

FCC 47 CFR PART 15 SUBPART C & INDUSTRY CANADA RSS-210 (Class II Permissive Change)

TEST REPORT

For

802.11g/ Draft 802.11n WLAN PCI-E Minicard

Trade Name: BROADCOM

Model: BCM94313HMG2L

Issued to

Wistron Corporation 21F, 88, Sec. 1, Hsin Tai Wu Rd., Hsichih, Taipei Hsien 221, Taiwan, R.O.C.

Issued by

Compliance Certification Services Inc. No. 11, Wu-Gong 6th Rd., Wugu Industrial Park, Taipei Hsien 248, Taiwan (R.O.C.) http://www.ccsrf.com service@ccsrf.com

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document.

TABLE OF CONTENTS

1. T	EST RESULT CERTIFICATION	
2. E	UT DESCRIPTION	4
3. T	EST METHODOLOGY	5
3.1	EUT CONFIGURATION	5
3.2	EUT EXERCISE	5
3.3	GENERAL TEST PROCEDURES	5
3.4	FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS	6
3.5	DESCRIPTION OF TEST MODES	7
4. IN	NSTRUMENT CALIBRATION	8
4.1	MEASURING INSTRUMENT CALIBRATION	
4.2	MEASUREMENT EQUIPMENT USED	
4.3	MEASUREMENT UNCERTAINTY	9
5. F.	ACILITIES AND ACCREDITATIONS	
5.1	FACILITIES	
5.2	EQUIPMENT	10
5.3	TABLE OF ACCREDITATIONS AND LISTINGS	
6. SI	ETUP OF EQUIPMENT UNDER TEST	12
6.1	SETUP CONFIGURATION OF EUT	
6.2	SUPPORT EQUIPMENT	
7. A	PPLICABLE RULES FOR INDUSTRY CANADA RSS-210	13
8. F	CC PART 15.247 REQUIREMENTS& RSS-210 REQUIREMENTS	
8.1	BAND EDGES MEASUREMENT	
8.2	RADIATED EMISSIONS	
8.3	POWERLINE CONDUCTED EMISSIONS	
APPE	NDIX I PHOTOGRAPHS OF TEST SETUP	

1. TEST RESULT CERTIFICATION

Applicant:	Wistron Corporation
	21F, 88, Sec. 1, Hsin Tai Wu Rd., Hsichih,
	Taipei Hsien 221, Taiwan, R.O.C.
Manufacturer:	Wistron Corporation
	21F, 88, Sec. 1, Hsin Tai Wu Rd., Hsichih,
	Taipei Hsien 221, Taiwan, R.O.C.
Equipment Under Test:	802.11g/ Draft 802.11n WLAN PCI-E Minicard
Trade Name:	BROADCOM
Model Number:	BCM94313HMG2L
Date of Test:	March 12 ~ 17, 2010

APPLICABLE STANDARDS				
STANDARD	TEST RESULT			
FCC 47 CFR Part 15 Subpart C & INDUSTRY CANADA RSS-210	No non-compliance noted			

We hereby certify that:

The above equipment was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.4: 2003 and the energy emitted by the sample EUT tested as described in this report is in copliance with the requirements of FCC Rules Part 15.207, 15.209, 15.247 and Industry Canada RSS-210.

The test results of this report relate only to the tested sample EUT identified in this report.

Approved by:

Rex Lai Section Manager Compliance Certification Services Inc.

Reviewed by:

Gina Lo

Gina Lo Section Manager Compliance Certification Services Inc.

2. EUT DESCRIPTION

							l
Product	802.11g/ Draft 802.11n WLAN PCI-E Minicard						
Trade Name	BROAD	СОМ					
Model Number	BCM943	13HMG2L					
Model Discrepancy	N/A						
Module Trade Name	BROAD	СОМ					
Module Model Number	BCM943	13HMGB					
Power Supply	Powered	by host dev	ice				
Frequency Range		2.11b/g mod .11n Standa				node: 2.41	2~2.462 GHz
Transmit Power	Ν	Iode	Frequ	ency Range	-	ut Power dBm)	Output Power (mw)
(Peak Power)	80)2.11b	241	12 - 2462	2	23.10	204.17
	80)2.11g	241	12 - 2462		25.31	339.63
Transmit Power	Ν	Aode	Frequ	ency Range	-	ut Power dBm)	Output Power (mw)
(Average Power))2.11b		2 - 2462		19.25	84.13
	80)2.11g	241	12 - 2462	1	16.93	49.31
Modulation Technique	IEEE 802.11b mode: DSSS (1, 2, 5.5 and 11 Mpbs) IEEE 802.11g mode: OFDM (6, 9, 12, 18, 24, 36, 48 and 54 Mpbs) draft 802.11n Standard-20 MHz Channel mode: OFDM (6.5, 7.2 13, 14.4, 14.44, 19.5, 21.7, 26, 28.89, 28.9, 39, 43.3 43.33 52, 57.78, 57.8, 58.5, 65.0, 72.2, 78, 86.67 104, 115.56, 117, 130, 144.44, 150 Mbps)				FDM (6.5, 7.2, 28.9, 39, 43.3, 2.2, 78, 86.67,		
Number of Channels		2.11b/g mode .11n Standar			nel mo	ode [.] 11 Ch	annels
	Antenna	Mean	4 20 1	Part Num		Antenna Typ	
	Brand WNC	AMD CPU for	AUX	25.91301.	011	PIFA Anteni	na -2.02 dBi
	WNC	AMD CPU for	Main	25.91302.		PIFA Antenn	
Antenna Specification /	WNC	Intel CPU for		25.92031. 25.92030.		PIFA Antenn	
Designation	WNC Yageo	Intel CPU for AMD CPU for		25.92030.		PIFA Antenn PIFA Antenn	
	Yageo	AMD CPU for		25.91301.		PIFA Antenn	
	Yageo	Intel CPU for		25.92031.		PIFA Antenn	
	Yageo Intel CPU for Main 25.92030.001 PIFA Antenna 0.06 dBi						
	Add portable category for the Lenovo Bixby platform						
	Product name: Notebook Computer / Brand name: lenovo						
	Model:						
Class II Permissive Change	Intel CPU / LC: 20063XXXX (X=0~9,A~Z or blank),						
	LI: 0894XXXX (X=0~9,A~Z or blank)						
	AMD CPU / LC:20064XXXX (X=0~9,A~Z or blank),						
LI: 0915XXXX (X=0~9,A~Z or blank				I5XXXX	(X=0~	9,A~Z or	blank)

- 1. The sample selected for test was production product and was provided by manufacturer.
- 2. This submittal(s) (test report) is intended for FCC ID: <u>PU5-BCM4313M</u> filing to comply with Section 15.207, 15.209 and 15.247 of the FCC Part 15, Subpart C Rules.

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4 and FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 2, and RSS-210 Issue 7.

3.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

3.2 EUT EXERCISE

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

The tests documented in this report were performed in accordance with IC RSS-210, IC RSS-Gen, IC RSS-102, and ANSI C63.4.

3.3 GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.4 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 13.1.4.1 of ANSI C63.4.

3.4 FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 -	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.52525	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	156.7 - 156.9	3260 - 3267	23.6 - 24.0
12.29 - 12.293	162.0125 - 167.17	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	167.72 - 173.2	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	240 - 285	3600 - 4400	$\binom{2}{}$
13.36 - 13.41	322 - 335.4		

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

3.5 DESCRIPTION OF TEST MODES

The EUT (model: BCM94313HMG2L) had been tested under operating condition.

