissions Test Configuration



AP



| ltem | Connection     | Shield | Length |
|------|----------------|--------|--------|
| 1    | Power cable    | No     | 2.6M   |
| 2    | USB cable      | No     | 1.8M   |
| 3    | Earphone cable | No     | 1.1M   |
| 4    | RS-232 cable   | Yes    | 1.95M  |
| 5    | Antenna cable  | Yes    | 0.11M  |
| 6    | Antenna cable  | Yes    | 1.8M   |
| 7    | RS-232 cable   | Yes    | 1.95M  |



## 4. TEST RESULT

## 4.1. AC Power Line Conducted Emissions Measurement

#### 4.1.1. Limit

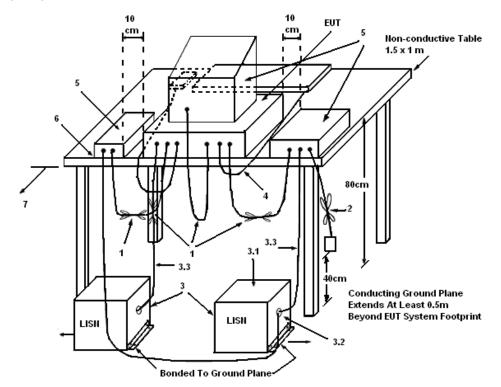
For this product that is designed to connect to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

| Frequency (MHz) | QP Limit (dBuV) | AV Limit (dBuV) |
|-----------------|-----------------|-----------------|
| 0.15~0.5        | 66~56           | 56~46           |
| 0.5~5           | 56              | 46              |
| 5~30            | 60              | 50              |

#### 4.1.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the receiver.

| Receiver Parameters | Setting  |
|---------------------|----------|
| Attenuation         | 10 dB    |
| Start Frequency     | 0.15 MHz |
| Stop Frequency      | 30 MHz   |
| IF Bandwidth        | 9 KHz    |


#### 4.1.3. Test Procedures

- 1. Configure the EUT according to ANSI C63.10. The EUT or host of EUT has to be placed 0.4 meter far from the conducting wall of the shielding room and at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT or host of EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connected to the other LISNs. The LISN should provide 50uH/50ohms coupling impedance.
- 4. The frequency range from 150 KHz to 30 MHz was searched.
- 5. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. The measurement has to be done between each power line and ground at the power terminal.





#### 4.1.4. Test Setup Layout



LEGEND:

(1) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

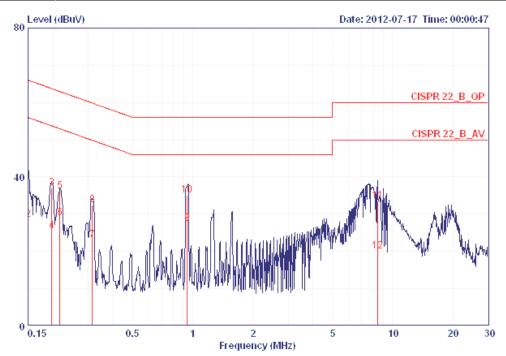
(2) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

(3) EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50  $\Omega$ . LISN can be placed on top of, or immediately beneath, reference ground plane.

- (3.1) All other equipment powered from additional LISN(s).
- (3.2) Multiple outlet strip can be used for multiple power cords of non-EUT equipment.
- (3.3) LISN at least 80 cm from nearest part of EUT chassis.
- (4) Cables of hand-operated devices, such as keyboards, mice, etc., shall be placed as for normal use.
- (5) Non-EUT components of EUT system being tested.
- (6) Rear of EUT, including peripherals, shall all be aligned and flush with rear of tabletop.
- (7) Rear of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane.

#### 4.1.5. Test Deviation

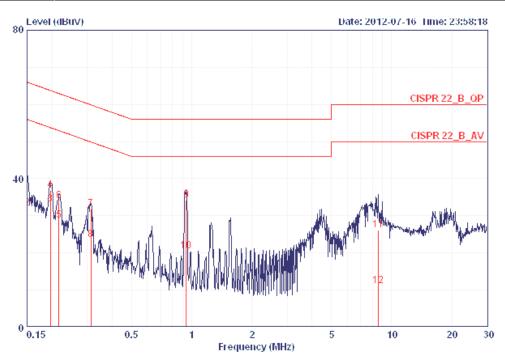
There is no deviation with the original standard.


#### 4.1.6. EUT Operation during Test

The EUT was placed on the test table and programmed in normal function.



#### 4.1.7. Results of AC Power Line Conducted Emissions Measurement


| Temperature   | <b>22°</b> C | Humidity | 57%  |
|---------------|--------------|----------|------|
| Test Engineer | Kane Liu     | Phase    | Line |
| Configuration | Normal Link  |          |      |



|            | Freq    | Level | Over<br>Limit | Limit<br>Line | Read<br>Level | LISN<br>Factor | Cable<br>Loss | Pol/Phase | Remark  |
|------------|---------|-------|---------------|---------------|---------------|----------------|---------------|-----------|---------|
|            | MHz     | dBuV  | dB            | dBu∛          | dBuV          | dB             | dB            |           |         |
| 1          | 0.15000 | 39.38 | -26.62        | 66.00         | 39.02         | 0.16           | 0.20          | LINE      | QP      |
| 2          | 0.15000 | 28.47 | -27.53        | 56.00         | 28.11         | 0.16           | 0.20          | LINE      | AVERAGE |
| 3          | 0.19758 | 36.95 | -26.76        | 63.71         | 36.60         | 0.15           | 0.20          | LINE      | QP      |
| 4          | 0.19758 | 25.45 | -28.26        | 53.71         | 25.10         | 0.15           | 0.20          | LINE      | AVERAGE |
| 5          | 0.21620 | 36.23 | -26.73        | 62.96         | 35.88         | 0.15           | 0.20          | LINE      | QP      |
| 6          | 0.21620 | 28.93 | -24.03        | 52.96         | 28.58         | 0.15           | 0.20          | LINE      | AVERAGE |
| 7          | 0.31495 | 23.15 | -26.69        | 49.84         | 22.80         | 0.15           | 0.20          | LINE      | AVERAGE |
| 8          | 0.31495 | 32.58 | -27.26        | 59.84         | 32.23         | 0.15           | 0.20          | LINE      | QP      |
| <b>9</b> @ | 0.94009 | 27.51 | -18.49        | 46.00         | 27.14         | 0.17           | 0.20          | LINE      | AVERAGE |
| 10         | 0.94009 | 35.20 | -20.80        | 56.00         | 34.83         | 0.17           | 0.20          | LINE      | QP      |
| 11         | 8.412   | 33.56 | -26.44        | 60.00         | 32.93         | 0.31           | 0.32          | LINE      | QP      |
| 12         | 8.412   | 20.08 | -29.92        | 50.00         | 19.45         | 0.31           | 0.32          | LINE      | AVERAGE |



| Temperature   | <b>22</b> °C | Humidity | 57%     |
|---------------|--------------|----------|---------|
| Test Engineer | Kane Liu     | Phase    | Neutral |
| Configuration | Normal Link  |          |         |



|    | Freq    | Level | Over<br>Limit | Limit<br>Line | Read<br>Level | LISN<br>Factor | Cable<br>Loss | Pol/Phase | Remark  |
|----|---------|-------|---------------|---------------|---------------|----------------|---------------|-----------|---------|
|    | MHz     | dBuV  | dB            | dBu∛          | dBuV          | dB             | dB            |           |         |
| 1  | 0.15000 | 38.47 | -27.53        | 66.00         | 38.19         | 0.08           | 0.20          | NEUTRAL   | QP      |
| 2  | 0.15000 | 32.00 | -24.00        | 56.00         | 31.72         | 0.08           | 0.20          | NEUTRAL   | AVERAGE |
| 3  | 0.19654 | 33.16 | -20.60        | 53.76         | 32.88         | 0.08           | 0.20          | NEUTRAL   | AVERAGE |
| 4  | 0.19654 | 36.82 | -26.94        | 63.76         | 36.54         | 0.08           | 0.20          | NEUTRAL   | QP      |
| 5  | 0.21620 | 28.77 | -24.19        | 52.96         | 28.49         | 0.08           | 0.20          | NEUTRAL   | AVERAGE |
| 6  | 0.21620 | 33.94 | -29.02        | 62.96         | 33.66         | 0.08           | 0.20          | NEUTRAL   | QP      |
| 7  | 0.31328 | 31.88 | -28.00        | 59.88         | 31.60         | 0.08           | 0.20          | NEUTRAL   | QP      |
| 8  | 0.31328 | 23.63 | -26.25        | 49.88         | 23.35         | 0.08           | 0.20          | NEUTRAL   | AVERAGE |
| 9  | 0.93810 | 34.19 | -21.81        | 56.00         | 33.90         | 0.09           | 0.20          | NEUTRAL   | QP      |
| 10 | 0.93810 | 20.51 | -25.49        | 46.00         | 20.22         | 0.09           | 0.20          | NEUTRAL   | AVERAGE |
| 11 | 8.546   | 26.19 | -33.81        | 60.00         | 25.68         | 0.21           | 0.30          | NEUTRAL   | QP      |
| 12 | 8.546   | 11.19 | -38.81        | 50.00         | 10.68         | 0.21           | 0.30          | NEUTRAL   | AVERAGE |

#### Note:

Level = Read Level + LISN Factor + Cable Loss.

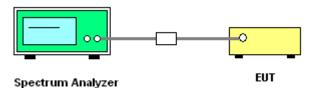


## 4.2. 99% Occupied Bandwidth Measurement

#### 4.2.1. Limit

No restriction limits. But resolution bandwidth within band edge measurement is 1% of the 99% occupied bandwidth.

#### 4.2.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

| Spectrum Parameters | Setting          |
|---------------------|------------------|
| Attenuation         | Auto             |
| Span Frequency      | > 26dB Bandwidth |
| RB                  | 300 kHz          |
| VB                  | 1000 kHz         |
| Detector            | Peak             |
| Trace               | Max Hold         |
| Sweep Time          | Auto             |

#### 4.2.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer in peak hold mode.
- 2. The resolution bandwidth of 300 kHz and the video bandwidth of 1000 kHz were used.
- 3. Measured the spectrum width with power higher than 26dB below carrier.

#### 4.2.4. Test Setup Layout



#### 4.2.5. Test Deviation

There is no deviation with the original standard.

#### 4.2.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

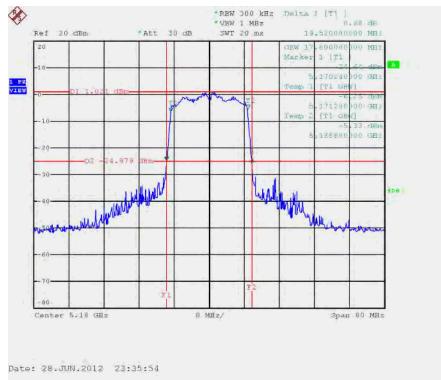


## 4.2.7. Test Result of 99% Occupied Bandwidth

| Temperature   | <b>24</b> °C | Humidity       | 63%          |
|---------------|--------------|----------------|--------------|
| Test Engineer | Satoshi Yang | Configurations | IEEE 802.11n |

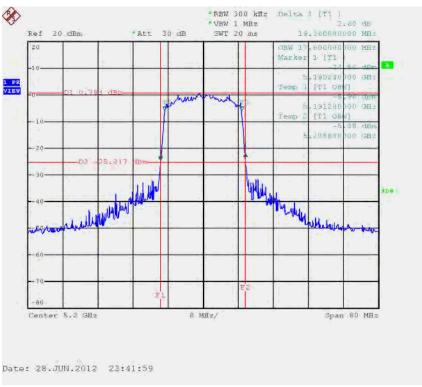
## Configuration IEEE 802.11n MCS0 20MHz / Ant. B

| Channel | Frequency | 26dB Bandwidth<br>(MHz) | 99% Occupied Bandwidth<br>(MHz) |
|---------|-----------|-------------------------|---------------------------------|
| 36      | 5180 MHz  | 19.52                   | 17.60                           |
| 40      | 5200 MHz  | 19.36                   | 17.60                           |
| 48      | 5240 MHz  | 19.20                   | 17.60                           |
| 52      | 5260 MHz  | 19.20                   | 17.60                           |
| 60      | 5300 MHz  | 19.36                   | 17.60                           |
| 64      | 5320 MHz  | 19.36                   | 17.60                           |
| 100     | 5500 MHz  | 19.36                   | 17.60                           |
| 116     | 5580 MHz  | 19.36                   | 17.60                           |
| 140     | 5700 MHz  | 19.20                   | 17.60                           |

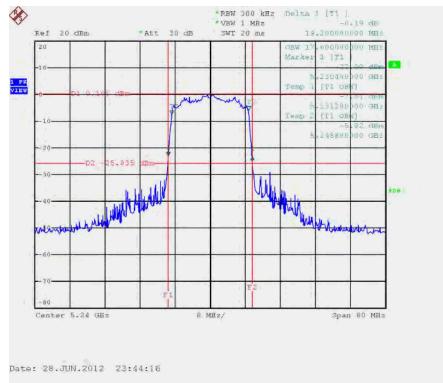



| Temperature   | 24°C         | Humidity       | 63%          |
|---------------|--------------|----------------|--------------|
| Test Engineer | Satoshi Yang | Configurations | IEEE 802.11a |

### Configuration IEEE 802.11a / Ant. B

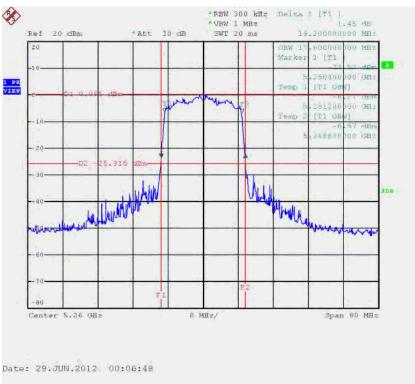

| Channel | Frequency | 26dB Bandwidth<br>(MHz) | 99% Occupied Bandwidth<br>(MHz) |
|---------|-----------|-------------------------|---------------------------------|
| 36      | 5180 MHz  | 19.04                   | 16.64                           |
| 40      | 5200 MHz  | 18.72                   | 16.64                           |
| 48      | 5240 MHz  | 18.72                   | 16.64                           |
| 52      | 5260 MHz  | 19.20                   | 16.64                           |
| 60      | 5300 MHz  | 18.88                   | 16.64                           |
| 64      | 5320 MHz  | 18.88                   | 16.64                           |
| 100     | 5500 MHz  | 18.88                   | 16.64                           |
| 116     | 5580 MHz  | 18.88                   | 16.64                           |
| 140     | 5700 MHz  | 19.52                   | 16.64                           |



