

APPLICATION CERTIFICATION FCC Part 15C On Behalf of PIPO TECHNOLOGY CO., LIMITED

Media box Model No.: X8

FCC ID: PT7-X9

Prepared for	:	PIPO TECHNOLOGY CO., LIMITED
Address	:	Area C, 3F, Bao Yun Da Logistics Centre, Warehouse Building,
		Xi Xiang Avenue, Bao An District, Shenzhen, China.
Prepared by	:	ACCURATE TECHNOLOGY CO., LTD
Address	:	F1, Bldg. A&D, Chan Yuan New Material Port, Keyuan Rd.
		Science & Industry Park, Nan Shan, Shenzhen, Guangdong P.R.
		China
		Tal: (0766) 26602200
		Tel: (0755) 26503290

Fax: (0755) 26503396

Report No.	:	ATE20161492
Date of Original	:	June 13-27, 2016
Test		
Date of new	:	June 13-July 20, 2016
Test		
Date of Report	:	June 28, 2016
REV.1		
Date of Report	:	July 21, 2016
REV.2		-

TABLE OF CONTENTS

Description

Page

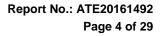
Test Report Certification

1.	GENERAL INFORMATION	4
1.1	L. Description of Device (EUT)	4
1.2		
1.3		
1.4	4. Special Accessory and Auxiliary Equipment	7
1.5	5. Description of Test Facility	7
1.6	5. Measurement Uncertainty	7
2.	MEASURING DEVICE AND TEST EQUIPMENT	8
3.	OPERATION OF EUT DURING TESTING	9
3.1	l. Operating Mode	9
3.2	2. Configuration and peripherals	9
4.	TEST PROCEDURES AND RESULTS	
5.	POWER LINE CONDUCTED MEASUREMENT	
5.1	Block Diagram of Test Setup	
5.2		
5.3	3. Configuration of EUT on Measurement	
5.4	4. Operating Condition of EUT	
5.5		
5.6	5. Power Line Conducted Emission Measurement Results	
6.	RADIATED SPURIOUS EMISSION TEST	
6.1	Block Diagram of Test Setup	19
6.2	2. The Limit For Section 15.247(d)	20
6.3	3. Restricted bands of operation	21
6.4		
6.5	$-\mathbf{r}$	
6.6		
6.7	C	
7.	ANTENNA REQUIREMENT	
7.1	1. The Requirement	29
7.2	2. Antenna Construction	29

Test Report Certification

Applicant	:	PIPO TECHNOLOGY CO., LIMITED
Manufacturer	:	PIPO TECHNOLOGY CO., LIMITED
EUT Description	:	Media box
Model No.	:	X8
Trade Mark	:	N/A

Measurement Procedure Used:


FCC Rules and Regulations Part 15 Subpart C Section 15.247: 2015 ANSI C63.10: 2013

The EUT was tested according to DTS test procedure of Apr 08, 2016 KDB558074 D01 DTS Meas Guidance v03r05 for compliance to FCC 47CFR 15.247 requirements

The device described above is tested by ACCURATE TECHNOLOGY CO. LTD to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section 15.247 limits. The measurement results are contained in this test report and ACCURATE TECHNOLOGY CO. LTD is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of ACCURATE TECHNOLOGY CO. LTD.

Date of Original Test : Date of NEW Test :	June 13-27, 2016 June 13-July 20, 2016		
Date of Report REV.1 :	June 28, 2016		
Date of Report REV.2 :	July 21, 2016		
Prepared by :	(Tim.zhang, Engineer)		
Approved & Authorized Signer :	(Sean Liu, Manager)		

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

EUT	:	Media box
Model Number	:	X8
Bluetooth version	:	BT V4.0 Dual Mode This report is for BT V4.0 LE mode
Frequency Range	:	2402MHz-2480MHz
Number of Channels	:	40 for BT V4.0 LE 79 for BT classic mode
Antenna Gain	:	2dBi
Antenna type	:	External Antenna
Power Supply	:	AC 100-240V~50/60Hz
Adapter information	:	Model:KA1433-1202400JP Input: 100-240V~50/60Hz 1.0A Max Out: 12V/2400mA
Modulation mode	:	GFSK for BT V4.0 LE GFSK, $\pi/4$ DQPSK, 8DPSK for BT classic mode
Applicant Address	:	PIPO TECHNOLOGY CO., LIMITED Area C, 3F, Bao Yun Da Logistics Centre, Warehouse Building, Xi Xiang Avenue, Bao An District, Shenzhen, China.
Manufacturer Address	:	PIPO TECHNOLOGY CO., LIMITED Area C, 3F, Bao Yun Da Logistics Centre, Warehouse Building, Xi Xiang Avenue, Bao An District, Shenzhen, China.
Date of sample received	:	Jun 13, 2016
Date of Test	:	June 13-July 20, 2016

Channel	Frequceny (MHz)	Channel	Frequceny (MHz)	Channel	Frequceny (MHz)	Channe 1	Frequceny (MHz)
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

1.2.Carrier Frequency of Channels

1.3. Product differentiation Description

Note: Please refer to the above two pictures, in addition to the screen size of the product is not the same, the other circuit is exactly the same. After evaluation, We will test the the Conducted Emission and Radiated spurious emission(below 1GHz) for X8, Other projects refer to X9 test data, The original report number is ATE20161169.

