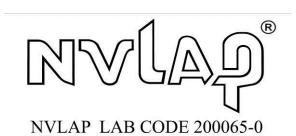


FCC OET BULLETIN 65 SUPPLEMENT C 01-01 IEEE Std 1528-2003 and IEEE Std 1528a-2005

SAR EVALUATION REPORT

For **Tablet**

Model: BP710A FCC ID: PSZ-BP710A


Report Number: 12U14748-7A Issue Date: 4/1/2013

Prepared for

INTEL CORPORATION 2200 MISSION COLLEGE BLVD. SANTA CLARA, CA 95054-1549 USA

Prepared by
UL CCS
47173 BENICIA STREET
FREMONT, CA 94538, U.S.A.
TEL: (510) 771-1000

FAX: (510) 661-0888

Revision History

Rev.	Issue Date	<u>Revisions</u>	Revised By
	3/20/2013	Initial Issue	
Α	4/1/2013	Corrected FCC ID	Dave Weaver
		Section 1 – Corrected highest reported SAR value	
		Section 12 – Corrected measured power level in WLAN SAR table	
		Section 16 – Corrected antenna location diagram	

Table of Contents

1.	Att	estation of Test Results	5
2.	Tes	st Methodology	6
3.	Fac	cilities and Accreditation	6
4.	Cal	libration and Uncertainty	7
4	!.1.	Measuring Instrument Calibration	
4	.2.	Measurement Uncertainty	8
5.	Ме	asurement System Description and Setup	9
6.	SA	R Measurement Procedure	10
6	5.1.	Normal SAR Measurement Procedure	10
6	5.2.	Volume Scan Procedures	12
7.	De	vice Under Test	13
7	'.1.	Band and Air Interfaces	13
7	<i>.</i> 2.	Simultaneous Transmission	14
8.	Ex	posure Conditions	15
8	2.1.	Body	15
9.	RF	Output Power Measurement	16
9	.1.	WiFi (2.4 GHz Band)	16
9	.2.	Bluetooth	17
10.	T	Fissue Dielectric Properties	18
1	0.1.	Composition of Ingredients for the Tissue Material Used in the SAR Tests	19
1	0.2.	Tissue Dielectric Parameter Check Results	20
11.	S	System Performance Check	21
1	1.1.	System Performance Check Measurement Conditions	21
1	1.2.	Reference SAR Values for System Performance Check	21
1	1.3.	System Performance Check Results	22
12.	S	SAR Test Results	23
1	2.1.	Standalone SAR Test Exclusion Considerations	23
	12.	1.1. SAR exclusion calculations for Wi-Fi and Bluetooth for antenna <50mm from the user.	23
	12.	1.2. SAR exclusion calculations for Wi-Fi and Bluetooth for antenna >50mm from the user.	23
1	2.2.	Wi-Fi (2.4 GHz Band)	24
1	2.3.	Bluetooth (Ver 3.0+EDR)	25

Report No.: 12U14748-7A FCC ID:PSZ-BP710A

13.	SA	AR Measurement Variability	26
13	2.1.	The Highest Measured SAR Configuration in Each Frequency Band	26
13	.2.	Repeated Measurement Results	26
14.	Αp	ppendixes	27
14	.1.	System Performance Check Plots	27
14	.2.	SAR Test Plots for Wi-Fi 2.4 GHz Band	27
14	.3.	SAR Test Plots for Bluetooth (Ver 3.0+EDR)	27
14	.4.	Calibration Certificate for E-Field Probe EX3DV4 - SN 3885	27
14	.5.	Calibration Certificate for D2450V2 – SN706	27
15.	Ex	ternal Photos	28
16.	Ar	ntenna Dimensions & Separation Distances	29
17.	Se	etup Photos	31

1. Attestation of Test Results

Applicant	Intel Corporation	Intel Corporation					
DUT description	Tablet						
Model Number	BP710A						
Test device is	An identical prototy	ре					
Device category	Portable	Portable					
Exposure category	General Population	General Population/Uncontrolled Exposure					
Date tested	2/20/2013 – 3/15/20	013					
RF Exposure Rule	Freq. Range	Highest Reported SAR	Limit				
15.247 (WiFi)	2412-2462 MHz	2412-2462 MHz 1.257 W/kg (Body Rear) 1.6 W/kg					
	Applicable Standards Test Results						
	Published RF exposure KDB procedures, TCB workshop updates and OET Bulletin 65 Supplement C, IEEE Std 1528-2003 and IEEE Std 1528a-2005 Pass						

UL CCS tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government (NIST Handbook 150, Annex A). This report is written to support regulatory compliance of the applicable standards stated above.