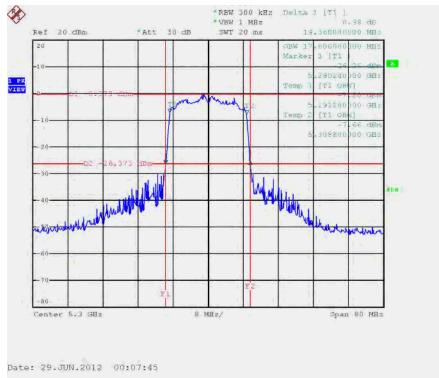



#### 26 dB Bandwidth Plot on Configuration IEEE 802.11n MCS0 20MHz / Ant. B / 5180 MHz



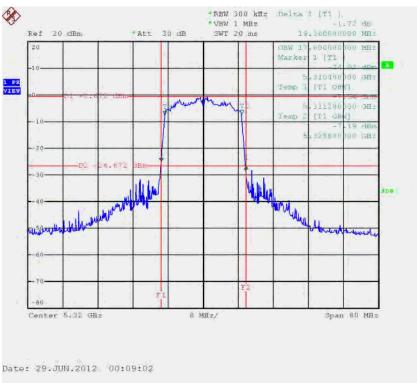




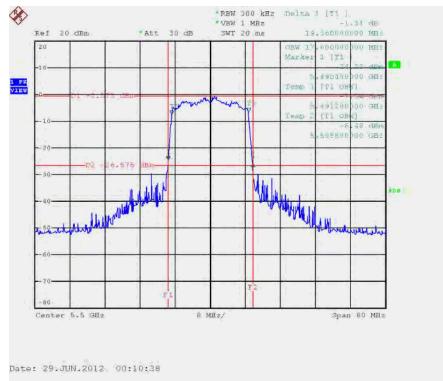




#### 26 dB Bandwidth Plot on Configuration IEEE 802.11n MCS0 20MHz / Ant. B / 5240 MHz

#### 26 dB Bandwidth Plot on Configuration IEEE 802.11n MCS0 20MHz / Ant. B / 5260 MHz

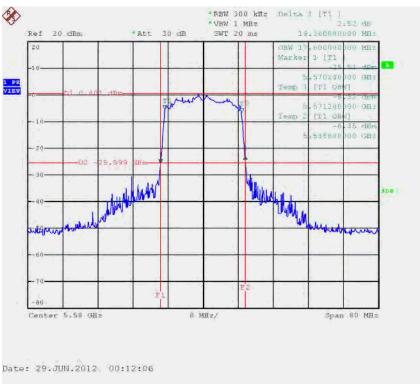




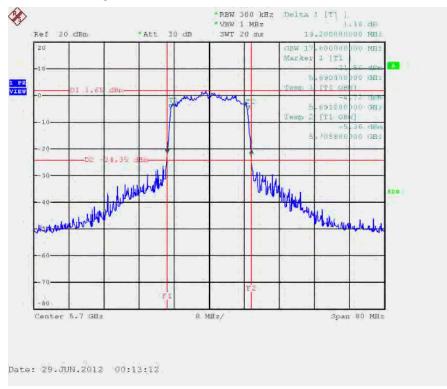




#### 26 dB Bandwidth Plot on Configuration IEEE 802.11n MCS0 20MHz / Ant. B / 5300 MHz

#### 26 dB Bandwidth Plot on Configuration IEEE 802.11n MCS0 20MHz / Ant. B / 5320 MHz

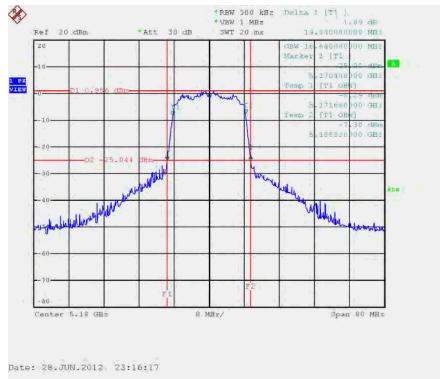




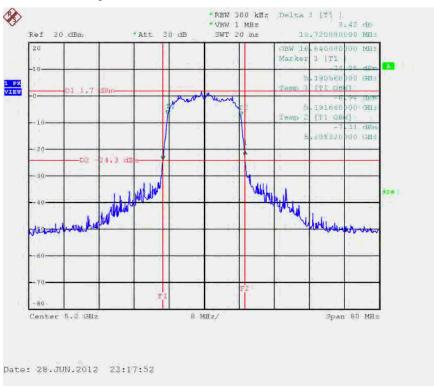

#### 26 dB Bandwidth Plot on Configuration IEEE 802.11n MCS0 20MHz / Ant. B / 5500 MHz



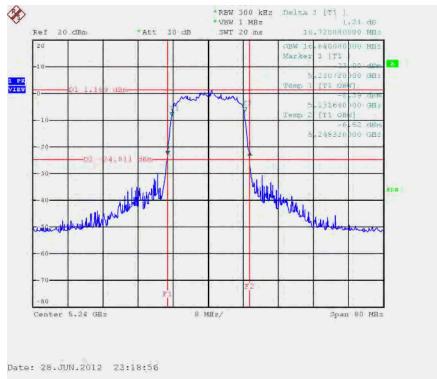








#### 26 dB Bandwidth Plot on Configuration IEEE 802.11n MCS0 20MHz / Ant. B / 5700 MHz



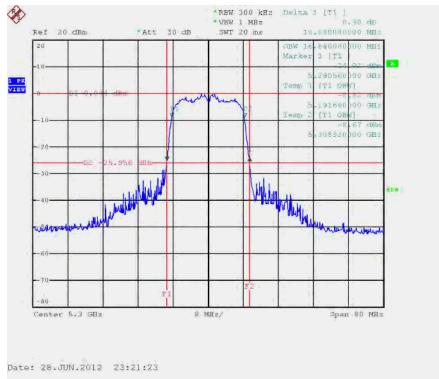



#### 26 dB Bandwidth Plot on Configuration IEEE 802.11a / Ant. B / 5180 MHz

#### 26 dB Bandwidth Plot on Configuration IEEE 802.11a / Ant. B / 5200 MHz

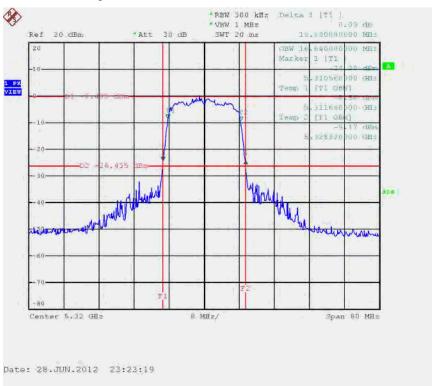




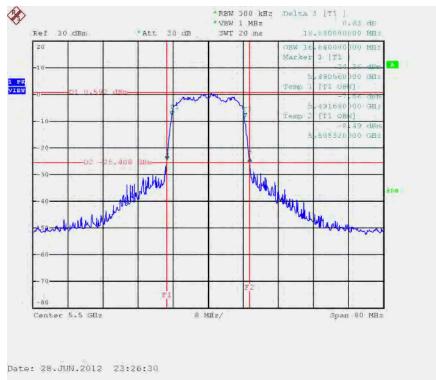



#### 26 dB Bandwidth Plot on Configuration IEEE 802.11a / Ant. B / 5240 MHz

#### 26 dB Bandwidth Plot on Configuration IEEE 802.11a / Ant. B / 5260 MHz

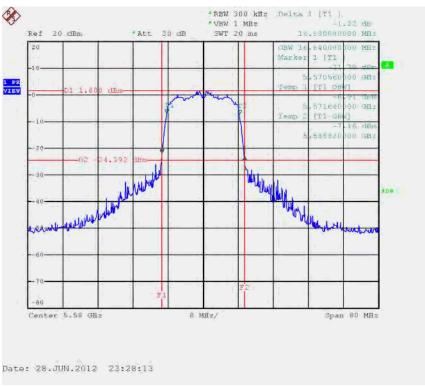




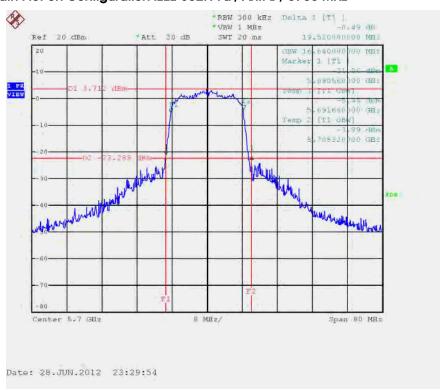




#### 26 dB Bandwidth Plot on Configuration IEEE 802.11a / Ant. B / 5300 MHz

#### 26 dB Bandwidth Plot on Configuration IEEE 802.11a / Ant. B / 5320 MHz






#### 26 dB Bandwidth Plot on Configuration IEEE 802.11a / Ant. B / 5500 MHz

#### 26 dB Bandwidth Plot on Configuration IEEE 802.11a / Ant. B / 5580 MHz







#### 26 dB Bandwidth Plot on Configuration IEEE 802.11a / Ant. B / 5700 MHz



## 4.3. Maximum Conducted Output Power Measurement

#### 4.3.1 Limit

For the band  $5.15 \sim 5.25$  GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW (17dBm) or 4 dBm + 10log B, where B is the 26 dB emissions bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

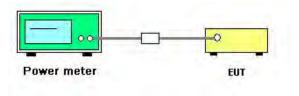
For the 5.25-5.35 GHz and 5.470-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW (24dBm) or 11 dBm + 10log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the band 5.725~5.825 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 1 W or 17 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 17 dBm in any 1KMHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain up to 23 dBi without any corresponding reduction in the transmitter peak output power or peak power spectral density. For fixed, point-to-point U-NII transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in peak transmitter power and peak power spectral density for each 1 dB of antenna gain in excess of 23 dBi would be required.

#### 4.3.2. Measuring Instruments and Setting

The following table is the setting of the peak power meter.

| Power Meter Parameter | Setting                                                    |
|-----------------------|------------------------------------------------------------|
| Bandwidth             | 50MHz bandwidth is greater than the EUT emission bandwidth |
| Detector              | AVERAGE                                                    |


#### 4.3.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the power meter.
- 2. Test was performed in accordance with KDB 789033 Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices Part 15, Subpart E, section (C) Maximum conducted output power =>(4) Method PM (Measurement using an RF average power meter) Multiple antenna systems was performed in accordance with KDB 662911 Emissions Testing of Transmitters with Multiple Outputs in the Same Band.
- 3. When measuring maximum conducted output power with multiple antenna systems, add every



result of the values by mathematic formula.

#### 4.3.4. Test Setup Layout



#### 4.3.5. Test Deviation

There is no deviation with the original standard.

### 4.3.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.



### 4.3.7. Test Result of Maximum Conducted Output Power

| Temperature   | 24°C          | Humidity       | 63%          |
|---------------|---------------|----------------|--------------|
| Test Engineer | Satoshi Yang  | Configurations | IEEE 802.11n |
| Test Date     | Jun. 28, 2012 |                |              |

### Configuration IEEE 802.11n MCS0 20MHz / Ant. B

| Channel | Frequency | Conducted Power<br>(dBm) | Max. Limit<br>(dBm) | Result   |
|---------|-----------|--------------------------|---------------------|----------|
| 36      | 5180 MHz  | 12.01                    | 16.90               | Complies |
| 40      | 5200 MHz  | 11.98                    | 16.87               | Complies |
| 48      | 5240 MHz  | 12.09                    | 16.83               | Complies |
| 52      | 5260 MHz  | 12.11                    | 23.83               | Complies |
| 60      | 5300 MHz  | 12.06                    | 23.87               | Complies |
| 64      | 5320 MHz  | 12.17                    | 23.87               | Complies |
| 100     | 5500 MHz  | 12.17                    | 23.87               | Complies |
| 116     | 5580 MHz  | 12.17                    | 23.87               | Complies |
| 140     | 5700 MHz  | 11.93                    | 23.83               | Complies |



| Temperature   | 24°C          | Humidity       | 63%          |
|---------------|---------------|----------------|--------------|
| Test Engineer | Satoshi Yang  | Configurations | IEEE 802.11a |
| Test Date     | Jun. 28, 2012 |                |              |

### Configuration IEEE 802.11a / Ant. B

| Channel | Frequency | Conducted Power<br>(dBm) | Max. Limit<br>(dBm) | Result   |
|---------|-----------|--------------------------|---------------------|----------|
| 36      | 5180 MHz  | 13.13                    | 16.80               | Complies |
| 40      | 5200 MHz  | 13.03                    | 16.72               | Complies |
| 48      | 5240 MHz  | 13.08                    | 16.72               | Complies |
| 52      | 5260 MHz  | 13.08                    | 23.83               | Complies |
| 60      | 5300 MHz  | 13.18                    | 23.76               | Complies |
| 64      | 5320 MHz  | 13.21                    | 23.76               | Complies |
| 100     | 5500 MHz  | 13.24                    | 23.76               | Complies |
| 116     | 5580 MHz  | 13.02                    | 23.76               | Complies |
| 140     | 5700 MHz  | 13.38                    | 23.90               | Complies |





# 4.4. Power Spectral Density Measurement

### 4.4.1. Limit

The power spectral density is defined as the highest level of power in dBm per MHz generated by the transmitter within the power envelope. The following table is power spectral density limits and decrease power density limit rule refer to section 4.3.1.

| Frequency Range | Power Spectral Density limit (dBm/MHz) |
|-----------------|----------------------------------------|
| 5.15~5.25 GHz   | 4                                      |
| 5.25-5.35 GHz   | 11                                     |
| 5470-5725       | 11                                     |

### 4.4.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

| Spectrum Parameter | Setting                                                      |
|--------------------|--------------------------------------------------------------|
| Attenuation        | Auto                                                         |
| Span Frequency     | Encompass the entire emissions bandwidth (EBW) of the signal |
| RB                 | 1000 kHz                                                     |
| VB                 | 3000 kHz                                                     |
| Detector           | RMS                                                          |
| Trace              | AVERAGE                                                      |
| Sweep Time         | Auto                                                         |
| Trace Average      | 100 times                                                    |

### 4.4.3. Test Procedures

- 1. The transmitter output (antenna port) was connected RF switch to the spectrum analyzer.
- Test was performed in accordance with KDB 789033 Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - Part 15, Subpart E, section (C) Maximum conducted output power => (d) Method SA-2 (trace averaging across on and off times of the EUT transmissions, followed by duty cycle correction).
- 3. Multiple antenna systems was performed in accordance with KDB 662911 in-Band Power Spectral Density (PSD) Measurements (1) Measure and sum the spectra across the outputs.
- 4. When measuring first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3 and so on up to the Nth output to obtain the value for the first frequency bin of the summed spectrum. the summed spectrum value for each of the other frequency bins is computed in the same way.

### 4.4.4. Test Setup Layout

This test setup layout is the same as that shown in section 4.6.4.





### 4.4.5. Test Deviation

There is no deviation with the original standard.

# 4.4.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.



# 4.4.7. Test Result of Power Spectral Density

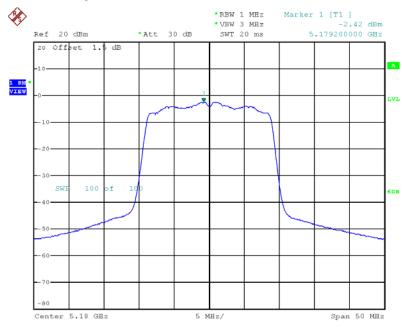
| Temperature   | 24°C          | Humidity       | 63%          |
|---------------|---------------|----------------|--------------|
| Test Engineer | Satoshi Yang  | Configurations | IEEE 802.11n |
| Test Date     | Jun. 29, 2012 |                |              |

# Configuration IEEE 802.11n MCS0 20MHz

| Channel | Frequency | Power Density (dBm/3kHz) | Max. Limit (dBm/3kHz) | Result   |
|---------|-----------|--------------------------|-----------------------|----------|
|         |           | Ant. B                   |                       |          |
| 36      | 5180 MHz  | -2.42                    | 4.00                  | Complies |
| 40      | 5200 MHz  | -2.47                    | 4.00                  | Complies |
| 48      | 5240 MHz  | -2.89                    | 4.00                  | Complies |
| 52      | 5260 MHz  | -3.24                    | 11.00                 | Complies |
| 60      | 5300 MHz  | -3.88                    | 11.00                 | Complies |
| 64      | 5320 MHz  | -4.05                    | 11.00                 | Complies |
| 100     | 5500 MHz  | -3.99                    | 11.00                 | Complies |
| 116     | 5580 MHz  | -3.13                    | 11.00                 | Complies |
| 140     | 5700 MHz  | -1.88                    | 11.00                 | Complies |



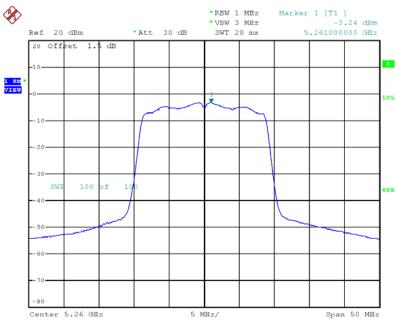
| Temperature   | 24°C          | Humidity       | 63%          |
|---------------|---------------|----------------|--------------|
| Test Engineer | Satoshi Yang  | Configurations | IEEE 802.11a |
| Test Date     | Jun. 29, 2012 |                |              |


# Configuration IEEE 802.11a

| Channel | Frequency | Power Density (dBm/3kHz) | Max. Limit (dBm/3kHz) | Result   |  |
|---------|-----------|--------------------------|-----------------------|----------|--|
| Channel | riequency | Ant. B                   |                       | Keguli   |  |
| 36      | 5180 MHz  | -1.05                    | 4.00                  | Complies |  |
| 40      | 5200 MHz  | -1.02                    | 4.00                  | Complies |  |
| 48      | 5240 MHz  | -1.47                    | 4.00                  | Complies |  |
| 52      | 5260 MHz  | -1.79                    | 11.00                 | Complies |  |
| 60      | 5300 MHz  | -2.44                    | 11.00                 | Complies |  |
| 64      | 5320 MHz  | -2.60                    | 11.00                 | Complies |  |
| 100     | 5500 MHz  | -2.48                    | 11.00                 | Complies |  |
| 116     | 5580 MHz  | -1.74                    | 11.00                 | Complies |  |
| 140     | 5700 MHz  | 0.01                     | 11.00                 | Complies |  |

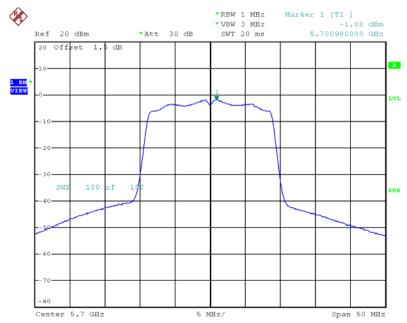
Note: All the test values were listed in the report.