Test program used to control the EUT for staying in continuous transmitting mode was programmed.

Software used to control the EUT for staying in continuous transmitting mode was programmed.

After verification, all tests were carried out with the worst case test modes as shown below except radiated spurious emission below 1GHz and power line conducted emissions below 30MHz, which worst case was in normal link mode only.

IEEE 802.11b mode:

Channel Low (2412MHz), Channel Mid (2437MHz) and Channel High (2462MHz) with 1Mbps data rate were chosen for full testing.

IEEE 802.11g mode:

Channel Low (2412MHz), Channel Mid (2437MHz) and Channel High (2462MHz) with 6Mbps data rate were chosen for full testing.

draft 802.11n Standard-20 MHz Channel mode:

Covered by the worst case 802.11g Mode Legacy testing.

Rev. 00

4. INSTRUMENT CALIBRATION

4.1 MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

4.2 MEASUREMENT EQUIPMENT USED

Equipment Used for Emissions Measurement

3M Semi Anechoic Chamber						
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due		
Spectrum Analyzer	Agilent	E4446A	US42510252	09/09/2010		
Test Receiver	Rohde&Schwarz	ESCI	100064	11/28/2010		
Switch Controller	TRC	Switch Controller	SC94050010	05/02/2010		
4 Port Switch	TRC	4 Port Switch	SC94050020	05/02/2010		
Loop Antenna	EMCO	6502	8905/2356	05/28/2010		
Horn-Antenna	TRC	HA-0502	06	06/03/2010		
Horn-Antenna	TRC	HA-0801	04	06/17/2010		
Horn-Antenna	TRC	HA-1201A	01	08/10/2010		
Horn-Antenna	TRC	HA-1301A	01	08/10/2010		
Bilog- Antenna	Sunol Sciences	JB3	A030205	03/27/2010		
Turn Table	Max-Full	MFT-120S	T120S940302	N.C.R.		
Antenna Tower	Max-Full	MFA-430	A440940302	N.C.R.		
Controller	Max-Full	MF-CM886	CC-C-1F-13	N.C.R.		
Site NSA	CCS	N/A	FCC MRA: TW1039 IC: 2324G-1/-2	10/17/2010 11/04/2010		
Test S/W	LABVIEW (V 6.1)					

Remark: Each piece of equipment is scheduled for calibration once a year.

	Powerline Conducted Emissions Test Site						
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due			
EMI Test Receiver 9kHz-30MHz	Rohde & Schwarz	ESHS30	828144/003	11/17/2010			
Two-Line V-Network 9kHz-30MHz	Schaffner	NNB41	03/10013	06/10/2010			
LISN 10kHz-100MHz	EMCO	3825/2	9106-1809	04/08/2010			
Test S/W	LABVIEW (V 6.1)						

4.3 MEASUREMENT UNCERTAINTY

PARAMETER	UNCERTAINTY
Powerline Conducted Emission	+/-2.81
3M Semi Anechoic Chamber / 30MHz ~ 1GHz	+/-3.7046
3M Semi Anechoic Chamber / Above 1GHz	+/-3.0958

Remark: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

5. FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

No.199, Chunghsen Road, Hsintien City, Taipei Hsien, Taiwan, R.O.C.
Tel: 886-2-2217-0894 / Fax: 886-2-2217-1029

No.11, Wugong 6th Rd., Wugu Industrial Park, Taipei Hsien 248, Taiwan Tel: 886-2-2299-9720 / Fax: 886-2-2298-4045

No.81-1, Lane 210, Bade 2nd Rd., Luchu Hsiang, Taoyuan Hsien 338, Taiwan

Tel: 886-3-324-0332 / Fax: 886-3-324-5235

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.3 TABLE OF ACCREDITATIONS AND LISTINGS

* No part of this report may be used to claim or imply product endorsement by A2LA or any agency of the US Government.

Country	Agency	Scope of Accreditation	Logo
USA	FCC	3M Semi Anechoic Chamber (FCC MRA: TW1039) to perform FCC Part 15 measurements	FCC MRA: TW1039
Taiwan	TAF	LP0002, RTTE01, FCC Method-47 CFR Part 15 Subpart C, D, E, RSS-210, RSS-310 IDA TS SRD, AS/NZS 4268, AS/NZS 4771, TS 12.1 & 12,2, ETSI EN 300 440-1, ETSI EN 300 440-2, ETSI EN 300 328, ETSI EN 300 220-1, ETSI EN 300 220-2, ETSI EN 301 893, ETSI EN 301 489-1/3/7/17 FCC OET Bulletin 65 + Supplement C, EN 50360, EN 50361, EN 50371, RSS 102, EN 50383, EN 50385, EN 50392, IEC 62209, CNS 14958-1, CNS 14959 FCC Method –47 CFR Part 15 Subpart B IEC / EN 61000-3-2, IEC / EN 61000-3-3, IEC / EN 61000-4-2/3/4/5/6/8/11	Testing Laboratory 1309
Canada	Industry Canada	3M Semi Anechoic Chamber (IC 2324G-1 / IC 2324G-2) to perform	Canada IC 2324G-1 IC 2324G-2

6. SETUP OF EQUIPMENT UNDER TEST

6.1 SETUP CONFIGURATION OF EUT

See test photographs attached in Appendix II for the actual connections between EUT and support equipment.

6.2 SUPPORT EQUIPMENT

No.	Device Type	Brand	Model	Series No.	FCC ID	Data Cable	Power Cord
1.	LCD Monitor	DELL	2408WFPb	CN-OG293H-74261-95 M-1KGS	FCC DoC	Shielded, 1.8m with 2 cores	Unshielded, 1.8m
2	USB Mouse	HP	MO19UCA	20440964	FCC DoC	Shielded, 1.8m	N/A
3	Multimedia Earphone	Labtec	Axis-301	N/A	FCC DoC	Unshielded, 1.8m*2	N/A
4	eSATA3.5" HDD Enclosure	eSATA	STM10	500127-E33-0017	FCC DoC	Shielded, 1.8m	N/A
5	320GB 2.5" HDD	Seagate	9ZA2MG-500	2GE1RKNC	FCC DoC	Shielded, 1.8m	N/A
6	SD Card	SANDISK	N/A	N/A	N/A	N/A	N/A
7	Notebook PC (Remote)	DELL	PP05L	7T390 A03	E2K5HCKT	LAN Cable: Unshielded, 10m	AC I/P: Unshielded, 1.8m DC O/P: Unshielded, 1.8m with a core

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

7. APPLICABLE RULES FOR INDUSTRY CANADA RSS-210

RSS-210 §2 General Certification Requirements and Specifications

RSS-210 §2.1 Frequency Stability

When the carrier frequency stability is not specified, it need not be tested, provided that the carrier frequency is chosen such that the fundamental modulation products (meaning the nominal bandwidth) lie totally within the bands listed in Tables 2, 3, 4 and 5 and do not fall into any restricted band listed in Table 1. Due account shall be taken of carrier frequency drift as a result of aging, temperature, humidity, and supply voltage variations when using frequencies near the band edges.

RSS-210 §2.2 Restricted Bands and Unwanted Emission Frequencies

Restricted bands, identified in Table 1, are designated primarily for safety-of-life services (distress calling and certain aeronautical bands), certain satellite downlinks, radio astronomy, and some government uses. Except where otherwise indicated, the following restrictions apply: (a) Fundamental components of modulation of LPDs shall not fall within the restricted bands of Table 1.

