

0659

FCC Radio Test Report

FCC ID: PU5-LN300WG3

: BTL-FCCP-2-2102T172B Report No. Equipment : Notebook Computer

Model Name : Lenovo 300w Gen 3xxxxxxxx (The "x" in model name can be 0 to 9, A to Z,

a to z, "-" or blank, for marketing purpose only)

Brand Name Lenovo

Applicant Wistron Corporation

Address 21F, No. 88, Sec. 1, Hsin Tai Wu Rd., Hsichih Dist, New Taipei City 221,

Taiwan

Radio Function : Bluetooth LE 5.1

FCC Rule Part(s) Measurement Procedure(s)

: FCC Part15, Subpart C (15.247)

: ANSI C63.10-2013

Date of Receipt : 2021/3/12

Date of Test : 2021/3/12 ~ 2021/5/8

Issued Date : 2021/5/26

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Prepared by

Approved by

Peter Chen, Engineer

Scott Hsu, Manager

BTL Inc.

No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan

Fax: +886-2-2657-3331 Tel: +886-2-2657-3299 Web: www.newbtl.com

Project No.: 2102T172B Page 1 of 48 Report Version: R02

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Project No.: 2102T172B Page 2 of 48 Report Version: R02

		CONTENTS	
1	SUMMAI	RY OF TEST RESULTS	5
1.1	TEST	FACILITY	6
1.2	MEAS	SUREMENT UNCERTAINTY	6
1.3	TEST	ENVIRONMENT CONDITIONS	6
1.4	TABLE	E OF PARAMETERS OF TEST SOFTWARE SETTING	6
1.5	DUTY	CYCLE	7
2	GENER/	AL INFORMATION	8
2.1	DESC	CRIPTION OF EUT	8
2.2	TEST	MODES	10
2.3	BLOC	K DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	11
2.4	SUPP	PORT UNITS	12
3	AC POW	/ER LINE CONDUCTED EMISSIONS TEST	13
3.1	LIMIT		13
3.2	TEST	PROCEDURE	13
3.3		ATION FROM TEST STANDARD	13
3.4	TEST	SETUP	14
3.5	_	RESULT	14
4	RADIATE	ED EMISSIONS TEST	15
4.1	LIMIT		15
4.2	_	PROCEDURE	16
4.3		ATION FROM TEST STANDARD	16
4.4	_	SETUP	17
4.5		DPERATING CONDITIONS	18
4.6	_	RESULT – BELOW 30 MHZ	18
4.7	_	RESULT – 30 MHZ TO 1 GHZ	18
4.8	_	RESULT – ABOVE 1 GHZ	18
5		FPOWER TEST	19
5.1	LIMIT		19
5.2		PROCEDURE	19
5.3		ATION FROM STANDARD SETUP	19 10
5.4 5.5			19 19
5.6		DPERATION CONDITIONS RESULTS	19
6		MEASURING EQUIPMENTS	20
7		ST PHOTO	21
8	EUT PHO		21
O	LOTFIR	0103	21
APPEND	IX A	AC POWER LINE CONDUCTED EMISSIONS	22
APPEND	IX B	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ	27
APPEND	IX C	RADIATED EMISSIONS - ABOVE 1 GHZ	30
APPEND	IX D	OUTPUT POWER	47

REVISON HISTORY

Report No.	Version	Description	Issued Date
BTL-FCCP-2-2102T172B	R00	Original Report.	2021/4/27
BTL-FCCP-2-2102T172B	R01	Revised report to address TCB's comments.	2021/5/20
BTL-FCCP-2-2102T172B	R02	Revised report to address TCB's comments.	2021/5/26

Project No.: 2102T172B Page 4 of 48 Report Version: R02

1 SUMMARY OF TEST RESULTS

Test procedures according to the technical standards.

Standard(s) Section	Section Description		Judgement	Remark
15.207	AC Power Line Conducted Emissions	APPENDIX A	Pass	
15.205 15.209 15.247(d)	Radiated Emissions	APPENDIX B APPENDIX C	Pass	
15.247(a)(2)	Bandwidth	NOTE (3)	Pass	
15.247(b)(3)	Output Power	APPENDIX D	Pass	
15.247(e)	Power Spectral Density	NOTE (3)	Pass	
15.247(d)	Antenna conducted Spurious Emission	NOTE (3)	Pass	
15.203	Antenna Requirement		Pass	

NOTE:

- (1) "N/A" denotes test is not applicable in this Test Report.
- (2) The report format version is TP.1.1.1.
- (3) This item is demonstrated to full compliance referring to the test report number 181210-03.TR04 of the integrated module (model name: AX200NGW, FCC ID: PD9AX200NG), according to KDB 996369 D02 Q1 a) 2).
- (4) The ac power lines conducted emissions and radiated emissions are tested to demonstrate full compliance of both module integrated into the host and host itself.
- (5) The output power of integrated module have been reduced, therefore, the full output power tests are performed and recorded.

Project No.: 2102T172B Page 5 of 48 Report Version: R02

1.1 TEST FACILITY

The test facilities used to collect the test data in this report:

No. 68-1, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan The test sites and facilities are covered under FCC RN: 674415 and DN: TW0659.

 $oxed{oxed}$ C05 $oxed{\Box}$ CB08 $oxed{\Box}$ CB11 $oxed{oxed}$ CB15 $oxed{\Box}$ CB16

⊠ SR05

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k} = \mathbf{2}$, providing a level of confidence of approximately 95 %. The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 \mathbf{U}_{cisor} requirement.

