

FCC Radio Test Report FCC ID: PU5-LN300WG3D

Report No. : BTL-FCCP-1-2102T172A Equipment : Notebook Computer

Model Name : Lenovo 300w Gen 3xxxxxxxx (The "x" in model name can be 0 to 9, A to Z,

a to z, "-" or blank, for marketing purpose only)

Brand Name : Lenovo

Applicant Wistron Corporation

Address 21F, No. 88, Sec. 1, Hsin Tai Wu Rd., Hsichih Dist, New Taipei City 221,

Taiwan

Radio Function : Bluetooth EDR

: FCC Part15, Subpart C (15.247) FCC Rule Part(s) Measurement : ANSI C63.10-2013

Procedure(s)

Date of Receipt : 2021/3/12

Date of Test : 2021/3/12 ~ 2021/5/6

Issued Date : 2021/5/31

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Prepared by

Peter Chen, Engineer

Approved by Scott Hsu, Manager

BTL Inc.

No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan

Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com

Project No.: 2102T172A Page 1 of 48 Report Version: R02

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Project No.: 2102T172A Page 2 of 48 Report Version: R02

CONTENTS 1 SUMMARY OF TEST RESULTS 5 1.1 **TEST FACILITY** 6 MEASUREMENT UNCERTAINTY 1.2 6 1.3 TEST ENVIRONMENT CONDITIONS 6 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING 1.4 6 1.5 **DUTY CYCLE** 7 2 **GENERAL INFORMATION** 8 **DESCRIPTION OF EUT** 2.1 8 2.2 **TEST MODES** 10 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 2.3 11 2.4 SUPPORT UNITS 12 3 AC POWER LINE CONDUCTED EMISSIONS TEST 13 3.1 LIMIT 13 **TEST PROCEDURE** 3.2 13 3.3 **DEVIATION FROM TEST STANDARD** 13 **TEST SETUP** 14 3.4 3.5 **TEST RESULT** 14 RADIATED EMISSIONS TEST 15 4 4.1 LIMIT 15 4.2 **TEST PROCEDURE** 16 4.3 **DEVIATION FROM TEST STANDARD** 16 **TEST SETUP** 4.4 17 4.5 **EUT OPERATING CONDITIONS** 18 TEST RESULT - BELOW 30 MHZ 4.6 18 4.7 TEST RESULT - 30 MHZ TO 1 GHZ 18 TEST RESULT - ABOVE 1 GHZ 4.8 18 **OUTPUT POWER TEST** 5 19 5.1 LIMIT 19 **TEST PROCEDURE** 5.2 19 5.3 **DEVIATION FROM STANDARD** 19 5.4 **TEST SETUP** 19 **EUT OPERATION CONDITIONS** 19 5.5 5.6 **TEST RESULTS** 19 6 LIST OF MEASURING EQUIPMENTS 20 7 **EUT TEST PHOTO** 21 **EUT PHOTOS** 21 APPENDIX A AC POWER LINE CONDUCTED EMISSIONS 22 APPENDIX B RADIATED EMISSIONS - 30 MHZ TO 1 GHZ 27 APPENDIX C **RADIATED EMISSIONS - ABOVE 1 GHZ** 30 **OUTPUT POWER** APPENDIX D 47

REVISON HISTORY

Report No.	Version	Description	Issued Date
BTL-FCCP-1-2102T172A	R00	Original Report.	2021/4/27
BTL-FCCP-1-2102T172A	R01	Revised report to address TCB's comments.	2021/5/21
BTL-FCCP-1-2102T172A	R02	Revised report to address TCB's comments.	2021/5/31

Project No.: 2102T172A Page 4 of 48 Report Version: R02

1 SUMMARY OF TEST RESULTS

Test procedures according to the technical standards.

Standard(s) Section	Description	Test Result	Judgement	Remark
15.207	AC Power Line Conducted Emissions	APPENDIX A	Pass	
15.205 15.209 15.247(d)	Radiated Emissions	APPENDIX B APPENDIX C	Pass	
15.247 (a)(1)(iii)	Number of Hopping Frequency	NOTE (3)	Pass	
15.247 (a)(1)(iii)	Average Time of Occupancy	NOTE (3)	Pass	
15.247 (a)(1)	Hopping Channel Separation	NOTE (3)	Pass	
15.247 (a)(1)	Bandwidth	NOTE (3)	Pass	
15.247 (b)(1)	Output Power	APPENDIX D	Pass	
15.247(d)	Antenna conducted Spurious Emission	NOTE (3)	Pass	
15.203	Antenna Requirement		Pass	

NOTE:

- (1) "N/A" denotes test is not applicable in this Test Report.
- (2) The report format version is TP.1.1.1.
- (3) This item is demonstrated to full compliance referring to the test report number 181210-03.TR05 of the integrated module (model name: AX200NGW, FCC ID: PD9AX200NG), according to KDB 996369 D02 Q1 a) 2).
- (4) The ac power lines conducted emissions and radiated emissions are tested to demonstrate full compliance of both module integrated into the host and host itself.
- (5) The output power of integrated module have been reduced, therefore, the full output power tests are performed and recorded.

Project No.: 2102T172A Page 5 of 48 Report Version: R02

□ CB16

1.1 TEST FACILITY

The test facilities used to collect the test data in this report:

No. 68-1, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan The test sites and facilities are covered under FCC RN: 674415 and DN: TW0659.

he test sites and facilities are covered under FCC RN: 674415 and DN: 100659. \Box CB15 \Box CB15

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k} = \mathbf{2}$, providing a level of confidence of approximately 95 %. The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 \mathbf{U}_{cispr} requirement.

