

FCC TEST REPORT (PART 22)

- **REPORT NO.:** RF980702L17-2
- MODEL NO.: 0251 (refer to item 3.1 for more details)

RECEIVED: Jul. 02, 2009

- **TESTED:** Jul. 15 ~ Jul. 22, 2009
- **ISSUED:** Aug. 04, 2009
- APPLICANT: Wistron Corporation
 - ADDRESS: 21F, No. 88, Sec. 1, Hsin Tai Wu Rd., Hsichih, Taipei Hsien 221, Taiwan, R.O.C.
- **ISSUED BY:** Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch
- **LAB ADDRESS:** No. 47, 14th Ling, Chia Pau Tsuen, Lin Kou Hsiang, Taipei Hsien 244, Taiwan, R.O.C.
- **TEST LOCATION:** No. 19, Hwa Ya 2nd Rd, Wen Hwa Tsuen, Kwei Shan Hsiang, Taoyuan Hsien 333, Taiwan, R.O.C.

This test report consists of 75 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by TAF or any government agencies. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

1	CERTIFICATION	4
2	SUMMARY OF TEST RESULTS	5
2.1	MEASUREMENT UNCERTAINTY	5
3	GENERAL INFORMATION	-
3.1	GENERAL DESCRIPTION OF EUT	6
3.2	DESCRIPTION OF TEST MODES	
3.2.1	CONFIGURATION OF SYSTEM UNDER TEST	9
3.2.2	TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL	10
3.3	GENERAL DESCRIPTION OF APPLIED STANDARDS	14
3.4	DESCRIPTION OF SUPPORT UNITS	14
4	TEST TYPES AND RESULTS	15
4.1	OUTPUT POWER MEASUREMENT	15
4.1.1	LIMITS OF OUTPUT POWER MEASUREMENT	15
4.1.2	TEST INSTRUMENTS	16
4.1.3	TEST PROCEDURES	17
4.1.4	TEST SETUP	18
4.1.5	EUT OPERATING CONDITIONS	19
4.1.6	TEST RESULTS	20
4.2	FREQUENCY STABILITY MEASUREMENT	28
4.2.1	LIMITS OF FREQUENCY STABILIITY MEASUREMENT	28
4.2.2	TEST INSTRUMENTS	28
4.2.3	TEST PROCEDURE	29
4.2.4	TEST SETUP	29
4.2.5	TEST RESULTS	30
4.3	OCCUPIED BANDWIDTH MEASUREMENT	32
4.3.1	LIMITS OF OCCUPIED BANDWIDTH MEASUREMENT	32
4.3.2	TEST INSTRUMENTS	32
4.3.3	TEST SETUP	32
4.3.4	TEST PROCEDURES	33
4.3.5	EUT OPERATING CONDITION	
4.3.6	TEST RESULTS	34
4.4	BAND EDGE MEASUREMENT	40
4.4.1	LIMITS OF BAND EDGE MEASUREMENT	40
4.4.2	TEST INSTRUMENTS	40
4.4.3	TEST SETUP	
4.4.4	TEST PROCEDURES	41
4.4.5	EUT OPERATING CONDITION	41
4.4.6	TEST RESULTS	
4.5	CONDUCTED SPURIOUS EMISSIONS	45
4.5.1	LIMITS OF CONDUCTED SPURIOUS EMISSIONS MEASUREMENT	
4.5.2	TEST INSTRUMENTS	45
4.5.3	TEST PROCEDURE	

4.5.4	TEST SETUP	
4.5.5	EUT OPERATING CONDITIONS	46
4.5.6	TEST RESULTS	47
4.6	RADIATED EMISSION MEASUREMENT (BELOW 1GHz)	.59
4.6.1	LIMITS OF RADIATED EMISSION MEASUREMENT	59
4.6.2	TEST INSTRUMENTS	59
4.6.3	TEST PROCEDURES	.60
4.6.4	DEVIATION FROM TEST STANDARD	60
4.6.5	TEST SETUP	61
4.6.6	EUT OPERATING CONDITIONS	61
4.6.7	TEST RESULTS	62
4.7	RADIATED EMISSION MEASUREMENT (ABOVE 1GHz)	64
4.7.1	LIMITS OF RADIATED EMISSION MEASUREMENT	64
4.7.2	TEST INSTRUMENTS	64
4.7.3	TEST PROCEDURES	65
4.7.4	DEVIATION FROM TEST STANDARD	65
4.7.5	TEST SETUP	66
4.7.6	EUT OPERATING CONDITIONS	66
4.7.7	TEST RESULTS	67
5	PHOTOGRAPHS OF THE TEST CONFIGURATION	
6	INFORMATION ON THE TESTING LABORATORIES	74
7	APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANGE	
	TO THE EUT BY THE LAB	.75

1 CERTIFICATION

PRODUCT:	Notebook Computer	
MODEL NO.:	0251 (refer to item 3.1 for more details)	
BRAND:	lenovo	
APPLICANT:	Wistron Corporation	
TESTED :	Jul. 15 ~ Jul. 22, 2009	
TEST SAMPLE :	ENGINEERING SAMPLE	
STANDARDS :	FCC Part 22, Subpart H	
	ANSI C63.4-2003	

The above equipment (model: 0251) has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

PREPARED BY

: Zemiel Sang, DATE: Aug. 04, 2009 Rennie Wang / Supervisor

TECHNICAL ACCEPTANCE Responsible for RF

Long Chen / Senior Engineer

, DATE: Aug. 04, 2009

, DATE: Aug. 04, 2009

APPROVED BY

Gary Chang / Assistant Manager

2 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC Part 22 & Part 2				
STANDARD SECTION			REMARK	
2.1046 22.913 (a)	Maximum Peak Output Power Limit: max. 7 watts e.r.p peak power	PASS	Meet the requirement of limit. Minimum passing margin is 26.03dBm at 848.80MHz.	
2.1055	Frequency Stability AFC Freq. Error vs. Voltage AFC Freq. Error vs. Temperature Limit: max. ±2.5ppm	PASS	Meet the requirement of limit.	
2.1049 (h)	Occupied Bandwidth	PASS	Meet the requirement of limit.	
22.917	Band Edge Measurements	PASS	Meet the requirement of limit.	
2.1051 22.917	Conducted Spurious Emissions	PASS	Meet the requirement of limit.	
2.1053 22.917	Radiated Spurious Emissions	PASS	Meet the requirement of limit. Minimum passing margin is –20.58dB at 1672.80MHz.	

2.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	FREQUENCY	UNCERTAINTY
Conducted emissions	9kHz~30MHz	2.44 dB
	30MHz ~ 200MHz	2.93 dB
Radiated emissions	200MHz ~1000MHz	2.95 dB
	1GHz ~ 18GHz	2.26 dB
	18GHz ~ 40GHz	1.94 dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3 GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

EUT	Notebook Computer	
MODEL NO.	0251 (refer to NOTE for more details)	
FCC ID	PU5-BU7LTN	
POWER SUPPLY	7.4Vdc from rechargeable lithium battery	
I OWER SOLLET	12Vdc from power adapter	
MODULATION TYPE	GMSK / 8PSK / BPSK	
FREQUENCY RANGE	824MHz ~ 849MHz	
NUMBER OF CHANNEL	124 (for GPRS/E-GPRS) / 102 (for WCDMA)	
	GPRS Mode: 26.03dBm (0.401Watts)	
MAX. ERP POWER	E-GPRS Mode: 21.54dBm (0.143Watts)	
	WCDMA Mode: 19.36dBm (0.086Watts)	
ANTENNA TYPE	PIFA	
MAX. ANTENNA GAIN	-3dBi	
DATA CABLE	NA	
I/O PORTS	Refer to user's manual	
ACCESSORY DEVICES	Battery, Adapter	

NOTE:

1. The following models are provided to this EUT.

MODEL	DESCRIPTION
0251	All models are electrically identical, different
2872	model names are for marketing purpose.

2. The EUT was powered by the following adapter:

BRAND:	DELTA
MODEL:	EADP-18SB BA
INPUT:	100-240Vac, 50-60Hz, 0.4A
OUTPUT:	12Vdc, 1.5A
POWER LINE:	1.8m non-shielded cable with one core

3. The EUT is a Notebook Computer. The functions of EUT listed as below:

	TEST STANDARD	REFERENCE REPORT
WLAN 802.11b/g	FCC Part 15, Subpart C (Section 15.247)	RF980702L17
BLUETOOTH		RF980702L17-1
GPRS/E-GPRS/WCDMA 850	FCC Part 22	RF980702L17-2
GPRS/E-GPRS/WCDMA 1900	FCC Part 24	RF980702L17-3

4. The communicated functions of EUT listed as below:

		850MHz	1900MHz	
2G	GPRS	\checkmark	\checkmark	
20	E-GPRS	\checkmark	\checkmark	
	WCDMA	\checkmark	\checkmark	With 802.11b/g + Bluetooth
3G	Release 6 HSDPA	\checkmark	\checkmark	
	Release 6 HSUPA	\checkmark	\checkmark	

5. Hardware version: SIV

6. Software version: Beta1.

7. IMEI Code: 358733********.

8. The above EUT information was declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.

3.2 DESCRIPTION OF TEST MODES

FOR GPRS/E-GPRS:

124 channels are provided to this EUT. Therefore, the low, middle and high channels are chosen for testing.