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U (dB)
C05	CISPR	150 kHz ~ 30MHz	3.44

B. Radiated emissions test:

Test Site	Measurement Frequency Range	U,(dB)				
	0.03 GHz ~ 0.2 GHz	4.17				
	0.2 GHz ~ 1 GHz	4.72				
CB15	1 GHz ~ 6 GHz	5.21				
CDIO	6 GHz ~ 18 GHz	5.51				
	18 GHz ~ 26 GHz	3.69				
	26 GHz ~ 40 GHz	4.23				

C. Conducted test:

Test Item	U,(dB)
Output Power	1.06

NOTE:

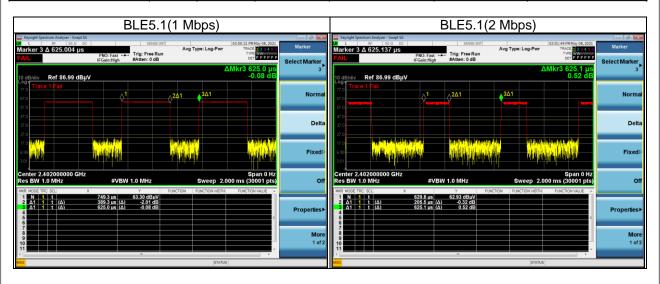
Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Environment Condition	Test Voltage	Tested by
AC Power Line Conducted Emissions	20 °C, 73 %	AC 120V	Vincent Lee
Radiated emissions below 1 GHz	Refer to data	AC 120V	Jay Kao
Radiated emissions above 1 GHz	Refer to data	AC 120V	Jay Kao
Output Power	25.8 °C, 54 %	AC 120V	Tim Lee

1.4 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING

Test Software	DRTU V.12.1947.0-10428					
Modulation Mode	2402 MHz	2440 MHz	2480 MHz	Data Rate		
BLE5.0(1 Mbps)	DEF	DEF	DEF	1 Mbps		
BLE5.0(2 Mbps)	-1	1	0	2 Mbps		


Project No.: 2102T172B Page 6 of 48 Report Version: R02

1.5 DUTY CYCLE

If duty cycle is \geq 98 %, duty factor is not required. If duty cycle is < 98 %, duty factor shall be considered.

Remark	Delta 1			Delta 2	On Time/Period	10 log(1/Duty Cycle)
Mode	ON	Numbers	On Time (B)	Period (ON+OFF)	Duty Cycle	Duty Factor
lviode	(ms)	(ON)	(ms)	(ms)	(%)	(dB)
BLE5.1(1 Mbps)	0.389	1	0.389	0.625	62.29%	2.06
BLE5.1(2 Mbps)	0.206	1	0.206	0.625	32.87%	4.83

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

Equipment	Notebook Computer				
Model Name	Lenovo 300w Gen 3xxxxxxxx (The "x" in model name can be 0 to 9, A to Z, a				
Model Name	to z, "-" or blank, for marketing purpose only)				
Brand Name	Lenovo				
Model Difference	Different model distribute to different area.				
Power Source	DC voltage supplied from External Power Supply. (Lenovo/ADLX45YLC3D)				
	I/P: 100-240V~1.3A 50-60Hz				
Power Rating	O/P: 20.0V==2.25A 45.0W / 15.0V==3.0A / 9.0V==2.0A / 5.0V==2.0A				
	10.0W				
Products Covered	1 * Adapter: Lenovo/ADLX45YLC3D				
WIFI+BT Module	Intel® Wi-Fi 6 AX200 / AX200NGW				
Operation Band	2400 MHz ~ 2483.5 MHz				
Operation Frequency	2402 MHz ~ 2480 MHz				
Modulation Technology	DTS				
Modulation Type	GFSK				
Transfer Rate	1 Mbps, 2 Mbps				
Maximum Output Power	1 Mbps: 1.63 dBm (0.0015 W)				
Maximum Odiput Fower	2 Mbps: 5.99 dBm (0.0040 W)				
Test Model	Lenovo 300w Gen 3				
Sample Status	Engineering Sample				
EUT Modification(s)	N/A				

NOTE:

(1) For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

(2) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	20	2442
01	2404	21	2444
02	2406	22	2446
03	2408	23	2448
04	2410	24	2450
05	2412	25	2452
06	2414	26	2454
07	2416	27	2456
08	2418	28	2458
09	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

Project No.: 2102T172B Page 8 of 48 Report Version: R02

(3) Table for Filed Antenna:

Antenna	Manufacture	Part Number	Туре	Connector	Frequency Range (MHz)	Gain (dBi)
		025.901U5.0001	PIFA I-PEX	2400-2500	-0.14	
Main	INPAQ Corporation			I-PEX	5150-5350	1.09
IVIAIII					5470-5725	-0.33
					5725-5850	-0.68
	INPAQ 025 004116 00		PIFA		2400-2500	-2.22
Aux		025.901U6.0001		I-PEX	5150-5350	1.87
Aux	Corporation	025.90100.0001	FIFA	I-P EX	5740-5725	-0.98
	'				5725-5850	-1.40

Antenna	Manufacture	Part Number	Туре	Connector	Frequency Range (MHz)	Gain (dBi)
					2400-2500	-0.60
Main	AWAN	025.901U7.0001	PIFA	I-PEX	5150-5350	-2.18
IVIAIII	Wall AVVAN 025.90107.0001	PIFA	I-PEX	5470-5725	-2.10	
				5725-5850	-2.08	
				I-PEX	2400-2500	0.45
Ausz	AWAN	025.901U8.0001	PIFA		5150-5350	-1.00
Aux	AVVAIN	025.90106.0001	PIFA	1-PEX	5740-5725	-1.37
					5725-5850	-1.37

NOTE: Since the antenna gain of Antenna _ AWAN is the highest one among all, Antenna _ AWAN had used for testing.

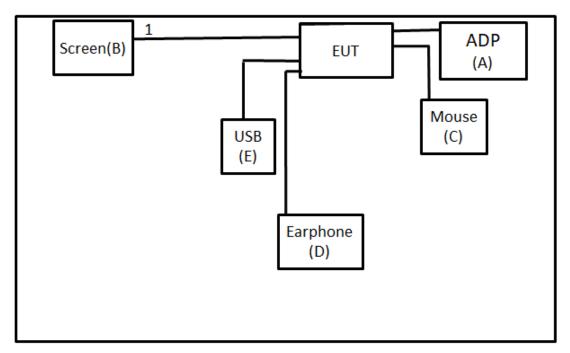
Project No.: 2102T172B Page 9 of 48 Report Version: R02