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U (dB)
C05	CISPR	150 kHz ~ 30MHz	3.44

B. Radiated emissions test:

Test Site	Measurement Frequency Range	U,(dB)
	0.03 GHz ~ 0.2 GHz	4.17
CB15	0.2 GHz ~ 1 GHz	4.72
	1 GHz ~ 6 GHz	5.21
	6 GHz ~ 18 GHz	5.51
	18 GHz ~ 26 GHz	3.69
	26 GHz ~ 40 GHz	4.23

C. Conducted test:

Test Item	U,(dB)
Output Power	1.06

NOTE:

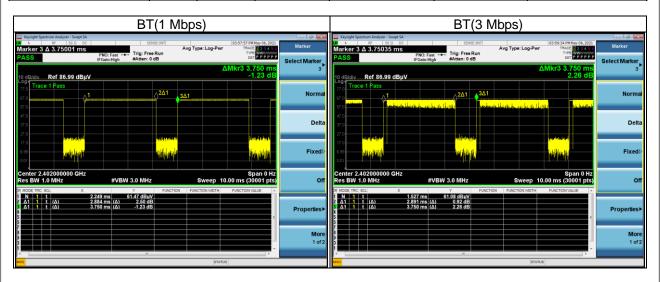
Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Environment Condition	Test Voltage	Tested by
AC Power Line Conducted Emissions	20 °C, 72 %	AC 120V	Vincent Lee
Radiated emissions below 1 GHz	Refer to data	AC 120V	Jay Kao
Radiated emissions above 1 GHz	Refer to data	AC 120V	Jay Kao
Output Power	25.8 °C, 54 %	AC 120V	Tim Lee

1.4 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING

Test Software	DRTU V.12.1947.0-10428					
Modulation Mode	2402 MHz 2441 MHz 2480 MHz Data Rate					
GFSK	16	16	16	1 Mbps		
π/4-DQPSK	16	16	16	2 Mbps		
8DPSK	16	16	16	3 Mbps		


Project No.: 2102T172A Page 6 of 48 Report Version: R02

1.5 DUTY CYCLE

If duty cycle is \geq 98 %, duty factor is not required. If duty cycle is < 98 %, duty factor shall be considered.

Remark	Delta 1			Delta 2	On Time/Period	10 log(1/Duty Cycle)
Mode	ON	Numbers	On Time (B)	Period (ON+OFF)	Duty Cycle	Duty Factor
lviode	(ms)	(ON)	(ms)	(ms)	(%)	(dB)
BT(1 Mbps)	2.884	1	2.884	3.750	76.91%	1.14
BT(3 Mbps)	2.891	1	2.891	3.750	77.09%	1.13

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

Equipment	Notebook Computer
Model Name	Lenovo 300w Gen 3xxxxxxxx (The "x" in model name can be 0 to 9, A to Z, a to z, "-" or blank, for marketing purpose only)
Brand Name	Lenovo
Model Difference	Different model distribute to different area.
Power Source	DC voltage supplied from External Power Supply. (Lenovo/ADLX45YLC3D)
Power Rating	I/P: 100-240V~1.3A 50-60Hz O/P: 20.0V—2.25A 45.0W / 15.0V—3.0A / 9.0V—2.0A / 5.0V—2.0A 10.0W
Products Covered	1 * Adapter: Lenovo/ADLX45YLC3D
WIFI+BT Module	Intel® Wi-Fi 6 AX200 / AX200NGW
WWAN Module	Fibocom / L850-GL
Operation Band	2400 MHz ~ 2483.5 MHz
Operation Frequency	2402 MHz ~ 2480 MHz
Modulation Technology	FHSS
Modulation Type	GFSK, π/4-DQPSK, 8DPSK
Transfer Rate	1 Mbps, 2 Mbps, 3 Mbps
Maximum Output Power	1 Mbps: 11.05 dBm (0.0127 W) 2 Mbps: 10.48 dBm (0.0112 W) 3 Mbps: 10.47 dBm (0.0111 W)
Test Model	Lenovo 300w Gen 3
Sample Status	Engineering Sample
EUT Modification(s)	N/A

NOTE:

(1) For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

Project No.: 2102T172A Page 8 of 48 Report Version: R02

(2) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	27	2429	54	2456
01	2403	28	2430	55	2457
02	2404	29	2431	56	2458
03	2405	30	2432	57	2459
04	2406	31	2433	58	2460
05	2407	32	2434	59	2461
06	2408	33	2435	60	2462
07	2409	34	2436	61	2463
08	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454		
26	2428	53	2455		

(3) Table for Filed Antenna:

Antenna	Manufacture	Part Number	Туре	Connector	Frequency Range (MHz)	Gain (dBi)
					2400-2500	-1.26
Main INPAQ Corporation	025.901U1.0001	PIFA	PIFA I-PEX	5150-5350	0.41	
				5470-5725	0.28	
					5725-5850	1.06
		AQ 025.901U2.0001	PIFA		2400-2500	-1.46
Aux	INPAQ			I-PEX	5150-5350	0.65
Corp	Corporation	025.90102.0001	FIFA	I-P EX	5470-5725	-0.25
					5725-5850	0.15

Antenna	Manufacture	Part Number	Туре	Connector	Frequency Range (MHz)	Gain (dBi)	
					2400-2500	0.93	
Main AWAN	025.901U3.0001	PIFA	PIFA I-PEX	5150-5350	0.58		
				5470-5725	1.68		
					5725-5850	0.86	
		AWAN 025.901U4.0001			2400-2500	1.52	
Aux	ANN/ANI 025 004114		005 004114 0004	PIFA	I-PEX	5150-5350	0.62
Aux A	AVVAIN		PIFA	I-PEX	5470-5725	0.93	
					5725-5850	0.93	

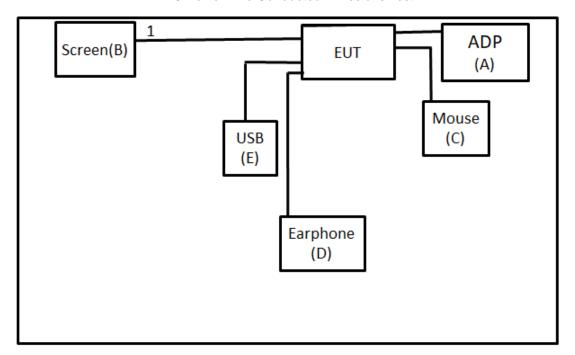
NOTE: Since the antenna gain of Antenna _ AWAN is the highest one among all, Antenna _ AWAN had used for testing.