For plots, only the channel with maximum results was shown.





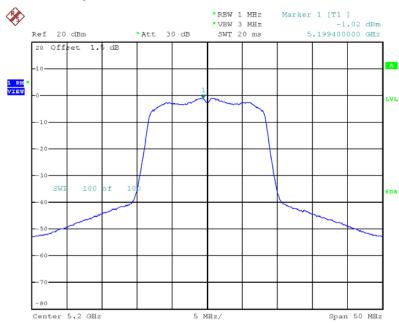

#### Power Density Plot on Configuration IEEE 802.11n MCS0 20MHz / Ant. B / 5180 MHz


Date: 29.JUN.2012 00:23:11

## Power Density Plot on Configuration IEEE 802.11n MCS0 20MHz / Ant. B / 5260 MHz



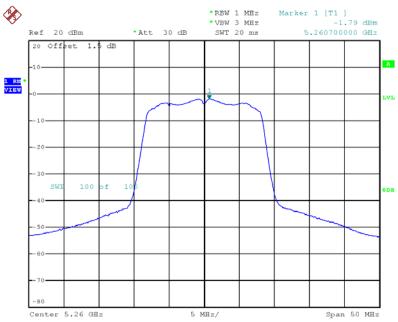
Date: 29.JUN.2012 00:20:49





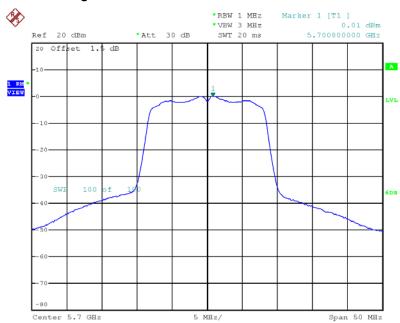

# Power Density Plot on Configuration IEEE 802.11n MCS0 20MHz / Ant. B / 5700 MHz

Date: 29.JUN.2012 00:15:37






### Power Density Plot on Configuration IEEE 802.11a / Ant. B / 5200 MHz


Date: 29.JUN.2012 00:26:28

## Power Density Plot on Configuration IEEE 802.11a / Ant. B / 5260 MHz



Date: 29.JUN.2012 00:28:05





# Power Density Plot on Configuration IEEE 802.11a / Ant. B / 5700 MHz

Date: 29.JUN.2012 00:32:53



# 4.5. Peak Excursion Measurement

### 4.5.1. Limit

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the maximum conducted output power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emissions bandwidth whichever is less.

### 4.5.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

| Spectrum Parameter | Setting                                                       |
|--------------------|---------------------------------------------------------------|
| Attenuation        | Auto                                                          |
| Span Frequency     | Encompass the entire emissions bandwidth (EBW) of the signal  |
| RB                 | 1MHz (Peak Trace) / 1MHz (Average Trace)                      |
| VB                 | 3MHz (Peak Trace) / 3MHz (Average Trace)                      |
| Detector           | Peak (Peak Trace) / RMS                                       |
| Trace              | Peak : Trace :Max hold/Average: Trace Average Sweep Count 100 |
| Sweep Time         | AUTO                                                          |

### 4.5.3. Test Procedures

- 1. The test procedure is the same as section 4.6.3.
- 2. Trace A, Set RBW = 1 MHz, VBW = 3 MHz, Span > 26 dB bandwidth, Max. hold.
- 3. Delta Mark trace A Maximum frequency and trace B same frequency.
- 4. Repeat the above procedure until measurements for all frequencies were complete.

### 4.5.4. Test Setup Layout

This test setup layout is the same as that shown in section 4.6.4.

### 4.5.5. Test Deviation

There is no deviation with the original standard.

## 4.5.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.



## 4.5.7. Test Result of Peak Excursion

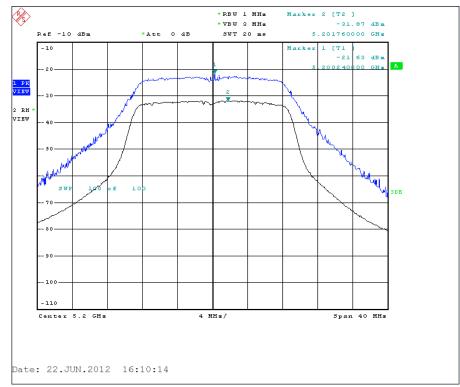
| Temperature   | 24°C         | Humidity       | 63%          |
|---------------|--------------|----------------|--------------|
| Test Engineer | Satoshi Yang | Configurations | IEEE 802.11n |

# Configuration IEEE 802.11n MCS0 20MHz / Ant. B

| Channel | Frequency | Peak Excursion<br>(dB) | Max. Limit<br>(dB) | Result   |
|---------|-----------|------------------------|--------------------|----------|
| 36      | 5180 MHz  | 9.36                   | 13                 | Complies |
| 40      | 5200 MHz  | 10.24                  | 13                 | Complies |
| 48      | 5240 MHz  | 9.30                   | 13                 | Complies |
| 52      | 5260 MHz  | 9.53                   | 13                 | Complies |
| 60      | 5300 MHz  | 9.26                   | 13                 | Complies |
| 64      | 5320 MHz  | 9.95                   | 13                 | Complies |
| 100     | 5500 MHz  | 9.06                   | 13                 | Complies |
| 116     | 5580 MHz  | 9.21                   | 13                 | Complies |
| 140     | 5700 MHz  | 8.72                   | 13                 | Complies |



| Temperature   | 24°C         | Humidity       | 63%          |
|---------------|--------------|----------------|--------------|
| Test Engineer | Satoshi Yang | Configurations | IEEE 802.11a |


# Configuration IEEE 802.11a / Ant. B

| Channel | Frequency | Peak Excursion<br>(dB) | Max. Limit<br>(dB) | Result   |
|---------|-----------|------------------------|--------------------|----------|
| 36      | 5180 MHz  | 9.22                   | 13                 | Complies |
| 40      | 5200 MHz  | 9.10                   | 13                 | Complies |
| 48      | 5240 MHz  | 9.30                   | 13                 | Complies |
| 52      | 5260 MHz  | 9.06                   | 13                 | Complies |
| 60      | 5300 MHz  | 9.34                   | 13                 | Complies |
| 64      | 5320 MHz  | 9.28                   | 13                 | Complies |
| 100     | 5500 MHz  | 9.00                   | 13                 | Complies |
| 116     | 5580 MHz  | 9.06                   | 13                 | Complies |
| 140     | 5700 MHz  | 9.30                   | 13                 | Complies |

Note: All the test values were listed in the report.

For plots, only the channel with maximum results was shown.





#### Peak Excursion Plot on Configuration IEEE 802.11n MCS0 20MHz / Ant. B / 5200 MHz

Peak Excursion Plot on Configuration IEEE 802.11n MCS0 20MHz / Ant. B / 5320 MHz







#### Peak Excursion Plot on Configuration IEEE 802.11n MCS0 20MHz / Ant. B / 5580 MHz





### Peak Excursion Plot on Configuration IEEE 802.11a / Ant. B / 5240 MHz

Peak Excursion Plot on Configuration IEEE 802.11a / Ant. B / 5300 MHz







# Peak Excursion Plot on Configuration IEEE 802.11a / Ant. B / 5700 MHz



# 4.6. Radiated Emissions Measurement

### 4.6.1. Limit

For transmitters operating in the 5.15-5.35 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm/MHz (68.3dBuV/m at 3m). For transmitters operating in the 5.470-5.725 GHz band: all emissions outside of the 5.470-5.725 GHz band shall not exceed an EIRP of -27 dBm/MHz (68.3dBuV/m at 3m). For transmitters operating in the 5.725-5.825 GHz band: all emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an EIRP of -17 dBm/MHz (78.3dBuV/m at 3m); for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an EIRP of -27 dBm/MHz (68.3dBuV/m at 3m); for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an EIRP of -27 dBm/MHz (68.3dBuV/m at 3m). In addition, In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

| Frequencies | Field Strength     | Measurement Distance |
|-------------|--------------------|----------------------|
| (MHz)       | (micorvolts/meter) | (meters)             |
| 0.009~0.490 | 2400/F(KHz)        | 300                  |
| 0.490~1.705 | 24000/F(KHz)       | 30                   |
| 1.705~30.0  | 30                 | 30                   |
| 30~88       | 100                | 3                    |
| 88~216      | 150                | 3                    |
| 216~960     | 200                | 3                    |
| Above 960   | 500                | 3                    |

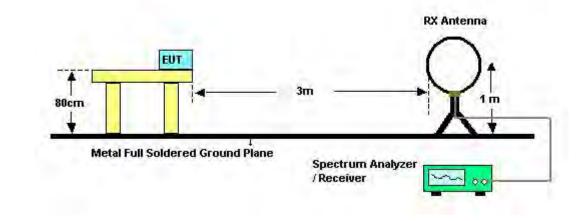
### 4.6.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver.

| Spectrum Parameter                        | Setting                                        |
|-------------------------------------------|------------------------------------------------|
| Attenuation                               | Auto                                           |
| Start Frequency                           | 1000 MHz                                       |
| Stop Frequency                            | 40 GHz                                         |
| RB / VB (Emission in restricted band)     | 1MHz / 3MHz for Peak, 1 MHz / 10Hz for Average |
| RB / VB (Emission in non-restricted band) | 1MHz / 3MHz for peak                           |

| Receiver Parameter          | Setting                          |
|-----------------------------|----------------------------------|
| Attenuation                 | Auto                             |
| Start $\sim$ Stop Frequency | 9kHz~150kHz / RB 200Hz for QP    |
| Start $\sim$ Stop Frequency | 150kHz~30MHz / RB 9kHz for QP    |
| Start ~ Stop Frequency      | 30MHz~1000MHz / RB 120kHz for QP |




### 4.6.3. Test Procedures

- 1. Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- 8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.



# 4.6.4. Test Setup Layout

For radiated emissions below 1GHz



#### For radiated emissions above 1GHz



### 4.6.5. Test Deviation

There is no deviation with the original standard.

## 4.6.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.



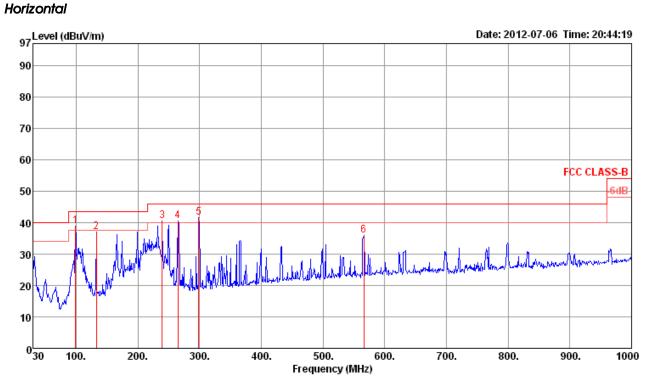
# 4.6.7. Results of Radiated Emissions (9kHz~30MHz)

| Temperature   | <b>2</b> 1℃   | Humidity       | 56.4%       |
|---------------|---------------|----------------|-------------|
| Test Engineer | Benson Peng   | Configurations | Normal Link |
| Test Date     | Jul. 06, 2012 |                |             |

| Freq. | Level  | Over Limit | Limit Line | Remark   |
|-------|--------|------------|------------|----------|
| (MHz) | (dBuV) | (dB)       | (dBuV)     |          |
| -     | -      | -          | -          | See Note |

Note:

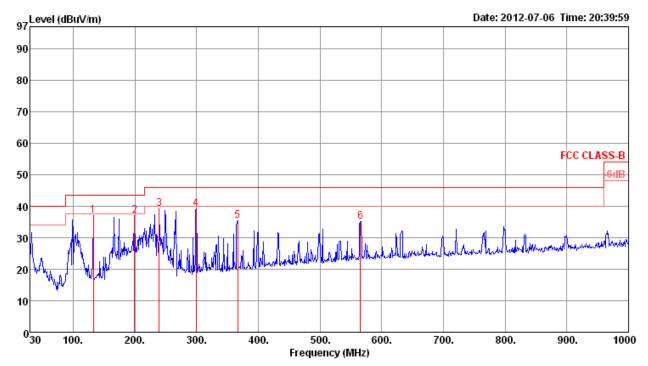
The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.


Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.



# 4.6.8. Results of Radiated Emissions (30MHz~1GHz)


| Temperature   | 21°C        | Humidity       | 56.4%       |
|---------------|-------------|----------------|-------------|
| Test Engineer | Benson Peng | Configurations | Normal Link |
|               |             |                |             |



|   | Freq   | Level  | Limit<br>Line | Over<br>Limit |       |      |       | Preamp<br>Factor |      | A/Pos | T/Pos | Pol/Phase  |
|---|--------|--------|---------------|---------------|-------|------|-------|------------------|------|-------|-------|------------|
|   | MHz    | dBu∀/m | dBu∀/m        | dB            | dBu∨  | dB   | dB/m  | dB               |      | cm    | deg   |            |
| 1 | 98.87  | 38.89  | 43.50         | -4.61         | 54.53 | 1.18 | 10.79 | 27.61            | Peak | 100   | ø     | HORIZONTAL |
| 2 | 132.82 | 37.01  | 43.50         | -6.49         | 50.83 | 1.33 | 12.28 | 27.43            | Peak | 100   | Ø     | HORIZONTAL |
| 3 | 239.52 | 40.60  | 46.00         | -5.40         | 53.78 | 1.86 | 11.98 | 27.02            | Peak | 100   | Ø     | HORIZONTAL |
| 4 | 264.74 | 40.59  | 46.00         | -5.41         | 52.66 | 1.96 | 12.94 | 26.97            | Peak | 100   | Ø     | HORIZONTAL |
| 5 | 298.69 | 41.54  | 46.00         | -4.46         | 52.99 | 2.10 | 13.35 | 26.90            | Peak | 100   | Ø     | HORIZONTAL |
| 6 | 566.41 | 35.94  | 46.00         | -10.06        | 42.83 | 2.83 | 18.38 | 28.10            | Peak | 100   | 0     | HORIZONTAL |



### Vertical



|   | Freq   | Level  |        | 0∨er<br>Limit |       |      |       | Preamp<br>Factor |      | A/Pos | T/Pos | Pol/Phase |
|---|--------|--------|--------|---------------|-------|------|-------|------------------|------|-------|-------|-----------|
|   | MHz    | dBu∀/m | dBu∀/m | dB            | dBu∨  | dB   | dB/m  | dB               |      | cm    | deg   |           |
| 1 | 132.82 | 37.02  | 43.50  | -6.48         | 50.84 | 1.33 | 12.28 | 27.43            | Peak | 400   | ø     | VERTICAL  |
| 2 | 199.75 | 37.07  | 43.50  | -6.43         | 53.42 | 1.70 | 9.05  | 27.10            | Peak | 400   | Ø     | VERTICAL  |
| 3 | 239.52 | 39.09  | 46.00  | -6.91         | 52.27 | 1.86 | 11.98 | 27.02            | Peak | 400   | Ø     | VERTICAL  |
| 4 | 299.66 | 39.05  | 46.00  | -6.95         | 50.49 | 2.10 | 13.36 | 26.90            | Peak | 400   | Ø     | VERTICAL  |
| 5 | 366.59 | 35.27  | 46.00  | -10.73        | 45.24 | 2.23 | 15.17 | 27.37            | Peak | 400   | Ø     | VERTICAL  |
| 6 | 565.44 | 35.16  | 46.00  | -10.84        | 42.06 | 2.83 | 18.37 | 28.10            | Peak | 400   | 0     | VERTICAL  |

#### Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) =  $20 \log Emission level (uV/m)$ .

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.