Approved & Released For UL CCS By:

Tested By:

Dave Weaver Program Manager

UL CCS

Elijah Garcia WiSE Lab Engineer

UL CCS

2. Test Methodology

The tests documented in this report were performed in accordance with FCC OET Bulletin 65 Supplement C Edition 01-01, IEEE STD 1528-2003, IEEE Std 1528a-2005 and the following published RF exposure KDB procedures:

- 248227 D01 SAR Meas for 802 11abg v01r02
- 447498 D01 General RF Exposure Guidance v05
- o 690783 D01 SAR Listings on Grants v01r02
- o 865664 D01 SAR Measurement 100 MHz to 6 GHz v01
- o 865664 D02 SAR Reporting v01
- o 616217 D04 SAR for laptop and tablets v01

3. Facilities and Accreditation

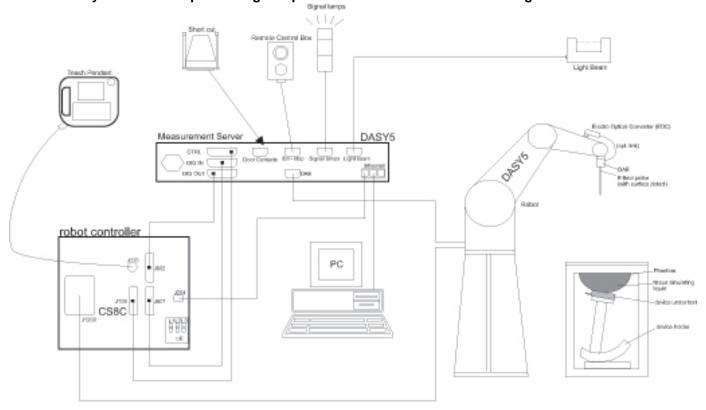
The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

4. Calibration and Uncertainty

4.1. Measuring Instrument Calibration

The measuring equipment used to perform the tests documented in this report has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.


Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due date		
Name of Equipment	Manufacturei	i ype/iviodei	pe/Model Serial No.		DD	Year
S-Parameter Network Analyzer	Agilent	8753ES	MY40001647	6	27	2013
Dielectronic Probe kit	SPEAG	SM DAK 040 CA	1082	9	18	2013
Synthesized Signal Generator	HP	8665B	3438A00633	2	22	2013
Amplifier	MITEQ	4D00400600-50-30P	1622052		N/	/A
Directional coupler	Werlatone	C8060-102	2149		N/	/A
Synthesized Signal Generator	HP	8665B	3744A01084	5	3	2013
Amplifier	MITEQ	4D00400600-50-30P	1620606	N/A		
Directional coupler	Werlatone	C8060-102	2141		N/	/A
Thermometer	ERTCO	639-1S	8350	7	30	2013
E-Field Probe	SPEAG	EX3DV4	3885	10	9	2013
Data Acquisition Electronics	SPEAG	DAE4	1352	10	8	2013
System Validation Dipole	SPEAG	D2450V2	706	4	11	2013
Power Meter	Agilent	N1912A	MY50001018	8	10	2013
Power Sensor Ch A	Agilent	N1921A	MY52020011	7	21	2013
Power Sensor Ch B	Agilent	N1921A	MY52200012	7	24	2013

4.2. Measurement Uncertainty

Per KDB 865664, when no measured SAR values exceed 1.5 W/kg, measurement uncertainty analysis does not need to be provided in the test report.

5. Measurement System Description and Setup

The DASY5 system used for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

UL CCS FORM NO: CCSUP4031G 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888

6. SAR Measurement Procedure

6.1. Normal SAR Measurement Procedure

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01

	≤3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°
	\leq 2 GHz: \leq 15 mm 2 – 3 GHz: \leq 12 mm	$3 - 4 \text{ GHz:} \le 12 \text{ mm}$ $4 - 6 \text{ GHz:} \le 10 \text{ mm}$
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.	