(b) Unwanted emissions falling into restricted bands of Table 1 shall meet Tables 2 and 3 limits. It should also be noted that unwanted emissions falling in non-restricted bands do not need to be suppressed to a level lower than the Table 2 and 3 limits.

(c) Unwanted emissions not falling within restricted frequency bands may also use the limits specified in the applicable annex.

RSS-210 §2.3 Licence-exempt Receivers

Category I licence-exempt receivers are required to have their spurious emissions comply with Section 7.2.3 of RSS-Gen.

RSS-210 §2.6 General Field Strength Limits

Table 2 and 3 list the permissible levels of unwanted emissions of transmitters and receivers. However, transmitters with field strengths that do not exceed the limits in these tables may also operate in these frequency bands, other than the restricted bands of Table 1 and the TV bands (i.e. unwanted emissions of transmitters and receivers are permitted to fall into Table 1 and TV frequencies but intentional emissions are prohibited). See the note of Table 2 for further details.

RSS-210 §2.7 Tables

MHz	MHz	MHz	MHz	GHz
0.090-0.110	8.37625-8.38675		1718.8-1722.2	9.0-9.2
	8.41425-8.41475	156.52475-156.52525	2200-2300	9.3-9.5
2.1735-2.1905	12.29-12.293	156.7-156.9	2310-2390	10.6-12.7
3.020-3.026	12.51975-12.52025			13.25-13.4
4.125-4.128	12.57675-12.57725		2655-2900	14.47-14.5
4.17725-4.17775	13.36-13.41	240-285	3260-3267	15.35-16.2
4.20725-4.20775	16.42-16.423	322-335.4	3332-3339	17.7-21.4
5.677-5.683	16.69475-16.69525	399.9-410	3345.8-3358	22.01-23.12
6.215-6.218	16.80425-16.80475	608-614	3500-4400	23.6-24.0
6.26775-6.26825	25.5-25.67	960-1427	4500-5150	31.2-31.8
6.31175-6.31225	37.5-38.25	1435-1626.5	5350-5460	36.43-36.5
8.291-8.294	73-74.6; 74.8-75.2	1645.5-1646.5	7250-7750	Above 38.6
8.362-8.366	108-138	1660-1710	8025-8500	

<u>RSS-210 Table 1: Restricted Frequency Bands</u> (Note)

Note: Certain frequency bands listed in Table 2 and above 38.6 GHz are designated for low-power licence-exempt applications. These frequency bands and the requirements that apply to the devices are set out in this Standard as well as RSS-310.

<u>RSS-210 Table 2: General Field Strength Limits for Transmitters and Receivers at</u> <u>Frequencies Above 30 MHz</u>^(Note)

Frequency	Field Strength microvolts/m at 3 metres (watts, e.i.r.p.)		
(MHz)	Transmitters	Receivers	
30-88	100 (3 nW)	100 (3 nW)	
88-216	150 (6.8 nW)	150 (6.8 nW)	
216-960	200 (12 nW)	200 (12 nW)	
Above 960	500 (75 nW)	500 (75 nW)	

Note: Transmitting devices are not permitted in Table 1 bands or in TV bands (54-72 MHz, 76-88 MHz, 174-216 MHz, 470-608 MHz, and 614-806 MHz). Prohibition of operation in TV bands does not apply to momentary devices, or to medical telemetry devices in the band 174-216 MHz, and to perimeter protection systems in the bands 54-72 and 76-88 MHz. The perimeter protection devices are to meet Table 3 field strengths limits.

RSS-210 Table 3: General Field Strength Limits for Transmitters at Frequencies Below	7 30
MHz (Transmit)	

Frequency (fundamental or spurious)	Field Strength (microvolts/m)	Magnetic H-Field (microamperes/m)	Measurement Distance (metres)
9-490 kHz	2,400/F (F in kHz)	2,400/377F (F in Hz)	300
490-1.705 kHz	24,000/F (F in kHz)	24,000/377F (F in kHz)	30
1.705-30 MHz	30	N/A	30

Note: The emission limits for the bands 9-90 kHz and 110-490 kHz are based on measurements employing an average detector.

<u>RSS-210 §Annex 8: Frequency Hopping and Digital Modulation Systems Operating in the</u> <u>902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz Bands</u>

This section applies to systems that employ frequency hopping (FH) and digital modulation technology in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands. Systems in these bands may employ frequency hopping, digital modulation and or a combination (hybrid) of both techniques.

A frequency hopping system that synchronizes with another or several other systems (to avoid frequency collision among them) via off-air sensing or via connecting cables is not hopping randomly and therefore is not in compliance with RSS-210.

RSS-210 §A8.2 Digital Modulation Systems

These include systems employing digital modulation techniques resulting in spectral characteristics similar to direct sequence systems. The following applies to all three bands.

RSS-210 §A8.4 Transmitter Output Power and e.i.r.p. Requirements

(4) For systems employing digital modulation techniques operating in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands, the maximum peak conducted power shall not exceed 1 W. Except as provided in Section A8.4(5), the e.i.r.p. shall not exceed 4 W. As an alternative to a peak power measurement, compliance can be based on a measurement of the maximum conducted output power (see RSS-Gen)

(5) Point-to-point systems in the bands 2400-2483.5 MHz and 5725-5850 MHz are permitted to have an e.i.r.p. higher than 4 W, provided that the higher e.i.r.p. is achieved by employing higher gain directional antennas and not higher transmitter output powers. Point-to-multipoint systems, omni-directional applications and multiple co-located transmitters transmitting the same information are prohibited from exceeding 4 W e.i.r.p. However, remote stations of point-to-multipoint systems shall be allowed to operate at greater than 4 W e.i.r.p, under the same conditions as for point-to-point systems.

Note: "Fixed, point-to-point operation", excludes point-to-multipoint systems, omnidirectional applications and multiple co-located transmitters transmitting the same information.

RSS-210 §A8.5 Out-of-band Emissions

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the radio frequency power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under section A8.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Tables 2 and 3 is not required.

RSS-Gen §2 General Information

Unless otherwise indicated, radiocommunications equipment is subject to licensing pursuant to subsection 4(1) of the *Radiocommunication Act*.

RSS-Gen §2.1.2 Category II Equipment

Category II equipment comprises radio devices where a standard has been prescribed but for which a TAC is not required, that is, equipment certification by Industry Canada or a Certification Body (CB) is not required (certification exempt), pursuant to subsection 4(3) of the *Radiocommunication Act*. The manufacturer or importer shall nevertheless ensure that the standards are complied with. A test report shall be available on request and the device shall be properly labelled.

RSS-Gen §2.2 Receivers

Radiocommunication receivers are defined as Category I equipment or Category II equipment by the characteristics outlined below.

RSS-Gen §2.2.1 Category I Equipment Receivers

A receiver is classified as Category I equipment if it meets one of the following conditions:

- (a) is a stand-alone receiver that is tunable to any frequency in the band 30-960 MHz;
- (b) is a receiver that is associated with Category I transmitters; or
- (c) is a scanner receiver.

Except for scanner receivers, which have their own RSSs, Category I receivers shall comply with the limits for receiver spurious emissions set out in Section 6 of this RSS-Gen, and shall be certified under the RSS applicable to the transmitter type with which the receiver is associated or designed to operate (NOT under RSS-Gen).