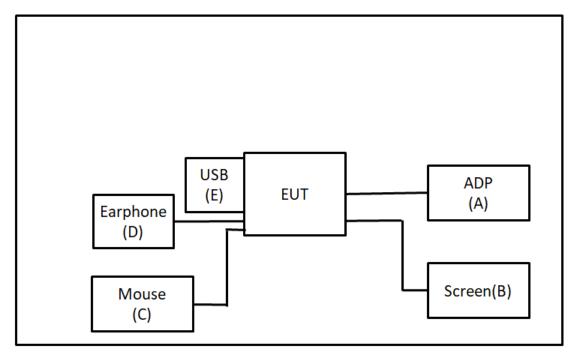
2.2 TEST MODES

Test Items	Test mode	Channel	Note
AC power line conducted emissions	Normal/Idle	-	-
Transmitter Radiated Emissions (below 1GHz)	2 Mbps	39	-
Transmitter Radiated Emissions	1/2 Mbps	00/39	Bandedge
(above 1GHz)	1/2 Mbps	00/19/39	Harmonic
Output Power	1/2 Mbps	00/19/39	-

NOTE:

- (1) The Radiated emissions test was verified based on the worst conducted power and Bandwidth test results reported in the original report.
- (2) For radiated emission band edge test, both Vertical and Horizontal are evaluated, but only the worst case (Vertical) is recorded.
- (3) All X, Y and Z axes are evaluated, but only the worst case (X axis) is recorded.


Project No.: 2102T172B Page 10 of 48 Report Version: R02


2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

AC Power Line Conducted Emissions Test

Radiated Emissions Test

Project No.: 2102T172B Page 11 of 48 Report Version: R02

2.4 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.	Remarks
Α	ADP	Lenovo	ADLX45YLC3D	N/A	Supplied by test requester.
В	Screen	ASUS	MX27U	N/A	Furnished by test lab.
С	Mouse	ACER	MP-368	N/A	Furnished by test lab.
D	Earphone	Sony	MDR-E9LP	N/A	Furnished by test lab.
Е	USB	Kingston	C7052-322.AOOL F	N/A	Furnished by test lab.

П	Item	Shielded	Ferrite Core	Length	Cable Type	Remarks
ΙГ	1	N/A	N/A	1.8m	HDMI Cable	Furnished by test lab.

Project No.: 2102T172B Page 12 of 48 Report Version: R02

3 AC POWER LINE CONDUCTED EMISSIONS TEST

3.1 LIMIT

Frequency	Limit (dBµV)		
(MHz)	Quasi-peak	Average	
0.15 - 0.5	66 - 56 *	56 - 46 *	
0.50 - 5.0	56	46	
5.0 - 30.0	60	50	

NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor (if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value
38.22	+	3.45	=	41.67

Measurement Value		Limit Value		Margin Level
41.67	ı	60	II	-18.33

The following table is the setting of the receiver.

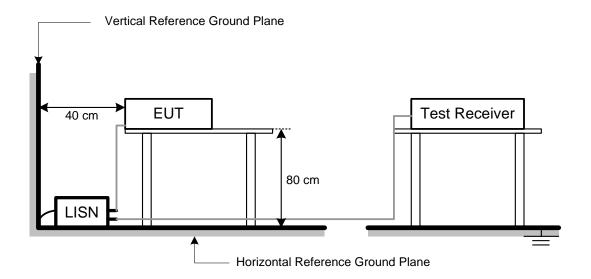
Receiver Parameter	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

3.2 TEST PROCEDURE

- a. The EUT was placed 0.8 m above the horizontal ground plane with the EUT being connected to the power mains through a line impedance stabilization network (LISN).
 - All other support equipment were powered from an additional LISN(s).
 - The LISN provides 50 Ohm/50uH of impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle to keep the cable above 40 cm.
- c. Excess I/O cables that are not connected to a peripheral shall be bundled in the center.
 - The end of the cable will be terminated, using the correct terminating impedance.
 - The overall length shall not exceed 1 m.
- d. The LISN is spaced at least 80 cm from the nearest part of the EUT chassis.
- e. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

NOTE:

- In the results, each reading is marked as Peak, QP or AVG per the detector used. BW=9 kHz (6 dB Bandwidth)
- (2) All readings are Peak unless otherwise stated QP or AVG in column of Note. Both the QP and the AVG readings must be less than the limit for compliance.


3.3 DEVIATION FROM TEST STANDARD

No deviation.

Project No.: 2102T172B Page 13 of 48 Report Version: R02

3.4 TEST SETUP

3.5 TEST RESULT

Please refer to the APPENDIX A.

4 RADIATED EMISSIONS TEST

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205, then the 15.209 limit in the table below has to be followed.

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSIONS MEASUREMENT (Above 1000 MHz)

Frequency (MHz)		Emissions V/m)	Measurement Distance
(IVIIIZ)	Peak	Average	(meters)
Above 1000	74	54	3

NOTE:

- (1) The limit for radiated test was performed according to FCC Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value
19.11	+	2.11	=	21.22

Measurement Value		Limit Value		Margin Level
21.22	-	54	=	-32.78

Spectrum Parameter	Setting		
Attenuation	Auto		
Start Frequency	1000 MHz		
Stop Frequency	10th carrier harmonic		
RBW / VBW	1MHz / 3MHz for Peak,		
(Emission in restricted band)	1MHz / 1/T for Average		

Spectrum Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector
Start ~ Stop Frequency	90KHz~110KHz for QP detector
Start ~ Stop Frequency	110KHz~490KHz for PK/AVG detector
Start ~ Stop Frequency	490KHz~30MHz for QP detector
Start ~ Stop Frequency	30MHz~1000MHz for QP detector

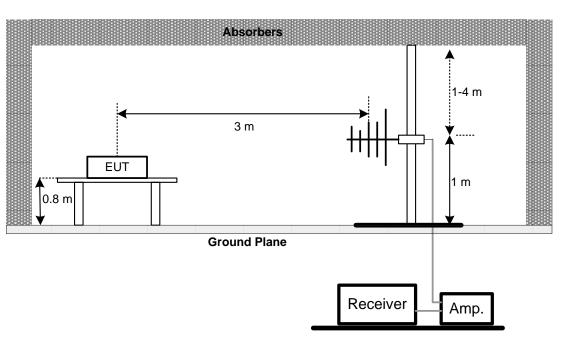
Project No.: 2102T172B Page 15 of 48 Report Version: R02

4.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)

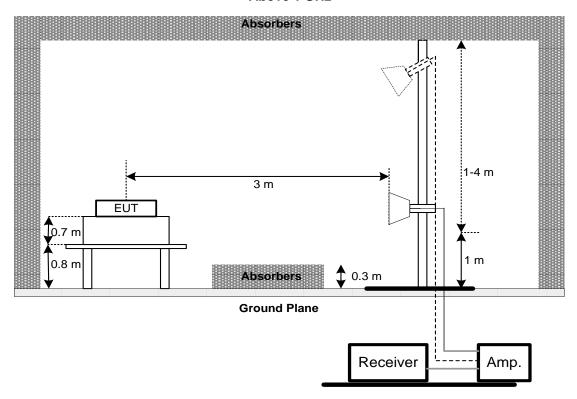
h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform.
(above 1GHz) i. For the actual test configuration, please refer to the related Item – EUT TEST PHOTO.
4.3 DEVIATION FROM TEST STANDARD
No deviation.