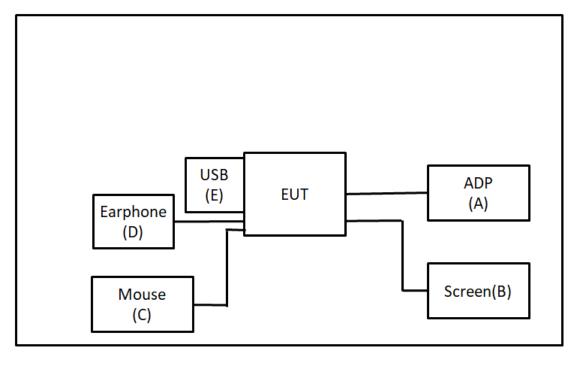
2.2 TEST MODES

Test Items	Test mode	Channel	Note
AC power line conducted emissions	Normal/Idle	-	-
Transmitter Radiated Emissions (below 1GHz)	3 Mbps	78	-
Transmitter Radiated Emissions	1/3 Mbps	00/78	Bandedge
(above 1GHz)	1/3 Mbps	00/39/78	Harmonic
Output Power	1/2/3 Mbps	00/39/78	-

NOTE:

- (1) The Radiated emissions test was verified based on the worst conducted power and Bandwidth test results reported in the original report.
- (2) For radiated emission band edge test, both Vertical and Horizontal are evaluated, but only the worst case (Horizontal) is recorded.
- (3) All X, Y and Z axes are evaluated, but only the worst case (Y axis) is recorded.


Project No.: 2102T172A Page 10 of 48 Report Version: R02


2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

AC Power Line Conducted Emissions Test

Radiated Emissions Test

Project No.: 2102T172A Page 11 of 48 Report Version: R02

2.4 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.	Remarks
Α	ADP	Lenovo	ADLX45YLC3D	N/A	Supplied by test requester.
В	Screen	ASUS	MX27U	N/A	Furnished by test lab.
С	Mouse	ACER	MP-368	N/A	Furnished by test lab.
D	Earphone	Sony	MDR-E9LP	N/A	Furnished by test lab.
Е	USB	Kingston	C7052-322.AOOL F	N/A	Furnished by test lab.

Item	Shielded	Ferrite Core	Length	Cable Type	Remarks
1	N/A	N/A	1.8m	HDMI Cable	Furnished by test lab.

Project No.: 2102T172A Page 12 of 48 Report Version: R02

3 AC POWER LINE CONDUCTED EMISSIONS TEST

3.1 LIMIT

Frequency	Limit (dBµV)		
(MHz)	Quasi-peak	Average	
0.15 - 0.5	66 - 56 *	56 - 46 *	
0.50 - 5.0	56	46	
5.0 - 30.0	60	50	

NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor (if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value
38.22	+	3.45	=	41.67

Measurement Value		Limit Value		Margin Level
41.67	ı	60	II	-18.33

The following table is the setting of the receiver.

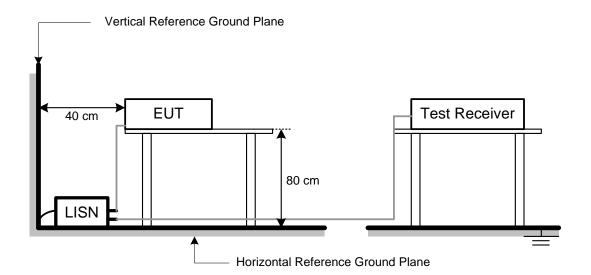
Receiver Parameter	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

3.2 TEST PROCEDURE

- a. The EUT was placed 0.8 m above the horizontal ground plane with the EUT being connected to the power mains through a line impedance stabilization network (LISN).
 - All other support equipment were powered from an additional LISN(s).
 - The LISN provides 50 Ohm/50uH of impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle to keep the cable above 40 cm.
- c. Excess I/O cables that are not connected to a peripheral shall be bundled in the center.
 - The end of the cable will be terminated, using the correct terminating impedance.
 - The overall length shall not exceed 1 m.
- d. The LISN is spaced at least 80 cm from the nearest part of the EUT chassis.
- e. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

NOTE:

- In the results, each reading is marked as Peak, QP or AVG per the detector used. BW=9 kHz (6 dB Bandwidth)
- (2) All readings are Peak unless otherwise stated QP or AVG in column of Note. Both the QP and the AVG readings must be less than the limit for compliance.


3.3 DEVIATION FROM TEST STANDARD

No deviation.

Project No.: 2102T172A Page 13 of 48 Report Version: R02

3.4 TEST SETUP

3.5 TEST RESULT

Please refer to the APPENDIX A.

4 RADIATED EMISSIONS TEST

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205, then the 15.209 limit in the table below has to be followed.

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSIONS MEASUREMENT (Above 1000 MHz)

Frequency (MHz)	Radiated Emissions (dBuV/m)		Measurement Distance	
(IVIIIZ)	Peak	Average	(meters)	
Above 1000	74	54	3	

NOTE:

- (1) The limit for radiated test was performed according to FCC Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value
19.11	+	2.11		21.22

Measurement Value		Limit Value		Margin Level
21.22	-	54	=	-32.78

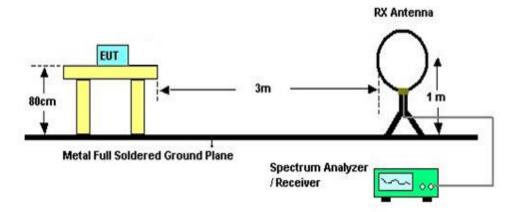
Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	1MHz / 3MHz for Peak,
(Emission in restricted band)	1MHz / 1/T for Average

Spectrum Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector
Start ~ Stop Frequency	90KHz~110KHz for QP detector
Start ~ Stop Frequency	110KHz~490KHz for PK/AVG detector
Start ~ Stop Frequency	490KHz~30MHz for QP detector
Start ~ Stop Frequency	30MHz~1000MHz for QP detector

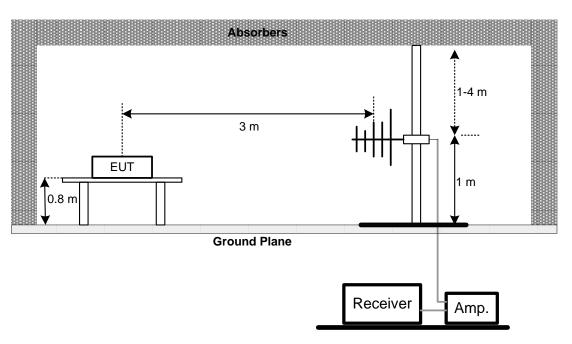
Project No.: 2102T172A Page 15 of 48 Report Version: R02

