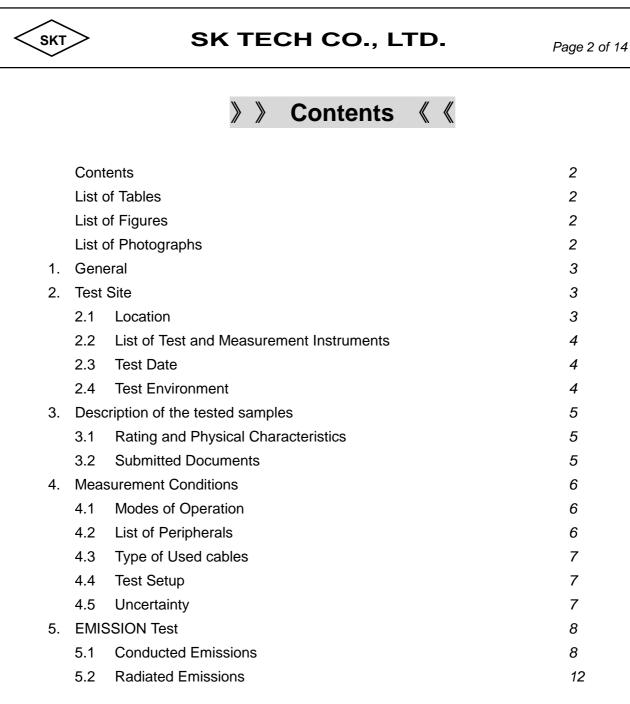


Page 1 of 14

Certificate of Compliance

Test Report No.:	SKTOS-01105		
NVLAP CODE :	200220-0		
Applicant:	Guardtec, Inc.		
Applicant Address:	6F, Sungwon Bldg., 100	8-4, Daechidong, Kang	namgu, Seoul, Korea
Product:	COMGUARD		
FCC ID:	PTXCG-P100	Model No.:	CG-P100
Receipt No.:	SKE20010720-568	Date of receipt:	July 20, 2001
Date of Issue:	Aug. 14, 2001		
Testing location:	SK TECH CO., LTD. 820-2, Wolmoon-Ri, Wa	abu-Up, Namyangju-Si,	Kyunggi-Do, Korea
Test Standards:	ANSI C63.4 / 1992		
Rule Parts:	FCC part 15 Subpart B	1	
Equipment Class :	Class B Digital Device	Peripheral	
Test Result:	The above mentioned pr	roduct has been tested	and passed.
Prepared by: E.K. Seo	ng Tested by:K.I	W.Song/Engineer	Approved by: J.Y.Hyun /Lab.Manager
E.K. Seong the	Br Ja	y 723.	J. G. Alexan
	Date Signature	Date	Signature Date
Other Aspects :			

•This test report is not permitted to copy partly without our permission.


•This test result is dependent on only equipment to be used.

•This test result is based on a single evaluation of one sample of the above mentioned.

•This test report must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S Government.

• We certify that this test report has been based on the measurement standards that is traceable to the national or International standards.

NVLAP Lab. Code: 200220-0

> List of Tables

Table 1	List of test and measurement Equipment	4
Table 2	Test Data, Conducted Emissions	11
Table 3	Test Data, Radiated Emissions	13

) List of Figures

Figure 1	Spectral Diagram, LINE-PE	9
Figure 2	Spectral Diagram, Neutral-PE	10

Page 3 of 14

1. General

This equipment has been shown to be capable of compliance with the applicable technical standards and was tested in accordance with the measurement procedures as indicated in this report.

We attest to the accuracy of data. All measurements reported herein were performed by SK Tech Co., Ltd. and were made under Chief Engineer's supervision. We assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

2. Test Site

SK TECH Co., Ltd.

2.1 Location

820-2, Wolmoon Ri, Wabu-Up, Namyangju-Si, Kyunggi-Do, Korea

The test site is in compliance with ANSI C63.4/1992 for measurement of radio interference.