Project No.: 2102T172B Page 16 of 48 Report Version: R02



4.4 TEST SETUP

RX Antenna 3m Metal Full Soldered Ground Plane Spectrum Analyzer / Receiver


9 kHz to 30 MHz

30 MHz to 1 GHz

Above 1 GHz

4.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

4.6 TEST RESULT - BELOW 30 MHZ

There were no emissions found below 30 MHz within 20 dB of the limit.

4.7 TEST RESULT – 30 MHZ TO 1 GHZ

Please refer to the APPENDIX B.

4.8 TEST RESULT - ABOVE 1 GHZ

Please refer to the APPENDIX C.

NOTE:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

5 OUTPUT POWER TEST

5.1 LIMIT

FCC Part15 (15.247) , Subpart C									
Section	Test Item	Limit	Frequency Range (MHz)	Result					
15.247(b)(1)	Maximum peak conducted output power	0.125 Watts (20.97 dBm)	2400-2483.5	PASS					

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the power meter and antenna output port as show in the block diagram below.
- b. The maximum peak conducted output power was performed in accordance with method 9 b) of FCC KDB 558074 D01 DTS Meas Guidance.

5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP

EUT	Power Meter
	1 Ower weter

5.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

5.6 TEST RESULTS

Please refer to the APPENDIX D.

6 LIST OF MEASURING EQUIPMENTS

	AC Power Line Conducted Emissions									
Item	Kind of Equipment	Manufacturer Type No. Serial No.		Calibrated Date	Calibrated Until					
1	TWO-LINE V-NETWORK	R&S	ENV216	101050	2020/6/11	2021/6/10				
2	Test Cable	EMCI	EMC400-BM-BM- 5000	170501	2020/6/8	2021/6/7				
3	EMI Test Receiver	R&S	ESCI	100080	2020/6/15	2021/6/14				
4	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A				

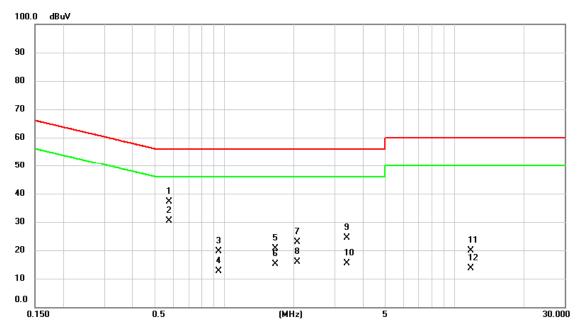
	Radiated Emissions									
Iter	n Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until				
1	Preamplifier	EMCI	EMC02325B	980217	2020/4/10	2021/4/9				
2	Preamplifier	EMCI	EMC012645B	980267	2020/4/10	2021/4/9				
3	Test Cable	EMCI	EMC-SM-SM-100 0	180809	2020/4/10	2021/4/9				
4	Test Cable	EMCI	EMC104-SM-SM- 3000	151205	2020/4/10	2021/4/9				
5	Test Cable	EMCI	EMC-SM-SM-700 0	180408	2020/4/10	2021/4/9				
6	MXE EMI Receiver	Agilent	N9038A	MY554200087	2020/6/10	2021/6/9				
7	Signal Analyzer	Agilent	N9010A	MY56480554	2020/8/25	2021/8/24				
8	Horn Ant	SCHWARZBECK	BBHA 9120D	9120D-1342	2020/6/12	2021/6/11				
9	Horn Ant	Schwarzbeck	BBHA 9170	BBHA 9170340	2020/7/9	2021/7/8				
10	Loop Ant	Electro-Metrics	EMCI-LPA600	274	2020/6/16	2021/6/15				
11	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	VULB 9168-352	2020/7/24	2021/7/23				
12	5dB Attenuator	EMCI	EMCI-N-6-05	AT-N0625	2020/7/24	2021/7/23				
13	13 Measurement Software EZ		EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A				

	Output Power									
Item Kind of Equipment Manufacturer Type No. Serial No. Calibrated Date										
1	Power Meter	Anritsu	ML2487A	6K00004714	2020/9/3	2021/9/2				
2	Power Sensor	Anritsu	MA2491A	034138	2020/9/3	2021/9/2				

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

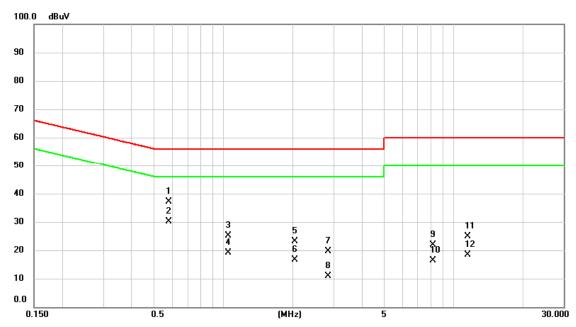
Project No.: 2102T172B Page 20 of 48 Report Version: R02

7 EUT TEST PHOTO								
Please refer to document Appendix No.: TP-2102T172B-FCCP-1 (APPENDIX-TEST PHOTOS).								
8 EUT PHOTOS								
Please refer to document Appendix No.: EP-2102T172B-1 (APPENDIX-EUT PHOTOS).								