1.4.Special Accessory and Auxiliary Equipment N/A

1.5.Description of Test Facility

EMC Lab	:	Accredited by TUV Rheinland Shenzhen
		Listed by FCC The Registration Number is 752051
		Listed by Industry Canada The Registration Number is 5077A-2
		Accredited by China National Accreditation Committee for Laboratories The Certificate Registration Number is L3193
Name of Firm Site Location	:	ACCURATE TECHNOLOGY CO. LTD F1, Bldg. A, Changyuan New Material Port, Keyuan Rd. Science & Industry Park, Nanshan, Shenzhen, Guangdong P.R. China

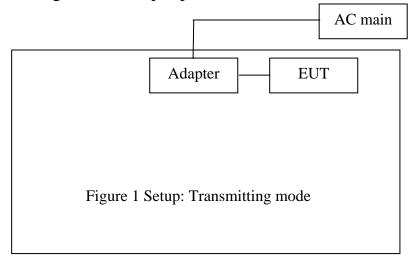
1.6.Measurement Uncertainty

Conducted Emission Expanded Uncertainty	=	2.23dB, k=2
Radiated emission expanded uncertainty (9kHz-30MHz)	=	3.08dB, k=2
Radiated emission expanded uncertainty (30MHz-1000MHz)	=	4.42dB, k=2
Radiated emission expanded uncertainty (Above 1GHz)	=	4.06dB, k=2

2. MEASURING DEVICE AND TEST EQUIPMENT

Kind of equipment	Manufacturer	Туре	S/N	Calibrated dates	Calibrated until
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 9, 2016	1 Year
EMI Test Receiver	Rohde&Schwarz	ESPI3	101526/003	Jan. 9, 2016	1 Year
Spectrum Analyzer	Agilent	E7405A	MY45115511	Jan. 9, 2016	1 Year
Pre-Amplifier	Rohde&Schwarz	CBLU118354 0-01	3791	Jan. 9, 2016	1 Year
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan. 14, 2016	1 Year
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan. 14, 2016	1 Year
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan. 14, 2016	1 Year
Horn Antenna	Schwarzbeck	BBHA9170	9170-359	Jan. 14, 2016	1 Year
LISN	Rohde&Schwarz	ESH3-Z5	100305	Jan. 9, 2016	1 Year
LISN	Schwarzbeck	NSLK8126	8126431	Jan. 9, 2016	1 Year
Highpass Filter	Wainwright Instruments	WHKX3.6/18 G-10SS	N/A	Jan. 9, 2016	1 Year
Band Reject Filter	Wainwright Instruments	WRCG2400/2 485-2375/2510 -60/11SS	N/A	Jan. 9, 2016	1 Year

Table 1: List of Test and Measurement Equipment

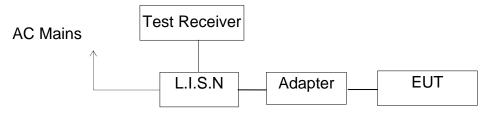


3. OPERATION OF EUT DURING TESTING

3.1.Operating Mode

The mode is used: **BLE Transmitting mode** Low Channel: 2402MHz Middle Channel: 2440MHz High Channel: 2480MHz

3.2. Configuration and peripherals


4. TEST PROCEDURES AND RESULTS

FCC Rules	Description of Test	Result
Section 15.247(d) Section 15.209	Radiated Spurious Emission Test	Compliant
Section 15.207	AC Power Line Conducted Emission Test	Compliant
Section 15.203	Antenna Requirement	Compliant

5. POWER LINE CONDUCTED MEASUREMENT

5.1.Block Diagram of Test Setup

(EUT: Media box)

5.2. Power Line Conducted Emission Measurement Limits

Frequency	Limit d	Β(μV)
(MHz)	Quasi-peak Level	Average Level
0.15 - 0.50	66.0 - 56.0 *	56.0 - 46.0 *
0.50 - 5.00	56.0	46.0
5.00 - 30.00	60.0	50.0
	all apply at the transition fre es linearly with the logarithm 0 0.50MHz.	

5.3.Configuration of EUT on Measurement

The following equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner, which tends to maximize its emission characteristics in a normal application.

5.4. Operating Condition of EUT

5.4.1.Setup the EUT and simulator as shown as Section 5.1.

- 5.4.2. Turn on the power of all equipment.
- 5.4.3.Let the EUT work in test mode and measure it.

5.5.Test Procedure

The EUT is put on the plane 0.8 m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.10: 2013 on Conducted Emission Measurement.

The bandwidth of test receiver (R & S ESCS30) is set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

5.6. Power Line Conducted Emission Measurement Results

PASS.

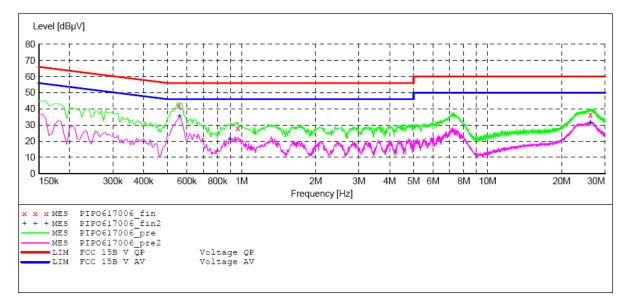
The frequency range from 150kHz to 30MHz is checked.