Page 4 of 14

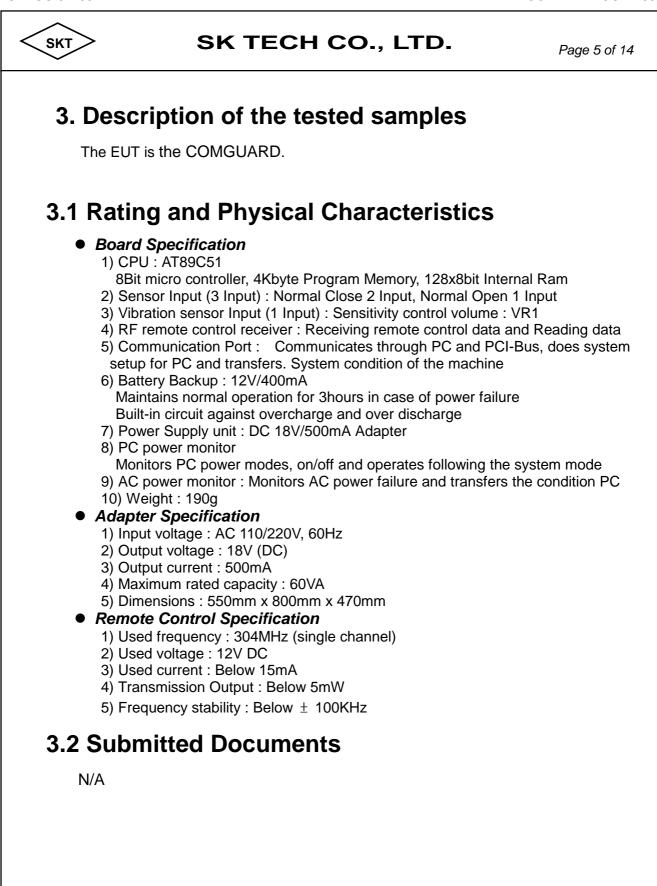
2.2 List of Test and Measurement Instruments

Table 1 : List of Test and Measurement Equipment

• Conducted Emissions

Kind of Equipment	Туре	S/N	Calibrated until
EMI Receiver	ESHS 10	862970/019	02.2002
Artificial Mains Network	ESH2-Z5	834549/011	10.2001
EMI Receiver	ESHS10	385871/002	10.2001
Artificial Mains Network	ESH3-Z5	836679/018	10.2001
Conducted Cable	N/A	N/A	11.2001

Radiated Emissions


Kind of Equipment	Туре	S/N	Calibrated until
EMI Receiver	ESVS 10	825120/013	02.2002
EMI Receiver	ESVS 10	834468/008	11.2001
Spectrum Analyzer	R3361A	11730187	06.2001
Amplifier	8447F	3113A05153	05.2001
Log Periodic Antenna	UHALP9107	91071238	02.2002
Biconical Antenna	BBA9106	N/A	02.2002
Open Site Cable	N/A	N/A	N/A
Antenna Mast	5907	N/A	N/A
Antenna & Turntable controller	5906	91X519	N/A
Amp & Receiver connection cable	N/A	N/A	N/A
Amp & Spectrum connection cable	N/A	N/A	N/A
50Ω Switcher	MP59B	M93083	N/A

2.3 Test Date

Date of Application	: July 20, 2001
Date of Test	: Aug. 09, 2001

2.4 Test Environment

See each test item's description.

Page 6 of 14

4. Measurement Conditions

The operating voltage of EUT is DC 18V supplied by the adaptor. (The Adaptor Input Voltage is AC 120V, 60Hz)

4.1 Modes of Operation

The EUT was in the following operation mode during all testing; The EUT installed in the PC and connected with the sensors. Tested in mode of sensing movement & magnet.