	CHANNEL	FREQUENCY	TX MODE
LOW	128	824.2 MHz	GPRS, E-GPRS
MIDDLE	190	836.6 MHz	GPRS, E-GPRS
HIGH	251	848.8 MHz	GPRS, E-GPRS

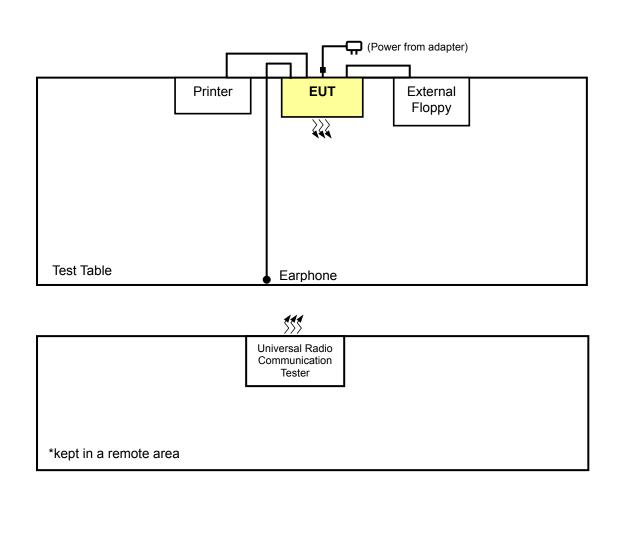
NOTE:

- 1. Below 1 GHz, the channel 128, 190, and 251 were pre-tested in chamber. The channel 128 was chosen for final test.
- 2. Above 1 GHz, the channel 128, 190, and 251 were tested individually.
- 3. The worst case for final test is chosen when the power control level set 5.
- 4. The channel space is 0.2MHz.
- 5. The EUT is a GPRS class 12 device (Multislot class: 12, Mobile Terminal B), which provide 4 up-link. After pre-tested both functions, found up-link with 1 time slot is worse, therefore, test results of output power, frequency stability, occupied bandwidth and band edge tests came out from this.
- 6. The EUT is an E-GPRS class 12 device (Multislot class: 12, Mobile Terminal B), which provide 4 up-link. After pre-tested both functions, found up-link with 1 time slot is worse, therefore, test results of output power, frequency stability, occupied bandwidth and band edge tests came out from this.
- 7. The EUT has GPRS & E-GPRS functions. After pre-testing, GPRS function is the worst case for all the emission tests.

FOR WCDMA:

102 channels are provided to this EUT. Therefore, the low, middle and high channels are chosen for testing.

	CHANNEL	FREQUENCY	TX MODE
LOW	4132	826.4 MHz	WCDMA
MIDDLE	4182	836.4 MHz	WCDMA
HIGH	4233	846.6 MHz	WCDMA


NOTE:

1. Below 1 GHz, the channel 4132, 4182 and 4233 were pre-tested in chamber. The channel 4132 was chosen for final test.

- 2. Above 1 GHz, the channel 4132, 4182 and 4233 were tested individually.
- 3. The channel space is 0.2MHz.
- 4. WCDMA-RMC mode has been chosen for the worst case to do the final test and record.

3.2.1 CONFIGURATION OF SYSTEM UNDER TEST

3.2.2 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

FOR GPRS/E-GPRS:

EUT CONFIGURE	APPLICABLE TO						DESCRIPTION	
MODE	OP	FS	ОВ	BE	CE	RE<1G	RE≥1G	DESCRIPTION
-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-
Where OP :	Output po	ower			FS: Freq	uency stat	oility	

OB: Occupied bandwidth

CE: Conducted spurious emissions

RE≥1G: Radiated emission above 1GHz

rs: Frequency stability

BE: Band edge

RE<1G: Radiated emission below 1GHz

OUTPUT POWER MEASUREMENT:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY
128 to 251	128, 190, 251	GPRS, EGPRS

FREQUENCY STABILITY MEASUREMENT:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY
128 to 251	190	GPRS

OCCUPIED BANDWIDTH MEASUREMENT:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY
128 to 251	128, 190, 251	GPRS, EGPRS

BAND EDGE MEASUREMENT:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY
128 to 251	128, 251	GPRS, EGPRS

CONDUCTED SPURIOUS EMISSIONS MEASUREMENT:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY
128 to 251	128, 190, 251	GPRS

RADIATED EMISSION MEASUREMENT (BELOW 1 GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY
128 to 251	128	GPRS

RADIATED EMISSION MEASUREMENT (ABOVE 1 GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY
128 to 251	128, 190, 251	GPRS

FOR WCDMA:

EUT CONFIGURE	APPLICABLE TO						DESCRIPTION	
MODE	OP	FS	ОВ	BE	CE	RE<1G	RE≥1G	DESCRIPTION
-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-

Where **OP**: Output power

OB: Occupied bandwidth

FS: Frequency stability

BE: Band edge

CE: Conducted spurious emissions

RE≥1G: Radiated emission above 1GHz

RE<1G: Radiated emission below 1GHz

OUTPUT POWER MEASUREMENT:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY
4132 to 4233	4132, 4182, 4233	WCDMA

FREQUENCY STABILITY MEASUREMENT:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY
4132 to 4233	4182	WCDMA

OCCUPIED BANDWIDTH MEASUREMENT:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY
4132 to 4233	4132, 4182, 4233	WCDMA

BAND EDGE MEASUREMENT:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY
4132 to 4233	4132, 4233	WCDMA

CONDUCTED SPURIOUS EMISSIONS MEASUREMENT:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY
4132 to 4233	4132, 4182, 4233	WCDMA

RADIATED EMISSION MEASUREMENT (BELOW 1 GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY
4132 to 4233	4132	WCDMA

RADIATED EMISSION MEASUREMENT (ABOVE 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL MODULATION TECHNO	
4132 to 4233	4132, 4182, 4233	WCDMA

3.3 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC 47 CFR Part 2 FCC 47 CFR Part 22 ANSI C63.4-2003 ANSI/TIA/EIA-603-C 2004

NOTE: All test items have been performed and recorded as per the above standards.

3.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	PRINTER	HP	HP LASERJET 1300	CNCM065675	FCC DoC Approved
2	EXTERNAL FLOPPY	SONY	MPF82E	50010133	FCC DoC Approved
3	EARPHONE	PHILIPS	HL145	NA	NA
4	UNIVERSAL RADIO COMMUNICATION TESTER	R&S	CMU200	104484	NA
5	NJZ-2000 (GSM+WCDMA SIMULATOR)	JRC	NJZ-2000	ET00054	NA

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS		
1	1.8m braid shielded wire, DB25 connector, w/o core.		
2	1.8m shielded USB cable.		
3	1.2m shielded cable.		
4	NA		
5	NA		

NOTE 1: All power cords of the above support units are non shielded (1.8m). **NOTE 2:** Item 4-5 acted as a communication partners to transfer data.

4 TEST TYPES AND RESULTS

4.1 OUTPUT POWER MEASUREMENT

4.1.1 LIMITS OF OUTPUT POWER MEASUREMENT

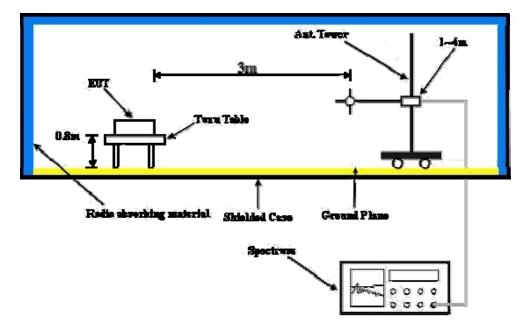
The radiated peak output power shall be according to the specific rule Part 22.913 (a) that "Mobile / Portable station are limited to 7 watts e.r.p".

4.1.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
Test Receiver ROHDE & SCHWARZ	ESIB7	100212	May 25, 2009	May 24, 2010
Spectrum Analyzer ROHDE & SCHWARZ	FSP40	100269	Aug. 08, 2008	Aug. 07, 2009
BILOG Antenna SCHWARZBECK	VULB9168	9168-156	Apr. 30, 2009	Apr. 29, 2010
HORN Antenna SCHWARZBECK	BBHA 9120 D	9120D-563	Aug. 06, 2008	Aug. 05, 2009
HORN Antenna SCHWARZBECK	BBHA 9170	BBHA9170242	Jan. 06, 2009	Jan. 05, 2010
Preamplifier Agilent	8449B	3008A01911	Sep. 10, 2008	Sep. 09, 2009
Preamplifier Agilent	8447D	2944A10638	Dec. 26, 2008	Dec. 25, 2009
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	218190/4 231241/4	May 13, 2009	May 12, 2010
RF signal cable Worken	8D-FB	Cable-HYCH9-01	Aug. 09, 2008	Aug. 08, 2009
Software	ADT_Radiated_ V7.6.15.9.2	NA	NA	NA
Antenna Tower EMCO	2070/2080	512.835.4684	NA	NA
Turn Table EMCO	2087-2.03	NA	NA	NA
Antenna Tower &Turn Table Controller EMCO	2090	NA	NA	NA

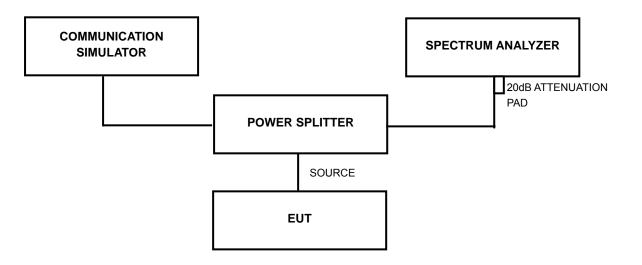
NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HwaYa Chamber 9.
- 3. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.
- 4. The FCC Site Registration No. is 460141.
- 5. The IC Site Registration No. is IC 7450F-4.


4.1.3 TEST PROCEDURES

- a. The power was measured with R&S Spectrum Analyzer. All measurements were done at 3 channels, 128, 190 and 251 (GPRS/E-GPRS) / 4132, 4182 and 4233 (WCDMA) (low, middle and high operational frequency range.)
- b. The conducted peak output power used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer. The path loss included the splitter loss, cable loss and 20dB pad loss. The spectrum set RB/VB 1MHz (GPRS/E-GPRS) and 5MHz (WCDMA), then read peak power value and record to the test. (All transmitted path loss shall be considered in the test report data.)
- c. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- d. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a tx cable . Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step c. Record the power level of S.G
- e. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution horn.
- f. E.R.P power can be calculated form E.I.R.P power by subtracting the gain of dipole, E.R.P power = E.I.P.R power - 2.15dBi.