RSS-Gen §2.2.2 Category II Equipment Receivers

A receiver is classified as Category II equipment if it is not meeting the conditions of Section 2.2.1.

RSS-Gen §2.2.3 Licence-exempt Receivers

Paging receivers, "receive-only" earth stations operating with satellites approved by Industry Canada, and stand-alone receivers which are exempted from licensing, can be classified as either Category I or Category II. These receivers shall comply with the requirements of RSS-210 or RSS-310, respectively.

RSS-Gen §2.3 Licence-exempt Low-power Radiocommunication Devices (LPDs)

Licence-exempt low-power radiocommunication devices are devices which have intentional and unwanted emissions of very low signal levels such that they can co-exist with licensed radio services. LPDs are required to operate on a **"no-interference no-protection"** basis (i.e. they may not cause radio interference and cannot claim protection from interference). The requirements for LPDs are generally described in Section 7.

RSS-Gen §5.5 Exposure of Humans to RF Fields

Before equipment certification is granted, the applicable requirements of RSS-102 shall be met.

RSS-Gen §6 Receiver Spurious Emission Standard

The following receiver spurious emission limits shall be complied with: (a) If a radiated measurement is made, all spurious emissions shall comply with the limits of Table 1.

Frequency (MHz)	Field Strength microvolts/m at 3 metres
30-88	100
88-216	150
216-960	200
Above 960	500

RSS-Gen Table 1 - Spurious Emission Limits for Receivers

(b) If a conducted measurement is made, no spurious output signals appearing at the antenna terminals shall exceed 2 nanowatts per any 4 kHz spurious frequency in the band 30-1000 MHz, or 5 nanowatts above 1 GHz.

RSS-Gen §7.1.4 Transmitter Antenna

A transmitter can only be sold or operated with antennas with which it was certified. A transmitter may be certified with multiple antenna types. An antenna type comprises antennas having similar in-band and out-of-band radiation patterns. Testing shall be performed using the highest-gain antenna of each combination of transmitter and antenna type for which certification is being sought, with the transmitter output power set at the maximum level. Any antenna of the same type and having equal or lesser gain as an antenna that had been successfully tested for certification with the transmitter, will also be considered certified with the transmitter, and may be used and marketed with the transmitter. The manufacturer shall include with the application for certification a list of acceptable antenna types to be used with the transmitter. When a measurement at the antenna connector is used to determine RF output power, the

effective gain of the device's antenna shall be stated, based on measurement or on data from the antenna manufacturer. Any antenna gain in excess of 6 dBi (6 dB above isotropic gain) shall be added to the measured RF output power before using the power limits specified in RSS-210 or RSS-310 for devices of RF output powers of 10 milliwatts or less. For devices of output powers greater than 10 milliwatts, except devices subject to RSS-210 Annex 8 (Frequency Hopping and Digital Modulation Systems Operating in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz Bands) or RSS-210 Annex 9 (Local Area Network Devices), the total antenna gain shall be added to the measured RF output power before using the specified power limits. For devices subject to RSS-210 Annex 8 or Annex 9, the antenna gain shall not be added.

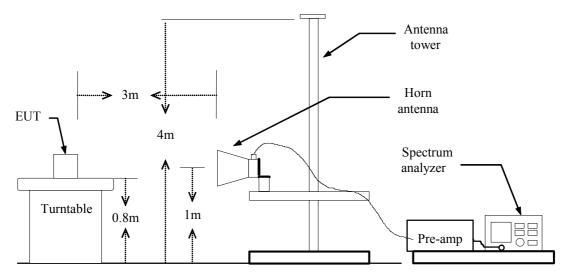
RSS-Gen §7.2.2 Transmitter and Receiver AC Power Lines Conducted Emission Limits

Except when the requirements applicable to a given device state otherwise, for any licence-exempt radiocommunication device equipped to operate from the public utility AC power supply, either directly or indirectly, the radio frequency voltage that is conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in Table 2. The tighter limit applies at the frequency range boundaries.

RSS-Gen Table 2 – AC Power Lines Conducted Emission Limits

Frequency Range	Conducted li	mit (dBµV)
(MHz)	Quasi-peak	Average
0.15 to 0.5	66 to 56*	56 to 46*
0.5 to 5	56	46
5 to 30	60	50

*Decreases with the logarithm of the frequency


8. FCC PART 15.247 REQUIREMENTS& RSS-210 REQUIREMENTS

8.1 BAND EDGES MEASUREMENT

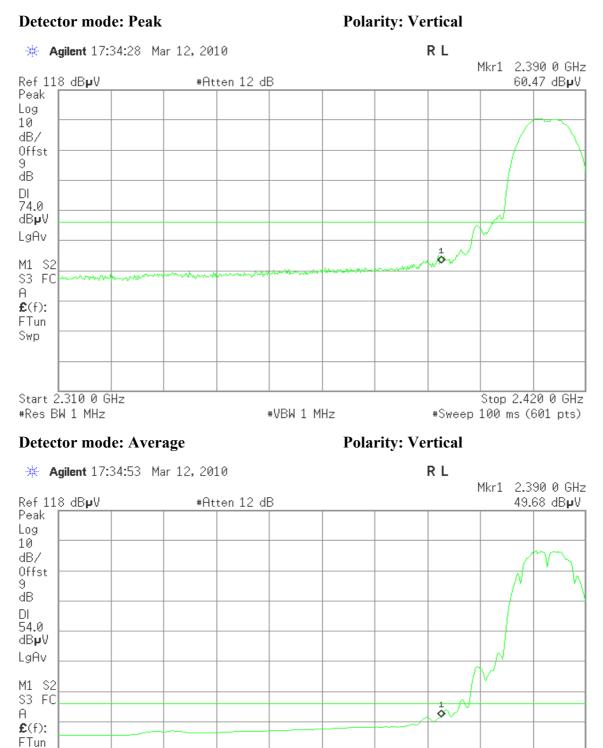
LIMIT

According to §15.247(d) & RSS-210 §A8.5, in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in 15.209(a) (see Section 15.205(c)).