4.2 List of Peripherals

Description	Manufacturer	Model Name	Serial No.	FCC ID
Monitor	View Tech	VT-1411	N/A	N/A
Keyboard	Jing Mold	LKB-0107	90602477	N/A
Mouse	Logitech	M-S48a	LZH04608022	DoC
Adaptor 1	N/A	48-18-500D	N/A	N/A
Adaptor 2	LI SHIN International Enterprise	LSE9802B1240	2K1711039	N/A
Personal Comp	outer		-	
Mother board	Micro-Star	MS-6161	96K6262664G1144716	DoC
Power supply	HIPRO	HP-235ATXA6	F3-9911252206	DoC
FDD Drive	Panasonic	JU-257A604P	62638	DoC
HDD	Quantum	Pro Drive LPS	9442203B	DoC
CD-ROM Drive	LG	GCD-R560B	6023002365	BEJGCD-R560B

Page 7 of 14

4.3 Type of Used Cables

Description	Length	Type of shield	Manufacturer	Remark
PC power cable	1.6m	Non-Shield	None	
Monitor Power cable	1.8m	Non-Shield	View Tech	
VGA cable	1.8m	Shield	None	
Keyboard interface cable	1.8m	Shield	Jing Mold	
Mouse interface cable	1.0m	Shield	Logitech	
Adaptor 1 cable	1.9m	Non-Shield	N/A	For EUT
Adaptor 2 cable	2.1m	Non-Shield	N/A	For Monitor

4.4 Test Setup

The test setup photographs showed the external supply connections and interfaces.

4.5 Uncertainty

1) Radiated disturbance

Uc (Combined standard Uncertainty) = \pm 1.9dB

Expanded uncertainty U = KUc

K = 2

 \therefore U = ± 3.8dB

2) Conducted disturbance

 $Uc = \pm 0.88dB$

 $U = KUc = 2xUc = \pm 1.8dB$

Page 8 of 14

5. EMISSION Test

5.1 Conducted Emissions

Result:

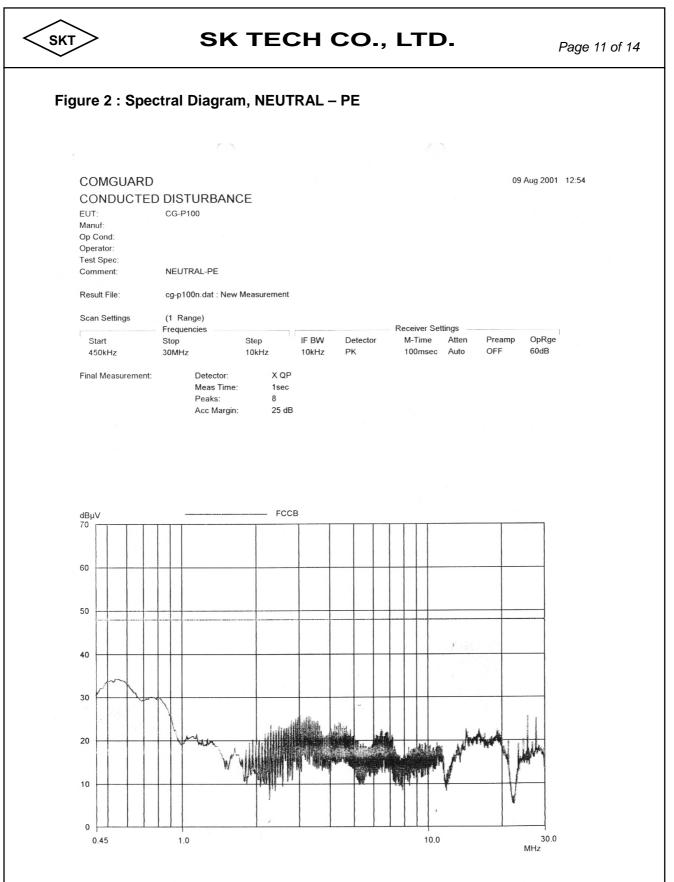
Pass

The line-conducted facility is located inside a 2.0M x 3.6M x 7.2M shielded enclosure. The shielding effectiveness of the shielded room is in accordance with MIL-Std-285 or NSA 604-05. A 1m x 1.5m wooden table 80cm. high is placed 40cm. away from the vertical wall and 1.5m away from the side wall of the shielded room. ROHDE & SCHWARZ Model ESH3-Z5 (10kHz-30MHz) 50ohm/50 uH Line-Impedance Stabilization Networks(LISNs) are bonded to the shielded room. The EUT is powered from the ROHDE & SCHWARZ LISN and the support equipment is powered from the ROHDE & SCHWARZ LISN. Power to the LISNs are filtered by a high-current highinsertion loss Lindgren enclosures power line filters (100dB 14kHz-10GHz).

The purpose of the filter is to attenuate ambient signal interference and this filter is also bonded to the shielded enclosure.

All electrical cables are shielded by braided tinned copper zipper tubing with inner diameter of 1/2". If the EUT is a DC-powered device, power will be derived from the source power supply it normally will be powered from and this supply lines will be connected to the ROHDE & SCHWARZ LISN. All interconnecting cables more than 1 meter were shortened by non-inductive bundling (serpentine fashion) to a 1-meter length.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer to determine the frequency producing the maximum EME from the EUT. The spectrum was scanned from 450kHz to 30MHz with 100msec. sweep time.


The frequency producing the maximum level was reexamined using EMI/field Intensity Meter (ESHS 10) and Quasi-Peak adapter. The detector function was set to CISPR quasi-peak mode. The bandwidth of the receiver was set to 10kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each EME emission.

Each emission was maximized by: switching power lines; varying the mode of operation or resolution; clock or data exchange speed; if applicable; whichever determined the worst-case emission. Photographs of the worst-case emission can be seen in photograph of conducted test. Each EME reported was calibrated using self-calibrating mode.

		ectral Diagr							
CC	OMGUARD							09 Aug 2001 13:	02
		DISTURBA	NCE						
EUT Man	nuf:	CG-P100							
Ope	Cond: erator:								
	t Spec: nment:	LINE-PE							
Res	ult File:	cg-p100l.dat : Ne	w Measurement						
Sca	n Settings	(1 Range)				Dessiver Satting			
	tart	Frequencies Stop	Step	IF BW	Detector		ten Prea		
	50kHz	30MHz	10kHz	10kHz	PK	Toomsec At	uto OFF	60dB	
Fina	al Measurement:	Detector: Meas Tin	ne: 1sec						
		Peaks: Acc Marg	8 gin: 25 dB						
dBu	v		FCCI	3					
dВµ 70			FCC8	3					
dВµ 70	IV		FCCE	3					
dВµ 70			FCCE	3					
70			FCC4	3					
70			FCC8	3					
70 60			FCCE	3					
70 60			FCCI	3					
70 60 50			FCCB	3					
70 60 50			FCCI	3					
70 60 50 40			FCCI	3					
70 60 50 40			FCCE	3					
70 60 50 40 30				3			Mandel		
70 60 50 40 30				3					
70 60 50 40 30 20									
70 60 50 40 30 20 10	N 	1.0		3		10.0		30.0	

Page 10 of 14

Page 12 of 14

Table 2: Test Data, Conducted Emissions

Frequency (MHz)	(1)Reading (dBμV)	Line	(2)C/F (dB)	(3)C/L (dB)	(4)Actual (dBμV)	(5)Limit (dBμV)	(6)Margin (dB)
0.47	24.92	В	0.2	0.1	25.22	48.0	22.78
0.78	22.61	В	0.1	0.1	22.81	48.0	25.19
0.80	22.42	В	0.1	0.1	22.62	48.0	25.38
17.70	12.63	А	0.6	0.6	13.83	48.0	34.17
19.15	16.62	А	0.6	0.6	17.82	48.0	30.18
25.58	21.71	А	0.6	0.7	23.01	48.0	24.99

NOTES:

1. All modes of operation were investigated

and the worst-case emission are reported.