# 4.6.9. Results for Radiated Emissions (1GHz~40GHz)

| Temperature   | <b>25.6℃</b>  | Humidity       | 56%                                       |
|---------------|---------------|----------------|-------------------------------------------|
| Test Engineer | Serway Li     | Configurations | IEEE 802.11n MCS0 20MHz Ch 36<br>/ Ant. B |
| Test Date     | Jun. 15, 2012 |                |                                           |

#### Horizontal

| Freq                 | Level  |        |    |      |    |      |    | Remark | A/Pos      | T/Pos | Pol/Phase                |
|----------------------|--------|--------|----|------|----|------|----|--------|------------|-------|--------------------------|
| MHz                  | dBu∀/m | dBu∀/m | dB | dBu∀ | dB | dB/m | dB |        | cm         | deg   |                          |
| 15539.81<br>15540.44 |        |        |    |      |    |      |    |        | 100<br>100 |       | HORIZONTAL<br>HORIZONTAL |

|   |          |        |        | Over   |       |      |        |        |         | A/Pos | T/Pos | 0.1.01    |
|---|----------|--------|--------|--------|-------|------|--------|--------|---------|-------|-------|-----------|
|   | Freq     | Level  | Line   | Limit  | Level | Loss | Factor | Factor | Remark  |       |       | Pol/Phase |
|   | MHz      | dBu∀/m | dBu∀/m | dB     | dBu∀  | dB   | dB/m   | dB     |         | cm    | deg   |           |
| 1 | 15540.04 | 51.69  | 74.00  | -22.31 | 43.18 | 6.13 | 37.69  | 35.31  | Peak    | 100   | 213   | VERTICAL  |
| 2 | 15541.35 | 39.27  | 54.00  | -14.73 | 30.76 | 6.13 | 37.69  | 35.31  | Average | 100   | 213   | VERTICAL  |



| Tem           | perature |                          | 25°C       |        | Hur   | nidity     |         | 56%      | 56%     |          |        |             |
|---------------|----------|--------------------------|------------|--------|-------|------------|---------|----------|---------|----------|--------|-------------|
| Test Engineer |          |                          |            |        |       | -flau u ad | Hone    | IEEE     | 802.11n | MCS0 20N | 1Hz Ch | 40          |
| lest          | Engineer | Serway Li Configurations |            |        |       |            | / Ar    | / Ant. B |         |          |        |             |
| Test          | Date     |                          | Jun. 15, 2 | 2012   |       |            |         | ·        |         |          |        |             |
| Horiz         | ontal    |                          |            |        |       |            |         |          |         |          |        |             |
|               | F        | 1                        | Limit      | 0ver   | Read  |            | Antenna |          |         | A/Pos    | T/Pos  | Del (Dharas |
|               | Freq     | Leve                     | el Line    | Limit  | Level | LOSS       | Factor  | Factor   | Remark  |          |        | Pol/Phase   |
|               | MHz      | dBu∀∕                    | /m dBu∀/m  | dB     | dBu∀  | dB         | dB/m    | dB       |         | cm       | deg    |             |
| 1             | 15600.35 | 51.7                     | 75 74.00   | -22.25 | 43.36 | 6.13       | 37.60   | 35.34    | Peak    | 100      | 186    | HORIZONTAL  |
| 2             | 15600.35 | 38.2                     | 28 54.00   | -15.72 | 29.89 | 6.13       | 37.60   | 35.34    | Average | 100      | 186    | HORIZONTAL  |

| Freq                 | Level  |        |    |      |    |      |    | Remark          | A/Pos |     | Pol/Phase            |
|----------------------|--------|--------|----|------|----|------|----|-----------------|-------|-----|----------------------|
| MHz                  | dBu∀/m | dBu∀/m | dB | dBu∨ | dB | dB/m | dB |                 | cm    | deg |                      |
| 15600.27<br>15600.35 |        |        |    |      |    |      |    | Avenage<br>Peak |       |     | VERTICAL<br>VERTICAL |



| Temperature   | <b>25°</b> ℃  | Humidity       | 56%                                       |
|---------------|---------------|----------------|-------------------------------------------|
| Test Engineer | Serway Li     | Configurations | IEEE 802.11n MCS0 20MHz Ch 48<br>/ Ant. B |
| Test Date     | Jun. 15, 2012 |                |                                           |

| Freq                 | Level  |        |    |      |    |      |    | Remark | A/Pos      | T/Pos<br>Pol/Phase           |  |
|----------------------|--------|--------|----|------|----|------|----|--------|------------|------------------------------|--|
| MHz                  | dBu∀/m | dBu∀/m | dB | dBu∀ | dB | dB/m | dB |        | cm         | deg                          |  |
| 15719.56<br>15719.92 |        |        |    |      |    |      |    |        | 100<br>100 | 123 VERTICAL<br>123 VERTICAL |  |

| Freq                 | Level  | Limit<br>Line |    |      |    |      |    | Remark | A/Pos      | T/Pos | Pol/Phase                |
|----------------------|--------|---------------|----|------|----|------|----|--------|------------|-------|--------------------------|
| MHz                  | dBu∀/m | dBu∀/m        | dB | dBu∀ | dB | dB/m | dB |        | cm         | deg   |                          |
| 15719.77<br>15720.38 |        |               |    |      |    |      |    |        | 100<br>100 |       | HORIZONTAL<br>HORIZONTAL |



| Tem   | nperature | 2      | 5℃        |        | Hu    | Humidity |        |                               | 56%     |       |       |            |
|-------|-----------|--------|-----------|--------|-------|----------|--------|-------------------------------|---------|-------|-------|------------|
| Test  | Engineer  |        | orwaydi   |        |       | opfiqure | tions  | IEEE 802.11n MCS0 20MHz Ch 52 |         |       | 52    |            |
| iesi  | Engineer  | 3      | erway Li  |        |       | onfigurc | mons   | / An                          | it. B   |       |       |            |
| Test  | Date      | J      | un. 15, 2 | 012    |       |          |        |                               |         |       |       |            |
| Horiz | ontal     |        |           |        |       |          |        |                               |         |       |       |            |
|       |           |        | Limit     | 0ver   | Read  |          |        |                               |         | A/Pos | T/Pos | 0.1/01     |
|       | Freq      | Leve.  | L Line    | Limit  | Level | LOSS     | Factor | Factor                        | Remark  |       |       | Pol/Phase  |
|       | MHz       | dBu∀/r | n dBu∀/m  | dB     | dBu∀  | dB       | dB/m   | dB                            |         | cm    | deg   |            |
| 1     | 15779.60  | 38.1   | 5 54.00   | -15.84 | 30.03 | 6.14     | 37.41  | 35.42                         | Average | 100   | 301   | HORIZONTAL |
| 2     | 15779.88  | 50.13  | 3 74.00   | -23.87 | 42.00 | 6.14     | 37.41  | 35.42                         | Peak    | 100   | 301   | HORIZONTAL |

| Freq                 | Level  |        | Over<br>Limit |      |    |      |    | Remark | A/Pos      | T/Pos<br>Pol/Phase           |
|----------------------|--------|--------|---------------|------|----|------|----|--------|------------|------------------------------|
| MHz                  | dBu∀/m | dBu∀/m | dB            | dBu∀ | dB | dB/m | dB |        | cm         | deg                          |
| 15779.60<br>15779.90 |        |        |               |      |    |      |    |        | 100<br>100 | 133 VERTICAL<br>133 VERTICAL |



| Temperature   | 25°C          | Humidity       | 56%                           |
|---------------|---------------|----------------|-------------------------------|
| Tost Engineer | Sonway Li     | Configurations | IEEE 802.11n MCS0 20MHz Ch 60 |
| Test Engineer | Serway Li     | Configurations | / Ant. B                      |
| Test Date     | Jun. 15, 2012 |                |                               |
|               |               |                |                               |

| Freq                 | Level  |        |    |      |    |      |    | Remark          | A/Pos |     | Pol/Phase                |
|----------------------|--------|--------|----|------|----|------|----|-----------------|-------|-----|--------------------------|
| MHz                  | dBu∀/m | dBu∀/m | dB | dBu∨ | dB | dB/m | dB |                 | cm    | deg |                          |
| 10600.16<br>10600.20 |        |        |    |      |    |      |    | Avenage<br>Peak |       |     | HORIZONTAL<br>HORIZONTAL |

| Freq                 | Level  | Limit<br>Line |    |      |    |      |    | Remark | A/Pos      | T/Pos<br>Pol/      | Phase |
|----------------------|--------|---------------|----|------|----|------|----|--------|------------|--------------------|-------|
| MHz                  | dBu∀/m | dBu∀/m        | dB | dBu∀ | dB | dB/m | dB |        | cm         | deg                |       |
| 10600.06<br>10600.06 |        |               |    |      |    |      |    |        | 131<br>131 | 68 VERT<br>68 VERT |       |



| Tem   | perature             | 2            | 5°C           |                 |                | Humidity | /                                       | 50 | 56%             |            |       |                          |
|-------|----------------------|--------------|---------------|-----------------|----------------|----------|-----------------------------------------|----|-----------------|------------|-------|--------------------------|
| Test  | Engineer             |              | onumuli       |                 |                | Configu  | igurations IEEE 802.11n MCS0 20MHz Ch 6 |    |                 |            | ר 64  |                          |
| iesi  | Engineer             | 3            | erway Li      |                 |                | Conligu  | ranons                                  | 14 | Ant. B          |            |       |                          |
| Test  | Date                 | J            | un. 15, 2     | 012             |                |          |                                         | ·  |                 |            |       |                          |
| Horiz | ontal                | ·            |               |                 |                |          |                                         |    |                 |            |       |                          |
|       | Freq                 | Level        | Limit<br>Line | 0ver<br>Limit   | Read<br>Level  |          | Antenna<br>Factor                       |    | Remark          | A/Pos      | T/Pos | Pol/Phase                |
|       |                      |              | n dBu∀/m      |                 | dBu∖           |          |                                         |    |                 |            | deg   |                          |
| 1     | 10639.63<br>10640.11 | 60.4<br>45.3 |               | -13.53<br>-8.69 | 52.48<br>37.32 |          |                                         |    | Peak<br>Average | 126<br>126 |       | HORIZONTAL<br>HORIZONTAL |

| Freq                 | Level  |        |    |      |    |      |    | Remark | A/Pos      | T/Pos | Pol/Phase |
|----------------------|--------|--------|----|------|----|------|----|--------|------------|-------|-----------|
| MHz                  | dBu∀/m | dBu∀/m | dB | dBu∀ | dB | dB/m | dB |        | cm         | deg   |           |
| 10639.76<br>10639.82 |        |        |    |      |    |      |    |        | 122<br>122 |       | VERTICAL  |



| Temperature   | <b>25°</b> ℃  | Humidity       | 56%                            |
|---------------|---------------|----------------|--------------------------------|
| Test Engineer | Serway Li     | Configurations | IEEE 802.11n MCS0 20MHz Ch 100 |
|               |               | Comgurations   | / Ant. B                       |
| Test Date     | Jun. 15, 2012 |                |                                |
|               |               |                |                                |

| Freq                 | Level  |        | Over<br>Limit |      |    |      |    | Remark | A/Pos      | T/Pos | Pol/Phase                |
|----------------------|--------|--------|---------------|------|----|------|----|--------|------------|-------|--------------------------|
| MHz                  | dBu∀/m | dBu∀/m | dB            | dBu∀ | dB | dB/m | dB |        | cm         | deg   |                          |
| 10999.78<br>10999.79 |        |        |               |      |    |      |    |        | 115<br>115 |       | HORIZONTAL<br>HORIZONTAL |

| Freq                 | Level  |        |    |      |    |      |    | Remark          | A/Pos      | T/Pos | Pol/Phase            |
|----------------------|--------|--------|----|------|----|------|----|-----------------|------------|-------|----------------------|
| MHz                  | dBu∀/m | dBu∀/m | dB | dBu∀ | dB | dB/m | dB |                 | cm         | deg   |                      |
| 10999.65<br>10999.81 |        |        |    |      |    |      |    | Avenage<br>Peak | 120<br>120 |       | VERTICAL<br>VERTICAL |



| Tem   | nperature | 2      | 5℃        |               | H     | Humidity       |         |       | 56%                            |       |       |            |  |  |
|-------|-----------|--------|-----------|---------------|-------|----------------|---------|-------|--------------------------------|-------|-------|------------|--|--|
| Tool  | Engineer  |        | Serway Li |               |       | Configurations |         |       | IEEE 802.11n MCS0 20MHz Ch 116 |       |       |            |  |  |
| lesi  | Engineer  | 5      | erway Li  |               |       | 20niigui       | anons   | / An  | t. B                           |       |       |            |  |  |
| Test  | Date      | Ju     | un. 15, 2 | 012           |       |                |         |       |                                |       |       |            |  |  |
| Horiz | ontal     |        |           |               |       |                |         |       |                                |       |       |            |  |  |
|       | Enoo      | Level  |           | Over<br>Limit | Read  |                | Antenna |       | Remark                         | A/Pos | T/Pos | Pol/Phase  |  |  |
|       |           | Lever  |           |               | Lever |                |         |       |                                |       |       | FOI/FlidSe |  |  |
|       | MHz       | dBu∀/m | dBu∀/m    | dB            | dBu∀  | dB             | dB/m    | dB    |                                | cm    | deg   |            |  |  |
| 1     | 11159.64  | 48.82  | 54.00     | -5.18         | 40.48 | 5.04           | 38.47   |       | Average                        | 120   | 69    | HORIZONTAL |  |  |
| 2     | 11159.89  | 64.18  | 74.00     | -9.82         | 55.84 | 5.04           | 38.47   | 35.17 | Peak                           | 120   | 69    | HORIZONTAL |  |  |

| Freq                 | Level  | Limit<br>Line |    |      |    |      |    | Remark          | A/Pos      | T/Pos<br>Pol/Phase           |
|----------------------|--------|---------------|----|------|----|------|----|-----------------|------------|------------------------------|
| MHz                  | dBu∀/m | dBu∀/m        | dB | dBu∨ | dB | dB/m | dB |                 | cm         | deg                          |
| 11159.53<br>11159.63 |        |               |    |      |    |      |    | Avenage<br>Peak | 120<br>120 | 289 VERTICAL<br>289 VERTICAL |



| Temperature   | <b>25</b> ℃             | Humidity       | 56%                            |
|---------------|-------------------------|----------------|--------------------------------|
| Test Engineer | Sonway Li               | Configurations | IEEE 802.11n MCS0 20MHz Ch 140 |
|               | eer Serway Li Configura |                | / Ant. B                       |
| Test Date     | Jun. 15, 2012           |                |                                |
| Test Date     | Jun. 15, 2012           |                |                                |

| Freq                 | Level  |        |    |      |    |      |    | Remark | A/Pos      | T/Pos | Pol/Phase                |
|----------------------|--------|--------|----|------|----|------|----|--------|------------|-------|--------------------------|
| MHz                  | dBu∀/m | dBu∀/m | dB | dBu∀ | dB | dB/m | dB |        | cm         | deg   |                          |
| 11399.94<br>11400.32 |        |        |    |      |    |      |    |        | 119<br>119 |       | HORIZONTAL<br>HORIZONTAL |

| Freq                 | Level  |        |    |      |    |      |    | Remark | A/Pos                                 | T/Pos<br>Pol/Phase         |
|----------------------|--------|--------|----|------|----|------|----|--------|---------------------------------------|----------------------------|
| MHz                  | dBu∀/m | dBu∀/m | dB | dBu∨ | dB | dB/m | dB |        | cm                                    | deg                        |
| 11399.50<br>11400.12 |        |        |    |      |    |      |    |        | $\begin{array}{c}111\\111\end{array}$ | 97 VERTICAL<br>97 VERTICAL |



| Temperature   | <b>25</b> °C  | Humidity       | 56%                         |
|---------------|---------------|----------------|-----------------------------|
| Test Engineer | Serway Li     | Configurations | IEEE 802.11a Ch 36 / Ant. B |
| Test Date     | Jun. 15, 2012 |                |                             |

| Freq                 | Level  |        |    |      |    |      |    | Remark | A/Pos      | T/Pos | Pol/Phase                |
|----------------------|--------|--------|----|------|----|------|----|--------|------------|-------|--------------------------|
| MHz                  | dBu∀/m | dBu∀/m | dB | dBu∀ | dB | dB/m | dB |        | cm         | deg   |                          |
| 15539.84<br>15540.47 |        |        |    |      |    |      |    |        | 100<br>100 |       | HORIZONTAL<br>HORIZONTAL |

| Freq                 | Level  |        |    |      |    |      |    | Remark | A/Pos      | T/Pos<br>Pol/Phase           |
|----------------------|--------|--------|----|------|----|------|----|--------|------------|------------------------------|
| MHz                  | dBu∀/m | dBu∀/m | dB | dBu∀ | dB | dB/m | dB |        | cm         | deg                          |
| 15540.38<br>15540.42 |        |        |    |      |    |      |    |        | 100<br>100 | 219 VERTICAL<br>219 VERTICAL |