4.1.4 TEST SETUP


EIRP POWER MEASUREMENT:

For the actual test configuration, please refer to the attached file (Test Setup Photo).

CONDUCTED POWER MEASUREMENT:

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

4.1.5 EUT OPERATING CONDITIONS

- a. The EUT makes a phone call to the communication simulator.
- b. The communication simulator station system controlled an EUT to export maximum output power under transmission mode and specific channel frequency.

4.1.6 TEST RESULTS

FOR GPRS/E-GPRS:

MODE	TX connected	POWER CONTROL LEVEL	5
INPUT POWER	120Vac, 60 Hz	DETECTOR FUNCTION	Peak
ENVIRONMENTAL CONDITIONS	23deg. C, 68%RH, 991hPa	TESTED BY	Mark Liao

FOR GPRS MODE (UP-LINK WITH 1 TIME SLOT)

CONDUCTED OUTPUT POWER						
CHANNEL NO.	FREQUENCY		CORRECTION	OUTPUT POWER		
	(MHz)	(dBm)	FACTOR (dB)	dBm	Watt	
128	824.2	27.50	4.70	32.20	1.660	
190	836.6	27.30	4.70	32.00	1.585	
251	848.8	27.00	4.70	31.70	1.479	

FOR E-GPRS MODE (UP-LINK WITH 1 TIME SLOT)

CONDUCTED OUTPUT POWER						
CHANNEL NO.	L NO. FREQUENCY RAW VALUE CORRECTION OUTPUT POWE				POWER	
	(MHz)	(dBm)	FACTOR (dB)	dBm	Watt	
128	824.2	23.10	4.70	27.80	0.603	
190	836.6	22.97	4.70	27.67	0.585	
251	848.8	22.60	4.70	27.30	0.537	

REMARKS: 1. Peak Output Power (dBm) = Raw Value (dBm) + Correction Factor (dB).

MODE	TX connected	POWER CONTROL LEVEL	5
INPUT POWER		DETECTOR FUNCTION	Peak
ENVIRONMENTAL CONDITIONS	23deg. C, 68%RH, 991hPa	TESTED BY	Mark Liao

FOR GPRS MODE (UP-LINK WITH 1 TIME SLOT)

ERP POWER						
CHANNEL NO.	FREQUENCY	S.G VALUE	CORRECTION	OUTPUT	POWER	
	(MHz)	(dBm)	FACTOR (dB)	dBm	Watt	
128	824.2	33.76	-8.62	25.14	0.327	
190	836.6	34.45	-8.64	25.81	0.381	
251	848.8	34.68	-8.65	26.03	0.401	

FOR E-GPRS MODE (UP-LINK WITH 1 TIME SLOT)

ERP POWER						
CHANNEL NO.		S.G VALUE	CORRECTION	OUTPUT POWER		
		(dBm)	FACTOR (dB)	dBm	Watt	
128	824.2	30.00	-8.62	21.38	0.137	
190	836.6	30.18	-8.64	21.54	0.143	
251	848.8	29.99	-8.65	21.34	0.136	

REMARKS: 1. Peak Output Power (dBm) = Raw Value (dBm) + Correction Factor (dB).

 Correction Factor (dB) = Receiver Antenna Gain (dBi) + Cable Loss (dB) + Free Space Loss (dB).

The following procedures were followed according to FCC "SAR Measurement Procedures for 3G Devices", October, 2007.

Output Power Verification

WCDMA

Maximum output power is verified on the High, Middle and Low channels according to the procedures described in section 5.2 of 3GPP TS 34.121, using the appropriate RMC or AMR with TPC (transmit power control) set to all "1's" for WCDMA/HSDPA or applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HSDPA, HSPA) should be tabulated in the SAR report. All configurations that are not supported by the DUT or cannot be measured due to technical or equipment limitations should be clearly identified.

Release 5 HSDPA Data Devices

Maximum output power is verified on the High, Middle and Low channels according to the Release 5 procedures described in section 5.2 of 3GPP TS 34.121, using an FRC with H-set 1 and a 12.2 kbps RMC with TPC (transmit power control) set to all "1's". When HSDPA is active output power is measured according requirements for HS-DPCCH Sub-test 1 - 4. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HS-DPCCH etc.), with and without HSDPA active, should be tabulated in the SAR report. All configurations that are not supported by the DUT or cannot be measured due to technical or equipment limitations should be clearly identified in the SAR report.

Release 6 HSPA Data Devices

Maximum output power is verified on the High, Middle and Low channels according to Release 6 procedures in section 5.2 of 3GPP TS 34.121, using the appropriate RMC, FRC and E-DCH configurations. When E-DCH is not active, TPC (transmit power control) is set to all "1's"; otherwise, inner loop power control with power control algorithm 2 is required to maintain E-TFCI requirements. When HSPA is active output power for the applicable HSPA modes should be measured for E-DCH Sub-test 1 - 5. Results for all applicable physical channel configurations (DPCCH, DPDCH and spreading codes, HS-DPCCH, E-DPCCH, E-DPDCHk) should be tabulated in the SAR report. All configurations that are not supported by the DUT or cannot be measured due to technical or equipment limitations should be clearly identified.

MODE	TX connected	POWER CONTROL LEVEL	0
INPUT POWER (SYSTEM)	120Vac, 60 Hz	DETECTOR FUNCTION	Average
ENVIRONMENTAL CONDITIONS	23deg. C, 68%RH, 991hPa	TESTED BY	Mark Liao

CONDUCTED OUTPUT POWER (WCDMA-RMC)						
CHANNEL NO.	FREQUENCY RAW VALUE (MHz) (dBm)		CORRECTION FACTOR (dB)	OUTPUT POWER		
		(dBm)		dBm	Watt	
4132	826.4	18.95	4.70	23.65	0.232	
4182	836.4	18.93	4.70	23.63	0.231	
4233	846.6	18.50	4.70	23.20	0.209	

CONDUCTED OUTPUT POWER (HSDPA-R6 SUBTEST 1 MODE)						
CHANNEL NO.	FREQUENCY	FREQUENCY RAW VALUE (MHz) (dBm)	CORRECTION FACTOR (dB)	OUTPUT POWER		
	(MHz)			dBm	Watt	
4132	826.4	18.80	4.70	23.50	0.224	
4182	836.4	18.86	4.70	23.56	0.227	
4233	846.6	18.60	4.70	23.30	0.214	

CONDUCTED OUTPUT POWER (HSDPA-R6 SUBTEST 2 MODE)						
CHANNEL NO.	FREQUENCY	ICY RAW VALUE CORRECTION (dBm) FACTOR (dB)	OUTPUT	POWER		
	(MHz)		FACTOR (dB)	dBm	Watt	
4132	826.4	18.80	4.70	23.50	0.224	
4182	836.4	18.89	4.70	23.59	0.229	
4233	846.6	18.37	4.70	23.07	0.203	

MODE	TX connected	POWER CONTROL LEVEL	0
INPUT POWER (SYSTEM)	120Vac, 60 Hz	DETECTOR FUNCTION	Average
ENVIRONMENTAL CONDITIONS	23deg. C, 68%RH, 991hPa	TESTED BY	Mark Liao

CONDUCTED OUTPUT POWER (HSDPA-R6 SUBTEST 3 MODE)						
CHANNEL NO.	FREQUENCY		CORRECTION FACTOR (dB)	OUTPUT POWER		
	(MHz)			dBm	Watt	
4132	826.4	18.30	4.70	23.00	0.200	
4182	836.4	18.40	4.70	23.10	0.204	
4233	846.6	18.00	4.70	22.70	0.186	

CONDUCTED OUTPUT POWER (HSDPA-R6 SUBTEST 4 MODE)						
CHANNEL NO.	FREQUENCY		CORRECTION FACTOR (dB)	OUTPUT POWER		
	(MHz)			dBm	Watt	
4132	826.4	18.30	4.70	23.00	0.200	
4182	836.4	18.40	4.70	23.10	0.204	
4233	846.6	17.99	4.70	22.69	0.186	

CONDUCTED OUTPUT POWER (HSUPA-R6 SUBTEST 1 MODE)						
CHANNEL NO.	EL NO. FREQUENCY (MHz) RAW VALUE CORRECTION FACTOR (dB)	OUTPUT	POWER			
		(dBm)	FACTOR (dB)	dBm	Watt	
4132	826.4	18.73	4.70	23.43	0.220	
4182	836.4	18.75	4.70	23.45	0.221	
4233	846.6	18.40	4.70	23.10	0.204	

MODE	TX connected	POWER CONTROL LEVEL	0
INPUT POWER (SYSTEM)	120Vac, 60 Hz	DETECTOR FUNCTION	Average
ENVIRONMENTAL CONDITIONS	23deg. C, 68%RH, 991hPa	TESTED BY	Mark Liao

CONDUCTED OUTPUT POWER (HSUPA-R6 SUBTEST 2 MODE)						
CHANNEL NO.	FREQUENCY	Y RAW VALUE CORRECTIO (dBm) FACTOR (dE	-	CORRECTION	OUTPUT	POWER
	(MHz)		FACTOR (dB)	dBm	Watt	
4132	826.4	17.10	4.70	21.80	0.151	
4182	836.4	17.40	4.70	22.10	0.162	
4233	846.6	16.75	4.70	21.45	0.140	

CONDUCTED OUTPUT POWER (HSUPA-R6 SUBTEST 3 MODE)						
CHANNEL NO.	FREQUENCY		CORRECTION FACTOR (dB)	OUTPUT POWER		
	(MHz)			dBm	Watt	
4132	826.4	17.93	4.70	22.63	0.183	
4182	836.4	18.06	4.70	22.76	0.189	
4233	846.6	17.80	4.70	22.50	0.178	