Project No.: 2102T172B Page 21 of 48 Report Version: R02

APPENDIX A	AC POWER LINE CONDUCTED EMISSIONS

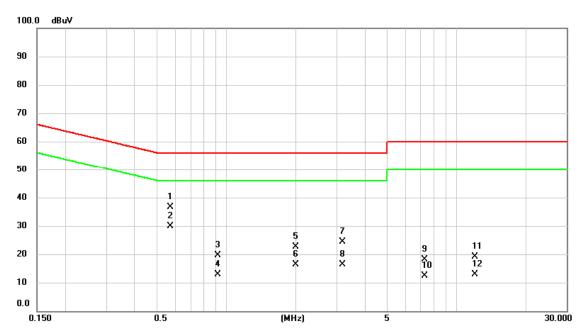
Project No.: 2102T172B Page 22 of 48 Report Version: R02


Ш				
	Test Mode	Normal	Tested Date	2021/3/24
	Test Frequency	-	Phase	Line

No. 1	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1		0.5775	27.43	9.68	37.11	56.00	-18.89	QP	
2	*	0.5775	20.74	9.68	30.42	46.00	-15.58	AVG	
3		0.9465	9.83	9.69	19.52	56.00	-36.48	QP	
4		0.9465	2.93	9.69	12.62	46.00	-33.38	AVG	
5		1.6575	10.78	9.73	20.51	56.00	-35.49	QP	
6		1.6575	5.34	9.73	15.07	46.00	-30.93	AVG	
7		2.0670	13.22	9.74	22.96	56.00	-33.04	QP	
8		2.0670	6.09	9.74	15.83	46.00	-30.17	AVG	
9		3.3900	14.57	9.77	24.34	56.00	-31.66	QP	
10		3.3900	5.58	9.77	15.35	46.00	-30.65	AVG	
11		11.7915	9.99	9.93	19.92	60.00	-40.08	QP	
12		11.7915	3.76	9.93	13.69	50.00	-36.31	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Ш				
	Test Mode	Normal	Tested Date	2021/3/24
	Test Frequency	-	Phase	Neutral

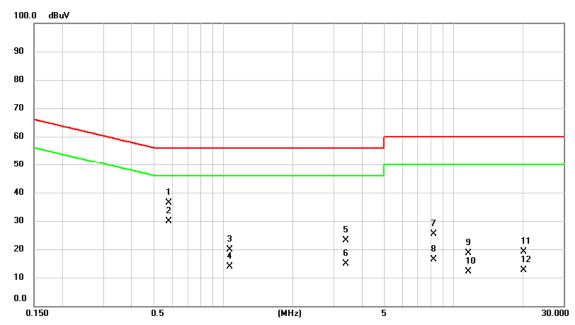


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1		0.5797	27.51	9.68	37.19	56.00	-18.81	QP	
2	*	0.5797	20.51	9.68	30.19	46.00	-15.81	AVG	
3		1.0522	15.38	9.69	25.07	56.00	-30.93	QP	
4		1.0522	9.45	9.69	19.14	46.00	-26.86	AVG	
5		2.0333	13.50	9.74	23.24	56.00	-32.76	QP	
6		2.0333	6.99	9.74	16.73	46.00	-29.27	AVG	
7		2.8410	9.93	9.76	19.69	56.00	-36.31	QP	
- 8		2.8410	1.08	9.76	10.84	46.00	-35.16	AVG	
9		8.1353	12.04	9.89	21.93	60.00	-38.07	QP	
10		8.1353	6.43	9.89	16.32	50.00	-33.68	AVG	
11		11.5148	15.06	9.93	24.99	60.00	-35.01	QP	
12		11.5148	8.40	9.93	18.33	50.00	-31.67	AVG	

REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value - Limit Value.

Test Mode	Idle	Tested Date	2021/3/24
Test Frequency	-	Phase	Line


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
'		MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1		0.5730	26.96	9.68	36.64	56.00	-19.36	QP	
2	*	0.5730	20.32	9.68	30.00	46.00	-16.00	AVG	
3		0.9172	9.91	9.69	19.60	56.00	-36.40	QP	
4		0.9172	3.09	9.69	12.78	46.00	-33.22	AVG	
5		1.9950	12.93	9.74	22.67	56.00	-33.33	QP	
6		1.9950	6.54	9.74	16.28	46.00	-29.72	AVG	
7		3.1762	14.58	9.76	24.34	56.00	-31.66	QP	
8		3.1762	6.69	9.76	16.45	46.00	-29.55	AVG	
9		7.2803	8.21	9.87	18.08	60.00	-41.92	QP	
10		7.2803	2.56	9.87	12.43	50.00	-37.57	AVG	
11		12.0300	9.30	9.93	19.23	60.00	-40.77	QP	
12		12.0300	2.89	9.93	12.82	50.00	-37.18	AVG	

REMARKS:

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Project No.: 2102T172B Page 25 of 48 Report Version: R02

Test Mode	Idle	Tested Date	2021/3/24
Test Frequency	-	Phase	Neutral

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1		0.5797	26.82	9.68	36.50	56.00	-19.50	QP	
2	*	0.5797	20.13	9.68	29.81	46.00	-16.19	AVG	
3		1.0657	10.11	9.69	19.80	56.00	-36.20	QP	
4		1.0657	4.20	9.69	13.89	46.00	-32.11	AVG	
5		3.3832	13.31	9.77	23.08	56.00	-32.92	QP	
6		3.3832	5.23	9.77	15.00	46.00	-31.00	AVG	
7		8.2275	15.52	9.90	25.42	60.00	-34.58	QP	
8		8.2275	6.59	9.90	16.49	50.00	-33.51	AVG	
9		11.6070	8.81	9.93	18.74	60.00	-41.26	QP	
10		11.6070	2.22	9.93	12.15	50.00	-37.85	AVG	
11		20.1682	9.28	9.96	19.24	60.00	-40.76	QP	
12		20.1682	2.78	9.96	12.74	50.00	-37.26	AVG	

REMARKS:

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Project No.: 2102T172B Page 26 of 48 Report Version: R02

APPENDIX B	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ

Project No.: 2102T172B Page 27 of 48 Report Version: R02

	Test Mo	de		BLE5.	1(2Mbps)		Test Date		2021	1/3/29	
Te	st Frequ	ency		248	0MHz		Polarization	า	Vei	tical	
	Temp			2	2°C		Hum.		6	7%	
70 d	BuV/m										
50											
30 1	2 X		3		4 ×		5 X		, X		
10											
0.0											
30.000	127.00	224.0	0	321.00	418.00	515.00 6	12.00 709	0.00 806	.00	1000.00	MH
No.	Mk.	Freq.		Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz		dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comme	ent
1	*	62.980	0	37.86	-9.27	28.59	40.00	-11.41	peak		
2		138.446	60	35.46	-8.75	26.71	43.50	-16.79	peak		
3		237.644	16	38.73	-9.82	28.91	46.00	-17.09	peak		
4		394.590)6	33.87	-4.97	28.90	46.00	-17.10	peak		
5		626.808	36	30.08	-0.27	29.81	46.00	-16.19	peak		
6		882.953	33	28.59	3.90	32.49	46.00	-13.51	peak		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