4.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the FLIT shall be deen

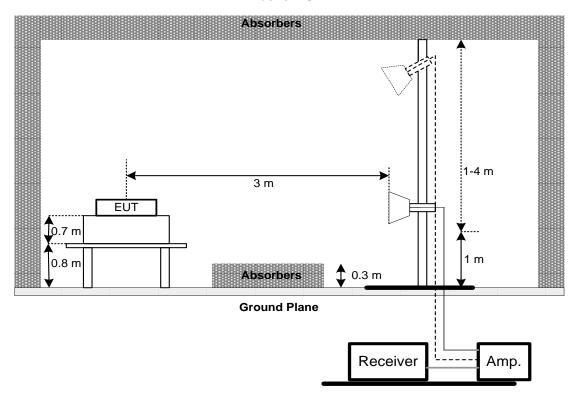

	meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
	i. For the actual test configuration, please refer to the related Item – EUT TEST PHOTO.
	4.3 DEVIATION FROM TEST STANDARD
	No deviation.
۱	

Project No.: 2102T172A Page 16 of 48 Report Version: R02



4.4 TEST SETUP

9 kHz to 30 MHz



30 MHz to 1 GHz

Above 1 GHz

4.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

4.6 TEST RESULT - BELOW 30 MHZ

There were no emissions found below 30 MHz within 20 dB of the limit.

4.7 TEST RESULT - 30 MHZ TO 1 GHZ

Please refer to the APPENDIX B.

4.8 TEST RESULT - ABOVE 1 GHZ

Please refer to the APPENDIX C.

NOTE:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

Project No.: 2102T172A Page 18 of 48 Report Version: R02

5 OUTPUT POWER TEST

5.1 LIMIT

FCC Part15 (15.247) , Subpart C									
Section	Test Item	Limit	Frequency Range (MHz)	Result					
15.247(b)(1)	Maximum peak conducted output power	0.125 Watts (20.97 dBm)	2400-2483.5	PASS					

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the power meter and antenna output port as show in the block diagram below.
- b. The maximum peak conducted output power was performed in accordance with method 9 b) of FCC KDB 558074 D01 DTS Meas Guidance.

5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP

EUT	Power Meter
	T OWER WICKER

5.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

5.6 TEST RESULTS

Please refer to the APPENDIX D.

6 LIST OF MEASURING EQUIPMENTS

	AC Power Line Conducted Emissions										
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until					
1	TWO-LINE V-NETWORK	R&S	ENV216	101050	2020/6/11	2021/6/10					
2	Test Cable	EMCI	EMC400-BM-BM- 5000	170501	2020/6/8	2021/6/7					
3	EMI Test Receiver	R&S	ESCI	100080	2020/6/15	2021/6/14					
4	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A					

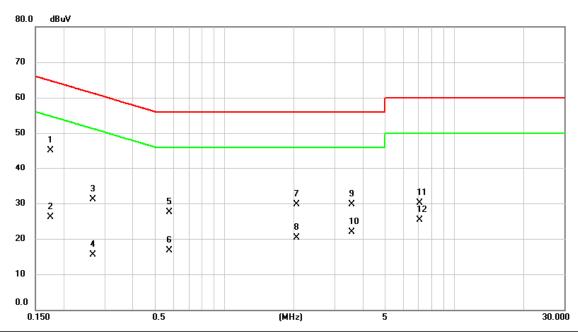
	Radiated Emissions								
Item	Kind of Equipment	Manufacturer	Type No.	Type No. Serial No.		Calibrated Until			
1	Preamplifier	EMCI	EMC02325B	980217	2020/4/10	2021/4/9			
2	Preamplifier	EMCI	EMC012645B	980267	2020/4/10	2021/4/9			
3	Test Cable	EMCI	EMC-SM-SM-100 0	180809	2020/4/10	2021/4/9			
4	Test Cable	EMCI	EMC104-SM-SM- 3000	151205	2020/4/10	2021/4/9			
5	Test Cable	EMCI	EMC-SM-SM-700 0	180408	2020/4/10	2021/4/9			
6	MXE EMI Receiver	Agilent	N9038A	MY554200087	2020/6/10	2021/6/9			
7	Signal Analyzer	Agilent	N9010A	MY56480554	2020/8/25	2021/8/24			
8	Horn Ant	SCHWARZBECK	BBHA 9120D	9120D-1342	2020/6/12	2021/6/11			
9	Horn Ant	Schwarzbeck	BBHA 9170	BBHA 9170340	2020/7/9	2021/7/8			
10	Loop Ant	Electro-Metrics	EMCI-LPA600	274	2020/6/16	2021/6/15			
11	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	VULB 9168-352	2020/7/24	2021/7/23			
12	5dB Attenuator	EMCI	EMCI-N-6-05	AT-N0625	2020/7/24	2021/7/23			
13	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A			

			Output Power	•		
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Power Meter	Anritsu	ML2487A	6K00004714	2020/9/3	2021/9/2
2	Power Sensor	Anritsu	MA2491A	034138	2020/9/3	2021/9/2

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

7 EUT TEST PHOTO								
Please refer to document Appendix No.: TP-2102T172A-FCCP-1 (APPENDIX-TEST PHOTOS).								
8 EUT PHOTOS								
Please refer to document Appendix No.: EP-2102T172A-2 (APPENDIX-EUT PHOTOS).								