CONDUCTED OUTPUT POWER (HSUPA-R6 SUBTEST 4 MODE)					
CHANNEL NO.	CHANNEL NO FREQUENCY RAW VALUE CORRECTION OUTPUT POWE				POWER
	(MHz)	(dBm)	FACTOR (dB) dBm Watt		
4132	826.4	17.51	4.70	22.21	0.166
4182	836.4	17.30	4.70	22.00	0.158
4233	846.6	17.10	4.70	21.80	0.151

MODE	TX connected	POWER CONTROL LEVEL	0
INPUT POWER (SYSTEM)	120Vac, 60 Hz	DETECTOR FUNCTION	Average
ENVIRONMENTAL CONDITIONS	23deg. C, 68%RH, 991hPa	TESTED BY	Mark Liao

CONDUCTED OUTPUT POWER (HSUPA-R6 SUBTEST 5 MODE)					
CHANNEL NO. FREQUENCY RAW VALUE CORRECTION OUTPUT PO (MHz) (dBm) FACTOR (dB)				POWER	
	(MHz)	(dBm)	dBm	Watt	
4132	826.4	18.75	4.70	23.45	0.221
4182	836.4	18.80	4.70	23.50	0.224
4233	846.6	18.62	4.70	23.32	0.215

MODE	TX connected	POWER CONTROL LEVEL	0
INPUT POWER	120Vac, 60 Hz	DETECTOR FUNCTION	Average
ENVIRONMENTAL CONDITIONS	23deg. C, 68%RH, 991hPa	TESTED BY	Mark Liao

ERP POWER (WCDMA-RMC)					
CHANNEL NO. FREQUENCY S.G VALUE CORRECTION				OUTPUT POWER	
	(MHz)	(dBm)	FACTOR (dB)	dBm	Watt
4132	826.4	27.98	-8.62	19.36	0.086
4182	836.4	26.95	-8.64	18.31	0.068
4233	846.6	25.79	-8.65	17.14	0.052

2. Correction Factor (dB) = Receiver Antenna Gain (dBi) + Cable Loss (dB) + Free Space Loss (dB).

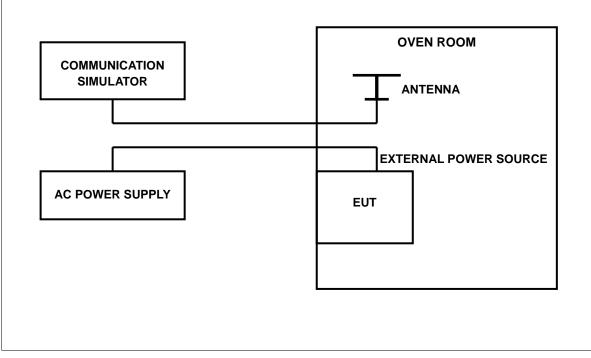
4.2 FREQUENCY STABILITY MEASUREMENT

4.2.1 LIMITS OF FREQUENCY STABILIITY MEASUREMENT

According to the FCC part 24.235 shall be tested the frequency stability. The rule is defined that" The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block." The frequency error rate is according to the JTC standard that the frequency error rate shall be accurate to within 2.5ppm of the received frequency from the base station. The test extreme voltage is according to the 2.1055(d)(1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment and the extreme temperature rule is comply with the 2.1055(a)(1) –30°C ~50°C.

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL	CALIBRATED UNTIL
ROHDE & SCHWARZ Spectrum Analyzer	FSP40	100041	May 13, 2009	May 12, 2010
Hewlett Packard RF cable	8120-6192	01428251	NA	NA
Suhner RF cable	Sucoflex104	204850/4	NA	NA
WIT Standard Temperature & Humidity Chamber	TH-4S-C	W981030	Jun. 29, 2009	Jun. 28, 2010

4.2.2 TEST INSTRUMENTS


NOTE: The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

4.2.3 TEST PROCEDURE

- a. Because of the measure the carrier frequency under the condition of the AFC lock, it shall be used the mobile station in the GPRS / WCDMA link mode. This is accomplished with the use of the R&S CMU200 / JRC NJZ-2000 simulator station. The oven room could control the temperatures and humidity. The GPRS link channel is the 190 and the WCDMA link channel is the 4182.
- b. Power must be removed when changing from one temperature to another or one voltage to another voltage. Power warm up is at least 15 min and power applied should perform before recording frequency error.
- c. EUT is connected the external power supply to control the AC input power. The various Volts from the minimum 93.5Volts to 126.5Volts. Each step shall be record the frequency error rate.
- d. The temperature range step is 10 degrees in this test items. All temperature levels shall be hold the $\pm 0.5^{\circ}$ C during the measurement testing.
- e. The each temperature step shall be at least 0.5 hours, consider the EUT could be test under the stability condition.

NOTE: The frequency error was recorded frequency error from the communication simulator.

4.2.4 TEST SETUP

4.2.5 TEST RESULTS

FOR GPRS:

MODE	TX Mid. channel	POWER CONTROL LEVEL	5
INPUT POWER	120Vac, 60 Hz	ENVIRONMENTAL CONDITIONS	23deg. C, 68%RH, 991hPa
TESTED BY	Mark Liao		

AFC FREQUENCY ERROR vs. VOLTAGE				
VOLTAGE (Volts) FREQUENCY ERROR (Hz) FREQUENCY ERROR (ppm) LIMIT (ppm)				
126.5	5	0.006	2.5	
93.5	-7	-0.008	2.5	

AFC FREQUENCY ERROR vs. TEMP.				
TEMP. (℃)	FREQUENCY ERROR (Hz)	FREQUENCY ERROR (ppm)	LIMIT (ppm)	
50	-24	-0.029	2.5	
40	-20	-0.024	2.5	
30	-13	-0.016	2.5	
20	-5	-0.006	2.5	
10	6	0.007	2.5	
0	2	0.002	2.5	
-10	-12	-0.014	2.5	
-20	-16	-0.019	2.5	
-30	-39	-0.047	2.5	

FOR WCDMA:

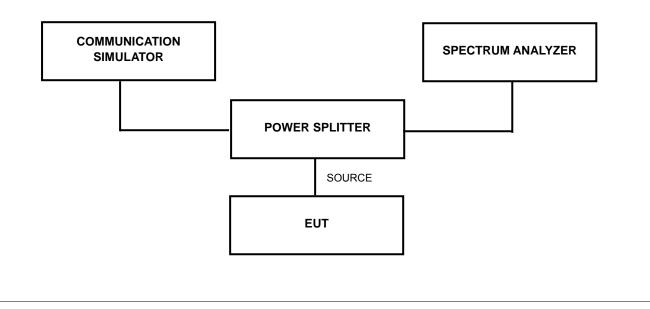
MODE		POWER CONTROL LEVEL	0
INPUT POWER	120Vac, 60 Hz	ENVIRONMENTAL CONDITIONS	23deg. C, 68%RH, 991hPa
TESTED BY	Mark Liao		

AFC FREQUENCY ERROR vs. VOLTAGE				
VOLTAGE (Volts) FREQUENCY ERROR (Hz) FREQUENCY ERROR (ppm) LIMIT (ppm)				
126.5	-5	-0.006	2.5	
93.5	-8	-0.010	2.5	

	AFC FREQUENCY ERROR vs. TEMP.				
ТЕМР. (℃)	FREQUENCY ERROR (Hz)	FREQUENCY ERROR (ppm)	LIMIT (ppm)		
50	-22	-0.026	2.5		
40	-27	-0.032	2.5		
30	-15	-0.018	2.5		
20	-2	-0.002	2.5		
10	6	0.007	2.5		
0	2	0.002	2.5		
-10	-8	-0.010	2.5		
-20	-11	-0.013	2.5		
-30	-36	-0.043	2.5		

4.3 OCCUPIED BANDWIDTH MEASUREMENT

4.3.1 LIMITS OF OCCUPIED BANDWIDTH MEASUREMENT


According to FCC 2.1049 (h) specified that emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

4.3.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
ROHDE & SCHWARZ Spectrum Analyzer	FSP40	100041	May 13, 2009	May 12, 2010
Mini-Circuits Power Splitter	ZN2PD-9G	NA	Jun. 26, 2009	Jun. 25, 2010
RF cable	SUCOFLEX 104	274403/4	Aug. 22, 2008	Aug. 21, 2009
RF cable	SUCOFLEX 104	250729/4	Aug. 21, 2008	Aug. 20, 2009
RF cable	SUCOFLEX 104	214377/4	Aug. 21, 2008	Aug. 20, 2009
JFW 20dB attenuation	50HF-020-SMA	NA	NA	NA

NOTE: The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

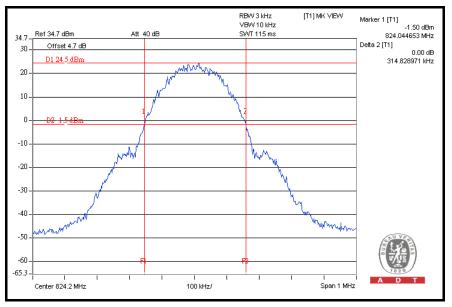
4.3.3 TEST SETUP

4.3.4 TEST PROCEDURES

- a. The EUT makes a phone call to the communication simulator. The power was measured with R&S Spectrum Analyzer. All measurements were done at 3 channels, 128, 190 and 251 (GPRS / E-GPRS) / 4132, 4182 and 4233 (WCDMA) (low, middle and high operational frequency range.)
- b. The conducted occupied bandwidth used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer. This splitter loss and cable loss is the worst loss 4.7dB in the transmitted path track.
- c. FCC 2.1049 (h) required a measurement bandwidth is the fundamental emission below 26dB bandwidth.