-	Test Mo	de	BLE5.	1(2Mbps)		Test Date		2021	1/3/29	
Tes	st Frequ			30MHz		Polarization			Horizontal	
	Temp		2	2°C		Hum.	67%			
80.0 dB	uV/m									٦
70										
60										
50										1
40					_				6 X	-
30	×	2 X		X	4 ×		5 X		×	-
20										-
10										-
0.0										
30.000	127.00	224.00	321.00	418.00	515.00 6		.00 806	.00	1000.00	_мн
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comme	ent
1	*	90.1723	46.33	-14.75	31.58	43.50	-11.92	peak		
2		226.5866	40.22	-10.54	29.68	46.00	-16.32	peak		
3		403.9026	35.79	-4.74	31.05	46.00	-14.95	peak		
4		487.3550	34.40	-2.99	31.41	46.00	-14.59	peak		
5		783.3020	29.07	2.35	31.42	46.00	-14.58	peak		
6		960.6180	28.36	5.22	33.58	54.00	-20.42	peak		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

APPENDIX C	RADIATED EMISSIONS - ABOVE 1 GHZ

Project No.: 2102T172B Page 30 of 48 Report Version: R02

	Test Mod			1(1Mbps)		Test Dat			1/3/26	
<u>I</u>	est Freque	ency		2MHz		Polarizati	on	Vertical		
120.0	Temp dBuV/m		2	2°C		Hum.		6	7%	
130.0	dBn∆\w									
120										
110										
100					s					
90					, i					
80										
70										
60					*					
50 ×44M	المنهاد ملورد الموريين والمال	A STATE OF THE PARTY OF THE PAR	A A A A A A A A A A A A A A A A A A A	and p aram	Application of the state of the	a partirant de la partira posta partira partira partira partira partira partira partira partira partira partir	Link Programme and the contract	hayarahadda Addyladd	Sarthalu Manuel	
40										
30				2 X					7 9 K X	
20										
10.0										
2302.	000 2322.00	2342.00	2362.00	2382.00	2402.00	2422.00 2	442.00 24	62.00	2502.00 M	
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1		2383.347	26.27	30.76	57.03	74.00	-16.97	peak		
2		2383.347	3.78	30.76	34.54	54.00	-19.46	AVG		
3		2400.000	35.62	30.83	66.45	74.00	-7.55	peak		
4	Χ	2402.000	64.79	30.84	95.63	74.00	21.63	peak	NoLimit	
5	*	2402.000	63.90	30.84	94.74	54.00	40.74	AVG	NoLimit	
6		2483.500	23.67	31.16	54.83	74.00	-19.17	peak		
7		2483.500	2.67	31.16	33.83	54.00	-20.17	AVG		
8		2495.053	26.18	31.21	57.39	74.00	-16.61	peak		
9		2495.053	3.93	31.21	35.14	54.00	-18.86	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mod			1(1Mbps)		Test Date			1/3/26
	Test Frequ	ency		0MHz		Polarization			rtical
4000	Temp		2	2°C		Hum.		6	7%
130.0	dBuV/m								
120 _									
110									
100									
90					Å				
80									
70									
								_	
60	3	وريد برواد والانجاب ويستوون	hama a sa	hard a married	6 Juniora	المعادر المعادر المعادر المعادر	neghron-sold de littler	uph market have	proceedings/blocked
50	- 1	, ,, ,, ,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,				,,,,,		,	
	2				7			9	
30	×				×			X	
20									
10.0									
	0.000 2400.00		2440.00	2460.00				0.00	2580.00 Mi
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2384.660	24.95	30.77	55.72	74.00	-18.28	peak	
2		2384.660	2.65	30.77	33.42	54.00	-20.58	AVG	
3		2400.000	23.42	30.83	54.25	74.00	-19.75	peak	
4	Χ	2480.000	62.37	31.15	93.52	74.00	19.52	peak	NoLimit
5	*	2480.000	61.76	31.15	92.91	54.00	38.91	AVG	NoLimit
6		2483.500	23.80	31.16	54.96	74.00	-19.04	peak	
7		2483.500	2.76	31.16	33.92	54.00	-20.08	AVG	
8		2547.947	26.02	31.43	57.45	74.00	-16.55	peak	
9		2547.947	3.03	31.43	34.46	54.00	-19.54	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mod			1(2Mbps)		Test Dat	2021/3/26			
Test Frequency				2MHz		Polarizati	on	Vertical		
	Temp		2	2°C		Hum.		6	7%	
130.0	dBuV/m									
20										
10										
00										
00										
0					Ř					
80										
_										
′0 <u> </u>					*					
60 <u> </u>									. 8	
יישיין ס	/www.ijs.f.ed.j.fl.j., je.ed.	of the same of the same		Maryhape graden and	Market Jackston	Landala Maria Maria	terificia de la companya de la comp	dayler water the town	£	
יי ויי										
10 <u> </u>			2						7 9	
30			×						× ×	
20										
10.0										
	000 2322.00		2362.00	2382.00				52.00	2502.00 MI	
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	- Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	ı dB	Detector	Comment	
1		2370.720	25.43	30.71	56.14	74.00	-17.86	peak		
2		2370.720	3.91	30.71	34.62	54.00	-19.38	AVG		
3		2400.000	38.75	30.83	69.58	74.00	-4.42	peak		
4	Χ	2402.000	59.77	30.84	90.61	74.00	16.61	peak	NoLimit	
5	*	2402.000	58.11	30.84	88.95	54.00	34.95	AVG	NoLimit	
6		2483.500	23.71	31.16	54.87	74.00	-19.13	peak		
7		2483.500	2.59	31.16	33.75	54.00	-20.25	AVG		
8		2492.613	26.04	31.20	57.24	74.00	-16.76	peak		
9		2492.613	4.32	31.20	35.52	54.00	-18.48	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode				1(2Mbps)		Test Date	2021/3/26			
les	t Freque	ency		0MHz		Polarizatio	n	Vertical		
20.0 ID	Temp		2	2°C		Hum.		6	7%	
20 20 10 20 20 20 20 20	uV/m		10 A				8	anin derengerations		
60 2 X 80 0.0		Charles and the second		A Company of the Comp	7 X		9 X	0.000		
2380.000	2400.00	2420.00	2440.00	2460.00	2480.00	2500.00 25	20.00 254	0.00	2580.00 MI	
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment		Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1		2382.447	25.06	30.76	55.82	74.00	-18.18	peak		
2		2382.447	3.91	30.76	34.67	54.00	-19.33	AVG		
3		2400.000	22.61	30.83	53.44	74.00	-20.56	peak		
4	Χ	2480.000	61.69	31.15	92.84	74.00	18.84	peak	NoLimit	
5	*	2480.000	59.56	31.15	90.71	54.00	36.71	AVG	NoLimit	
6		2483.500	23.17	31.16	54.33	74.00	-19.67	peak		
7		2483.500	4.34	31.16	35.50	54.00	-18.50	AVG		
8		2518.833	26.94	31.31	58.25	74.00	-15.75	peak		
0										