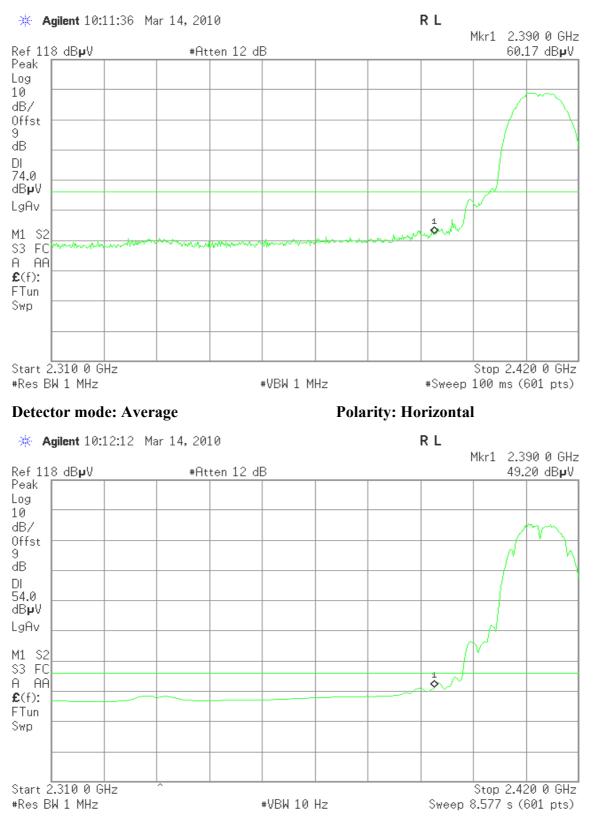
Test Configuration

TEST PROCEDURE

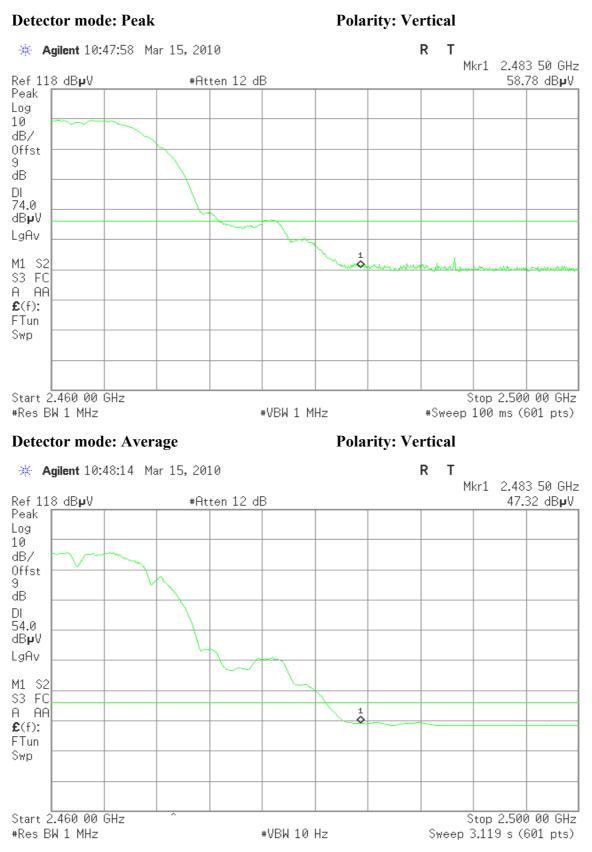
- 1. The EUT is placed on a turntable, which is 0.8m above the ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 4. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:
 - (a) PEAK: RBW=VBW=1MHz / Sweep=AUTO
 - (b) AVERAGE: RBW=1MHz / VBW=10Hz / Sweep=AUTO
- 5. Repeat the procedures until all the PEAK and AVERAGE versus POLARIZATION are measured.


TEST RESULTS

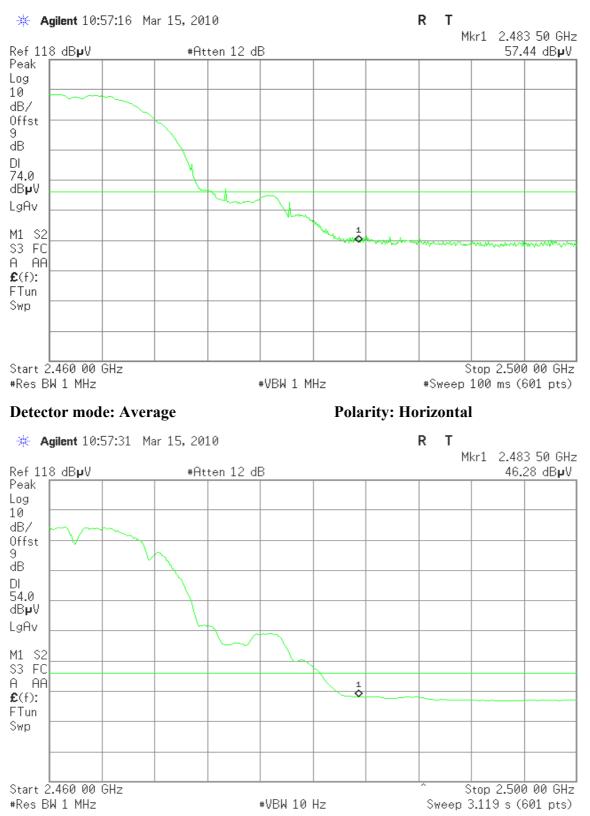
Refer to attach spectrum analyzer data chart.


Swp

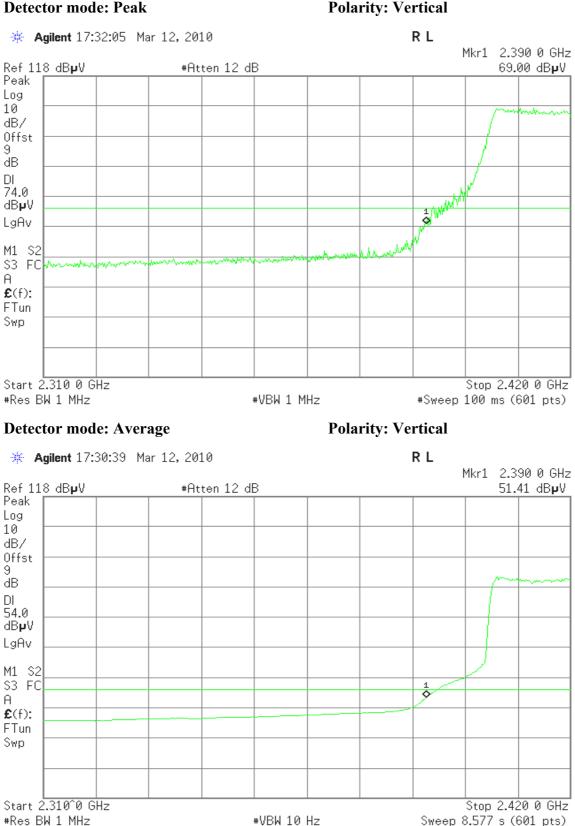
Band Edges (IEEE 802.11b mode / CH Low)