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Zoom Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01 (Draft)

			≤3 GHz	> 3 GHz
Maximum zoom scan s	patial reso	lution: Δx _{Zoom} , Δy _{Zoom}	\leq 2 GHz: \leq 8 mm 2 – 3 GHz: \leq 5 mm [*]	$3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$
	uniform	grid: Δz _{Zoom} (n)	≤ 5 mm	$3-4$ GHz: ≤ 4 mm $4-5$ GHz: ≤ 3 mm $5-6$ GHz: ≤ 2 mm
Maximum zoom scan spatial resolution, normal to phantom surface	ΔZZoom(1). σetween	1st two points closest	≤ 4 mm	$3 - 4 \text{ GHz: } \le 3 \text{ mm}$ $4 - 5 \text{ GHz: } \le 2.5 \text{ mm}$ $5 - 6 \text{ GHz: } \le 2 \text{ mm}$
		between subsequent	$\leq 1.5 \cdot \Delta z$	Zoom(n-1)
Minimum zoom scan volume x, y, z		≥ 30 mm	$3 - 4 \text{ GHz:} \ge 28 \text{ mm}$ $4 - 5 \text{ GHz:} \ge 25 \text{ mm}$ $5 - 6 \text{ GHz:} \ge 22 \text{ mm}$	

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan (FCC only)

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a one-dimensional grid. In order to get a reasonable extrapolation the extrapolated distance should not be larger than the step size in Z-direction.

Page 11 of 32

^{*} When zoom scan is required and the <u>reported</u> SAR from the area scan based *1-g SAR estimation* procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

6.2. Volume Scan Procedures

Step 1: Repeat Step 1-4 in Section 6.1

Step 2: Volume Scan

Volume Scans are used to assess peak SAR and averaged SAR measurements in largely extended 3-dimensional volumes within any phantom. This measurement does not need any previous area scan. The grid can be anchored to a user specific point or to the current probe location.

Step 3: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

7. Device Under Test

Tablet	
Model: BP710A	
Operating Configuration(s)	Tablet Mode
Exposure Condition(s)	The device is used in close proximity to the body. Specific details of the required test positions are provided in Section 8 "Exposure Conditions"
Accessory	None

7.1. Band and Air Interfaces

Tx Frequency Bands	802.11b/g/n: 2412 - 2462 MHz, b/g/n			
	Bluetooth: 2402 - 2480 MHz			
Modulation	WiFi 802.11b/g/n HT20			
	Bluetooth Ver. 3.0			
Duty Cycle	802.11b/g/n: 100%			

7.2. Special test Considerations

The DUT features a bevel on the rear on the unit in the area of the antenna. A KDB enquiry was made to ensure no additional testing was required. The response to the KDB enquiry stated that no additional testing in the beveled area was required.

7.3. Simultaneous Transmission

Simultaneous Transmission WiFi 2.4 GHz Radio cannot transmit simultaneously with Bluetooth Radio.

8. Exposure Conditions

Refer to Section 16 "Antenna Dimensions and Separation Distances" for the specific details of the antenna-to-antenna and antenna-to-edge(s) distances.

8.1. Body

Toot Configurations	Antenna-to-	SAR	Note
Test Configurations	edge/surface	Required	Note
Rear	6.6mm	Yes	
Front	-	No	SAR is not required as this is not a typical use scenario
Edge 1	35.2mm	Yes	
Edge 2	187.7mm	No	Refer to section 13 for SAR exclusion justification
Edge 3	83.65mm	No	Refer to section 13 for SAR exclusion justification
Edge 4	10.7mm	Yes	

9. RF Output Power Measurement

9.1. WiFi (2.4 GHz Band)

The absolute maximum power is 14dBm.