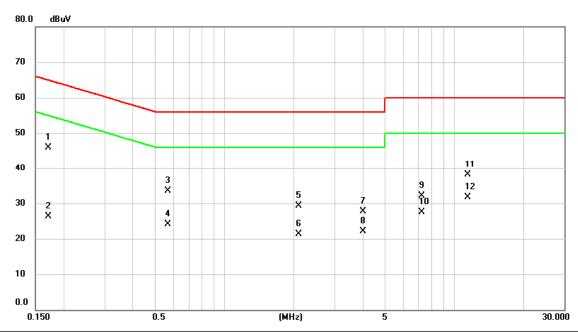
Project No.: 2102T172A Page 21 of 48 Report Version: R02



APPENDIX A	AC POWER LINE CONDUCTED EMISSIONS

Project No.: 2102T172A Page 22 of 48 Report Version: R02

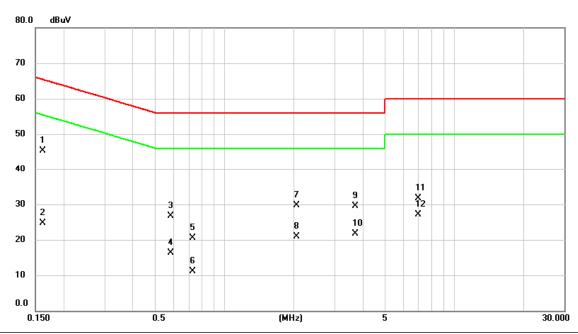
Test Mode	Normal	Tested Date	2021/3/23
Test Frequency	-	Phase	Line



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1	*	0.1747	35.36	9.68	45.04	64.73	-19.69	QР	
2		0.1747	16.48	9.68	26.16	54.73	-28.57	AVG	
3		0.2672	21.47	9.68	31.15	61.20	-30.05	QP	
4		0.2672	5.76	9.68	15.44	51.20	-35.76	AVG	
5		0.5752	17.84	9.68	27.52	56.00	-28.48	QP	
6		0.5752	7.00	9.68	16.68	46.00	-29.32	AVG	
7		2.0535	19.96	9.74	29.70	56.00	-26.30	QP	
8		2.0535	10.58	9.74	20.32	46.00	-25.68	AVG	
9		3.5587	20.01	9.78	29.79	56.00	-26.21	QP	
10		3.5587	12.22	9.78	22.00	46.00	-24.00	AVG	
11		7.0912	20.15	9.87	30.02	60.00	-29.98	QP	
12		7.0912	15.36	9.87	25.23	50.00	-24.77	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

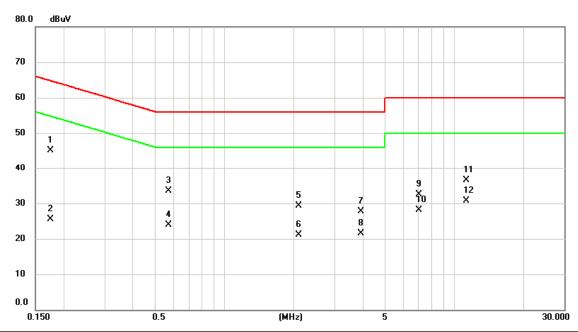
Test Mode	Normal	Tested Date	2021/3/23
Test Frequency	-	Phase	Neutral



No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1	0.1712	36.19	9.68	45.87	64.90	-19.03	QР	
2	0.1712	16.58	9.68	26.26	54.90	-28.64	AVG	
3	0.5685	23.78	9.68	33.46	56.00	-22.54	QP	
4	0.5685	14.34	9.68	24.02	46.00	-21.98	AVG	
5	2.1053	19.56	9.74	29.30	56.00	-26.70	QP	
6	2.1053	11.62	9.74	21.36	46.00	-24.64	AVG	
7	3.9818	17.99	9.79	27.78	56.00	-28.22	QP	
8	3.9818	12.31	9.79	22.10	46.00	-23.90	AVG	
9	7.2173	22.18	9.87	32.05	60.00	-27.95	QP	
10	7.2173	17.72	9.87	27.59	50.00	-22.41	AVG	
11	11.4428	28.24	9.93	38.17	60.00	-21.83	QP	
12 *	11.4428	21.73	9.93	31.66	50.00	-18.34	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	Idle	Tested Date	2021/3/23
Test Frequency	-	Phase	Line



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1	*	0.1615	35.54	9.68	45.22	65.39	-20.17	QP	
2		0.1615	15.09	9.68	24.77	55.39	-30.62	AVG	
3		0.5842	16.94	9.68	26.62	56.00	-29.38	QP	
4		0.5842	6.65	9.68	16.33	46.00	-29.67	AVG	
5		0.7260	10.73	9.68	20.41	56.00	-35.59	QP	
6		0.7260	1.35	9.68	11.03	46.00	-34.97	AVG	
7		2.0603	20.06	9.74	29.80	56.00	-26.20	QP	
8		2.0603	11.10	9.74	20.84	46.00	-25.16	AVG	
9		3.6870	19.73	9.79	29.52	56.00	-26.48	QP	
10		3.6870	11.97	9.79	21.76	46.00	-24.24	AVG	
11		6.9720	21.83	9.87	31.70	60.00	-28.30	QP	
12		6.9720	17.15	9.87	27.02	50.00	-22.98	AVG	

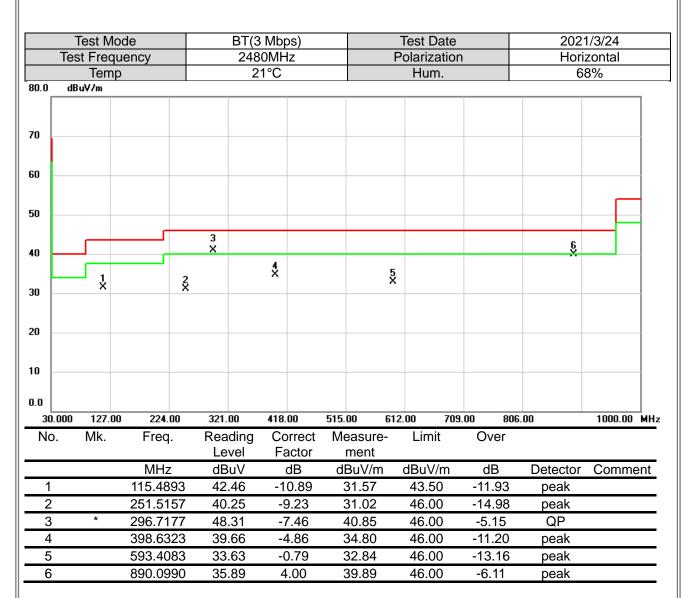
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	Idle	Tested Date	2021/3/23
Test Frequency	-	Phase	Neutral