| Temperature                                                             |          | 2      | 25°C          |        |                          | Humidity |                   |       | 56%     |       |       |            |  |  |
|-------------------------------------------------------------------------|----------|--------|---------------|--------|--------------------------|----------|-------------------|-------|---------|-------|-------|------------|--|--|
| Test Engineer         Serway Li         Configurations         IEEE 802 |          |        |               |        | E 802.11a Ch 40 / Ant. B |          |                   |       |         |       |       |            |  |  |
| Test                                                                    | Date     | J      | un. 15, 2     | 2012   |                          |          |                   |       |         |       |       |            |  |  |
| Horiz                                                                   | ontal    | ·      |               |        |                          |          |                   |       |         |       |       |            |  |  |
|                                                                         | Freq     | Level  | Limit<br>Line |        |                          |          | Antenna<br>Factor |       |         | A/Pos | T/Pos | Pol/Phase  |  |  |
|                                                                         | MHz      | dBu∀/m | dBu∀/m        | dB     | dBu∀                     | dB       | dB/m              | dB    |         |       | deg   |            |  |  |
| 1                                                                       | 15599.62 | 38.03  | 54.00         | -15.97 | 29.64                    | 6.13     | 37.60             | 35.34 | Average | 100   | 266   | HORIZONTAL |  |  |
| 2                                                                       | 15600.22 | 50.50  | 74.00         | -23.50 | 42.11                    | 6.13     | 37.60             | 35.34 | Peak    | 100   | 266   | HORIZONTAL |  |  |

| Freq                 | Level  |        |    |      |    |      |    | Remark          | A/Pos | T/Pos<br>Pol/Phase           |
|----------------------|--------|--------|----|------|----|------|----|-----------------|-------|------------------------------|
| MHz                  | dBu∀/m | dBu∀/m | dB | dBu∨ | dB | dB/m | dB |                 | cm    | deg                          |
| 15599.57<br>15600.42 |        |        |    |      |    |      |    | Avenage<br>Peak |       | 174 VERTICAL<br>174 VERTICAL |



| Temperature   | <b>25</b> ℃   | Humidity       | 56%                         |
|---------------|---------------|----------------|-----------------------------|
| Test Engineer | Serway Li     | Configurations | IEEE 802.11a Ch 48 / Ant. B |
| Test Date     | Jun. 15, 2012 |                |                             |

| Freq                 | Level  | Limit<br>Line |    |      |    |      |    | Remark          | A/Pos      | T/Pos | Pol/Phase                |
|----------------------|--------|---------------|----|------|----|------|----|-----------------|------------|-------|--------------------------|
| MHz                  | dBu∀/m | dBu\//m       | dB | dBu∨ | dB | dB/m | dB |                 | cm         | deg   |                          |
| 15719.61<br>15720.04 |        |               |    |      |    |      |    | Avenage<br>Peak | 100<br>100 |       | HORIZONTAL<br>HORIZONTAL |

| Freq                 | Level  | Limit<br>Line | Over<br>Limit |      |    |      |    | A/Pos      | T/Pos<br>Pol/Phase           |
|----------------------|--------|---------------|---------------|------|----|------|----|------------|------------------------------|
| MHz                  | dBu∀/m | dBu∀/m        | dB            | dBu∀ | dB | dB/m | dB | <br>cm     | deg                          |
| 15719.90<br>15720.17 |        |               |               |      |    |      |    | 100<br>100 | 321 VERTICAL<br>321 VERTICAL |



| Tem                                                                         | nperature            | 25             | 5°C       |                  | Humidity 56% |                |                   |    |                 |            |       |                          |
|-----------------------------------------------------------------------------|----------------------|----------------|-----------|------------------|--------------|----------------|-------------------|----|-----------------|------------|-------|--------------------------|
| Test Engineer         Serway Li         Configurations         IEEE 802.11a |                      |                |           |                  |              | Ch 52 / Ant. B |                   |    |                 |            |       |                          |
| Test                                                                        | Date                 | Ju             | ın. 15, 2 | 012              |              |                |                   |    |                 |            |       |                          |
| Horiz                                                                       | ontal                |                |           |                  |              |                |                   |    |                 |            |       |                          |
|                                                                             | Freq                 | Level          |           | 0∨er<br>Limit    |              |                | Antenna<br>Factor |    |                 | A/Pos      | T/Pos | Pol/Phase                |
|                                                                             | MHz                  | dBu∀/m         | dBu\//m   | dB               | dBu∨         | dB             | dB/m              | dB |                 | cm         | deg   |                          |
| 1<br>2                                                                      | 15780.17<br>15780.25 | 39.23<br>50.08 |           | -14.77<br>-23.92 |              |                | 37.41<br>37.41    |    | Avenage<br>Peak | 100<br>100 |       | HORIZONTAL<br>HORIZONTAL |

| Freq                 | Level  |        |    |      |    |      |    | Remark          | A/Pos      | T/Pos<br>Pol/Phase           |
|----------------------|--------|--------|----|------|----|------|----|-----------------|------------|------------------------------|
| MHz                  | dBu∀/m | dBu∀/m | dB | dBu∨ | dB | dB/m | dB |                 | cm         | deg                          |
| 15779.81<br>15779.84 |        |        |    |      |    |      |    | Avenage<br>Peak | 100<br>100 | 224 VERTICAL<br>224 VERTICAL |



| Temperature   | <b>25</b> ℃   | Humidity       | 56%                         |
|---------------|---------------|----------------|-----------------------------|
| Test Engineer | Serway Li     | Configurations | IEEE 802.11a Ch 60 / Ant. B |
| Test Date     | Jun. 15, 2012 |                |                             |

| Freq                 | Level  | Limit<br>Line |    |      |    |      |    | Remark          | A/Pos      | T/Pos | Pol/Phase                |
|----------------------|--------|---------------|----|------|----|------|----|-----------------|------------|-------|--------------------------|
| MHz                  | dBu∀/m | dBu∀/m        | dB | dBu∨ | dB | dB/m | dB |                 | cm         | deg   |                          |
| 10600.12<br>10600.35 |        |               |    |      |    |      |    | Avenage<br>Peak | 148<br>148 |       | HORIZONTAL<br>HORIZONTAL |

| Freq                 | Level  | Limit<br>Line |    |      |    |      |    | Remark          | A/Pos      | T/Pos<br>Pol/Phase         |
|----------------------|--------|---------------|----|------|----|------|----|-----------------|------------|----------------------------|
| MHz                  | dBu∀/m | dBu∀/m        | dB | dBu∀ | dB | dB/m | dB |                 | cm         | deg                        |
| 10600.32<br>10600.32 |        |               |    |      |    |      |    | Avenage<br>Peak | 122<br>122 | 66 VERTICAL<br>66 VERTICAL |



| Temperature   | <b>25</b> ℃   | Humidity       | 56%                         |
|---------------|---------------|----------------|-----------------------------|
| Test Engineer | Serway Li     | Configurations | IEEE 802.11a Ch 64 / Ant. B |
| Test Date     | Jun. 15, 2012 |                |                             |

|        | Freq                 | Level  |        |    |      |    |      |    | Remark | A/Pos      | T/Pos | Pol/Phase                |
|--------|----------------------|--------|--------|----|------|----|------|----|--------|------------|-------|--------------------------|
|        | MHz                  | dBu∀/m | dBu∀/m | dB | dBu∀ | dB | dB/m | dB |        | cm         | deg   |                          |
| 1<br>2 | 10639.44<br>10641.28 |        |        |    |      |    |      |    |        | 149<br>149 |       | HORIZONTAL<br>HORIZONTAL |

| Freq                 | Level  |        |    |      |    |      |    | Remark          | A/Pos      | T/Pos<br>Pol/Phase           |
|----------------------|--------|--------|----|------|----|------|----|-----------------|------------|------------------------------|
| MHz                  | dBu∀/m | dBu∀/m | dB | dBu∀ | dB | dB/m | dB |                 | cm         | deg                          |
| 10640.12<br>10643.04 |        |        |    |      |    |      |    | Avenage<br>Peak | 145<br>145 | 306 VERTICAL<br>306 VERTICAL |



| Temperature   | <b>25</b> ℃                                                           | Humidity                              | 56%       |  |  |  |  |
|---------------|-----------------------------------------------------------------------|---------------------------------------|-----------|--|--|--|--|
| Test Engineer | Serway Li         Configurations         IEEE 802.11a Ch 100 / Ant. B |                                       |           |  |  |  |  |
| Test Date     | Jun. 15, 2012                                                         |                                       |           |  |  |  |  |
| Horizontal    |                                                                       |                                       |           |  |  |  |  |
| Freq Le       | Limit Over Re<br>vel Line Limit Lev                                   | ad CableAntenna P<br>el Loss Factor F |           |  |  |  |  |
| MHz dBu       | √/m dBu√/m dB dB                                                      | uv dB dB/m                            | dB cm deg |  |  |  |  |

### Vertical

| Freq                 | Level  |        | 0∨er<br>Limit |      |    |      |    | Remark | A/Pos      | T/Pos<br>Pol/Phase           |
|----------------------|--------|--------|---------------|------|----|------|----|--------|------------|------------------------------|
| MHz                  | dBu∀/m | dBu∀/m | dB            | dBu∀ | dB | dB/m | dB |        | cm         | deg                          |
| 10999.93<br>11000.15 |        |        |               |      |    |      |    |        | 123<br>123 | 287 VERTICAL<br>287 VERTICAL |

 1
 11000.10
 42.95
 54.00
 -11.05
 34.72
 5.01
 38.32
 35.10
 Average
 129
 70
 HORIZONTAL

 2
 11000.34
 57.75
 74.00
 -16.25
 49.52
 5.01
 38.32
 35.10
 Peak
 129
 70
 HORIZONTAL



| Tem    | perature             | 2              | 5℃                          |                | H              | lumidit | у                 | 56%  | 56%                          |            |       |                          |
|--------|----------------------|----------------|-----------------------------|----------------|----------------|---------|-------------------|------|------------------------------|------------|-------|--------------------------|
| Test   | Engineer             | Se             | erway Li                    |                | (              | Configu | irations          | IEEE | IEEE 802.11a Ch 116 / Ant. B |            |       |                          |
| Test   | Date                 | Ju             | ın. 15, 2                   | 012            |                |         |                   |      |                              |            |       |                          |
| Horiz  | ontal                |                |                             |                |                |         |                   |      |                              |            |       |                          |
|        | Freq                 | Level          | Linuit<br>Line              | 0∨er<br>Limit  |                |         | Antenna<br>Factor |      |                              | A/Pos      | T/Pos | Pol/Phase                |
|        | MHz                  | dBu∀/m         | $\overline{dBu \forall /m}$ | dB             | dBu∀           | dB      | dB/m              | dB   |                              |            | deg   |                          |
| 1<br>2 | 11159.50<br>11159.65 | 50.04<br>64.74 |                             | -3.96<br>-9.26 | 41.70<br>56.40 |         | 38.47<br>38.47    |      | Average<br>Peak              | 117<br>117 |       | HORIZONTAL<br>HORIZONTAL |

### Vertical

|   | Freq     | Level  | Limit<br>Line |       |       |      |       |       | Remark  | A/Pos | T/Pos<br>Pol/Phase | : |
|---|----------|--------|---------------|-------|-------|------|-------|-------|---------|-------|--------------------|---|
|   | MHz      | dBu∀/m | dBu∀/m        | dB    | dBu∀  | dB   | dB/m  | dB    |         |       | deg                | - |
| 1 | 11158.80 | 66.81  | 74.00         | -7.19 | 58.47 | 5.04 | 38.47 | 35.17 | Peak    | 119   | 288 VERTICAL       |   |
| 2 | 11159.04 | 51.90  | 54.00         | -2.10 | 43.56 | 5.04 | 38.47 | 35.17 | Avenage | 119   | 288 VERTICAL       |   |



| Temperature   | <b>25</b> ℃   | Humidity       | 56%                          |
|---------------|---------------|----------------|------------------------------|
| Test Engineer | Serway Li     | Configurations | IEEE 802.11a Ch 140 / Ant. B |
| Test Date     | Jun. 15, 2012 |                |                              |

Horizontal

| Freq                 | Level  | Limit<br>Line | 0∨er<br>Limit |      |    |      | -  | A/Pos      | T/Pos | Pol/Phase                |
|----------------------|--------|---------------|---------------|------|----|------|----|------------|-------|--------------------------|
| MHz                  | dBu∀/m | dBu∀/m        | dB            | dBu∀ | dB | dB/m | dB | <br>cm     | deg   |                          |
| 11399.60<br>11400.14 |        |               |               |      |    |      |    | 115<br>115 |       | HORIZONTAL<br>HORIZONTAL |

### Vertical

| Freq                 | Level  | Limit<br>Line |    |      |    |      |    | Remark | A/Pos      | T/Pos<br>Pol/Phase           | 2 |
|----------------------|--------|---------------|----|------|----|------|----|--------|------------|------------------------------|---|
| MHz                  | dBu∀/m | dBu∀/m        | dB | dBu∀ | dB | dB/m | dB |        | cm         | deg                          | _ |
| 11399.55<br>11400.13 |        |               |    |      |    |      |    |        | 119<br>119 | 294 VERTICAL<br>294 VERTICAL |   |

### Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) =  $20 \log Emission level (uV/m)$ .

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.



# 4.7. Band Edge Emissions Measurement

## 4.7.1. Limit

For transmitters operating in the 5.15-5.35 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm/MHz (68.3dBuV/m at 3m). For transmitters operating in the 5.470-5.725 GHz band: all emissions outside of the 5.470-5.725 GHz band shall not exceed an EIRP of -27 dBm/MHz (68.3dBuV/m at 3m). For transmitters operating in the 5.725-5.825 GHz band: all emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an EIRP of -17 dBm/MHz (78.3dBuV/m at 3m); for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an EIRP of -27 dBm/MHz (68.3dBuV/m at 3m); for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an EIRP of -27 dBm/MHz (68.3dBuV/m at 3m). In addition, In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

| Frequencies | Field Strength     | Measurement Distance |
|-------------|--------------------|----------------------|
| (MHz)       | (micorvolts/meter) | (meters)             |
| 0.009~0.490 | 2400/F(KHz)        | 300                  |
| 0.490~1.705 | 24000/F(KHz)       | 30                   |
| 1.705~30.0  | 30                 | 30                   |
| 30~88       | 100                | 3                    |
| 88~216      | 150                | 3                    |
| 216~960     | 200                | 3                    |
| Above 960   | 500                | 3                    |

### 4.7.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

| Spectrum Parameter                        | Setting                                        |
|-------------------------------------------|------------------------------------------------|
| Attenuation                               | Auto                                           |
| Span Frequency                            | 100 MHz                                        |
| RB / VB (Emission in restricted band)     | 1MHz / 3MHz for Peak, 1 MHz / 10Hz for Average |
| RB / VB (Emission in non-restricted band) | 1MHz / 3MHz for Peak                           |

### 4.7.3. Test Procedures

The test procedure is the same as section 4.6.3, only the frequency range investigated is limited to 100MHz around bandedges.



## 4.7.4. Test Setup Layout

This test setup layout is the same as that shown in section 4.6.4.

### 4.7.5. Test Deviation

There is no deviation with the original standard.

# 4.7.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.



# 4.7.7. Test Result of Band Edge and Fundamental Emissions

| Temperature   | <b>25.6°</b> C | Humidity       | 56%                                 |  |  |
|---------------|----------------|----------------|-------------------------------------|--|--|
| Test Engineer | Serway Li      | Configurations | IEEE 802.11n MCS0 20MHz Ch 36, 40 / |  |  |
|               |                | Configurations | Ant. B                              |  |  |
| Test Date     | Jun. 15, 2012  |                |                                     |  |  |

### Channel 36

|                  | Freq                                     | Level  | Limit<br>Line | Over<br>Límít |                |              |      |      |                                    | A/Pos                    | T/Pos<br>Pol/Phase                                           |
|------------------|------------------------------------------|--------|---------------|---------------|----------------|--------------|------|------|------------------------------------|--------------------------|--------------------------------------------------------------|
|                  | MHz                                      | dBu∀/m | dBu∀/m        | dB            | dBu∀           | dB           | dB/m | dB   |                                    | cm                       | deg                                                          |
| 1<br>2<br>3<br>4 | 5148.60<br>5150.00<br>5180.60<br>5180.60 |        |               |               | 11.36<br>56.62 | 3.43<br>3.44 |      | 0.00 | Peak<br>Avenage<br>Avenage<br>Peak | 113<br>113<br>113<br>113 | 150 VERTICAL<br>150 VERTICAL<br>150 VERTICAL<br>150 VERTICAL |

Item 3, 4 are the fundamental frequency at 5180 MHz.