Detector mode: Peak

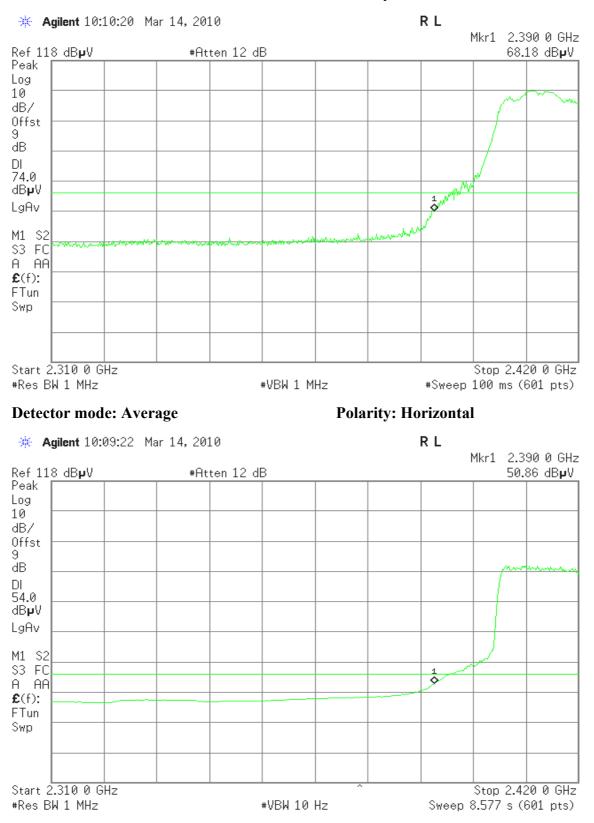
Polarity: Horizontal

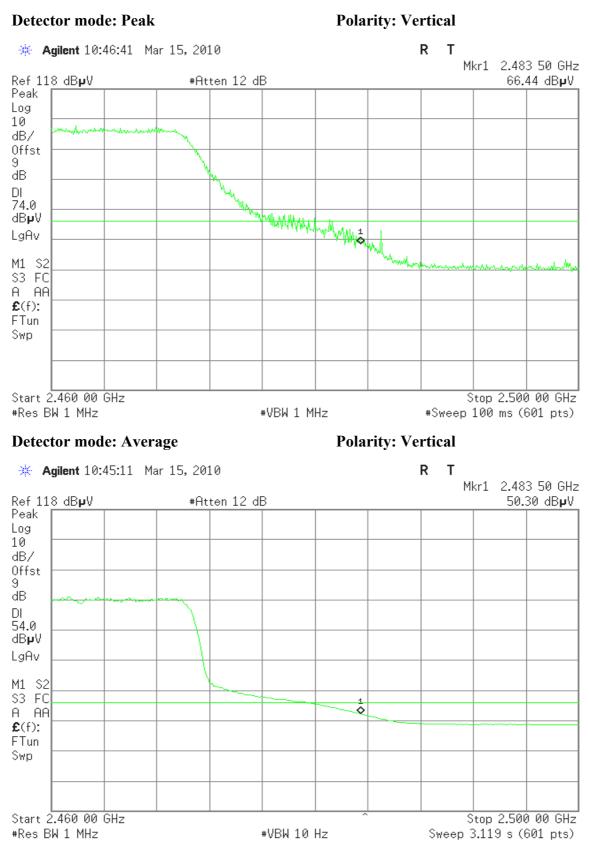


Band Edges (IEEE 802.11b mode / CH High)

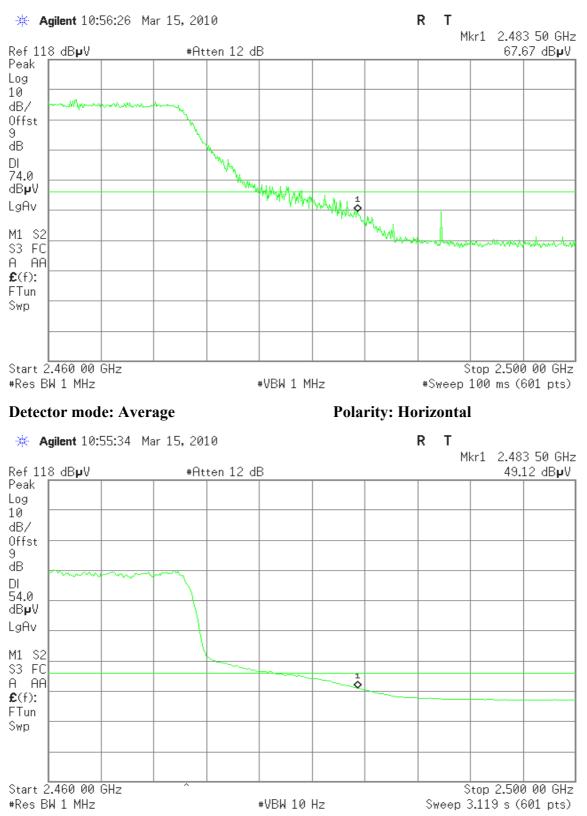

Detector mode: Peak

Polarity: Horizontal


Band Edges (IEEE 802.11g mode / CH Low)


Detector mode: Peak

Polarity: Horizontal



Band Edges (IEEE 802.11g mode / CH High)

Detector mode: Peak

Polarity: Horizontal

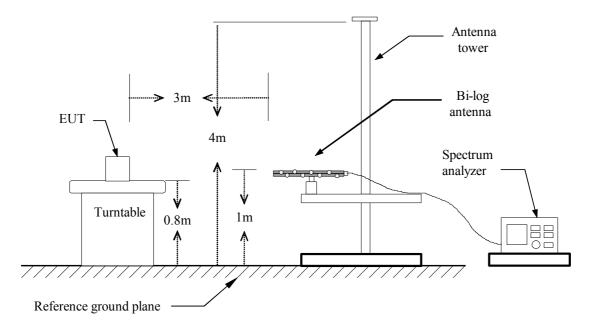
8.2 RADIATED EMISSIONS

LIMIT

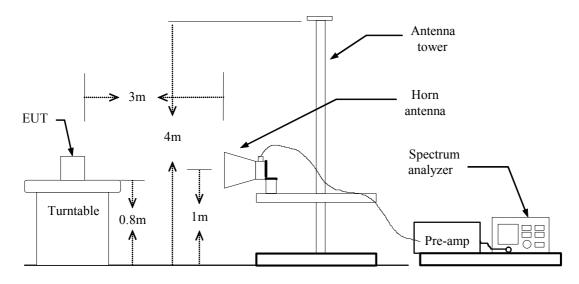
1. According to §15.205, 209(a) & RSS-210 Clause 2.6 (Transmitter) and IC RSS-GEN Clause 6 (Receiver), except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (µV/m)	Measurement Distance (m)
30-88	100*	3
88-216	150*	3
216-960	200*	3
Above 960	500	3

Remark: Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.


2. In the emission table above, the tighter limit applies at the band edges.

Frequency (MHz)	Field Strength (µV/m at 3-meter)	Field Strength (dBµV/m at 3-meter)
30-88	100	40
88-216	150	43.5
216-960	200	46
Above 960	500	54



Test Configuration

Below 1 GHz

Above 1 GHz

Rev. 00

TEST PROCEDURE

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Set the spectrum analyzer in the following setting as:

Below 1GHz:

RBW=100kHz / VBW=300kHz / Sweep=AUTO

Above 1GHz:

(a) PEAK: RBW=VBW=1MHz / Sweep=AUTO

(b) AVERAGE: RBW=1MHz / VBW=10Hz / Sweep=AUTO

7. Repeat above procedures until the measurements for all frequencies are complete.

Below 1GHz

Frequency Ant. Pol.	Reading	Correction Factor	Result	Limit	Margin	Damark
Humidity:	53 % RH			Polarity:	Ver. / Hor.	
Temperature: 23°C				Tested by:	Mimic Yan	g
Operation Mode:	Normal Link			Test Date:	March 14, 2	2010

Frequency (MHz)	Ant. Pol. (H/V)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
30.00	V	38.47	-1.86	36.61	40.00	-3.39	Peak
89.82	V	45.78	-15.48	30.30	43.50	-13.20	Peak
298.37	V	42.13	-9.26	32.87	46.00	-13.13	Peak
647.57	V	32.92	-2.95	29.98	46.00	-16.02	Peak
728.40	V	31.70	-2.13	29.57	46.00	-16.43	Peak
784.98	V	37.68	-1.48	36.20	46.00	-9.80	Peak
89.82	Н	45.59	-15.48	30.11	43.50	-13.39	Peak
215.92	Н	42.40	-11.15	31.25	43.50	-12.25	Peak
298.37	Н	44.03	-9.26	34.78	46.00	-11.22	Peak
332.32	Н	39.16	-8.47	30.68	46.00	-15.32	Peak
384.05	Н	37.76	-7.40	30.36	46.00	-15.64	Peak
784.98	Н	41.52	-1.48	40.03	46.00	-5.97	Peak

- 1. No emission found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz).
- 2. Radiated emissions measured were made with an instrument using peak/quasi-peak detector mode.
- 3. Quasi-peak test would be performed if the peak result were greater than the quasi-peak limit or as required by the applicant.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. Margin (dB) = Remark result (dBuV/m) Quasi-peak limit (dBuV/m).