Test mode : BT communicating(AC 120V/60Hz) EUT mode : X8											
MEASUREMENT	RESULT	: "PIPO	617005	5_fin"							
6/17/2016 9:3 Frequency MHz	Level	Transd dB		Margin dB	Detector	Line	PE				
0.560000 0.890000 26.320000		10.7 10.8 11.5	56	29.1	ΏΡ	L1 L1 L1	GND GND GND				
MEASUREMENT RESULT: "PIPO617005_fin2"											
6/17/2016 9:3 Frequency MHz	Level		Limit dBµV	Margin dB	Detector	Line	PE				
0.555000 1.275000 26.050000	36.20 15.60 34.10	10.9	46 46 50		AV	L1 L1 L1	GND GND GND				
MEASUREMENT	RESULT	: "PIPC	617006	5_fin"							
6/17/2016 9:4											
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE				
0.555000 0.965000 26.110000	42.10 27.90 36.10	10.7 10.8 11.5	56 56 60		Ω̃Ρ	N N N	GND GND GND				
MEASUREMENT	RESULT	: "PIPC	617006	5_fin2"							
6/17/2016 9:4 Frequency MHz			Limit dBµV	2	Detector	Line	PE				
0.560000 0.900000 26.200000	35.60 21.20 31.40	10.7 10.8 11.5	46 46 50	10.4 24.8 18.6	AV AV AV	N N N	GND GND GND				

Test mode : BT communicating(AC 240V/60Hz) EUT mode : X8											
RESULT	: "PIPO	617004	_fin"								
6/17/2016 9:34AM Frequency Level Transd Limit Margin Detector Line PE											
		Limit dBµV	Margin dB	Detector	Line	PE					
39.70 30.20 40.90	10.9	56	25.8	Q̃₽	L1 L1 L1	GND GND GND					
RESULT	: "PIPO	617004	_fin2"								
				Detector	Line	PE					
32.90	10.7				L1	GND					
22.90 37.10	10.9 11.5				L1 L1	GND GND					
RESULT	: "PIPC	617003	3_fin"								
		T	Manada	Detector	T	DE					
			-	Detector	Line	PE					
38.30				~	N	GND					
27.20 38.60	11.1 11.5	56 60	28.8 21.4	QP QP	N N	GND GND					
RESULT	: "PIPC	617003	3_fin2"								
			-	Detector	Line	PE					
32.20	10.7			AV	N	GND					
24.50 34.40	11.1 11.5	46 50	21.5 15.6	AV AV	N N	GND GND					
	RESULT 4AM Level dBµV 39.70 30.20 40.90 RESULT 4AM Level dBµV 32.90 22.90 37.10 RESULT 0AM Level dBµV 38.30 27.20 38.60 RESULT 0AM Level dBµV 32.20 24.50	RESULT: "PIPO 4AM Level Transd dBµV dB 39.70 10.7 30.20 10.9 40.90 11.5 RESULT: "PIPO 4AM Level Transd dBµV dB 32.90 10.7 22.90 10.9 37.10 11.5 RESULT: "PIPO 0AM Level dBµV dB 38.30 10.7 27.20 11.1 38.60 11.5 RESULT: "PIPO 0AM Level Level Transd dBµV dB 38.60 11.5 RESULT: "PIPO 0AM Level Level Transd dBµV dB 32.20 10.7 24.50 11.1	RESULT: "PIPO617004 4AM Level Transd Limit dBµV dB dBµV 39.70 10.7 56 30.20 10.9 56 40.90 11.5 60 RESULT: "PIPO617004 4AM Level Transd Limit dBµV 32.90 10.7 46 22.90 10.9 46 37.10 11.5 50 RESULT: "PIPO617003 00AM Level Transd Limit dBµV dB dBµV 38.30 10.7 56 38.30 10.7 56 38.60 11.5 60 RESULT: "PIPO617003 38.30 10.7 56 38.60 11.5 60 RESULT: "PIPO617003 GOAM Level Transd Limit dBµV dB dBµV 32.20 10.7 46 24.50 11.1 46	RESULT: "PIPO617004_fin" 4AM Level Transd Limit Margin dBµV Margin dB 39.70 10.7 56 16.3 30.20 10.9 56 25.8 40.90 11.5 60 19.1 RESULT: "PIPO617004_fin2" 4AM Level Transd Limit Margin dBµV Margin dB 32.90 10.7 46 13.1 22.90 10.9 46 23.1 37.10 11.5 50 12.9 RESULT: "PIPO617003_fin" 40AM Level Transd Limit Margin dB dBµV dB 38.30 38.30 10.7 56 17.7 27.20 11.1 56 28.8 38.60 11.5 60 21.4 RESULT: "PIPO617003_fin2" 400 38.30 10.7 56 17.7 27.20 11.1 56 28.8 38.60 11.5 60 21.4 A A A	RESULT: "PIPO617004_fin" 4AM Level Transd Limit Margin dB Detector dBµV 39.70 10.7 56 16.3 QP 30.20 10.9 56 25.8 QP 40.90 11.5 60 19.1 QP RESULT: "PIPO617004_fin2" 4AM Level Transd Limit Margin dB Detector dBµV 32.90 10.7 46 13.1 AV 32.90 10.7 46 23.1 AV 37.10 11.5 50 12.9 AV RESULT: "PIPO617003_fin" OAM Level Transd Limit Margin dB Detector dBµV dB 38.30 10.7 56 17.7 QP 38.30 10.7 56 17.7 QP 38.30 11.5 60 21.4 QP OAM Limit Margin Detector 38.30 11.5 60 21.4 QP OAM Level Transd Limit Margin dB Detector 38.6	RESULT: "PIPO617004_fin" 4AM Level Transd Limit Margin dB Detector Line 39.70 10.7 56 16.3 QP L1 30.20 10.9 56 25.8 QP L1 40.90 11.5 60 19.1 QP L1 RESULT: "PIPO617004_fin2" 4AM Level Transd Limit Margin dB Detector Line 32.90 10.7 46 13.1 AV L1 37.10 11.5 50 12.9 AV L1 RESULT: "PIPO617003_fin" 10AM Level Transd Limit Margin dB Detector Line 38.30 10.7 56 17.7 QP N 38.30 10.7 56 17.7 QP N 38.30 10.7 56 17.7 QP N 38.60 11.5 60 21.4 QP N A A A Line 38.60 11.5 60 21.4					