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	de ency	E		1(1Mbps) 2MHz		-	Test Dat Polarizati)21/3/26 /ertical			
103	Temp			22°C				Hum.	`	67%		
130.0 dB	.V/m							T I GITTI			07 70	
120												
10												
00												
90												
80												
о												
:0												
io												
.0		1 X										
:0		2 X										
.0												
0.0												
1000.000	3550.00	6100.0	0 865	0.00	11200.00	13750.00	16	300.00 1	18850.00	21400.00	26500.00 MH	
No.	Mk.	Freq.		ading evel	Correct Factor	Measu men		Limit	Ove	er		
		MHz		BuV	dB	dBuV		dBuV/m	n dE	B Detector	or Comment	
1		4804.00		.01	-10.03	42.9		74.00	-31.			
2	*	4804.00) 42	.09	-10.03	32.0	6	54.00	-21.			

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode				BLE5.1(1Mbps)					Test Da		2021/3/26			
Tes	t Frequ			2402MHz					Polariza			zontal		
Temp				22°C					Hum	١.		6	67%	
130.0 dB	uV/m													
20														
10														
00														
o														
:0														
o 💳														
o														
io		_												
0		1 X												
:0		2 X												
.0														
10.0														
1000.000	3550.00	0 6100.0	0 8650).00	11200.0	0 1	3750.00	16	300.00	18850	.00 214	00.00	26500.00 MH	
No.	Mk.	Freq.		iding vel	Corre Facto		Measu men		Limit	t	Over			
		MHz		dBuV		<i>J</i> 1	dBuV/m		dBuV/m		dB	Detector	Comment	
1		4804.00		.27	dB -10.0	3	44.24		74.00		-29.76	peak	2 0	
2	*	4804.00		.45	-10.0		33.42	2	54.00		-20.58	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	est Mo			BI	LE5.						Test D					1/3/26
Tes	t Frequ					0MH	Z			Р	olariza					rtical
	Temp)			2	2°C					Hun	า.			6	7%
130.0 dB	ıV/m												1			
120																
20																
10																
00																
0																
:0																
o 💳																
_																
0																
io																
ا ا		1 X														
ν		2														
0		×														
20																
10.0																
1000.000	3550.0	0 6100.	.00	8650.	.00	1120	0.00	1375	0.00	163	00.00	188	50.00	2140	0.00	26500.00 MH
No.	Mk.	Freq.		Read	ding	Со	rrect	Me	easure	9-	Limi	t	Ove	er		
				Lev	/el		ctor		ment							
		MHz		dΒι			dΒ		3uV/n	า	dBuV		dB		Detector	Comment
1		4880.0		52.			.77		12.92		74.0		-31.0		peak	
2	*	4880.0	00	42.	83	-6	.77	3	33.06		54.0	0	-20.9	94	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo				1(1Mbps)		Test Da			1/3/26
Те	st Frequ				IOMHz		Polariza			zontal
30.0 dl	Temp)			2°C		Hum	•	б	7%
30.0 at	SUV/M									
20										
20										
10										
00										
_										
0										
io										
o 💳										
0										
50										
		1 X								
10		2								
:0		×								
20										
0.0										
	00 3550.0	0 6100	.00	8650.00	11200.00	13750.00	16300.00	18850.00 214	100.00	26500.00 MH
No.	Mk.	Freq.		Reading	Correct	Measure	- Limit	Over		
				Level	Factor	ment				
		MHz		dBuV	dB	dBuV/m			Detector	Comment
1		4880.0		53.39	-9.77	43.62	74.00		peak	
2	*	4880.0	00	42.76	-9.77	32.99	54.00	-21.01	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	est Mo					1Mbps)			Test D				1/3/26
Tes	t Frequ			2		MHz			Polariza				rtical
	Temp				22	°C			Hun	า.		6	7%
130.0 dB	.V/m												
120													
20													
10													
00													
10													
:0													
。													
0													
io		-											
		1 X											
10		2											
30		×											
20													
10.0													
1000.000	3550.0	0 6100.	00	8650.00		11200.00	13750.	00 10	6300.00	188	50.00	21400.00	26500.00 MH
No.	Mk.	Freq.		Readir		Correct	Mea	sure-	Limi		Ove		
		'		Level		Factor		ent					
		MHz		dBuV		dB	dΒι	ıV/m	dBuV.	/m	dB	Detector	Comment
1		4960.00	00	53.53		-9.49	44	.04	74.0	0	-29.9	6 peak	
2	*	4960.00	00	42.72		-9.49	33	.23	54.0	0	-20.7	7 AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo			5.1(1Mbps)		Test Da			1/3/26
Tes	t Frequ		2	480MHz		Polariza			zontal
	Temp			22°C		Hum.		6	7%
130.0 dB	uV/m								
20									
10									
10									
00									
0 -									
:0									
。									
0									
50		1 ×							
ю									
:0		2 X							
20									
10.0	0. 0550.00	2 0100.00	0000.00	11200.00	10750.00	10000 00	10050.00	1400.00	20500 00 1111
	0 3550.00				13750.00			1400.00	26500.00 MH
No.	Mk.	Freq.	Readin Level		Measure ment	- Limit	Over		
		MHz	dBuV		dBuV/m	dBuV/r	n dB	Detector	Comment
1		4960.000	54.22	-9.49	44.73	74.00			
2	*	4960.000) 43.11	-9.49	33.62	54.00	-20.38	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	est Mo		E		(2Mbps)			Test Da			2021/3/26
les	t Frequ				2MHz			Polarizat			Vertical
	Temp			2	2°C			Hum.			67%