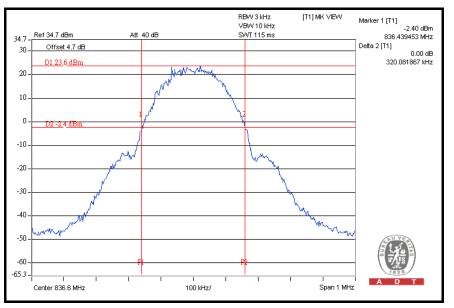
4.3.5 EUT OPERATING CONDITION

- a. The EUT makes a phone call to the communication simulator.
- b. The communication simulator station system controlled an EUT to export maximum and minimum output power under transmission mode and specific channel frequency.

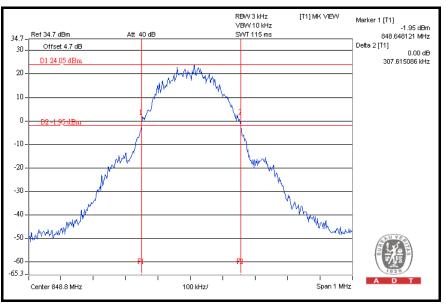

4.3.6 TEST RESULTS

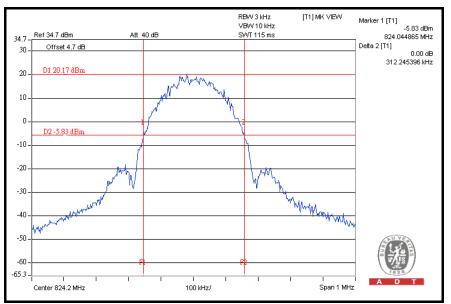
FOR GPRS/E-GPRS:

FOR GPRS MODE (UP-LINK WITH 1 TIME SLOT)

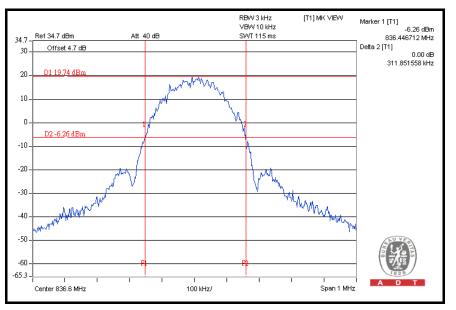

CHANNEL	FREQUENCY (MHz)	MAX. OUTPUT POWER -26 dBc BANDWIDTH (MHz)
128	824.2	0.315
190	836.6	0.320
251	848.8	0.308

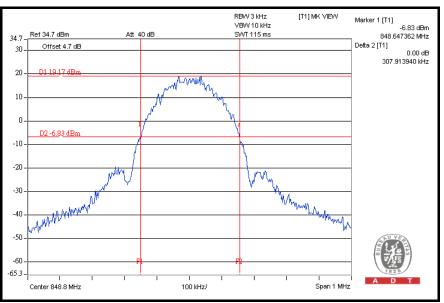
CH 128

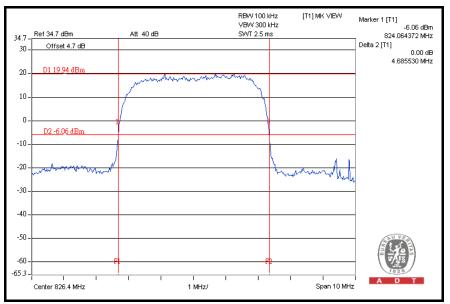




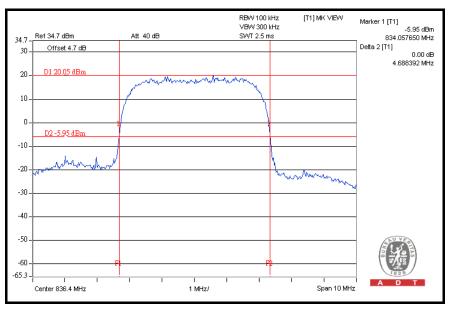
FOR E-GPRS MODE (UP-LINK WITH 1 TIME SLOT)

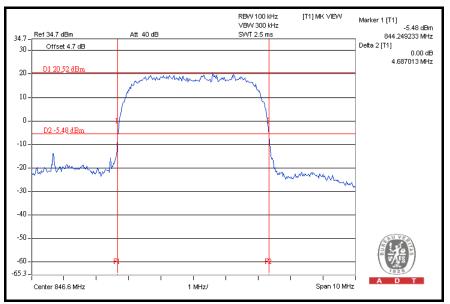

CHANNEL	FREQUENCY (MHz)	MAX. OUTPUT POWER -26 dBc BANDWIDTH (MHz)
128	824.2	0.312
190	836.6	0.312
251	848.8	0.308





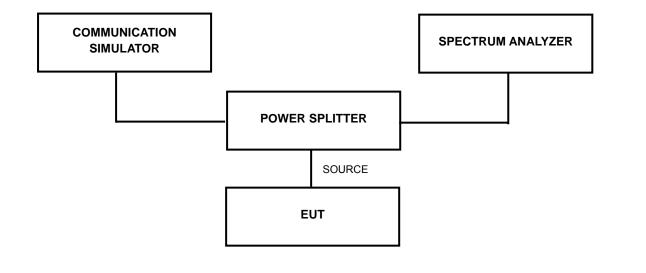
FOR WCDMA:


CHANNEL	FREQUENCY (MHz)	MAX. OUTPUT POWER -26 dBc BANDWIDTH (MHz)
4132	826.4	4.686
4182	836.4	4.688
4233	846.6	4.687



4.4 BAND EDGE MEASUREMENT

4.4.1 LIMITS OF BAND EDGE MEASUREMENT


According to FCC 22.917 specified that power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.

4.4.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION	
ROHDE & SCHWARZ	E4446A	MY44360128	Dec. 06, 2008	Dec. 07, 2009	
Spectrum Analyzer	E4440A	101144300128	Dec. 00, 2008	Dec. 07, 2009	
Mini-Circuits Power Splitter	ZN2PD-9G	NA	Jun. 26, 2009	Jun. 25, 2010	
RF cable	SUCOFLEX 104	274403/4	Aug. 22, 2008	Aug. 21, 2009	
RF cable	SUCOFLEX 104	250729/4	Aug. 21, 2008	Aug. 20, 2009	
RF cable	SUCOFLEX 104	214377/4	Aug. 21, 2008	Aug. 20, 2009	
JFW 20dB attenuation	50HF-020-SMA	NA	NA	NA	

NOTE: The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

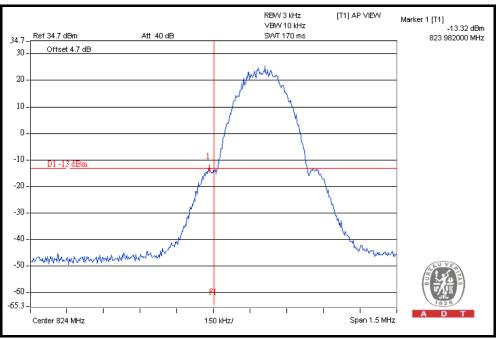
4.4.3 TEST SETUP

4.4.4 TEST PROCEDURES

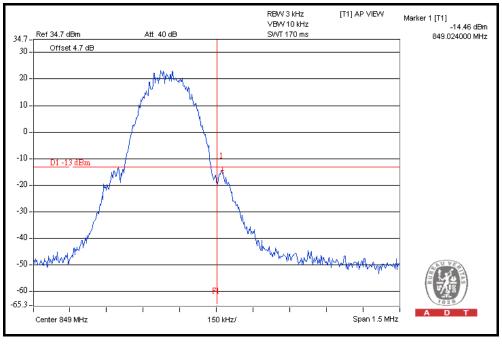
- a. The EUT makes a phone call to the communication simulator. The power was measured with R&S Spectrum Analyzer. All measurements were done at 2 channels, 128 and 251 (GPRS/E-GPRS) / 4132 and 4233 (WCDMA) (low and high operational frequency range.)
- b. The band edge measurement used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer. This splitter loss and cable loss is the worst loss 4.7dB in the transmitted path track.
- c. The center frequency of spectrum is the band edge frequency and span is 1.5 MHz. RB of the spectrum is 3kHz and VB of the spectrum is 10kHz (GPRS/E-GPRS).
- d. The center frequency of spectrum is the band edge frequency and span is 10MHz. RB of the spectrum is 100kHz and VB of the spectrum is 300kHz (WCDMA).
- e. Record the max trace plot into the test report.

4.4.5 EUT OPERATING CONDITION

- a. The EUT makes a phone call to the communication simulator.
- b. The communication simulator station system controlled an EUT to export maximum output power under transmission mode and specific channel frequency.