Emissions attenuated more than 20 dB below the permissible value are not reported.

The spectral diagrams are attached as below.



CONDUCTED EMISSION STANDARD FCC PART 15B

EUT:	Media box M/N:X8
Manufacturer:	Pipo
Operating Condition:	BT OPERATION
Test Site:	1#Shielding Room
Operator:	STAR
Test Specification:	N 120V/60Hz
Comment:	Report No.:ATE20161492
Start of Test:	6/17/2016 / 9:39:01AM

SCAN TABLE: "V 9K-30MHz fin"

~			, orange				
	Short Desci	ription:	_SU	JB_STD_VTE	RM2 1.70		
	Start	Stop	Step	Detector	Meas.	IF	Transducer
	Frequency	Frequency	Width		Time	Bandw.	
	9.0 kHz	150.0 kHz	100.0 Hz	QuasiPeak	1.0 s	200 Hz	NSLK8126 2008
				Average			
	150.0 kHz	30.0 MHz	5.0 kHz	QuasiPeak	1.0 s	9 kHz	NSLK8126 2008
				Average			

MEASUREMENT RESULT: "PIPO617006 fin"

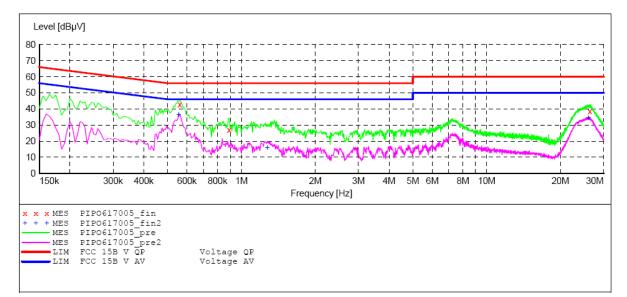
6/17/2016 9:4 Frequency MHz			Limit dBµV	— Margin dB	Detector	Line
0.555000 0.965000	42.10 27.90	10.7 10.8		13.9 28.1	~	N N
26.110000	36.10	11.5	60	23.9	~	N

MEASUREMENT RESULT: "PIPO617006 fin2"

6/17/2016 9:	42AM						
Frequency				2	Detector	Line	PE
MHz	dBµV	dB	dBµV	dB			
0.560000	35.60	10.7	46	10.4	AV	Ν	GND
0.90000	21.20	10.8	46	24.8	AV	Ν	GND
26.200000	31.40	11.5	50	18.6	AV	Ν	GND

ΡE

GND GND GND



CONDUCTED EMISSION STANDARD FCC PART 15B

EUT:Media boxM/N:X8Manufacturer:PipoOperating Condition:BT OPERATIONTest Site:1#Shielding RoomOperator:STARTest Specification:L 120V/60HzComment:Report No.:ATE20161492Start of Test:6/17/2016 / 9:35:27AM

SCAN TABLE: "V 9K-30MHz fin"

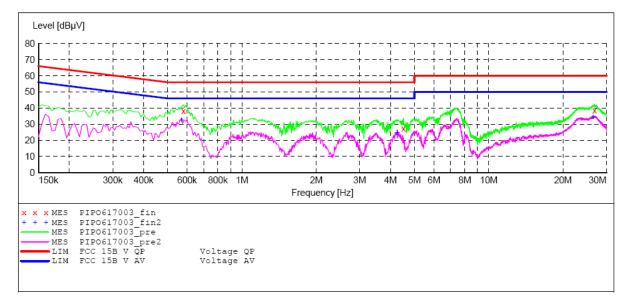
Short Desci	ciption:	_ST	JB_STD_VTE	RM2 1.70		
Start	Stop	Step	Detector	Meas.	IF	Transducer
Frequency	Frequency	Width		Time	Bandw.	
9.0 kHz	150.0 kHz	100.0 Hz	QuasiPeak	1.0 s	200 Hz	NSLK8126 2008
			Average			
150.0 kHz	30.0 MHz	5.0 kHz	QuasiPeak	1.0 s	9 kHz	NSLK8126 2008
			Average			