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1	0.1748	35.33	9.68	45.01	64.73	-19.72	QР	
2	0.1748	15.81	9.68	25.49	54.73	-29.24	AVG	
3	0.5707	23.77	9.68	33.45	56.00	-22.55	QP	
4	0.5707	14.14	9.68	23.82	46.00	-22.18	AVG	
5	2.0963	19.54	9.74	29.28	56.00	-26.72	QP	
6	2.0963	11.44	9.74	21.18	46.00	-24.82	AVG	
7	3.9120	17.88	9.79	27.67	56.00	-28.33	QP	
8	3.9120	11.79	9.79	21.58	46.00	-24.42	AVG	
9	7.0328	22.62	9.87	32.49	60.00	-27.51	QP	
10	7.0328	18.15	9.87	28.02	50.00	-21.98	AVG	
11	11.3100	26.60	9.93	36.53	60.00	-23.47	QP	
12 *	11.3100	20.79	9.93	30.72	50.00	-19.28	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

APPENDIX B	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ


Project No.: 2102T172A Page 27 of 48 Report Version: R02

-	Test Mo	de	BT(3 Mbps)					Test Date			2021/3/24		
	st Frequ		2480MHz				F	Polarization	Vertical				
	Temp			21°C				Hum.			8%		
80.0 dB	uV/m											_	
70													
60													
50													
40			3 X		4 ×		5 X				ě		
30 X	2 X		×										
20													
10													
0.0 30.000	127.00	224.00	321.	00	418.00	515.0	10 61	2.00 7	09.00 80	6.00	1000.00		
No.	Mk.	Freq.	Rea	nding evel	Correct Factor	Me	asure- nent	Limit	Over	6.00	1000.00	MIII	
		MHz	dB	₿uV	dB	dE	BuV/m	dBuV/m	dB	Detector	Comme	ent	
1	*	39.0856	38	.10	-8.62	2	9.48	40.00	-10.52	peak			
2		124.4133		.59	-10.02	2	5.57	43.50	-17.93	peak			
3		296.7177		.80	-7.46		2.34	46.00	-13.66	peak			
4		398.6323		.34	-4.86		3.48	46.00	-12.52	peak			
5		593.4083		.72	-0.79		3.93	46.00	-12.07	peak			
6		930.1600	29	.01	4.71	3	3.72	46.00	-12.28	peak			