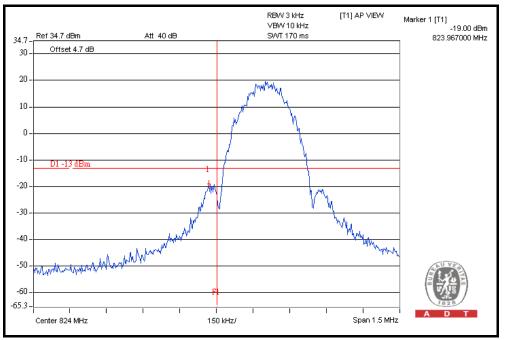


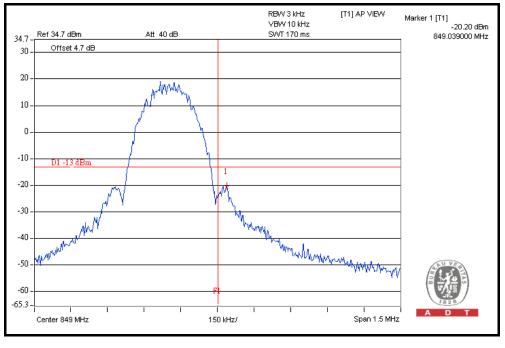
4.4.6 TEST RESULTS


FOR GPRS/E-GPRS:

FOR GPRS MODE (UP-LINK WITH 1 TIME SLOT)

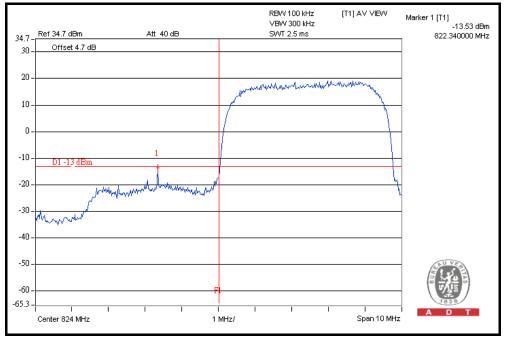
LOWER BAND EDGE

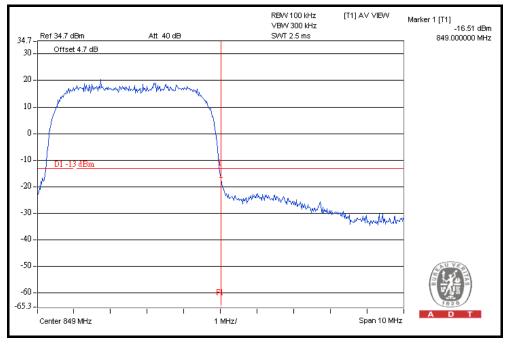

HIGHER BAND EDGE



FOR E-GPRS MODE (UP-LINK WITH 1 TIME SLOT)

LOWER BAND EDGE


HIGHER BAND EDGE



FOR WCDMA:

LOWER BAND EDGE

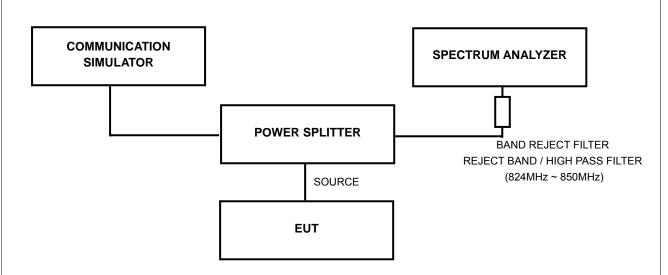
HIGHER BAND EDGE

4.5 CONDUCTED SPURIOUS EMISSIONS

4.5.1 LIMITS OF CONDUCTED SPURIOUS EMISSIONS MEASUREMENT

In the FCC 22.917, On any frequency outside a licensee's frequency block within GSM spectrum, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 +10 log (P) dB. The emission limit equal to -13dBm.

4.5.2 TEST INSTRUMENTS


DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
ROHDE & SCHWARZ Spectrum Analyzer	FSP40	100041	May 13, 2009	May 12, 2010
Wainwright Instruments Band Reject Filter	WRCG 824/849-810/ 863-60/9SS	SN1	Mar. 26, 2009	Mar. 25, 2010
WI Highpass filter	WHK1.5/15G-10ST	SN1	Mar. 31, 2009	Mar. 30, 2010
Mini-Circuits Power Splitter	ZN2PD-9G	NA	Jun. 26, 2009	Jun. 25, 2010
RF cable	SUCOFLEX 104	274403/4	Aug. 22, 2008	Aug. 21, 2009
RF cable	SUCOFLEX 104	250729/4	Aug. 21, 2008	Aug. 20, 2009
RF cable	SUCOFLEX 104	214377/4	Aug. 21, 2008	Aug. 20, 2009
JFW 20dB attenuation	50HF-020-SMA	NA	NA	NA

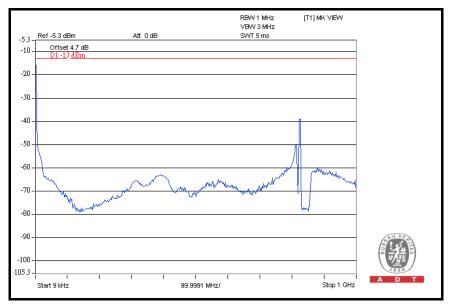
NOTE: The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

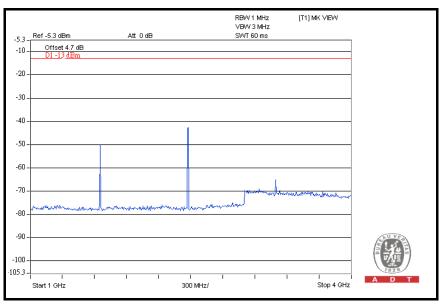
4.5.3 TEST PROCEDURE

- a. The EUT makes a phone call to the communication simulator. The power was measured with R&S Spectrum Analyzer. All measurements were done at 3 channels, 128, 190 and 251 (GPRS) / 4132, 4182 and 4233 (WCDMA) (low, middle and high operational frequency range.)
- b. The conducted spurious emission used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer. This splitter loss and cable loss are the worst loss 4.7dB in the transmitted path track.
- c. When the spectrum scanned from 9kHz to 1GHz, it shall be connected to the band reject filter attenuated the carried frequency. The spectrum set RB=1MHz, VB=3MHz.
- d. When the spectrum scanned from 1GHz to 9GHz, it shall be connected to the high pass filter attenuated the carried frequency. The spectrum set RB=1MHz, VB=3MHz.

4.5.4 TEST SETUP

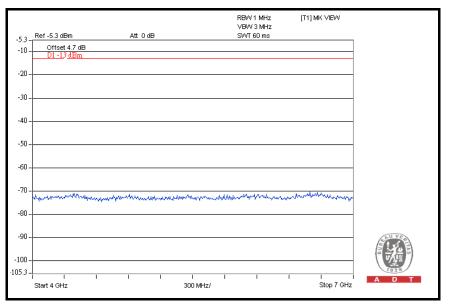
4.5.5 EUT OPERATING CONDITIONS

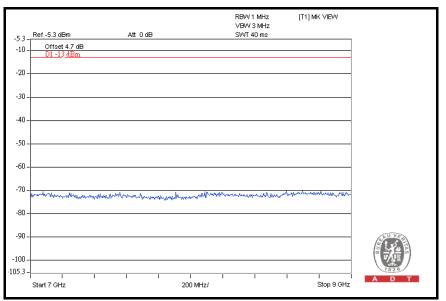

- a. The EUT makes a phone call to the communication simulator.
- b. The communication simulator station system controlled an EUT to export maximum output power under transmission mode and specific channel frequency.


4.5.6 TEST RESULTS

FOR GPRS:

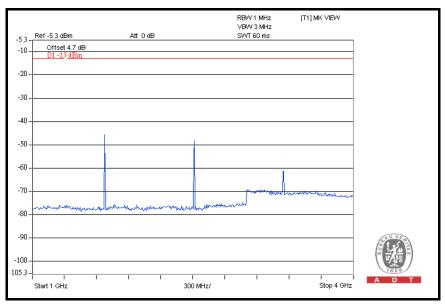
CH 128: 9kHz ~ 1GHz



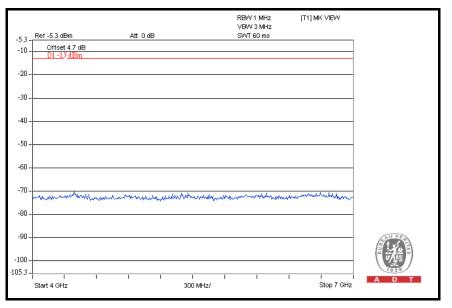


4GHz ~ 7GHz

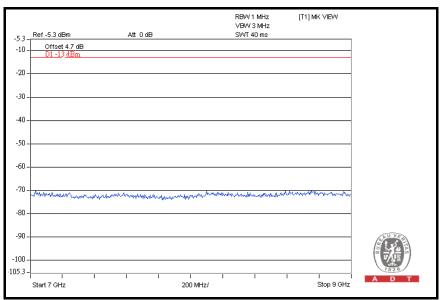
7GHz ~ 9GHz



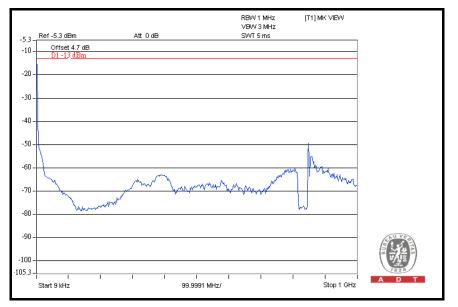
RBW 1 MHz VBW 3 MHz SWT 5 ms [T1] MK VIEW -5.3 - Ref -5.3 dBm Att 0 dB Offset 4.7 dB D1 -13 dBm -10 --20 -30 --40 -50 -60 Munun N -70 -80 -90 -100 -105.3 -Stop 1 GHz . Start 9 kHz 99.9991 MHz/