MEASUREMENT RESULT: "PIPO617005 fin"

6/17/2016 9:38AM Frequency Level Transd Limit Margin Detector Line PE MHz dBµV dB dBµV dB 0.560000 43.00 10.7 56 13.0 QP GND L1 10.8 QP 0.890000 26.90 56 29.1 L1 GND 26.320000 38.50 11.5 21.5 60 QP L1 GND

MEASUREMENT RESULT: "PIPO617005 fin2"

6/17/2016 9:38AM										
Frequency				2	Detector	Line	PE			
MHz	dBµV	dB	dBµV	dB						
0.555000	36.20	10.7	46	9.8	AV	L1	GND			
1.275000	15.60	10.9		30.4	AV	L1	GND			
26.050000	34.10	11.5	50	15.9	AV	L1	GND			



CONDUCTED EMISSION STANDARD FCC PART 15B

EUT:	Media box M/N:X8
Manufacturer:	Pipo
Operating Condition:	BT operation
Test Site:	1#Shielding Room
Operator:	STAR
Test Specification:	N 240V/60Hz
Comment:	Report No.:ATE20161492
Start of Test:	6/17/2016 / 9:26:58AM

SCAN TABLE: "V 9K-30MHz fin"

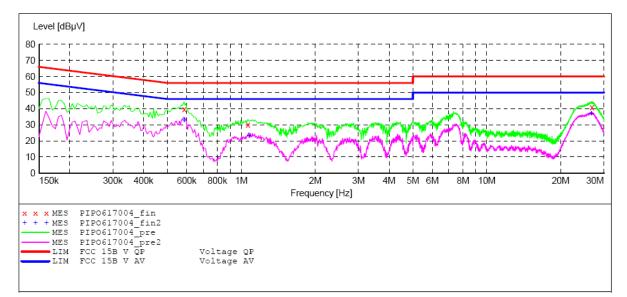
SAN IADID.						
Short Desci	ription:	_St	JB_STD_VTE	RM2 1.70		
Start	Stop	Step	Detector	Meas.	IF	Transducer
Frequency	Frequency	Width		Time	Bandw.	
9.0 kHz	150.0 kHz	100.0 Hz	QuasiPeak	1.0 s	200 Hz	NSLK8126 2008
			Average			
150.0 kHz	30.0 MHz	5.0 kHz	QuasiPeak	1.0 s	9 kHz	NSLK8126 2008
			Average			

MEASUREMENT RESULT: "PIPO617003 fin"

6/17/2016 9:3							
Frequency MHz	Level dBuV		Limit dBuV	Margin dB	Detector	Line	PE
			[
0.580000	38.30	10.7	56	17.7	QP	Ν	GND
4.510000	27.20	11.1	56	28.8	QP	N	GND
26.830000	38.60	11.5	60	21.4	QP	Ν	GND

MEASUREMENT RESULT: "PIPO617003 fin2"

6/17/2016 9:3	0AM						
Frequency				2	Detector	Line	PE
MHz	dBµV	dB	dBµV	dB			
0.570000	32.20	10.7	46	13.8	AV	Ν	GND
4.260000	24.50	11.1	46	21.5	AV	Ν	GND
26.440000	34.40	11.5	50	15.6	AV	N	GND



CONDUCTED EMISSION STANDARD FCC PART 15B

EUT:	Media box M/N:X8				
Manufacturer:	Pipo				
Operating Condition:	BT OPERATION				
Test Site:	1#Shielding Room				
Operator:	STAR				
Test Specification:	L 240V/60Hz				
Comment:	Report No.:ATE20161492				
Start of Test:	6/17/2016 / 9:30:39AM				

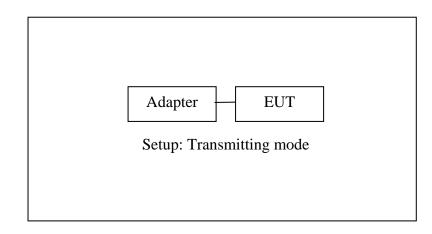
SCAN TABLE: "V 9K-30MHz fin"

Short Desci	ription:	_St	JB_STD_VTER	RM2 1.70		
Start	Stop	Step	Detector	Meas.	IF	Transducer
Frequency	Frequency	Width		Time	Bandw.	
9.0 kHz	150.0 kHz	100.0 Hz	QuasiPeak	1.0 s	200 Hz	NSLK8126 2008
			Average			
150.0 kHz	30.0 MHz	5.0 kHz	QuasiPeak	1.0 s	9 kHz	NSLK8126 2008
			Average			
	Short Desc Start Frequency 9.0 kHz	Short Description: Start Stop Frequency Frequency 9.0 kHz 150.0 kHz	Start Stop Step Frequency Frequency Width 9.0 kHz 150.0 kHz 100.0 Hz	Short Description:SUB_STD_VTEIStartStopStepFrequencyFrequencyWidth9.0 kHz150.0 kHz100.0 HzQuasiPeakAverage150.0 kHz30.0 MHz5.0 kHzQuasiPeak	Short Description:SUB_STD_VTERM2 1.70StartStopStepPrequencyFrequencyWidth9.0 kHz150.0 kHz100.0 HzQuasiPeak1.0 sAverage150.0 kHz30.0 MHz5.0 kHzQuasiPeak1.0 s	Short Description:SUB_STD_VTERM2 1.70StartStopStepDetector Meas.IFFrequencyFrequencyWidthTimeBandw.9.0 kHz150.0 kHz100.0 HzQuasiPeak 1.0 s200 HzAverage150.0 kHz30.0 MHz5.0 kHzQuasiPeak 1.0 s9 kHz