# Channel 40

|   | Freq    | Level  | Limit<br>Line | 0∨er<br>Limit |       |      |       |      |         | A/Pos | T/Pos | Pol/Phase |
|---|---------|--------|---------------|---------------|-------|------|-------|------|---------|-------|-------|-----------|
|   | MHz     | dBu∀/m | dBu\//m       | dB            | dBu∨  | dB   | dB/m  | dB   |         | cm    | deg   |           |
| 1 | 5150.00 | 48.51  | 54.00         | -5.49         | 11.41 | 3.43 | 33.67 | 0.00 | Average | 109   | 150   | VERTICAL  |
| 2 | 5150.00 | 67.76  | 74.00         | -6.24         | 30.66 | 3.43 | 33.67 | 0.00 | Peak    | 109   | 150   | VERTICAL  |
| 3 | 5199.20 |        |               |               | 58.67 | 3.45 | 33.76 | 0.00 | Average | 109   | 150   | VERTICAL  |
| 4 | 5200.80 |        |               |               | 71.81 | 3.45 | 33.76 | 0.00 | Peak    | 109   | 150   | VERTICAL  |
| 5 | 5359.60 | 45.73  | 54.00         | -8.27         | 8.21  | 3.49 | 34.03 | 0.00 | Avenage | 109   | 150   | VERTICAL  |
| 6 | 5359.60 | 58.06  | 74.00         | -15.94        | 20.54 | 3.49 | 34.03 | 0.00 | Peak    | 109   | 150   | VERTICAL  |

Item 3, 4 are the fundamental frequency at 5200 MHz.



| Temperature   | <b>25.6℃</b>  | Humidity       | 56%                                 |
|---------------|---------------|----------------|-------------------------------------|
| Test Engineer | Serway Li     | Configurations | IEEE 802.11n MCS0 20MHz Ch 48, 52 / |
|               |               | Configurations | Ant. B                              |
| Test Date     | Jun. 15, 2012 |                |                                     |
|               |               |                |                                     |

|   | Freq    | Level  |         | 0∨er<br>Limit |       |      |       |      |         | A/Pos | T/Pos | Pol/Phase |
|---|---------|--------|---------|---------------|-------|------|-------|------|---------|-------|-------|-----------|
|   | MHz     | dBu∀/m | dBu\//m | dB            | dBu∨  | dB   | dB/m  | dB   |         | cm    | deg   |           |
| 1 | 5079.60 | 43.98  | 54.00   | -10.02        | 7.02  | 3.41 | 33.55 | 0.00 | Avenage | 100   | 152   | VERTICAL  |
| 2 | 5086,00 | 54.09  | 74.00   | -19.91        | 17.13 | 3.41 | 33.55 | 0.00 | Peak    | 100   | 152   | VERTICAL  |
| 3 | 5239.20 |        |         |               | 58.88 | 3.46 | 33.82 | 0.00 | Average | 100   | 152   | VERTICAL  |
| 4 | 5240.00 |        |         |               | 72.15 | 3.46 | 33.82 | 0.00 | Peak    | 100   | 152   | VERTICAL  |
| 5 | 5399.60 | 46.59  | 54.00   | -7.41         | 8.96  | 3.51 | 34.12 | 0.00 | Average | 100   | 152   | VERTICAL  |
| 6 | 5399.60 | 58.88  | 74.00   | -15.12        | 21.25 | 3.51 | 34.12 | 0.00 | Peak    | 100   | 152   | VERTICAL  |

Item 3, 4 are the fundamental frequency at 5240 MHz.

# Channel 52

|             | Freq                          | Level  | Limit<br>Line  |                 | Read<br>Level  |              |                         |              |                            | A/Pos             | T/Pos      | Pol/Phase                        |
|-------------|-------------------------------|--------|----------------|-----------------|----------------|--------------|-------------------------|--------------|----------------------------|-------------------|------------|----------------------------------|
|             | MHz                           | dBu∀/m | dBu\//m        | dB              | dBu∨           | dB           | dB/m                    | dB           |                            | cm                | deg        |                                  |
| 1<br>2<br>3 | 5099.60<br>5107.60<br>5259.20 | 55.48  | 54.00<br>74.00 |                 | 18.48<br>57.75 | 3.42<br>3.46 | 33.85                   | 0.00<br>0.00 | Avenage<br>Peak<br>Avenage | 100<br>100<br>100 | 152<br>152 | VERTICAL<br>VERTICAL<br>VERTICAL |
| 4<br>5<br>6 | 5259.20<br>5420.00<br>5428.00 | 44.86  |                | -9.14<br>-18.41 |                | 3.51         | 33.85<br>34.15<br>34.15 | 0.00         | Peak<br>Average<br>Peak    | 100<br>100<br>100 | 152        | VERTICAL<br>VERTICAL<br>VERTICAL |

Item 3, 4 are the fundamental frequency at 5260 MHz.



| Temperature   | <b>25.6℃</b>  | Humidity       | 56%                                 |
|---------------|---------------|----------------|-------------------------------------|
| Test Engineer | Serway Li     | Configurations | IEEE 802.11n MCS0 20MHz Ch 60, 64 / |
|               |               | Configurations | Ant. B                              |
| Test Date     | Jun. 15, 2012 |                |                                     |
|               |               |                |                                     |

|   | Freq    | Level  |        | 0∨er<br>Limit |       |      |       |      |         | A/Pos | T/Pos | Pol/Phase |
|---|---------|--------|--------|---------------|-------|------|-------|------|---------|-------|-------|-----------|
|   | MHz     | dBu∀/m | dBu∀/m | dB            | dBu∨  | dB   | dB/m  | dB   |         | cm    | deg   |           |
| 1 | 5138.80 | 46.99  | 54.00  | -7.01         | 9.92  | 3.43 | 33.64 | 0.00 | Avenage | 100   | 145   | VERTICAL  |
| 2 | 5139.60 | 56.53  | 74.00  | -17.47        | 19.46 | 3.43 | 33.64 | 0.00 | Peak    | 100   | 145   | VERTICAL  |
| 3 | 5300.00 |        |        |               | 69.37 | 3.48 | 33.94 | 0.00 | Peak    | 100   | 145   | VERTICAL  |
| 4 | 5300.80 |        |        |               | 56.33 | 3.48 | 33.94 | 0.00 | Average | 100   | 145   | VERTICAL  |
| 5 | 5460.00 | 43.07  | 54.00  | -10.93        | 5.34  | 3.52 | 34.21 | 0.00 | Average | 100   | 145   | VERTICAL  |
| 6 | 5460.00 | 54.02  | 74.00  | -19.98        | 16.29 | 3.52 | 34.21 | 0.00 | Peak    | 100   | 145   | VERTICAL  |

Item 3, 4 are the fundamental frequency at 5300 MHz.

## Channel 64

|   |         |        |        |       | Read  |      |        |        |         | A/Pos | T/Pos        |
|---|---------|--------|--------|-------|-------|------|--------|--------|---------|-------|--------------|
|   | Freq    | Level  | Line   | Limit | Level | Loss | Factor | Factor | Remark  |       | Pol/Phase    |
|   | MHz     | dBu∀/m | dBu∀/m | dB    | dBu∀  | dB   | dB/m   | dB     |         | cm    | deg          |
| 1 | 5319.20 |        |        |       | 69.88 | 3.48 | 33.97  | 0.00   | Peak    | 100   | 147 VERTICAL |
| 2 | 5319.40 |        |        |       | 56.68 | 3.48 | 33.97  | 0.00   | Avenage | 100   | 147 VERTICAL |
| 3 | 5350.00 | 47.56  | 54.00  | -6.44 | 10.04 | 3.49 | 34.03  | 0.00   | Avenage | 100   | 147 VERTICAL |
| 4 | 5350.00 | 66,69  | 74.00  | -7.31 | 29.17 | 3.49 | 34.03  | 0.00   | Peak    | 100   | 147 VERTICAL |

Item 1, 2 are the fundamental frequency at 5320 MHz.



| Temperature   | <b>25.6℃</b>  | Humidity       | 56%                                   |
|---------------|---------------|----------------|---------------------------------------|
| Test Engineer | Serwav Li     | Configurations | IEEE 802.11n MCS0 20MHz Ch 100, 140 / |
|               |               | Configurations | Ant. B                                |
| Test Date     | Jun. 15, 2012 |                |                                       |
| Oh ann al 100 |               |                |                                       |

| Fre      | q Level  |        | 0∨er<br>Limit |                        |                      |      |                      |                                            | A/Pos                           | T/Pos             | Pol/Phase                                                |
|----------|----------|--------|---------------|------------------------|----------------------|------|----------------------|--------------------------------------------|---------------------------------|-------------------|----------------------------------------------------------|
| MH       | z dBu∀/m | dBu∀/m | dB            | dBu∨                   | dB                   | dB/m | dB                   |                                            | cm                              | deg               |                                                          |
| 2 5460.0 |          | 54.00  | -12.47        | 3,80<br>25,97<br>66,14 | 3.52<br>3.52<br>3.53 |      | 0,00<br>0,00<br>0,00 | Peak<br>Avenage<br>Peak<br>Peak<br>Avenage | 100<br>100<br>100<br>100<br>100 | 149<br>149<br>149 | VERTICAL<br>VERTICAL<br>VERTICAL<br>VERTICAL<br>VERTICAL |

Item 4, 5 are the fundamental frequency at 5500 MHz.

# Channel 140

|             | Freq                          | Level  | Limit<br>Line |       | Read<br>Level |      |       |      | A/Pos             | T/Pos<br>Pol/Phase                           |
|-------------|-------------------------------|--------|---------------|-------|---------------|------|-------|------|-------------------|----------------------------------------------|
| -           | MHz                           | dBu∀/m | dBu∀/m        | dB    | dBu∀          | dB   | dB/m  | dB   | <br>cm            | deg                                          |
| 1<br>2<br>3 | 5699.20<br>5699.60<br>5725.40 | 67.35  | 68.30         | -0.95 | 67.46         | 3.59 | 34.34 | 0.00 | 100<br>100<br>100 | 149 VERTICAL<br>149 VERTICAL<br>149 VERTICAL |

Item 1, 2 are the fundamental frequency at 5700 MHz.



| Temperature   | <b>25.6°</b> C | Humidity       | 56%                             |
|---------------|----------------|----------------|---------------------------------|
| Test Engineer | Serway Li      | Configurations | IEEE 802.11a Ch 36, 40 / Ant. B |
| Test Date     | Jun. 15, 2012  |                |                                 |

|                  | Freq                                     | Level  | Limit<br>Line |    |                |              |      |      | Remark                             | A/Pos                    | T/Pos      | Pol/Phase                                            |
|------------------|------------------------------------------|--------|---------------|----|----------------|--------------|------|------|------------------------------------|--------------------------|------------|------------------------------------------------------|
|                  | MHz                                      | dBu∀/m | dBu∀/m        | dB | dBu∀           | dB           | dB/m | dB   |                                    | cm                       | deg        |                                                      |
| 1<br>2<br>3<br>4 | 5148.60<br>5150.00<br>5180.60<br>5181.60 |        |               |    | 11.82<br>59.05 | 3.43<br>3.44 |      | 0.00 | Peak<br>Avenage<br>Avenage<br>Peak | 206<br>206<br>206<br>206 | 255<br>255 | HORIZONTAL<br>HORIZONTAL<br>HORIZONTAL<br>HORIZONTAL |

Item 3, 4 are the fundamental frequency at 5180 MHz.

## Channel 40

|   | Freq    | Level  | Limit<br>Line | 0∨er<br>Limit |       |      |       | Preamp<br>Factor |         | A/Pos | T/Pos | Pol/Phase  |
|---|---------|--------|---------------|---------------|-------|------|-------|------------------|---------|-------|-------|------------|
|   | MHz     | dBu∀/m | dBu\//m       | dB            | dBu∨  | dB   | dB/m  | dB               |         | cm    | deg   |            |
| 1 | 5038.80 | 55.72  | 74.00         | -18.28        | 18.87 | 3.40 | 33.45 | 0.00             | Peak    | 203   | 267   | HORIZONTAL |
| 2 | 5039.60 | 47.14  | 54.00         | -6,86         | 10.29 | 3.40 | 33.45 | 0.00             | Avenage | 2.03  | 267   | HORIZONTAL |
| 3 | 5200.80 |        |               |               | 59.98 | 3.45 | 33.76 | 0.00             | Average | 203   | 267   | HORIZONTAL |
| 4 | 5200.80 |        |               |               | 72.41 | 3.45 | 33.76 | 0.00             | Peak    | 203   | 267   | HORIZONTAL |
| 5 | 5359.60 | 49.21  | 54.00         | -4.79         | 11.69 | 3.49 | 34.03 | 0.00             | Average | 203   | 267   | HORIZONTAL |
| 6 | 5359.60 | 60.90  | 74.00         | -13.10        | 23.38 | 3.49 | 34.03 | 0.00             | Peak    | 203   | 267   | HORIZONTAL |

Item 3, 4 are the fundamental frequency at 5200 MHz.



| Temperature   | <b>25.6℃</b>  | Humidity       | 56%                             |
|---------------|---------------|----------------|---------------------------------|
| Test Engineer | Serway Li     | Configurations | IEEE 802.11a Ch 48, 52 / Ant. B |
| Test Date     | Jun. 15, 2012 |                |                                 |

|   | Freq    | Level  |         | Over<br>Limit |       |      |       |      |         | A/Pos | T/Pos | Pol/Phase  |
|---|---------|--------|---------|---------------|-------|------|-------|------|---------|-------|-------|------------|
|   | MHz     | dBu∀/m | dBu\//m | dB            | dBu∨  | dB   | dB/m  | dB   |         | cm    | deg   |            |
| 1 | 5078.80 | 53.85  | 74.00   | -20.15        | 16.89 | 3.41 | 33.55 | 0.00 | Peak    | 235   | 55    | HORIZONTAL |
| 2 | 5079.60 | 43.80  | 54.00   | -10.20        | 6.84  | 3.41 | 33.55 | 0.00 | Avenage | 235   | 55    | HORIZONTAL |
| 3 | 5239.20 |        |         |               | 58.38 | 3.46 | 33.82 | 0.00 | Average | 235   | 55    | HORIZONTAL |
| 4 | 5239.20 |        |         |               | 70.91 | 3.46 | 33.82 | 0.00 | Peak    | 235   | 55    | HORIZONTAL |
| 5 | 5399.60 | 45.69  | 54.00   | -8.31         | 8.06  | 3.51 | 34.12 | 0.00 | Average | 235   | 55    | HORIZOHTAL |
| 6 | 5400.40 | 55.14  | 74.00   | -18.86        | 17.51 | 3.51 | 34.12 | 0.00 | Peak    | 235   | 55    | HORIZONTAL |

Item 3, 4 are the fundamental frequency at 5240 MHz.

## Channel 52

|   | Freq    | Level  |        | 0∨er<br>Limit |       |      |       |      |         | A/Pos | T/Pos | Pol/Phase  |
|---|---------|--------|--------|---------------|-------|------|-------|------|---------|-------|-------|------------|
|   | MHz     | dBu∀/m | dBu∀/m | dB            | dBu∨  | dB   | dB/m  | dB   |         | cm    | deg   |            |
| 1 | 5099.60 | 47.45  | 54.00  | -6.55         | 10.45 | 3.42 | 33.58 | 0.00 | Average | 207   | 263   | HORIZONTAL |
| 2 | 5099.60 | 57.64  | 74.00  | -16.36        | 20.64 | 3.42 | 33.58 | 0.00 | Peak    | 207   | 263   | HORIZONTAL |
| 3 | 5259.20 |        |        |               | 58.39 | 3.46 | 33.85 | 0.00 | Average | 207   | 263   | HORIZONTAL |
| 4 | 5260.00 |        |        |               | 71.18 | 3.46 | 33.85 | 0.00 | Peak    | 207   | 263   | HORIZOHTAL |
| 5 | 5419.60 | 48.42  | 54.00  | -5.58         | 10.76 | 3.51 | 34.15 | 0.00 | Average | 207   | 263   | HORIZONTAL |
| 6 | 5420.40 | 56.88  | 74.00  | -17.12        | 19.22 | 3.51 | 34.15 | 0.00 | Peak    | 207   | 263   | HORIZONTAL |

Item 3, 4 are the fundamental frequency at 5260 MHz.



| Temperature   | <b>25.6℃</b>  | Humidity       | 56%                             |
|---------------|---------------|----------------|---------------------------------|
| Test Engineer | Serway Li     | Configurations | IEEE 802.11a Ch 60, 64 / Ant. B |
| Test Date     | Jun. 15, 2012 |                |                                 |

|   | Freq    | Level  | Limit<br>Line | 0∨er<br>Limit |       |      |       |      |         | A/Pos | T/Pos | Pol/Phase  |
|---|---------|--------|---------------|---------------|-------|------|-------|------|---------|-------|-------|------------|
|   | MHz     | dBu∀/m | dBu\//m       | dB            | dBu∨  | dB   | dB/m  | dB   |         | cm    | deg   |            |
| 1 | 5139.60 | 47.90  | 54.00         | -6.10         | 10.83 | 3.43 | 33.64 | 0.00 | Average | 211   | 259   | HORIZONTAL |
| 2 | 5139.60 | 58.44  | 74.00         | -15.56        | 21.37 | 3.43 | 33.64 | 0.00 | Peak    | 211   | 259   | HORIZONTAL |
| 3 | 5299.20 |        |               |               | 58.29 | 3.48 | 33.94 | 0.00 | Avenage | 211   | 259   | HORIZONTAL |
| 4 | 5300.80 |        |               |               | 71.27 | 3.48 | 33.94 | 0.00 | Peak    | 211   | 259   | HORIZONTAL |
| 5 | 5459.60 | 48.47  | 54.00         | -5.53         | 10.76 | 3.52 | 34.19 | 0.00 | Average | 211   | 259   | HORIZOHTAL |
| 6 | 5460.80 | 59.14  | 68.30         | -9.16         | 21.43 | 3.52 | 34.19 | 0.00 | Peak    | 211   | 259   | HORIZONTAL |

Item 3, 4 are the fundamental frequency at 5300 MHz.