130.0 dB	ıV/m										
20											
10											
00											
0											
30											
'O											
0											
io		1 X									
:0		2 X									
0											
0.0											
	3550.0				11200.00	13750.00			18850.00	21400.00	26500.00 M
No.	Mk.	Freq.		iding evel	Correct Factor	Measu men		Limit	Ov	er	
		MHz		₿uV	dB	dBuV/		dBuV/n	n dl	B Detec	ctor Comment
1		4804.00	0 54	.18	-10.03	44.1		74.00			
2	*	4804.00	0 43	.08	-10.03	33.0	5	54.00	-20.		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo st Frequ				1(2Mbps) 2MHz			Test Da olarizat			1/3/26 izontal
168	Temp				2ºC			Hum.			7%
30.0 dB	uV/m			_							. , , ,
120											
10											
00											
0											
:0											
0											
0 -											
0		_									
		1 X									
		2 X									
0											
:0											
0.0											
	0 3550.0 Mk.			3650.00	11200.00	13750.00 Measur		00.00 Limit	18850.00	21400.00	26500.00 MH
No.	IVIK.	Freq.	r	Reading Level	Correct Factor	ment	₽-	LIIIII	Ov	U I	
		MHz		dBuV	dB	dBuV/n	n	dBuV/n	n dE	B Detector	Comment
1		4804.00		53.53	-10.03	43.50		74.00	-30.		
2	*	4804.00	0	43.16	-10.03	33.13		54.00	-20.	87 AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	est Mo		В		(2Mbps)			Test D				1/3/26
res	t Frequ Temp				0MHz 2°C			Polariza Hum				tical 7%
130.0 dB	nA/w				2 0			Hun	l		0	70
20												
10												
00												
0												
:0												
0												
0												
50												
10		1 X										
θ		2 X										
io		^										
20												
10.0												
1000.00	3550.00	0 6100.0	0 8650	.00	11200.00	13750	0.00 1	6300.00	18850	.00 2140	00.00	26500.00 MH
No.	Mk.	Freq.	Read		Correct		asure-	Limi	t	Over		
			Lev		Factor		nent					
		MHz	dBı		dB		uV/m	dBuV/		dB	Detector	Comment
1		4880.00			-9.77		4.55	74.0		-29.45	peak	
2	*	4880.00	0 43.	29	-9.77	3	3.52	54.0	0	-20.48	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo		BL		(2Mbps)			Test Da				1/3/26
les	t Frequ				OMHz			Polariza				zontal
120 0 JD	Temp			22	2°C			Hum.	•		6	7%
130.0 dB	uv/m											
120												
110												
100												
30												
30												
30												
70												
50												
50												
40		1 ×										
		2 X										
30												
20												
10.0												
	0 3550.00				11200.00	13750.00			18850.00	2140	0.00	26500.00 MH
No.	Mk.	Freq.	Read Lev		Correct Factor	Meası mer		Limit	O ₁	ver		
		MHz	dBu		dB	dBuV		dBuV/r	m d	IB	Detector	Comment
1		4880.00			-9.77	43.8		74.00).20	peak	
2	*	4880.00			-9.77	33.2	9	54.00).71	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	est Mo		E		1(2Mbps)			Test Da			21/3/26
les	t Frequ				0MHz			Polarizat			ertical
100 0 10	Temp			2	2°C			Hum.			67%
130.0 dB	ıV/m										
120											
10											
00											
0											
o 💳											
0		1									
10		X									
		2 X									
:0											
0.0											
1000.000	3550.00	0 6100.0	0 865	0.00	11200.00	13750.00	16	300.00	18850.00	21400.00	26500.00 MH
No.	Mk.	Freq.		ading	Correct	Measu		Limit	Ov	er	
		N 41 1		evel	Factor	ment		JD 14		D - 1 - 1	
		MHz		BuV	dB	dBuV/		dBuV/n			r Comment
1	*	4960.00		2.93	-9.49	43.44		74.00			
2	*	4960.00	U 43	3.06	-9.49	33.57	1	54.00	-20	.43 AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	est Mo					(2Mbps)				Test Da					1/3/26
Tes	t Frequ			2)MHz			Р	olariza					zontal
	Temp)			22	2°C				Hum	۱.			6	7%
130.0 dB	ıV/m									1					
120															
20															
10															
00															
o															
u															
0															
o 💳															
0															
0		1													
10		1 X													
		2 X													
:0															
o															
0.0															
1000.000	3550.0	0 6100.	00	8650.00)	11200.00	1375	0.00	1630	00.00	1885	0.00	21400.00		26500.00 MH
No.	Mk.	Freq.		Readir		Correct		asure	-	Limit	t	Ove	r		
				Leve		Factor		ment		ID 14	,	I.			•
4		MHz	20	dBu\		dB		BuV/m		dBuV/		dB		etector	Comment
1	*	4960.00		54.14		-9.49		4.65		74.00		-29.3		oeak	
2	^	4960.00	JU	43.22	<u> </u>	-9.49	3	3.73		54.00	J	-20.2	. 7	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Report No.: BTL-FCCP-2-2102T172B APPENDIX D OUTPUT POWER

Test Mode :	BLE5.0(1 Mbps)	Tested Date	2021/3/19
	l ' '		

Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	1.63	0.0015	30.00	1.0000	Pass
2440	1.43	0.0014	30.00	1.0000	Pass
2480	0.95	0.0012	30.00	1.0000	Pass

Test Mode	e:	BLE5.0(2 Mbps)	Tested Date	2021/3/19

Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	5.92	0.0039	30.00	1.0000	Pass
2440	5.75	0.0038	30.00	1.0000	Pass
2480	5.99	0.0040	30.00	1.0000	Pass

End of Test Report