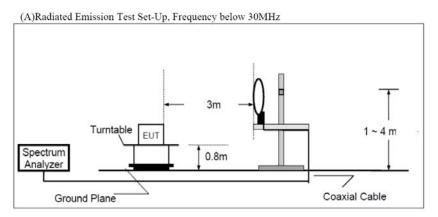
MEASUREMENT RESULT: "PIPO617004 fin"

6/17/2016 9:34 Frequency MHz		Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.585000 1.065000 26.785000	39.70 30.20 40.90	10.7 10.9 11.5		16.3 25.8 19.1	<u> </u> др	L1 L1 L1	GND GND GND

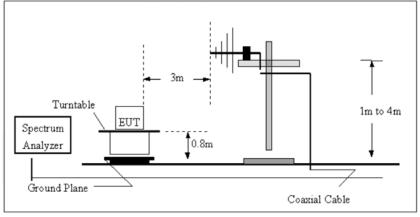
MEASUREMENT RESULT: "PIPO617004_fin2"


6/17/2016 9:3 Frequency MHz			Limit dBuV	Margin dB	Detector	Line	PE
0.585000 1.075000 26.650000	32.90 22.90 37.10	10.7 10.9 11.5	46	13.1 23.1 12.9	AV	L1 L1 L1	GND GND GND

6. RADIATED SPURIOUS EMISSION TEST

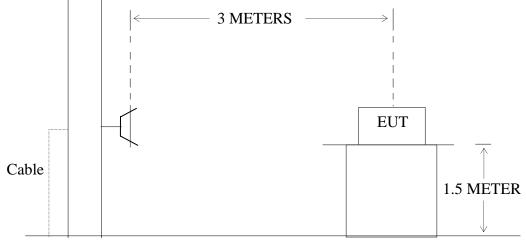

6.1.Block Diagram of Test Setup

6.1.1.Block diagram of connection between the EUT and peripherals



(EUT: Media box)

6.1.2.Semi-Anechoic Chamber Test Setup Diagram



(B)Radiated Emission Test Set-Up, Frequency 30-1000MHz

(C) Radiated Emission Test Set-Up, Frequency above 1GHz

GROUND PLANE

6.2. The Limit For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

6.3.Restricted bands of operation

6.3.1.FCC Part 15.205 Restricted bands of operation

permitted in any of the frequency bands listed below:							
MHz	MHz	MHz	GHz				
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15				
$^{1}0.495-0.505$	16.69475-16.69525	608-614	5.35-5.46				
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75				
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5				
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2				
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5				
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7				
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4				
6.31175-6.31225	123-138	2200-2300	14.47-14.5				
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2				
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4				
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12				
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0				
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8				
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5				
12.57675-12.57725	322-335.4	3600-4400	(²)				
13.36-13.41							

(a) Except as shown in paragraph (d) of this section, Only spurious emissions are permitted in any of the frequency bands listed below:

¹Until February 1, 1999, this restricted band shall be 0.490-0.510 2 Above 38.6

(b) Except as provided in paragraphs (d) and (e), the field strength of emission appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000MHz, Compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000MHz, compliance with the emission limits in Section15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

6.4. Configuration of EUT on Measurement

The equipment are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

6.5.Operating Condition of EUT

- 6.5.1.Setup the EUT and simulator as shown as Section 10.1.
- 6.5.2.Turn on the power of all equipment.
- 6.5.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2440MHz, and 2480MHz TX frequency to transmit.

6.6.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.1 meter high above ground(Below 1GHz). The EUT and its simulators are placed on a turntable, which is 1.5 meter high above ground(Above 1GHz). The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bi-log antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the EUT location must be manipulated according to ANSI C63.10:2013 on radiated emission measurement. The EUT was tested in 3 orthogonal planes.

The bandwidth of test receiver is set at 9 kHz in below 30MHz. and set at 120 kHz in 30-1000MHz, and 1MHz in above 1000MHz.

The frequency range from 9 kHz to 25GHz is checked.