## Channel 64

|   | Freq    | Level  | Limit<br>Line |       | Read<br>Level |      |       |      |         | A/Pos |     | Pol/Phase  |
|---|---------|--------|---------------|-------|---------------|------|-------|------|---------|-------|-----|------------|
|   | MHz     | dBu∀/m | dBu∀/m        | dB    | dBu∀          | dB   | dB/m  | dB   |         | cm    | deg |            |
| 1 | 5319.20 |        |               |       |               |      |       |      | Average | 172   |     | HORIZONTAL |
| 2 | 5320.00 |        |               |       | 71.67         | 3.48 | 33.97 | 0.00 | Peak    | 172   | 254 | HORIZOHTAL |
| 3 | 5350.00 | 49.78  | 54.00         | -4.22 | 12.26         | 3.49 | 34.03 | 0.00 | Average | 172   | 254 | HORIZOHTAL |
| 4 | 5350.00 | 72.72  | 74.00         | -1.28 | 35.20         | 3.49 | 34.03 | 0.00 | Peak    | 172   | 254 | HORIZONTAL |

Item 1, 2 are the fundamental frequency at 5320 MHz.



| Temperature   | 25.6°C        | Humidity       | 56%                               |
|---------------|---------------|----------------|-----------------------------------|
| Test Engineer | Serway Li     | Configurations | IEEE 802.11a Ch 100, 140 / Ant. B |
| Test Date     | Jun. 15, 2012 |                |                                   |

|   | Freq    | Level  |        | 0∨er<br>Limit |       |      |       |      |         | A/Pos | T/Pos | Pol/Phase  |
|---|---------|--------|--------|---------------|-------|------|-------|------|---------|-------|-------|------------|
|   | MHz     | dBu∀/m | dBu∀/m | dB            | dBu∨  | dB   | dB/m  | dB   |         | cm    | deg   |            |
| 1 | 5459.60 |        |        | -13.38        |       |      |       |      | Peak    | 192   |       | HORIZONTAL |
| 2 | 5460.00 | 43.94  | 54.00  | -10.05        | 6.23  | 3.52 | 34.19 | 0.00 | Average | 192   | 251   | HORIZONTAL |
| 3 | 5469.60 | 67.48  | 68.30  | -0.82         | 29.75 | 3.52 | 34.21 | 0.00 | Peak    | 192   | 251   | HORIZONTAL |
| 4 | 5498.80 |        |        |               | 70.55 | 3.53 | 34.23 | 0.00 | Peak    | 192   | 251   | HORIZONTAL |
| 5 | 5499.60 |        |        |               | 57.78 | 3.53 | 34.23 | 0.00 | Average | 192   | 251   | HORIZONTAL |

Item 4, 5 are the fundamental frequency at 5500 MHz.

### Channel 140

|   | Freq    | Level  | Limit<br>Line |       | Read<br>Level |      |       |      |         | A/Pos | T/Pos | Pol/Phase  |
|---|---------|--------|---------------|-------|---------------|------|-------|------|---------|-------|-------|------------|
|   | MHz     | dBu∀/m | dBu∀/m        | dB    | dBu∀          | dB   | dB/m  | dB   |         | cm    | deg   |            |
| 1 | 5699.40 |        |               |       | 57.38         | 3.59 | 34.34 | 0.00 | Avenage | 195   | 247   | HORIZONTAL |
| 2 | 5700.00 |        |               |       | 71.71         | 3.59 | 34.34 | 0.00 | Peak    | 195   | 247   | HORIZONTAL |
| 3 | 5726.00 | 67.77  | 68.30         | -0.53 | 29.83         | 3.60 | 34.34 | 0.00 | Peak    | 195   | 247   | HORIZOHTAL |

Item 1, 2 are the fundamental frequency at 5700 MHz.

Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m)

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

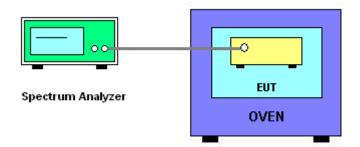


# 4.8. Frequency Stability Measurement

### 4.8.1. Limit

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emissions is maintained within the band of operation under all conditions of normal operation as specified in the user's manual or  $\pm 20$  ppm (IEEE 802.11nspecification).

### 4.8.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

| Spectrum Parameter | Setting                                          |
|--------------------|--------------------------------------------------|
| Attenuation        | Auto                                             |
| Span Frequency     | Entire absence of modulation emissions bandwidth |
| RB                 | 10 kHz                                           |
| VB                 | 10 kHz                                           |
| Sweep Time         | Auto                                             |

### 4.8.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer.
- 2. EUT have transmitted absence of modulation signal and fixed channelize.
- 3. Set the spectrum analyzer span to view the entire absence of modulation emissions bandwidth.
- 4. Set RBW = 10 kHz, VBW = 10 kHz with peak detector and maxhold settings.
- 5. fc is declaring of channel frequency. Then the frequency error formula is  $(fc-f)/fc \times 10^6$  ppm and the limit is less than ±20ppm (IEEE 802.11nspecification).
- 6. The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value
- 7. Extreme temperature rule is  $-30^{\circ}C \sim 50^{\circ}C$ .

# 4.8.4. Test Setup Layout







### 4.8.5. Test Deviation

There is no deviation with the original standard.

### 4.8.6. EUT Operation during Test

The EUT was programmed to be in continuously un-modulation transmitting mode.

### 4.8.7. Test Result of Frequency Stability

### Voltage vs. Frequency Stability

| Voltage              | Measurement Frequency (MHz) |           |  |  |  |
|----------------------|-----------------------------|-----------|--|--|--|
| (V)                  | 5200                        | 5300      |  |  |  |
| 126.50               | 5199.9843                   | 5299.9844 |  |  |  |
| 110.00               | 5199.9868                   | 5299.9856 |  |  |  |
| 93.50                | 5200.0030                   | 5300.0050 |  |  |  |
| Max. Deviation (MHz) | 0.015700                    | 0.015600  |  |  |  |
| Max. Deviation (ppm) | 3.02                        | 2.94      |  |  |  |

### Temperature vs. Frequency Stability

| Temperature          | Measurement F | Frequency (MHz) |
|----------------------|---------------|-----------------|
| (°C)                 | 5200          | 5300            |
| -30                  | 5199.9816     | 5299.9811       |
| -20                  | 5199.9823     | 5299.9821       |
| -10                  | 5199.9833     | 5299.9826       |
| 0                    | 5199.9841     | 5299.9831       |
| 10                   | 5199.9852     | 5299.9848       |
| 20                   | 5199.9868     | 5299.9856       |
| 30                   | 5199.9913     | 5299.9871       |
| 40                   | 5199.9926     | 5299.9878       |
| 50                   | 5199.9938     | 5299.9891       |
| Max. Deviation (MHz) | 0.018400      | 0.018900        |
| Max. Deviation (ppm) | 3.54          | 3.5660          |



# 4.9. Antenna Requirements

# 4.9.1 Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

# 4.9.2. Antenna Connector Construction

Please refer to section 3.3 in this test report; antenna connector complied with the requirements.



# 5. LIST OF MEASURING EQUIPMENTS

| Instrument                    | Manufacturer                                                                                | Model No.        | Serial No.    | Characteristics          | Calibration<br>Date | Remark                   |
|-------------------------------|---------------------------------------------------------------------------------------------|------------------|---------------|--------------------------|---------------------|--------------------------|
| EMI Test Receiver             | R&S                                                                                         | ESCS 30          | 100377        | 9kHz ~ 2.75GHz           | Sep. 14, 2011       | Conduction<br>(CO01-CB)  |
| LISN                          | F.C.C.                                                                                      | FCC-LISN-50-16-2 | 04083         | 150kHz ~ 100MHz          | Nov. 14, 2011       | Conduction<br>(CO01-CB)  |
| V- LISN                       | Schwarzbeck                                                                                 | NSLK 8127        | 8127-478      | 9K ~ 30MHz               | Jun. 22, 2012       | Conduction<br>(CO01-CB)  |
| PULSE LIMITER                 | R&S                                                                                         | ESH3-Z2          | 100430        | 9K~30MHz                 | Feb. 03, 2012       | Conduction<br>(CO01-CB)  |
| COND Cable                    | COND Cable Woken                                                                            |                  | 01            | 0.15MHz~30MHz            | Dec. 4, 2011        | Conduction<br>(CO01-CB)  |
| BILOG ANTENNA                 | BILOG ANTENNA Schaffner                                                                     |                  | 22021         | 20MHz ~ 2GHz             | Jan. 11, 2012       | Radiation<br>(03CH01-CB) |
| Horn Antenna                  | EMCO                                                                                        | 3115             | 00075790      | 750MHz~18GHz             | Nov. 25, 2011       | Radiation<br>(03CH01-CB) |
| Horn Antenna                  | SCHWARZBEAK         BBHA 9170         BBHA9170252         15GHz ~ 40GHz         Nov. 22, 20 |                  | Nov. 22, 2011 | Radiation<br>(03CH01-CB) |                     |                          |
| Pre-Amplifier                 | mplifier Agilent                                                                            |                  | 2944A10991    | 0.1MHz ~ 1.3GHz          | Nov. 17, 2011       | Radiation<br>(03CH01-CB) |
| Pre-Amplifier                 | Agilent                                                                                     | 8449B            | 3008A02310    | 1GHz ~ 26.5GHz           | Nov. 29, 2011       | Radiation<br>(03CH01-CB) |
| Pre-Amplifier                 | WM                                                                                          | TF-130N-R1       | 923365        | 26.5GHz ~ 40GHz          | Jul. 29, 2011       | Radiation<br>(03CH01-CB) |
| Spectrum analyzer             | R&S                                                                                         | FSP40            | 100056        | 9KHz~40GHz               | Nov. 03, 2011       | Radiation<br>(05CH01-CB) |
| EMI Test Receiver             | R&S                                                                                         | ESCS 30          | 100355        | 9KHz ~ 2.75GHz           | Mar. 20, 2012       | Radiation<br>(03CH01-CB) |
| Loop Antenna                  | Teseq                                                                                       | HLA 6120         | 24155         | 9 kHz - 30 MHz           | Sep. 09, 2010*      | Radiation<br>(03CH01-CB) |
| Turn Table                    | INN CO                                                                                      | CO 2000          | N/A           | 0 ~ 360 degree           | N/A                 | Radiation<br>(03CH01-CB) |
| Antenna Mast                  | INN CO                                                                                      | CO2000           | N/A           | 1 m - 4 m                | N/A                 | Radiation<br>(03CH01-CB) |
| RF Cable-low                  | Woken                                                                                       | Low Cable-1      | N/A           | 30 MHz - 1 GHz           | Nov. 17, 2011       | Radiation<br>(03CH01-CB) |
| RF Cable-high                 | Woken                                                                                       | High Cable-1     | N/A           | 1 GHz – 26.5 GHz         | Nov. 17, 2011       | Radiation<br>(03CH01-CB) |
| RF Cable-high                 | Woken                                                                                       | High Cable-2     | N/A           | 1 GHz – 26.5 GHz         | Nov. 17, 2011       | Radiation<br>(03CH01-CB) |
| RF Cable-high                 | Woken                                                                                       | High Cable-3     | N/A           | 1 GHz - 40 GHz           | Nov. 17, 2011       | Radiation<br>(03CH01-CB) |
| RF Cable-high                 | Woken                                                                                       | High Cable-4     | N/A           | 1 GHz - 40 GHz           | Nov. 17, 2011       | Radiation<br>(03CH01-CB) |
| Signal analyzer               | R&S                                                                                         | FSV40            | 100979        | 9KHz~40GHz               | Sep. 26, 2011       | Conducted<br>(TH01-CB)   |
| Temp. and Humidity<br>Chamber | Ten Billion                                                                                 | TTH-D3SP         | TBN-931011    | -30~100 degree           | Jun. 05, 2012       | Conducted<br>(TH01-CB)   |
| Thermo-Hygro<br>Meter         | no-Hygro N/A HC 520 #1 15~70 degree Nov. 02. 20                                             |                  | Nov. 02, 2011 | Conducted<br>(TH01-CB)   |                     |                          |
| Signal Generator              | R&S                                                                                         | SMR40            | 100302        | 10MHz-40GHz              | Nov. 22, 2011       | Conducted<br>(TH01-CB)   |



| Instrument        | Manufacturer | Model No.     | Serial No. | Characteristics  | Calibration<br>Date | Remark                 |
|-------------------|--------------|---------------|------------|------------------|---------------------|------------------------|
| RF Power Divider  | HP           | 11636A        | 00306      | 2GHz ~ 18GHz     | N/A                 | Conducted<br>(TH01-CB) |
| RF Power Splitter | Anaren       | 44100         | 1839       | 2GHz ~ 18GHz     | N/A                 | Conducted<br>(TH01-CB) |
| RF Power Splitter | Anaren       | 42100         | 17930      | 2GHz ~ 18GHz     | N/A                 | Conducted<br>(TH01-CB) |
| Signal generator  | R&S          | SMU200A       | 102782     | 10MHz-40GHz      | Jun. 07, 2012       | Conducted<br>(TH01-CB) |
| Horn Antenna      | COM-POWER    | AH-118        | 071187     | 1GHz – 18GHz     | May 09, 2012        | Conducted<br>(TH01-CB) |
| RF Cable-high     | Woken        | High Cable-7  | -          | 1 GHz – 26.5 GHz | Nov. 17, 2011       | Conducted<br>(TH01-CB) |
| RF Cable-high     | Woken        | High Cable-8  | -          | 1 GHz – 26.5 GHz | Nov. 17, 2011       | Conducted<br>(TH01-CB) |
| RF Cable-high     | Woken        | High Cable-9  | -          | 1 GHz – 26.5 GHz | Nov. 17, 2011       | Conducted<br>(TH01-CB) |
| RF Cable-high     | Woken        | High Cable-10 | -          | 1 GHz – 26.5 GHz | Nov. 17, 2011       | Conducted<br>(TH01-CB) |
| RF Cable-high     | Woken        | High Cable-11 | -          | 1 GHz – 26.5 GHz | Nov. 17, 2011       | Conducted<br>(TH01-CB) |
| RF Cable-high     | Woken        | High Cable-12 | -          | 1 GHz – 26.5 GHz | Nov. 17, 2011       | Conducted<br>(TH01-CB) |
| RF Cable-high     | Woken        | High Cable-13 | -          | 1 GHz – 26.5 GHz | Nov. 17, 2011       | Conducted<br>(TH01-CB) |
| Power Sensor      | Anritsu      | MA2411B       | 0917223    | 300MHz~40GHz     | Nov. 01, 2011       | Conducted<br>(TH01-CB) |
| Power Meter       | Anritsu      | ML2495A       | 1035008    | 300MHz~40GHz     | Nov. 01, 2011       | Conducted<br>(TH01-CB) |

Note: Calibration Interval of instruments listed above is one year.

"\*" Calibration Interval of instruments listed above is two years.

NCR means Non-Calibration required.