CH 190: 9kHz ~ 1GHz

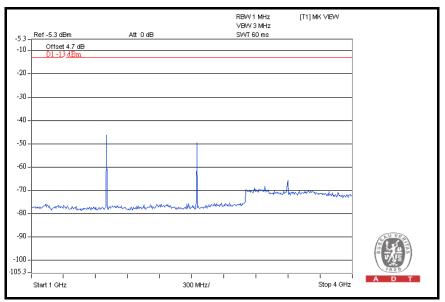
1GHz ~ 4GHz



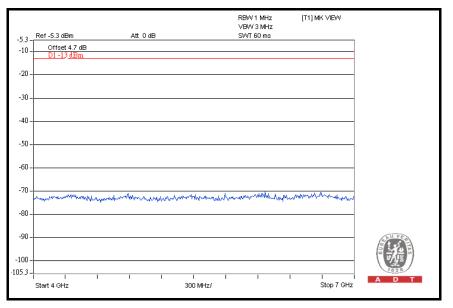
4GHz ~ 7GHz



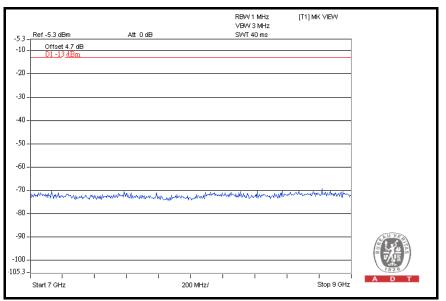
7GHz ~ 9GHz



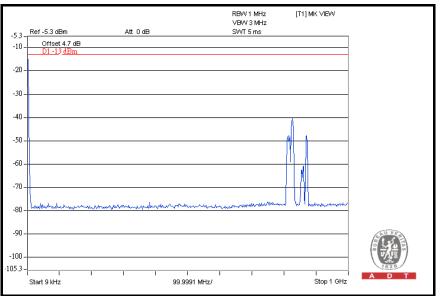
CH 251: 9kHz ~ 1GHz



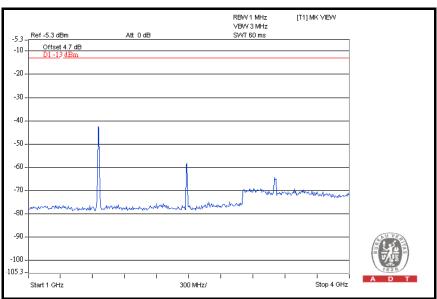
1GHz ~ 4GHz



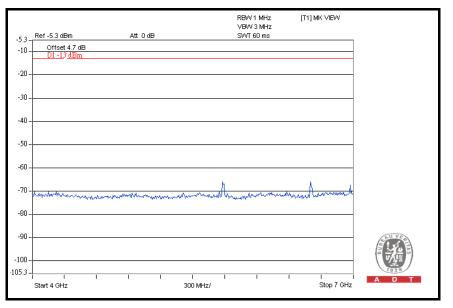
4GHz ~ 7GHz



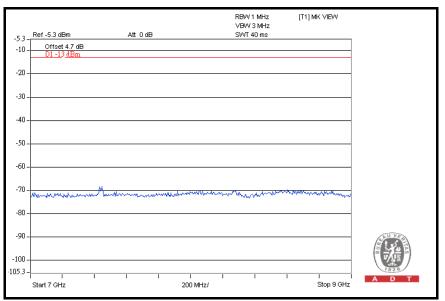
7GHz ~ 9GHz



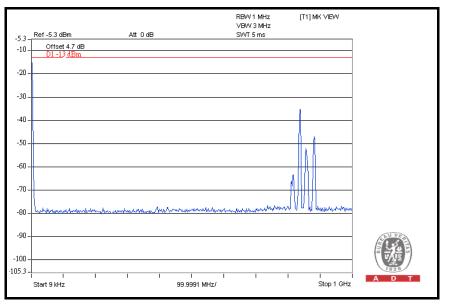
FOR WCDMA:


CH 4132: 9kHz ~ 1GHz

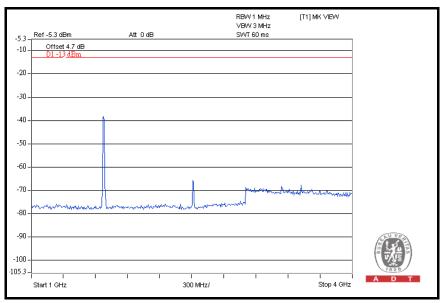
1GHz ~ 4GHz



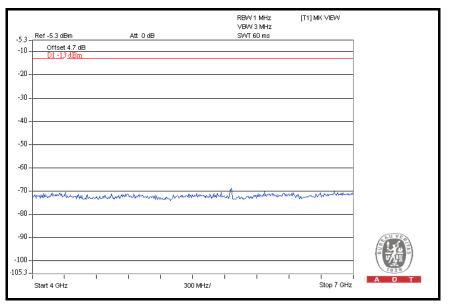
4GHz ~ 7GHz



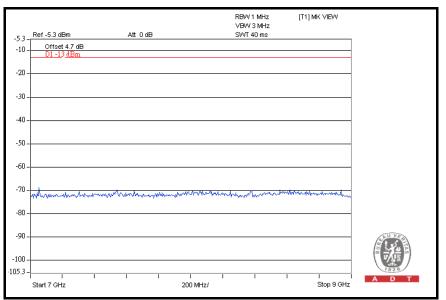
7GHz ~ 9GHz



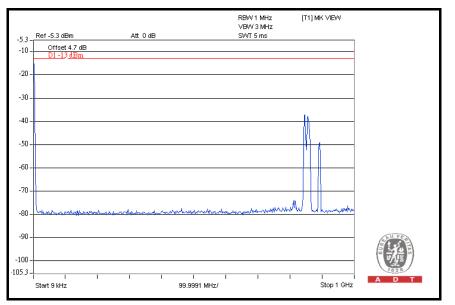
CH 4182: 9kHz ~ 1GHz



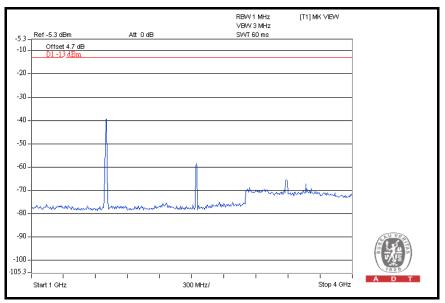
1GHz ~ 4GHz



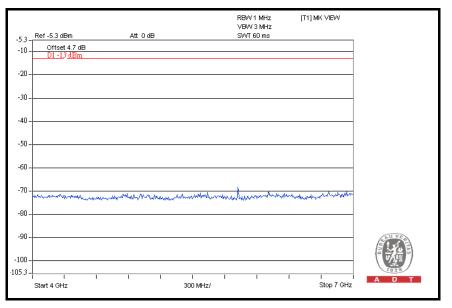
4GHz ~ 7GHz



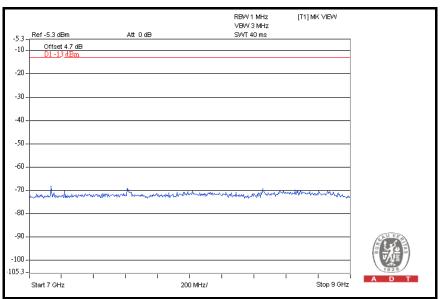
7GHz ~ 9GHz



CH 251: 9kHz ~ 1GHz



1GHz ~ 4GHz



4GHz ~ 7GHz

7GHz ~ 9GHz

4.6 RADIATED EMISSION MEASUREMENT (BELOW 1GHz)

4.6.1 LIMITS OF RADIATED EMISSION MEASUREMENT

In the FCC 24.238(a), On any frequency outside a licensee's frequency block within USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 +10 log (P) dB. The emission limit equal to -13dBm. So the limit of emission is the same absolute specified line.

LIMIT (dBm)	EQUIVALENT FIELD STRENGTH AT 3m (dBuV/m) (NOTE)		
-13	82.22		

NOTE: The following formula is used to convert the equipment radiated power to field strength.

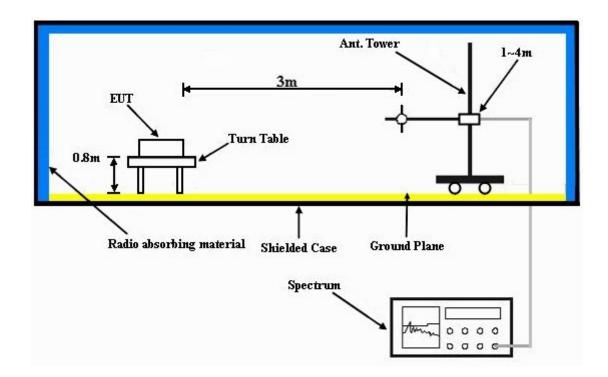
E = [1000000 $\sqrt{(30P)}$] / 3 uV/m, where P is Watts.

4.6.2 TEST INSTRUMENTS

Same as 4.1.2.

4.6.3 TEST PROCEDURES

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meters semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.


NOTE: The resolution bandwidth of spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz.

4.6.4 DEVIATION FROM TEST STANDARD

No deviation

4.6.5 TEST SETUP

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.6.6 EUT OPERATING CONDITIONS

- a. The EUT makes a phone call to the communication simulator.
- b. The communication simulator station system controlled an EUT to export maximum output power under transmission mode and specific channel frequency.

4.6.7 TEST RESULTS

FOR GPRS:

MODE	TX channel 190	DETECTOR FUNCTION	Peak
FREQUENCY RANGE	Below 1000 MHz	INPUT POWER	120Vac, 60 Hz
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH, 991hPa	TESTED BY	Lori Chiu

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	150.52	47.41	82.22	-34.81	2.00 H	280	33.52	13.89
2	171.90	47.41	82.22	-34.81	1.50 H	235	34.60	12.81
3	243.83	46.21	82.22	-36.01	1.00 H	106	33.65	12.55
4	294.37	50.12	82.22	-32.10	1.00 H	82	36.55	13.57
5	393.51	45.12	82.22	-37.10	1.00 H	103	29.22	15.90
6	442.10	45.13	82.22	-37.09	2.00 H	133	27.67	17.46
	A	NTENNA POL	ARITY & T	EST DIST	ANCE: VI		AT 3 M	
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	127.19	48.07	82.22	-34.15	1.00 V	127	36.04	12.03
2	173.85	48.26	82.22	-33.96	1.00 V	106	35.60	12.66
3	294.37	48.51	82.22	-33.71	1.50 V	31	34.94	13.57
4	700.64	50.35	82.22	-31.87	1.25 V	352	27.60	22.75
5	733.69	47.24	82.22	-34.98	1.50 V	13	23.69	23.55
6	799.78	48.13	82.22	-34.09	1.00 V	10	22.81	25.31

NOTE:

1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB).

2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).

3. The other emission levels were very low against the limit.

- 4. Margin value = Emission level Limit value.
- 5. This is valid for all 3 channels.