Required Test Channels per KDB 248227 D01

Mada	Dond	GHz	Channal	"Default Test Channels"		
Mode	Band		GHz Channel	802.11b	802.11g	
		2.412	1#	√	∇	
802.11b/g	2.4 GHz	2.437	6	√	∇	
		2.462	11 [#]	√	∇	

Notes:

^{# =} when output power is reduced for channel 1 and /or 11 to meet restricted band requirements the highest output channels closest to each of these channels should be tested.

Band (MHz)	Mode	Ch#	Freq. (MHz)	Avg Pwr (dBm)	Note
		1	2412	13.0	
	802.11b	6	2437	13.0	
		11	2462	13.3	
		1	2412	12.8	
2.4	802.11g	6	2437	13.0	
		11	2462	13.0	
	802.11n	1	2412	12.7	
		6	2437	12.9	
	(HT20)	11	2462	12.9	

Note(s):

Per KDB 248227 D01, SAR is not required for 802.11g/HT20 channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11b channels.

 $[\]sqrt{\ }$ = "default test channels"

 $[\]nabla$ = possible 802.11g channels with maximum average output ¼ dB \geq the "default test channels"

9.2. Bluetooth

The absolute maximum power is 10dBm.

Mode	Channel #	Freq. (MHz)	Conducted	Avg Power
IVIOGE	Orianine #	1 16q. (WII 12)	(dBm)	(mW)
V3.0 + EDR,	0	2402	9.2	8.32
GFSK	39	2441	8.9	7.76
GFSK	78	2480	8.8	7.59
V3.0 + EDR,	0	2402	6.7	4.68
π/4 DQPSK	39	2441	6.7	4.68
11/4 DQF3N	78	2480	6.7	4.68
V3.0 + EDR,	0	2402	6.8	4.79
8-DPSK	39	2441	6.7	4.68
0-DE2K	78	2480	6.7	4.68

This report shall not be reproduced except in full, without the written approval of UL CCS.

10. Tissue Dielectric Properties

IEEE Std 1528-2003 Table 2

Target Frequency (MHz)	He	ad
raiget Frequency (Miriz)	$\epsilon_{\rm r}$	σ (S/m)
300	45.3	0.87
450	43.5	0.87
835	41.5	0.90
900	41.5	0.97
1450	40.5	1.20
1800 – 2000	40.0	1.40
2450	39.2	1.80
2600	39.0	1.96
3000	38.5	2.40

FCC OET Bulletin 65 Supplement C 01-01

arget Frequency (MHz)	H	ead	В	ody
arget Frequency (Wiriz)	ε_{r}	σ (S/m)	ε _r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5000	36.2	4.45	49.3	5.07
5100	36.1	4.55	49.1	5.18
5200	36.0	4.66	49.0	5.30
5300	35.9	4.76	48.9	5.42
5400	35.8	4.86	48.7	5.53
5500	35.6	4.96	48.6	5.65
5600	35.5	5.07	48.5	5.77
5700	35.4	5.17	48.3	5.88
5800	35.3	5.27	48.2	6.00

10.1. Composition of Ingredients for the Tissue Material Used in the SAR Tests

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients					Frequen	cy (MHz)				
(% by weight)	45	450		835		915		00	2450	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

Salt: 99+% Pure Sodium Chloride Sugar: 98+% Pure Sucrose Water: De-ionized, 16 M Ω + resistivity HEC: Hydroxyethyl Cellulose DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

Simulating Liquids for 5 GHz, Manufactured by SPEAG

Ingredients	(% by weight)
Water	78
Mineral oil	11
Emulsifiers	9
Additives and Salt	2

This report shall not be reproduced except in full, without the written approval of UL CCS.

10.2. Tissue Dielectric Parameter Check Results

The temperature of the tissue-equivalent medium used during measurement must also be within 18°C to 25°C and within \pm 2°C of the temperature when the tissue parameters are characterized.

The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3-4 days of use; or earlier if the dielectric parameters can become out of tolerance; for example, when the parameters are marginal at the beginning of the measurement series.

Tissue dielectric parameters were measured at the low, middle and high frequency of each operating frequency range of the test device.