Above 1 GHz

Operation Mode: TX / IEEE 802.11b / CH Low

Temperature: 23°C

Humidity: 53 % RH

Test Date: March 14, 2010 Tested by: Mimic Yang Polarity: Ver. / Hor.

Frequency (MHz)	Ant. Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1596.67	Н	62.14	47.98	-7.87	54.27	40.11	74.00	54.00	-13.89	AVG
3191.67	Н	51.45		-1.17	50.28		74.00	54.00	-3.72	Peak
4825.00	Н	53.05	49.63	1.18	54.23	50.81	74.00	54.00	-3.19	AVG
N/A										
2250.00	V	61.41	51.28	-3.41	58.01	47.87	74.00	54.00	-6.13	AVG
4825.00	V	53.51	51.09	1.18	54.68	52.27	74.00	54.00	-1.73	AVG
N/A										

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "*N/A*" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Operation Mode: TX / IEEE 802.11b / CH Mid

23°C

Temperature:

Humidity: 53 % RH

Test Date: March 14, 2010 Tested by: Mimic Yang Polarity: Ver. / Hor.

Frequency (MHz)	Ant. Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1596.67	Н	63.13	48.21	-7.87	55.26	40.34	74.00	54.00	-13.66	AVG
2346.67	Н	61.72	48.36	-3.12	58.60	45.24	74.00	54.00	-8.76	AVG
4875.00	Н	50.00		1.16	51.16		74.00	54.00	-2.84	Peak
4991.67	Н	50.64		1.12	51.76		74.00	54.00	-2.24	Peak
N/A										
1593.33	V	59.77		-7.90	51.87		74.00	54.00	-2.13	Peak
2273.33	V	63.48	51.19	-3.34	60.14	47.85	74.00	54.00	-6.15	AVG
2353.33	V	61.96	51.63	-3.10	58.86	48.53	74.00	54.00	-5.47	AVG
4875.00	V	54.00	51.26	1.16	55.16	52.42	74.00	54.00	-1.58	AVG
N/A										

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- *3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.*
- 4. Data of measurement within this frequency range shown "----" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "*N/A*" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Operation Mode: TX / IEEE 802.11b / CH High

23°C

Test Date: March 14, 2010 Tested by: Mimic Yang Polarity: Ver. / Hor.

Temperature: Humidity: 53% RH

Reading Reading Correction Result Result Limit Limit Frequency Ant. Pol. Margin Remark (Peak) (Peak) (Average) Factor (Average) (Peak) (Average) (MHz) (H/V) (dB) (dBuV) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) 1596.67 62.71 -7.87 -13.87 AVG Η 48.00 54.85 40.13 74.00 54.00 2300.00 Н AVG 61.22 48.65 -3.26 57.96 45.39 74.00 54.00 -8.61 2540.00 Η 62.88 50.71 -2.54 60.34 48.17 74.00 54.00 -5.83 AVG N/A 1600.00 V 59.02 ____ -7.84 51.18 ___ 74.00 54.00 -2.82 Peak 2303.33 V 62.00 47.86 74.00 54.00 -6.14 AVG 51.11 -3.25 58.75 V 2620.00 60.21 48.02 -2.31 57.90 45.71 74.00 54.00 -8.29 AVG V 4925.00 50.49 ___ 1.14 51.64 ---74.00 54.00 -2.36 Peak N/A

- Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental 1. frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- Data of measurement within this frequency range shown "---" in the table above 4. means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser, 5. with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) - Average limit (dBuV/m).

Operation Mode: TX / IEEE 802.11g / CH Low

Temperature: 25°C

Humidity: 53 % RH

Test Date: March 14, 2010 Tested by: Mimic Yang Polarity: Ver. / Hor.

Ant. Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
Н	63.05	48.31	-7.84	55.22	40.47	74.00	54.00	-13.53	AVG
Н	53.47	36.19	1.12	54.59	37.31	74.00	54.00	-16.69	AVG
V	59.50	48.91	-3.39	56.12	45.52	74.00	54.00	-8.48	AVG
	(H/V) H H	Ant. Pol. (H/V) (Peak) (dBuV) H 63.05 H 53.47	Ant. Pol. (H/V) (Peak) (dBuV) (Average) (dBuV) H 63.05 48.31 H 53.47 36.19	Ant. Pol. (H/V) (Peak) (dBuV) (Average) (dBuV) Factor (dB/m) H 63.05 48.31 -7.84 H 53.47 36.19 1.12	Ant. Fol. (H/V) (Peak) (dBuV) (Average) (dBuV) Factor (dB/m) (Peak) (dBuV/m) H 63.05 48.31 -7.84 55.22 H 53.47 36.19 1.12 54.59 Image: State of the sta	Ant. Fol. (H/V) (Peak) (dBuV) (Average) (dBuV) Factor (dBm) (Peak) (dBuV/m) (Average) (dBuV/m) H 63.05 48.31 -7.84 55.22 40.47 H 53.47 36.19 1.12 54.59 37.31 Image: Constraint of the state of	Ant. Fol. (H/V) (Peak) (dBuV) (Average) (dBuV) Factor (dBm) (Peak) (dBuV/m) (Average) (dBuV/m) (Peak) (dBuV/m) H 63.05 48.31 -7.84 55.22 40.47 74.00 H 53.47 36.19 1.12 54.59 37.31 74.00 Image: Hole Structure Image: Hole Structure Image: Hole Structure Image: Hole Structure Image: Hole Structure Image: Hole Structure Image: Hole Structure Image: Hole Structure Image: Hole Structure Image: Hole Structure Image: Hole Structure Image: Hole Structure Image: Hole Structure Image: Hole Structure Image: Hole Structure Image: Hole Structure Image: Hole Structure Image: Hole Structure Image: Hole Structure Image: Hole Structure Image: Hole Structure Image: Hole Structure Image: Hole Structure Image: Hole Structure Image: Hole Structure Image: Hole Structure Image: Hole Structure Image: Hole Structure Image: Hole Structure Image: Hole Structure Image: Hole Structure	Ant. Pol. (H/V) (Peak) (dBuV) (Average) (dBuV) Factor (dBm) (Peak) (dBuV/m) (Average) (dBuV/m) (Peak) (dBuV/m) (Average) (dBuV/m) (Average) (dBuV/m)	Ant. Pol. (H/V) (Peak) (dBuV) (Average) (dBuV) Factor (dBm) (Peak) (dBuV/m) (Average) (dBuV/m) (Average) (dBuV/m) (Margin (dB) H 63.05 48.31 -7.84 55.22 40.47 74.00 54.00 -13.53 H 53.47 36.19 1.12 54.59 37.31 74.00 54.00 -16.69 Image: How Simple constraints Image: How Sim Simple constraints Image: How Simple constraints </td

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- *3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.*
- 4. Data of measurement within this frequency range shown "----" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "*N/A*" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Operation Mode: TX / IEEE 802.11g / CH Mid

Temperature: 23°C

Humidity: 53 % RH

Test Date: March 14, 2010 Tested by: Mimic Yang Polarity: Ver. / Hor.