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

APPENDIX C	RADIATED EMISSIONS - ABOVE 1 GHZ

Project No.: 2102T172A Page 30 of 48 Report Version: R02

-	Test Mod	de	BT/1	Mbps)		Test Date	4	202	1/3/22
	st Frequ			2MHz		Polarization			zontal
	Temp	0110)		3°C		Hum.		66%	
130.0 dB	uV/m								
100					×				
80 70									
60 50	market de	Jan J. J. Waller and J. S.	the say have the said free of	1	***	stranton subtratoned discontin	waterdientry-webs)	A popular de proposition de la constitución de la c	8 Kytyvylyydysynyyy
30				2 X				2	8
20 10.0 2302.00	0 2322.00	0 2342.00	2362.00	2382.00	2402.00	2422.00 24	42.00 246	i2.00	2502.00 MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment		Over	52.00	2302.00 MHz
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2378.587	26.34	30.75	57.09	74.00	-16.91	peak	
2		2378.587	6.67	30.75	37.42	54.00	-16.58	AVG	
3		2400.000	33.89	30.83	64.72	74.00	-9.28	peak	
4	Χ	2402.000	66.48	30.84	97.32	74.00	23.32	peak	NoLimit
5	*	2402.000	65.99	30.84	96.83	54.00	42.83	AVG	NoLimit
6		2483.500	24.49	31.16	55.65	74.00	-18.35	peak	
7		2483.500	2.38	31.16	33.54	54.00	-20.46	AVG	
8		2484.287	26.31	31.17	57.48	74.00	-16.52	peak	
9		2484.287	2.82	31.17	33.99	54.00	-20.01	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Te	st Mo	de	RT/1	Mbps)		Test Date		202	1/3/22
		Frequ			0MHz		Polarizatio	n		zontal
		Temp			3°C		Hum.	-		6%
130.0 120) dBuV	7/m								
110 100 90						¥				
80 70										
60 50	1 .₩		ud majo yan begin	ghadagh ail in ceann haoilt aid bei	hadraght of deples on the	was Emma	alandari apartir de la	ar haddingstroothaspits		
40 30	2 X					7 ×				9 X
	380.000		0 2420.00	2440.00	2460.00				10.00	2580.00 MHz
No	o. N	Иk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1			2384.813	26.06	30.77	56.83	74.00	-17.17	peak	
2	2		2384.813	2.59	30.77	33.36	54.00	-20.64	AVG	
3	3		2400.000	23.48	30.83	54.31	74.00	-19.69	peak	
4		Χ	2480.000	72.70	31.15	103.85	74.00	29.85	peak	NoLimit
5)	*	2480.000	72.46	31.15	103.61	54.00	49.61	AVG	NoLimit
6	5		2483.500	24.24	31.16	55.40	74.00	-18.60	peak	
7	·		2483.500	6.61	31.16	37.77	54.00	-16.23	AVG	
8	3		2562.900	26.54	31.49	58.03	74.00	-15.97	peak	
9)		2562.900	8.35	31.49	39.84	54.00	-14.16	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mod	de	BT(3	Mbps)		Test Dat	e	202	1/3/22
Te	st Freque	ency		2MHz		Polarizati	Horizontal		
	Temp		2	3°C		Hum.		6	6%
130.0 d	BuV/m								
120									
110									
100									
90					\$				
80					Å				
70					3				
				_	3				
60	والمالية المناطقة والمناطقة والمناطقة	And the contract of the contra	والمروزة أساب والمناوض فالمساو	1 ************************************	and James	Mary Mary Mary Mary Mary Mary Mary Mary	man white market was	mulandam	R. S.
50									
40				2 X					7 9 K X
30									` "
20									
10.0	2222.00	2342.00	2222.00	2202.00	2402.00	2422.00	442.00	100.00	2502.00 1411
No.	00 2322.00 Mk.	Freq.	Reading	2382.00 Correct	2402.00 Measure		2442.00 24 Over	62.00	2502.00 MH
-		- 1	Level	Factor	ment				
		MHz	dBuV	dB	dBuV/m	dBuV/m	ı dB	Detector	Comment
1		2377.527	26.49	30.74	57.23	74.00	-16.77	peak	
2		2377.527	5.20	30.74	35.94	54.00	-18.06	AVG	
3		2400.000	37.84	30.83	68.67	74.00	-5.33	peak	
4	Χ	2402.000	59.00	30.84	89.84	74.00	15.84	peak	NoLimit
5	*	2402.000	56.63	30.84	87.47	54.00	33.47	AVG	NoLimit
6		2483.500	24.89	31.16	56.05	74.00	-17.95	peak	
7		2483.500	2.39	31.16	33.55	54.00	-20.45	AVG	
8		2493.080	26.68	31.21	57.89	74.00	-16.11	peak	
9		2493.080	2.83	31.21	34.04	54.00	-19.96	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mod	de	BT(3	Mbps)		Test Date		2021	1/3/22
Te	st Freque			0MHz		Polarization	n		zontal
	Temp	-		3°C		Hum.			6%
130.0 d 120 110 100 90 80 70 60 1	Temp BuV/m	Languagh Allery Color	devilored dispussed.		S No State of the		when the two six	Alexandra Alexandra	
40 2 X 2 X 20 10.0 2380.0	00 2400.00	0 2420.00	2440.00	2460.00	2480.00 2	500.00 25.	20.00 254	0.00	2580.00 MH
No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over		2300.00 1411
140.	IVIIX.	1 104.	Level	Factor	ment		0 101		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2382.453	25.09	30.76	55.85	74.00	-18.15	peak	
2		2382.453	2.64	30.76	33.40	54.00	-20.60	AVG	
3		2400.000	23.27	30.83	54.10	74.00	-19.90	peak	
4	Χ	2480.000	72.60	31.15	103.75	74.00	29.75	peak	NoLimit
5	*	2480.000	70.25	31.15	101.40	54.00	47.40	AVG	NoLimit
6		2483.500	32.67	31.16	63.83	74.00	-10.17	peak	
7		2483.500	15.98	31.16	47.14	54.00	-6.86	AVG	
8		2483.867	32.80	31.17	63.97	74.00	-10.03	peak	
9	<u></u>	2483.867	16.20	31.17	47.37	54.00	-6.63	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test M	lode			Mbps)		Test Date	2021/3/22			
	Test Fred				2MHz		Polarization	Vertical			
	Tem	ıp		2	3°C		Hum.	66%			
130.0	dBuV/m										
120 _											
110 –											
100											
90											
во											
70											
io _											
50 =											
10		1 X 2									
30		×									
20											
0.0											
	0.000 3550			8650.00	11200.00				00.00	26500.00 MH	
No.	Mk.	Mk. Freq.		Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz		dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1		4804.000		52.23 -10.03		42.20	74.00	-31.80	peak		
2	*	4804.0	00	44.09	-10.03	34.06	54.00	-19.94	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode Test Frequency					BT(1 Mbps) 2402MHz					Test Date Polarization						2021/3/22 Horizontal		
Temp 130.0 dBuV/m					23°C					Hum.						66%		
130.0	ubu¥/III	<u>'</u>																1
120		-																
110																		
100																		
90																		
80																		
70																		-
60 _																		
50																		-
40			1 X 2 X															
30			×															
20																		
10.0																		
	0.000 35				8650		11200			0.00		300.00		0.00	2140	0.00	26500.00	MHz
No.	Mk	Mk. Freq.		•	Reading Level		Correct Factor		Measure- ment			Limit		Over				
			MHz		dBuV		dB		dBuV/ı			dBuV/	/m	m dB		Detector	Comme	ent
1			4804.0		53.			.03		13.31		74.00	0	-30.6		peak		_
2	*		4804.0	00	46.	13	-10	.03	(36.10		54.00	0	-17.9	90	AVG	<u> </u>	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo				Mbps)		Test Date			1/3/22
	Test Freq				1MHz		Polarizatio	n		rtical
	Tem	р		2	3°C		Hum.		6	6%
130.0	dBuV/m									
120										
110										
100										
90										
80										
70										
60										
50		-								
40		X								
30		2 X								
20										
10.0										
	0.000 3550.			8650.00	11200.00				00.00	26500.00 MHz
No.	Mk.	Freq.		Reading Level	Correct Factor	Measure- ment	- Limit	Over		
		MHz		dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4882.00	00	52.49	-9.76	42.73	74.00	-31.27	peak	