FOR WCDMA:

MODE	TX channel 4132	DETECTOR FUNCTION	Peak
FREQUENCY RANGE	Below 1000 MHz	INPUT POWER	120Vac, 60 Hz
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH, 991hPa	TESTED BY	Lori Chiu

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	127.19	45.56	82.22	-36.66	1.75 H	274	33.53	12.03
2	156.35	47.05	82.22	-35.17	1.75 H	253	33.26	13.78
3	173.85	47.37	82.22	-34.85	1.50 H	52	34.71	12.66
4	243.83	46.59	82.22	-35.63	1.25 H	112	34.04	12.55
5	294.37	49.24	82.22	-32.98	1.00 H	94	35.67	13.57
6	442.10	45.20	82.22	-37.02	2.00 H	127	27.74	17.46
	A	NTENNA POL	ARITY & T	EST DIST	ANCE: VI		AT 3 M	
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	169.96	48.38	82.22	-33.84	1.00 V	118	35.43	12.95
2	255.49	47.43	82.22	-34.79	1.00 V	130	34.50	12.93
3	294.37	48.23	82.22	-33.99	1.50 V	43	34.65	13.57
4	442.10	46.67	82.22	-35.55	1.00 V	34	29.21	17.46
5	698.70	52.25	82.22	-29.97	1.25 V	4	29.54	22.72
6	733.69	47.91	82.22	-34.31	1.25 V	352	24.36	23.55

NOTE:

1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB).

2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).

3. The other emission levels were very low against the limit.

4. Margin value = Emission level – Limit value.

5. This is valid for all 3 channels.

4.7 RADIATED EMISSION MEASUREMENT (ABOVE 1GHz)

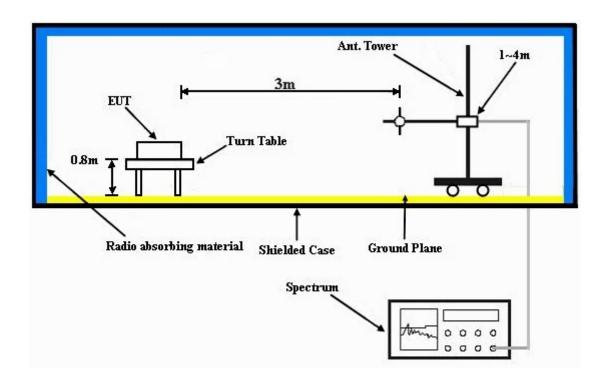
4.7.1 LIMITS OF RADIATED EMISSION MEASUREMENT

In the FCC 22.917 (a), On any frequency outside a licensee's frequency block within GSM spectrum, the power of any emission shall be attenuated below the transmitter power (P) by at least $43 + 10 \log (P) dB$. The emission limit equal to -13 dBm.

4.7.2 TEST INSTRUMENTS

Same as 4.1.2.

4.7.3 TEST PROCEDURES


- a. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- b. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a TX cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step a. Record the power level of S.G
- c. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution horn.
- **NOTE:** The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1MHz/3MHz.

4.7.4 DEVIATION FROM TEST STANDARD

No deviation

4.7.5 TEST SETUP

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.7.6 EUT OPERATING CONDITIONS

- a. The EUT makes a phone call to the communication simulator.
- b. The communication simulator station system controlled an EUT to export maximum output power under transmission mode and specific channel frequency.

4.7.7 TEST RESULTS

FOR GPRS:

MODE	TX channel 128	FREQUENCY RANGE	Above 1000 MHz
INPUT POWER	ENVIRONMENTAL		23deg. C, 68%RH, 991hPa
TESTED BY	Mark Liao		

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M						
No.	Freq. (MHz)	Emission Level (dBuV)	Limit (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	Power Value (dBm)	
1	1648.40	49.55	-13.00	-53.15	7.63	-45.52	
2	2472.60	49.40	-13.00	-54.03	8.35	-45.68	
3	3296.80	45.46	-13.00	-59.43	9.85	-49.58	
	AN	TENNA POLAR	ITY & TEST DI	STANCE: VERT	TICAL AT 3 M		
No.	Freq. (MHz)	eq. (MHz) Emission Level (dBm) (dBuV)		S.G Power Value (dBm)	Correction Factor (dB)	Power Value (dBm)	
1	1648.40	46.94	-13.00	-55.74	7.63	-48.11	
2	2472.60	53.27	-13.00	-50.17	8.35	-41.82	
3	3296.80	44.99	-13.00	-59.94	9.85	-50.09	

MODE	TX channel 190	FREQUENCY RANGE	Above 1000 MHz
INPUT POWER	120Vac, 60 Hz	ENVIRONMENTAL CONDITIONS	23deg. C, 68%RH, 991hPa
TESTED BY	Mark Liao		

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M						
No.	Freq. (MHz)	Emission Level (dBuV)	Limit (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	Power Value (dBm)	
1	1673.20	47.44	-13.00	-55.32	7.72	-47.60	
2	2509.80	49.35	-13.00	-54.10	8.38	-45.72	
3	3346.40	45.10	-13.00	-59.80	9.88	-49.92	
	AN		ITY & TEST DI	STANCE: VERT	TICAL AT 3 M		
No.	Freq. (MHz)	Emission Level (dBuV)	l imit (dBm)		Correction Factor (dB)	Power Value (dBm)	
1	1673.20	47.16	-13.00	-55.61	7.72	-47.89	
2	2509.80	52.26	-13.00	-51.20	8.38	-42.82	
3	3346.40	45.40	-13.00	-59.55	9.88	-49.67	

MODE	TX channel 251	FREQUENCY RANGE	Above 1000 MHz
INPUT POWER	120Vac, 60 Hz	ENVIRONMENTAL CONDITIONS	23deg. C, 68%RH, 991hPa
TESTED BY	Mark Liao		

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M					
No.	Freq. (MHz)	Emission Level (dBuV)	Limit (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	Power Value (dBm)
1	1697.60	50.87	-13.00	-52.08	7.87	-44.21
2	2546.40	49.46	-13.00	-54.01	8.45	-45.56
3	3395.20	45.65	-13.00	-59.33	9.91	-49.42
	AN	FENNA POLAR	ITY & TEST DI	STANCE: VERT	ICAL AT 3 M	
No.	Freq. (MHz)	Emission Level (dBuV)	Limit (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	Power Value (dBm)
1	1697.60	52.75	-13.00	-50.19	7.87	-42.32
1 2	1697.60 2546.40	52.75 50.54	-13.00 -13.00	-50.19 -52.93	7.87 8.45	-42.32 -44.48

FOR WCDMA BAND:

MODE	TX channel 4132	FREQUENCY RANGE	Above 1000 MHz
INPUT POWER	120Vac, 60 Hz		23deg. C, 68%RH, 991hPa
TESTED BY	Mark Liao		

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M					
No.	Freq. (MHz)	Emission Level (dBuV)	Limit (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	Power Value (dBm)
1	1652.80	52.81	-13.00	-49.90	7.69	-42.21
2	2479.20	42.26	-13.00	-61.20	8.37	-52.83
	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M					
No.	Freq. (MHz)	Emission Level (dBuV)	Limit (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	Power Value (dBm)
1	1652.80	55.79	-13.00	-46.98	7.69	-39.29
2	2479.20	42.38	-13.00	-61.05	8.37	-52.68

MODE	TX channel 4182	FREQUENCY RANGE	Above 1000 MHz
INPUT POWER	120Vac, 60 Hz	ENVIRONMENTAL CONDITIONS	23deg. C, 68%RH, 991hPa
TESTED BY	Mark Liao		

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M					
No.	Freq. (MHz)	Emission Level (dBuV)	Limit (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	Power Value (dBm)
1	1672.80	58.54	-13.00	-44.23	7.71	-36.52
2	2509.20	41.30	-13.00	-62.17	8.39	-53.78
	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M					
No.	Freq. (MHz)	Emission Level (dBuV)	Limit (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	Power Value (dBm)
1	1672.80	61.49	-13.00	-41.29	7.71	-33.58
2	2509.20	41.55	-13.00	-61.87	8.39	-53.48

MODE	TX channel 4233	FREQUENCY RANGE	Above 1000 MHz
INPUT POWER	120Vac, 60 Hz	ENVIRONMENTAL CONDITIONS	23deg. C, 68%RH, 991hPa
TESTED BY	Mark Liao		

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M					
No.	Freq. (MHz)	Emission Level (dBuV)	Limit (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	Power Value (dBm)
1	1693.20	56.09	-13.00	-46.75	7.81	-38.94
2	2539.80	42.03	-13.00	-61.44	8.42	-53.02
	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M					
No.	Freq. (MHz)	Emission Level (dBuV)	Limit (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	Power Value (dBm)
1	1693.20	58.64	-13.00	-44.23	7.81	-36.42
2	2539.80	42.50	-13.00	-61.01	8.42	-52.59

5 PHOTOGRAPHS OF THE TEST CONFIGURATION

Please refer to the attached file (Test Setup Photo).

6 INFORMATION ON THE TESTING LABORATORIES

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025.

USA	FCC, NVLAP
GERMANY	TUV Rheinland
JAPAN	VCCI
NORWAY	NEMKO
CANADA	INDUSTRY CANADA, CSA
R.O.C.	TAF, BSMI, NCC
NETHERLANDS	Telefication
SINGAPORE	GOST-ASIA (MOU)
RUSSIA	CERTIS (MOU)

Copies of accreditation certificates of our laboratories obtained from approval agencies can be downloaded from our web site: <u>www.adt.com.tw/index.5/phtml</u>. If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab:

Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF Lab: Tel: 886-3-5935343 Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety/Telecom Lab: Tel: 886-3-3183232 Fax: 886-3-3185050

Web Site: <u>www.adt.com.tw</u>

The address and road map of all our labs can be found in our web site also.

7 APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No any modifications are made to the EUT by the lab during the test.

---END----