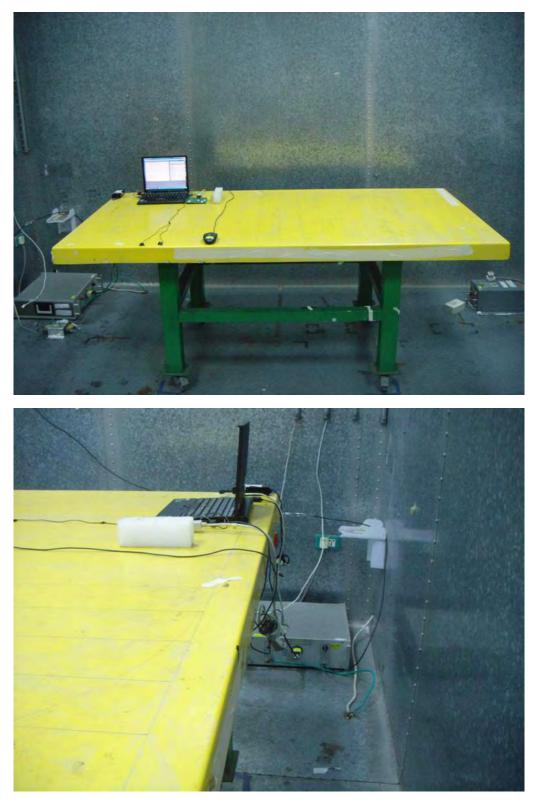


# 6. TEST LOCATION

| r      |     |   |                                                                                |
|--------|-----|---|--------------------------------------------------------------------------------|
| SHIJR  | ADD | : | 6FI., No. 106, Sec. 1, Shintai 5th Rd., Shijr City, Taipei, Taiwan 221, R.O.C. |
|        | TEL | : | 886-2-2696-2468                                                                |
|        | FAX | : | 886-2-2696-2255                                                                |
| HWA YA | ADD | : | No. 52, Hwa Ya 1st Rd., Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.       |
|        | TEL | : | 886-3-327-3456                                                                 |
|        | FAX | : | 886-3-318-0055                                                                 |
| LINKOU | ADD | : | No. 30-2, Dingfu Tsuen, Linkou Shiang, Taipei, Taiwan 244, R.O.C               |
|        | TEL | : | 886-2-2601-1640                                                                |
|        | FAX | : | 886-2-2601-1695                                                                |
| DUNGHU | ADD | : | No. 3, Lane 238, Kangle St., Neihu Chiu, Taipei, Taiwan 114, R.O.C.            |
|        | TEL | : | 886-2-2631-4739                                                                |
|        | FAX | : | 886-2-2631-9740                                                                |
| JUNGHE | ADD | : | 7FI., No. 758, Jungjeng Rd., Junghe City, Taipei, Taiwan 235, R.O.C.           |
|        | TEL | : | 886-2-8227-2020                                                                |
|        | FAX | : | 886-2-8227-2626                                                                |
| NEIHU  | ADD | : | 4FI., No. 339, Hsin Hu 2 <sup>nd</sup> Rd., Taipei 114, Taiwan, R.O.C.         |
|        | TEL | : | 886-2-2794-8886                                                                |
|        | FAX | : | 886-2-2794-9777                                                                |
| JHUBEI | ADD | : | No.8, Lane 724, Bo-ai St., Jhubei City, HsinChu County 302, Taiwan, R.O.C.     |
|        | TEL | : | 886-3-656-9065                                                                 |
|        | FAX | : | 886-3-656-9085                                                                 |
|        |     |   |                                                                                |



# 7. TAF CERTIFICATE OF ACCREDITATION


Certificate No. : L1190-110702 財團法 全國認證基金會 **Taiwan Accreditation Foundation Certificate of Accreditation** This is to certify that Sporton International Inc. EMC & Wireless Communications Laboratory No.52, Hwa Ya 1st Road, Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C. is accredited in respect of laboratory Accreditation Criteria : ISO/IEC 17025:2005 Accreditation Number : 1190 Originally Accredited : December 15, 2003 Effective Period : January 10, 2010 to January 09, 2013 Accredited Scope : Testing Field, see described in the Appendix Specific Accreditation : Accreditation Program for Designated Testing Laboratory Program for Commodities Inspection Accreditation Program for Telecommunication Equipment **Testing Laboratory** Accreditation Program for BSMI Mutual Recognition Arrangment with Foreign Authorities San Chen Jay-San Chen President, Taiwan Accreditation Foundation Date : July 02, 2011 P1, total 22 pages The Appendix forms an integral part of this Certificate, which shall be invalid when use without the Appendix



# Appendix A. Test Photos



# 1. Photographs of Conducted Emissions Test Configuration



FRONT VIEW



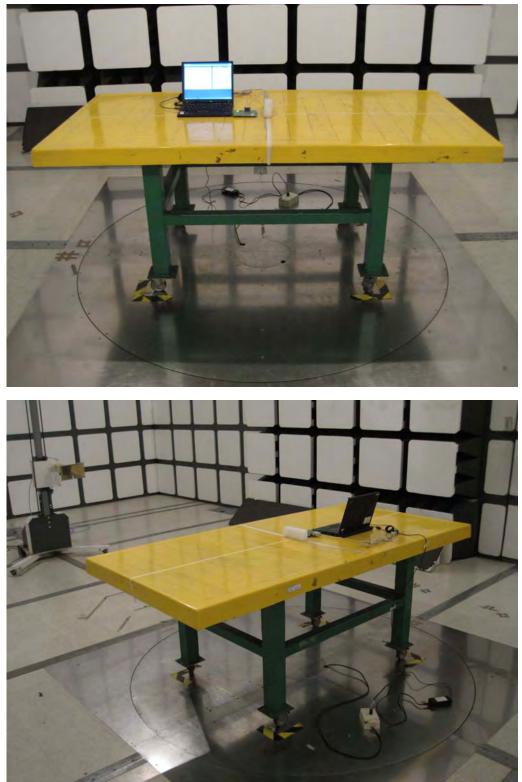
# 2. Photographs of Radiated Emissions Test Configuration

Test Configuration: 9kHz ~30MHz



FRONT VIEW




# Test Configuration: 30MHz~1GHz



FRONT VIEW



# Test Configuration: Above 1GHz



FRONT VIEW



# Appendix B. Maximum Permissible Exposure



# 1. Maximum Permissible Exposure

# 1.1. Applicable Standard

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.25 m normally can be maintained between the user and the device.

| Frequency Range<br>(MHz) | Electric Field<br>Strength (E) (V/m) | Magnetic Field<br>Strength (H) (A/m) | Power Density (S)<br>(mW/ cm²) | Averaging Time<br> E  <sup>2</sup> , H  <sup>2</sup> or S<br>(minutes) |
|--------------------------|--------------------------------------|--------------------------------------|--------------------------------|------------------------------------------------------------------------|
| 0.3-3.0                  | 614                                  | 1.63                                 | (100)*                         | 6                                                                      |
| 3.0-30                   | 1842 / f                             | 4.89 / f                             | (900 / f)*                     | 6                                                                      |
| 30-300                   | 61.4                                 | 0.163                                | 1.0                            | 6                                                                      |
| 300-1500                 |                                      |                                      | F/300                          | 6                                                                      |
| 1500-100,000             |                                      |                                      | 5                              | 6                                                                      |

(A) Limits for Occupational / Controlled Exposure

(B) Limits for General Population / Uncontrolled Exposure

| Frequency Range<br>(MHz) | Electric Field<br>Strength (E) (V/m) | Magnetic Field<br>Strength (H) (A/m) | Power Density (S)<br>(mW/ cm²) | Averaging Time<br> E  <sup>2</sup> , H  <sup>2</sup> or S<br>(minutes) |
|--------------------------|--------------------------------------|--------------------------------------|--------------------------------|------------------------------------------------------------------------|
| 0.3-1.34                 | 614                                  | 1.63                                 | (100)*                         | 30                                                                     |
| 1.34-30                  | 824/f                                | 2.19/f                               | (180/f)*                       | 30                                                                     |
| 30-300                   | 27.5                                 | 0.073                                | 0.2                            | 30                                                                     |
| 300-1500                 |                                      |                                      | F/1500                         | 30                                                                     |
| 1500-100,000             |                                      |                                      | 1.0                            | 30                                                                     |

Note: f = frequency in MHz ; \*Plane-wave equivalent power density

# 1.2. MPE Calculation Method

$$E (V/m) = \frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density:  $Pd (W/m^2) = \frac{E^2}{377}$ 

E = Electric field (V/m)

P = Average RF output power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained.



# 1.3. Calculated Result and Limit

### For 5GHz UNII Band:

### Antenna Type : PIFA Antenna

### Max Conducted Power for IEEE 802.11a : 13.38dBm

| Directional<br>Antenna Gain<br>(dBi) | Antenna Gain<br>(numeric) | (numeric) Output Power (<br>(dBm) |         | Average Power Density<br>utput Power (S)<br>(mW) (mW/cm <sup>2</sup> ) |   | Test Result |
|--------------------------------------|---------------------------|-----------------------------------|---------|------------------------------------------------------------------------|---|-------------|
| 4.30                                 | 2.6915                    | 13.3800                           | 21.7771 | 0.011667                                                               | 1 | Complies    |

Note: Directional Antenna Gain = Test Antenna Gain + 10 log (Antenna quantity)

### For 5GHz ISM Band:

### Antenna Type : PIFA Antenna

### Max Conducted Power for IEEE 802.11a: 13.25dBm

| Directional<br>Antenna Gain<br>(dBi) | Antenna Gain<br>(numeric) | Average Average I<br>Output Power Output Power<br>(dBm) (mW) |         | Power Density<br>(S)<br>(mW/cm <sup>2</sup> ) | Limit of Power<br>Density (S)<br>(mW/cm <sup>2</sup> ) | Test Result |
|--------------------------------------|---------------------------|--------------------------------------------------------------|---------|-----------------------------------------------|--------------------------------------------------------|-------------|
| 4.30                                 | 2.6915                    | 13.2500                                                      | 21.1349 | 0.011323                                      | 1                                                      | Complies    |

Note: Directional Antenna Gain = Test Antenna Gain + 10 log (Antenna quantity)

### For 2.4GHz Band:

### Antenna Type : PIFA Antenna

### Max Conducted Power for IEEE 802.11b : 15.82 dBm

| Directional<br>Antenna Gain<br>(dBi) | Antenna Gain<br>(numeric) | Average<br>Output Power<br>(dBm) | Average<br>Output Power<br>(mW) | Power Density<br>(S)<br>(mW/cm <sup>2</sup> ) | Limit of Power<br>Density (S)<br>(mW/cm <sup>2</sup> ) | Test Result |
|--------------------------------------|---------------------------|----------------------------------|---------------------------------|-----------------------------------------------|--------------------------------------------------------|-------------|
| 3                                    | 1.9953                    | 15.8200                          | 38.1944                         | 0.015169                                      | 1                                                      | Complies    |

Note: Directional Antenna Gain = Test Antenna Gain + 10 log (Antenna quantity)

### For Bluetooth 1.0 :

### Antenna Type : PIFA Antenna

### Max Conducted Power for Bluetooth : 9.32 dBm

| Antenna Gain<br>(dBi) | Antenna Gain<br>(numeric) | Average<br>Output Power<br>(dBm) | Average<br>Output Power<br>(mW) | Power Density<br>(S)<br>(mW/cm <sup>2</sup> ) | Limit of Power<br>Density (S)<br>(mW/cm <sup>2</sup> ) | Test Result |
|-----------------------|---------------------------|----------------------------------|---------------------------------|-----------------------------------------------|--------------------------------------------------------|-------------|
| 3                     | 1.9953                    | 9.3200                           | 8.5507                          | 0.003396                                      | 1                                                      | Complies    |

### For Bluetooth 2.1+EDR :

### Antenna Type : PIFA Antenna

### Max Conducted Power for Bluetooth : 9.50 dBm

| Antenna Gain<br>(dBi) | Antenna Gain<br>(numeric) | Average Average F<br>Output Power Output Power<br>(dBm) (mW) |        | Power Density<br>(S)<br>(mW/cm <sup>2</sup> ) | Limit of Power<br>Density (S)<br>(mW/cm <sup>2</sup> ) | Test Result |
|-----------------------|---------------------------|--------------------------------------------------------------|--------|-----------------------------------------------|--------------------------------------------------------|-------------|
| 3                     | 1.9953                    | 9.5000                                                       | 8.9125 | 0.003540                                      | 1                                                      | Complies    |



### For Bluetooth 4.0 :

### Antenna Type : PIFA Antenna

### Max Conducted Power for Bluetooth : 7.80 dBm

| Antenna Gain<br>(dBi) | Antenna Gain<br>(numeric) | Average<br>Output Power<br>(dBm) | Average<br>Output Power<br>(mW) | Power Density<br>(S)<br>(mW/cm <sup>2</sup> ) | Limit of Power<br>Density (S)<br>(mW/cm <sup>2</sup> ) | Test Result |
|-----------------------|---------------------------|----------------------------------|---------------------------------|-----------------------------------------------|--------------------------------------------------------|-------------|
| 3                     | 1.9953                    | 7.8000                           | 6.0256                          | 0.002393                                      | 1                                                      | Complies    |

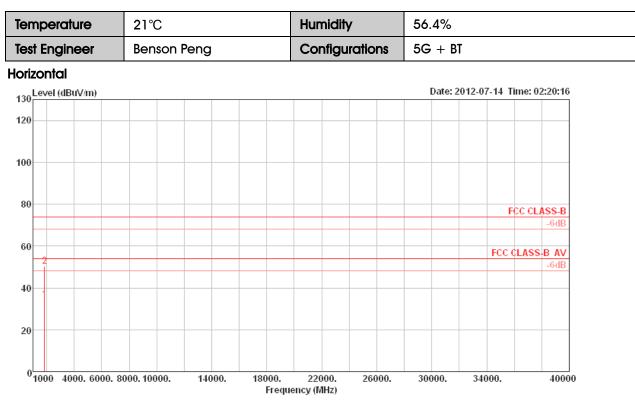
### CONCULSION:

Both of the WLAN 5GHz Band and Bluetooth can transmit simultaneously, the formula of calculated the MPE is:

## CPD1 / LPD1 + CPD2 / LPD2 + .....etc. < 1

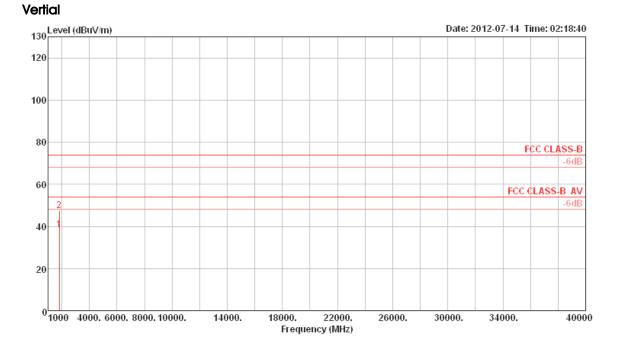
CPD = Calculation power density

### LPD = Limit of power density


Therefore, the worst-case situation is 0.011667 / 1 + 0.003540 / 1 = 0.015207, which isless than "1". This confirmed that the device comply with FCC 1.1310 MPE limit.



# Appendix C. Co-location




# 1. Results of Radiated Emissions for Co-located



|   | Freq               | Level  | Limit<br>Line | Over<br>Limit |      |    |      |    |         | A/Pos      |     | Pol/Phase                |
|---|--------------------|--------|---------------|---------------|------|----|------|----|---------|------------|-----|--------------------------|
|   | MHz                | dBuV/m | dBu∀/m        | dB            | dBu∨ | dB | dB/m | dB |         | cm         | deg |                          |
| 1 | 1842.20<br>1842.20 |        |               |               |      |    |      |    | Average | 100<br>100 |     | HORIZONTAL<br>HORIZONTAL |





|   |         |        | Limit  | 0ver   | Read  | CableAntenna Preamp |        |        |         | A/Pos | T/Pos |           |
|---|---------|--------|--------|--------|-------|---------------------|--------|--------|---------|-------|-------|-----------|
|   | Freq    | Level  | Line   | Limit  | Level | Loss                | Factor | Factor | Remark  |       |       | Pol/Phase |
|   |         |        |        |        |       |                     |        |        |         |       |       |           |
|   | MHz     | dBu∀/m | dBu∀/m | dB     | dBu∨  | dB                  | dB/m   | dB     |         | cm    | deg   |           |
|   |         |        |        |        |       |                     |        |        |         |       |       |           |
| 1 | 1808.20 | 38.45  | 54.00  | -15.55 | 43.02 | 3.80                | 26.53  | 34.90  | Average | 105   | 228   | VERTICAL  |
| 2 | 1808.20 | 47.60  | 74.00  | -26.40 | 52.17 | 3.80                | 26.53  | 34.90  | Peak    | 105   | 228   | VERTICAL  |