2	*	4882.00	00	43.66	-9.76	33.90	54.00	-20.10	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo				Mbps)		Test Date			1/3/22
	Test Freq	uency			1MHz		Polarization	on		zontal
	Tem	p		2	3°C		Hum.		6	6%
130.0	dBuV/m									
120										
110										
100										
90										
80										
70										
60										
50										
40		1 X 2								
30		×								
20										
10.0										
	0.000 3550.			8650.00	11200.00				00.00	26500.00 MHz
No.	Mk.	Freq.		Reading Level	Correct Factor	Measure ment	- Limit	Over		
		MHz		dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4882.0	00	51.45	-9.76	41.69	74.00	-32.31	peak	
2	*	4882.0	00	43.23	-9.76	33.47	54.00	-20.53	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo			1 Mbps)		Test Date			1/3/22
	Test Freq			30MHz		Polarization	n		rtical
	Tem	p	2	23°C		Hum.		6	6%
130.0	dBuV/m								
120									
110									
100									
90									
80									
70									
60 _									
50		1 X							
30		2 X							
20									
10.0									
100	0.000 3550.	00 6100.0		11200.00			350.00 21 4	00.00	26500.00 MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4960.00	0 53.10	-9.49	43.61	74.00	-30.39	peak	
2	*	4960.00	0 42.77	-9.49	33.28	54.00	-20.72	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test M			(1 Mbps)		Test Date			1/3/22
	Test Freq	uency	24	480MHz		Polarizatio	n		zontal
	Tem	p		23°C		Hum.		6	6%
130.0	dBuV/m								
120									
110									
100									
90									
80									
70									
60									
50		1 X							
30		2 X							
20									
10.0									
	0.000 3550.			11200.00				00.00	26500.00 MHz
No.	Mk.	Freq.	Reading Level	g Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4960.00	0 54.37	-9.49	44.88	74.00	-29.12	peak	
2	*	4960.00	0 42.37	-9.49	32.88	54.00	-21.12	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo				Mbps)		Test Dat		202	1/3/22
	Test Freq				2MHz		Polarizati	on		rtical
	Tem	р		2	3°C		Hum.		6	6%
130.0	dBuV/m									
120										
110										
100										
90										
80										
70										
60										
50		1								
40		1 X								
30		2 X								
20										
10.0										
100	0.000 3550.	00 6100 .		50.00	11200.00	13750.00		8850.00 214	100.00	26500.00 MHz
No.	Mk.	Freq.		ading evel	Correct Factor	Measure ment	- Limit	Over		
		MHz		BuV	dB	dBuV/m	dBuV/m	n dB	Detector	Comment
1		4804.00		2.68	-10.03	42.65	74.00	-31.35	peak	
2	*	4804.00	00 4	2.82	-10.03	32.79	54.00	-21.21	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mode Test Frequency			BT(3 Mbps) 2402MHz					Test Date Polarization					2021/3/22 Horizontal				
130.0	dBuV/i	emp				2	3°C					Hum	١.			6	6%	
130.0	abuv/i	m T																٦
120																		-
110																		-
100																		-
90																		-
80																		-
70																		-
60																		-
50			-															-
40			1 X															_
30			2 X															
20																		
10.0																		
	0.000 3				8650		11200			50.00		300.00	1885		21400).00	26500.0	O MHz
No.	М	k.	Freq	•	Rea Le			rect ctor		easur ment		Limi	t	Ove	r			
			MHz		dB		d			BuV/r		dBuV/	/m	dB		Detector	Comm	ent
1			4804.0		54.			.03		44.15		74.00		-29.8		peak		
2	*		4804.0	00	43.	96	-10	.03	(33.93	3	54.00	0	-20.0)7	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test M				3 Mbps)		Test Date		2021/3/22		
	Test Freq	uency			I1MHz		Polarizatio	n		rtical	
	Tem	p		2	:3°C		Hum.		6	6%	
130.0	dBuV/m										
120											
110											
100											
90											
80											
70											
60											
50		1 X									
40		2 X									
30											
20 10.0											
100	0.000 3550.	00 6100.	.00	8650.00	11200.00	13750.00	16300.00 18	850.00 214	00.00	26500.00 MHz	
No.	Mk.	Freq.		Reading Level	Correct Factor	Measure- ment	- Limit	Over			
		MHz		dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1		4882.00	00	54.40	-9.76	44.64	74.00	-29.36	peak		
2	*	4882.00	00	43.77	-9.76	34.01	54.00	-19.99	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test M				Mbps)		Test Date			1/3/22
	Test Freq	uency			·1MHz		Polarization	on		zontal
	Tem	p		2	3°C		Hum.		6	6%
130.0	dBuV/m									
120										
110										
100										
90										
80										
70										
60										
50		1 X								
40		2								
30		x								
20										
10.0										
	0.000 3550.			8650.00	11200.00				00.00	26500.00 MHz
No.	Mk.	Freq.		Reading Level	Correct Factor	Measure- ment	- Limit	Over		
		MHz		dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4882.0	00	53.81	-9.76	44.05	74.00	-29.95	peak	
2	*	4882.0	00	43.53	-9.76	33.77	54.00	-20.23	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test M			BT(3 Mb				Test Date			1/3/22
	Test Freq			2480M				Polarization	on		rtical
	Tem	p		23°C	;			Hum.		60	6%
130.0	dBuV/m										
120											
110											
100											
90											
80											
70											
60											
50		1 X									
30		2 X									
20											
10.0											
	0.000 3550.				200.00	13750.0				00.00	26500.00 MHz
No.	Mk.	Freq.	Read Leve		orrect	Meas me		Limit	Over		
		MHz	dBu	V	dB	dBu\	//m	dBuV/m	dB	Detector	Comment
1		4960.00	0 54.2	9	-9.49	44.		74.00	-29.20	peak	
2	*	4960.00	0 42.1	3	-9.49	32.	64	54.00	-21.36	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo			3 Mbps)		Test Date			1/3/22
	Test Freq	uency		30MHz		Polarizatio	n		zontal
	Tem)	2	23°C		Hum.		6	6%
130.0	dBuV/m								
120									
110									
100									
90									
80									
70									
60									
50		1 X							
40		2 X							
30									
20 10.0									
100	0.000 3550.	00 6100.00	0 8650.00	11200.00	13750.00 1	16300.00 18	850.00 214	00.00	26500.00 MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4960.000	52.64	-9.49	43.15	74.00	-30.85	peak	
2	*	4960.000	42.75	-9.49	33.26	54.00	-20.74	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

APPENDIX D	OUTPUT POWER	

Project No.: 2102T172A Page 47 of 48 Report Version: R02

Report No.: BTL-FCCP-1-2102T172A

Tes	st Mode :	BT(1 Mbps)	Tested Date	2021/3/19
-----	-----------	------------	-------------	-----------

Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	11.05	0.0127	20.97	0.1250	Pass
2441	10.79	0.0120	20.97	0.1250	Pass
2480	10.88	0.0122	20.97	0.1250	Pass

Test I	Mode :	BT(2 Mbps)	Tested Date	2021/3/19
--------	--------	------------	-------------	-----------

Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	10.48	0.0112	20.97	0.1250	Pass
2441	10.42	0.0110	20.97	0.1250	Pass
2480	10.43	0.0110	20.97	0.1250	Pass

Test Mode:	BT(3 Mbps)	Tested Date	2021/3/19
------------	------------	-------------	-----------

Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	10.46	0.0111	20.97	0.1250	Pass
2441	10.43	0.0110	20.97	0.1250	Pass
2480	10.47	0.0111	20.97	0.1250	Pass

End of Test Report