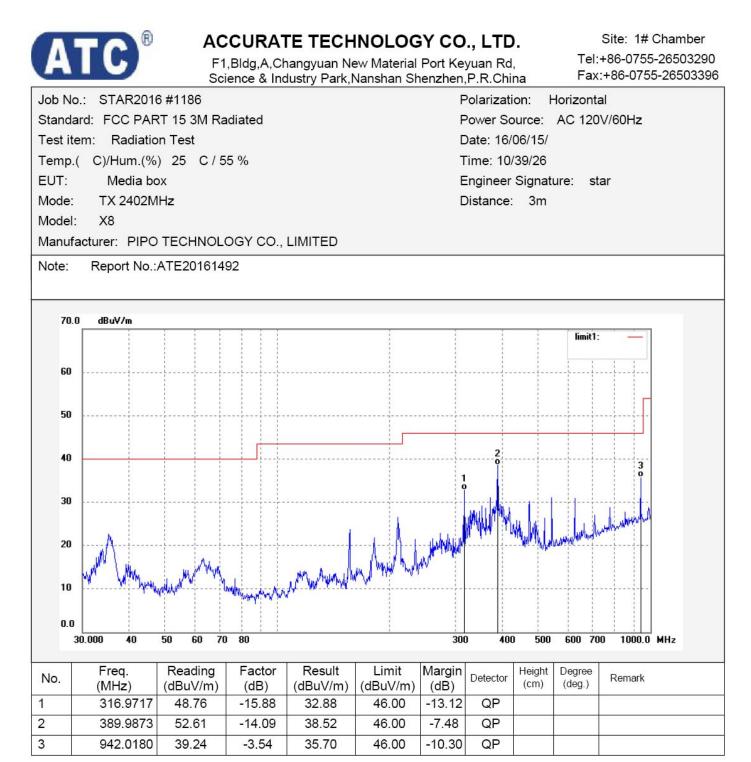
The final measurement in band 9-90 kHz, 110-490 kHz and above 1000MHz is performed with Average detector. Except those frequency bands mention above, the final measurement for frequencies below 1000MHz is performed with Quasi Peak detector.

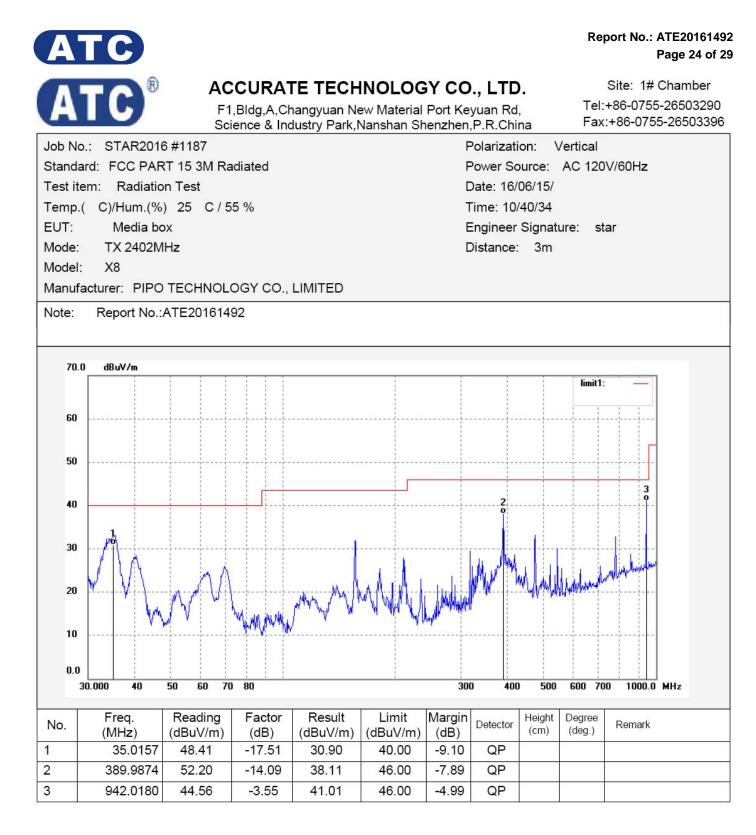
The field strength is calculated by adding the antenna factor, and cable loss, and subtracting the amplifier gain from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss – Amplifier Gain

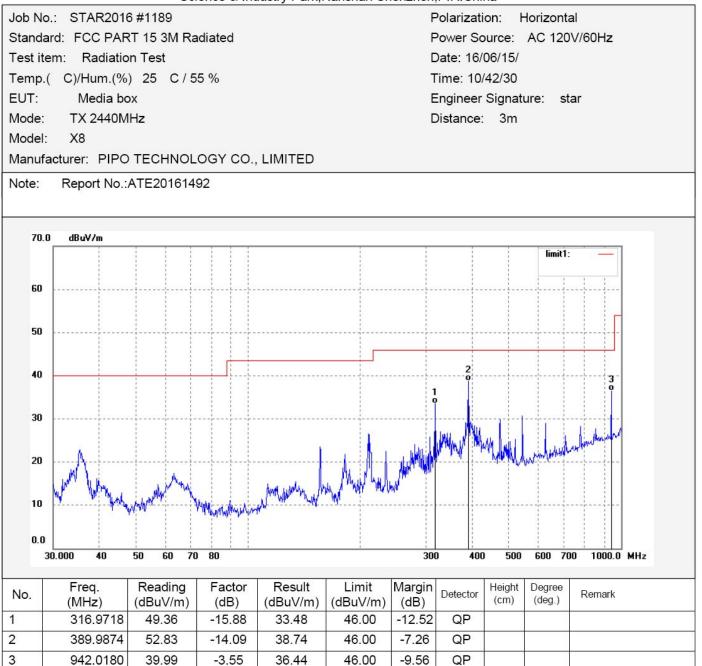
6.7. The Field Strength of Radiation Emission Measurement Results


PASS.


Note: 1. Emissions attenuated more than 20 dB below the permissible value are not reported.

2. *: Denotes restricted band of operation.