- 2. All other emissions are non-significant.
- 3. All readings are calibrated by self-mode in receiver.
- 4. Measurements using CISPR quasi-peak mode.
- 5. Line A = LINE-PE, Line B = NEUTRAL-PE
- 6. C/F = Correction Factor
- 7. C/L = Cable Loss

Margin Calculation

(6)Margin = (5)Limit - (4)Actual [(4)Actual = (1)Reading + (2)C/F + (3)C/L]

Page 13 of 14

5.2 Radiated Emissions

Result :

Pass

Preliminary measurements were made indoors at 1 meter using broadband antennas, broadband amplifier, and spectrum analyzer to determine the frequency producing the maximum EME. Appropriate precaution was taken to ensure that all EME from the EUT were maximized and investigated. The system configuration, clock speed, mode of operation or video resolution, turntable azimuth with respect to the antenna were noted for each frequency found. The spectrum was scanned from 30 to 300 MHz using biconical antenna and from 300 to 1000 MHz using log-periodic antenna. Above 1GHz, linearly polarized double ridge horn antennas were used.

Final measurements were made outdoors at 3-meter test range using SCHWARZBECK dipole antennas. The test equipment was placed on a wooden table situated on a 4x4 meter area adjacent to the measurement area. Turntable was to protect from weather in the dome that made with FRP. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. Each frequency found during pre-scan measurements was re-examined and investigated using EMI/Field Intensity Meter(ESVS 10) and Quasi-Peak Adapter. The detector function was set to CISPR quasi-peak mode and the bandwidth of the receiver was set to 100kHz or 1MHz depending on the frequency or type of signal.

The half-wave dipole antenna was tuned to the frequency found during preliminary radiated measurements. The EUT, support equipment and interconnecting cables were re-configured to the setup producing the maximum emission for the frequency and were placed on top of a 0.8-meter high nonmetallic 1 x 1.5 meter table.

The EUT, support equipment, and interconnecting cables were re-arranged and manipulated to maximize each EME emission. The turntable containing the system was rotated; the antenna height was varied 1 to 4 meters and stopped at the azimuth or height producing the maximum emission. Each emission was maximized by: varying the mode of operation or resolution; clock or data exchange speed, and/or support equipment, if applicable; and changing the polarity of the antenna, whichever determined the worst-case emission.

Photographs of the worst-case emission can be seen in photograph of radiated emission test. Each EME reported was calibrated using self-calibrating mode.

Page 14 of 14

Table 3 : Test Data, Ra	adiated Emissions
-------------------------	-------------------

Frequency (MHz)	Pol.	Height [m]	Angle [°]	(1) Reading (dBµV)	(2) AFCL (dB/m)	(3) Actual (dBµV/m)	(4) Limit (dBµV/m)	(5) Margin (dB)
158.00	Н	1.4	219	11.8	17.2	29.0	43.5	14.5
194.00	Н	1.0	168	16.3	18.4	34.7	43.5	8.8
200.00	Н	1.0	94	16.1	18.6	34.7	43.5	8.8
206.00	Н	1.0	174	12.7	18.9	31.6	43.5	11.9
254.00	Н	1.3	227	9.0	20.5	29.5	46.0	16.5
260.00	Н	1.3	318	10.1	20.4	30.5	46.0	15.5
272.00	Н	1.3	216	10.1	20.9	31.0	46.0	15.0
432.00	V	1.0	117	15.5	21.6	37.1	46.0	8.9

Table. Radiated Measurements at 3-meters

NOTES:

1. All modes of operation were investigated

and the worst-case emission are reported.

- 2. All other emission are non-significant.
- 3. All readings are calibrated by self-mode in receiver.
- 4. Measurements using CISPR quasi-peak mode.
- 5. AFCL = Antenna factor and cable loss
- 6. H = Horizontal, V = Vertical Polarization

Margin Calculation

(5)Margin = (4)Limit - (3)Actual [(3)Actual = (1)Reading + (2)AFCL]