Frequency (MHz)	Ant. Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1600.00	Н	62.85	47.27	-7.84	55.01	39.43	74.00	54.00	-14.57	AVG
2273.33	Н	61.38	49.48	-3.34	58.05	46.14	74.00	54.00	-7.86	AVG
2573.33	Н	63.33	50.77	-2.45	60.89	48.32	74.00	54.00	-5.68	AVG
N/A										
2293.33	V	64.36	51.18	-3.28	61.08	47.90	74.00	54.00	-6.10	AVG
2566.67	V	61.23	48.85	-2.47	58.77	46.38	74.00	54.00	-7.62	AVG
N/A										

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- *3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.*
- 4. Data of measurement within this frequency range shown "----" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "*N/A*" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Operation Mode: TX / IEEE 802.11g / CH High

Temperature: 23°C

Humidity: 53 % RH

Test Date: March 14, 2010 Tested by: Mimic Yang Polarity: Ver. / Hor.

Frequency (MHz)	Ant. Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1596.67	Н	63.27	48.39	-7.87	55.40	40.52	74.00	54.00	-13.48	AVG
2386.67	Н	63.04	50.43	-3.00	60.04	47.43	74.00	54.00	-6.57	AVG
2556.67	Н	61.88	48.88	-2.49	59.38	46.39	74.00	54.00	-7.61	AVG
5000.00	Н	50.05		1.12	51.17		74.00	54.00	-2.83	Peak
N/A										
1596.67	V	58.96		-7.87	51.10		74.00	54.00	-2.90	Peak
2390.00	V	63.07	49.06	-2.99	60.09	46.07	74.00	54.00	-7.93	AVG
N/A										

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- *3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.*
- 4. Data of measurement within this frequency range shown "----" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "*N/A*" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Operation Mode: RX / IEEE 802.11g / CH Mid

Temperature: 23°C

Humidity: 53 % RH

Test Date: March 14, 2010 Tested by: Mimic Yang Polarity: Ver. / Hor.

Frequency (MHz)	Ant. Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1500.00	Н	56.81		-8.76	48.05		74.00	54.00	-5.95	Peak
1600.00	Н	62.27	44.70	-7.84	54.43	36.86	74.00	54.00	-17.14	AVG
1993.33	Н	55.88		-4.21	51.67		74.00	54.00	-2.33	Peak
2496.67	Н	53.23		-2.67	50.56		74.00	54.00	-3.44	Peak
2793.33	Н	53.51		-1.80	51.71		74.00	54.00	-2.29	Peak
N/A										
1600.00	V	56.84		-7.84	49.01		74.00	54.00	-4.99	Peak
1993.33	V	53.41		-4.21	49.20		74.00	54.00	-4.80	Peak
2493.33	V	52.87		-2.68	50.19		74.00	54.00	-3.81	Peak
2796.67	V	51.63		-1.79	49.84		74.00	54.00	-4.16	Peak
N/A										

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "*N/A*" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

8.3 POWERLINE CONDUCTED EMISSIONS

LIMIT

According to \$15.207(a) & RSS-Gen \$7.2.2, except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency Range (MHz)	Limits (dBµV)					
	Quasi-peak	Average				
0.15 to 0.50	66 to 56*	56 to 46*				
0.50 to 5	56	46				
5 to 30	60	50				

* Decreases with the logarithm of the frequency.

Test Configuration

See test photographs attached in Appendix II for the actual connections between EUT and support equipment.

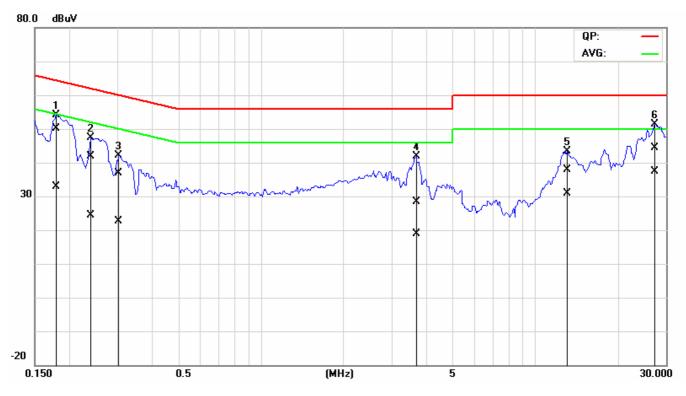
TEST PROCEDURE

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete.

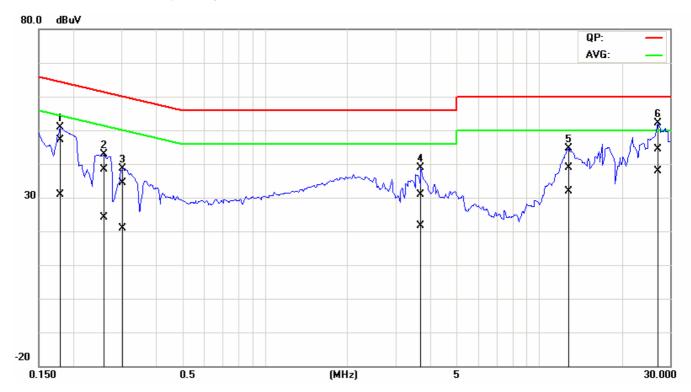
TEST RESULTS

The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.

<u>Test Data</u>


Operation Mode:	Normal Link	Test Date:	March 17, 2010
Temperature:	22°C	Tested by:	Wolf Huang
Humidity:	45% RH		

Freq. (MHz)	QP Reading (dBuV)	AV Reading (dBuV)	Corr. factor (dB/m)	QP Result (dBuV/m)		QP Limit (dBuV)	AV Limit (dBuV)	QP Margin (dB)	AV Margin (dB)	Note
0.1800	49.90	32.70	0.20	50.10	32.90	64.49	54.49	-14.39	-21.59	L1
0.2400	41.64	24.34	0.16	41.80	24.50	62.10	52.10	-20.30	-27.60	L1
0.3050	36.76	22.46	0.14	36.90	22.60	60.11	50.11	-23.21	-27.51	L1
3.6850	28.29	18.79	0.11	28.40	18.90	56.00	46.00	-27.60	-27.10	L1
13.0600	37.29	30.19	0.71	38.00	30.90	60.00	50.00	-22.00	-19.10	L1
27.4000	43.37	36.47	0.93	44.30	37.40	60.00	50.00	-15.70	-12.60	L1
0.1800	46.90	30.60	0.20	47.10	30.80	64.49	54.49	-17.39	-23.69	L2
0.2600	38.14	23.94	0.16	38.30	24.10	61.43	51.43	-23.13	-27.33	L2
0.3050	34.16	20.86	0.14	34.30	21.00	60.11	50.11	-25.81	-29.11	L2
3.7050	30.69	21.59	0.11	30.80	21.70	56.00	46.00	-25.20	-24.30	L2
12.8250	38.10	31.20	0.70	38.80	31.90	60.00	50.00	-21.20	-18.10	L2
27.0850	43.57	36.97	0.93	44.50	37.90	60.00	50.00	-15.50	-12.10	L2


- 1. Measuring frequencies from 0.15 MHz to 30MHz.
- 2. The emissions measured in frequency range from 0.15 MHz to 30MHz were made with an instrument using Quasi-peak detector and average detector.
- 3. The IF bandwidth of SPA between 0.15MHz and 30MHz was 10 kHz; the IF bandwidth of Test Receiver between 0.15MHz and 30MHz was 9 kHz;
- 4. *L1* = *Line One (Live Line)* / *L2* = *Line Two (Neutral Line)*

<u>Test Plots</u> Conducted emissions (Line 1)

Conducted emissions (Line 2)