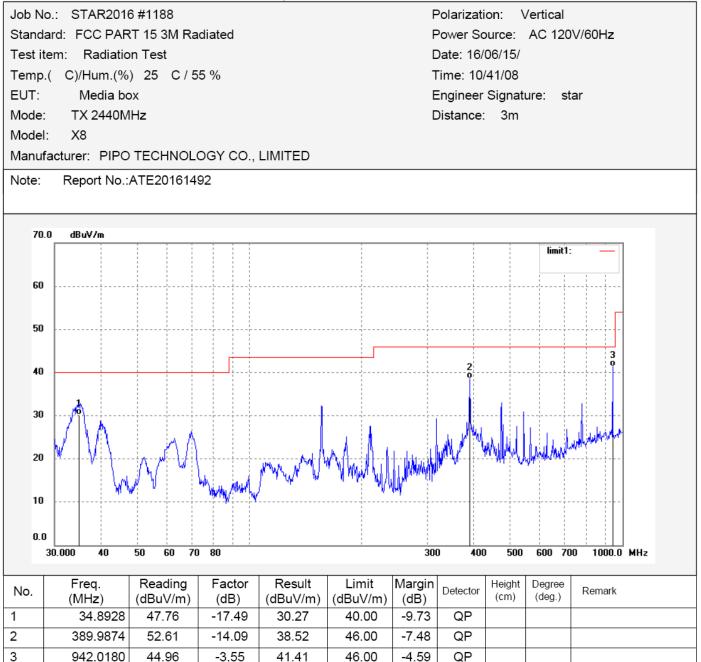
3. The radiation emissions from 18-25GHz are not reported, because the test values lower than the limits of 20dB.



Report No.: ATE20161492 Page 25 of 29

ACCURATE TECHNOLOGY CO., LTD.

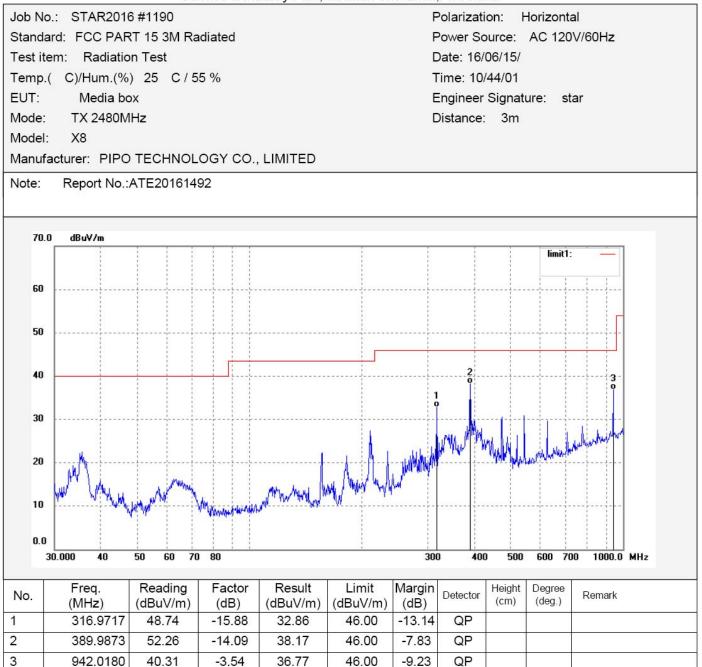
F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396



F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20161492

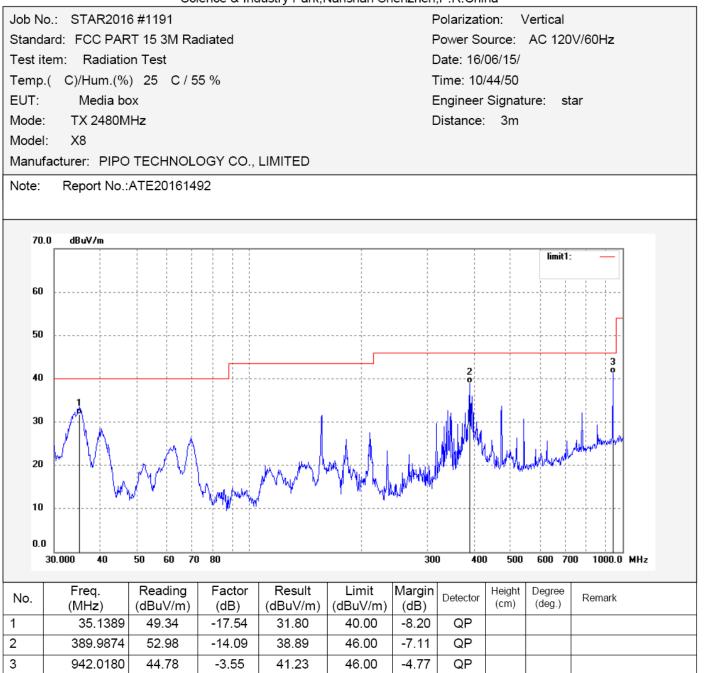
Page 26 of 29



Report No.: ATE20161492 Page 27 of 29

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396



Report No.: ATE20161492 Page 28 of 29

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

7. ANTENNA REQUIREMENT

7.1.The Requirement

According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.2. Antenna Construction

Device is equipped with external Antenna, which isn't displaced by other antenna. The Antenna gain of EUT is 2dBi. Therefore, the equipment complies with the antenna requirement of Section 15.203.

Antenna