Date	Freq. (MHz)		Liqui	id Parameters	Measured	Target	Delta (%)	Limit ±(%)
	Body 2450	e'	50.8600	Relative Permittivity (ε_r):	50.86	52.70	-3.49	5
	Бойу 2450	e"	14.7300	Conductivity (σ):	2.01	1.95	2.90	5
20/02/2013	Body 2410	e'	51.0100	Relative Permittivity (ε_r):	51.01	52.76	-3.32	5
20/02/2013	Dody 2410	e"	14.5700	Conductivity (σ):	1.95	1.91	2.36	5
	Pody 2475	e'	50.8000	Relative Permittivity (ε_r):	50.80	52.67	-3.55	5
	Body 2475		14.8300	Conductivity (σ):	2.04	1.99	2.81	5
	Body 2450	e'	51.9200	Relative Permittivity (ε_r):	51.92	52.70	-1.48	5
	Dody 2430	e"	14.3500	Conductivity (σ):	1.95	1.95	0.25	5
14/03/2013	Body 2410	e'	52.1000	Relative Permittivity (ε_r):	52.10	52.76	-1.25	5
14/03/2013	Body 2410	e"	14.1900	Conductivity (σ):	1.90	1.91	-0.31	5
	Pody 2475	e'	51.8300	Relative Permittivity (ε_r):	51.83	52.67	-1.59	5
	Body 2475	e"	14.4400	Conductivity (σ):	1.99	1.99	0.10	5

11. System Performance Check

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are remeasured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

11.1. System Performance Check Measurement Conditions

- The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0 ±0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.
- The depth of tissue-equivalent liquid in a phantom must be ≥ 15.0 cm ± 0.5 cm for SAR measurements ≤ 3 GHz and ≥ 10.0 cm ± 0.5 cm for measurements > 3 GHz.
- The DASY system with an E-Field Probe was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat
 phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard
 measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid
 surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole.
 For 5 GHz band The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (below 3 GHz) and/or 8x8x7 (above 3 GHz) fine cube was chosen for the cube.
- Distance between probe sensors and phantom surface was set to 3 mm.
 For 5 GHz band Distance between probe sensors and phantom surface was set to 2.5 mm
- The dipole input power (forward power) was 100 mW.
- The results are normalized to 1 W input power.

11.2. Reference SAR Values for System Performance Check

The reference SAR values can be obtained from the calibration certificate of system validation dipoles

THE TELEFICION OF THE	values call be obtain	nea nom the ballora	tion ocitinoate t	or System v	andation dipole	,0			
System Dinale	Serial No.	Cal. Date	Freq. (MHz)	Target SAR Values (mW/g)					
System Dipole	Senai No.	Cal. Date	rieq. (MHZ)	1g/10g	Head	Body			
D2450\/2	706	4/11/12	2450	1g	51.2	49.6			
D2450V2	700	4/11/12	2450	10a	23.9	23.4			

11.3. System Performance Check Results

The 1-g and 10-g SAR measured with a reference dipole, using the required tissue-equivalent medium at the test

frequency, must be within 10% of the manufacturer calibrated dipole SAR target.

	System	System Dipole		0	Mea	asured Re	sults	Target	Delta	Est./Zoo	Plot
Date Tested	Туре	Serial #	T.S. Liquid		Area Scan	Zoom Scan	Normalize to 1 W	(Ref. Value)	±10 %	m Ratio	No.
2/20/2013	D2450V2	706	Body	1g	4.66	4.68	46.8	49.6	-5.65	-0.43	1,2
2/20/2013	D2430 V2	700	Бойу	10g	2.01	2.16	21.6	23.4	-7.69		1,2
3/14/2013	D2450V2	706	Body	1g	4.88	4.81	48.1	49.6	-3.02	1.43	1,2
3/14/2013	D2450 V Z	700	Войу	10g	2.12	2.24	22.4	23.4	-4.27		1,2

12. SAR Test Results

12.1. Standalone SAR Test Exclusion Considerations

Standalone SAR test exclusion was based upon the following criteria:

- 1. If the antenna to DUT adjacent edge or bottom separation distance is < 50mm a distance of 5mm is used to determine SAR exclusion and estimated SAR value
- 2. If the antenna to DUT adjacent edge or bottom separation distance is >50mm the actual antenna to user separation distance is used to determine SAR exclusion and estimated SAR value

12.1.1. SAR exclusion calculations for Wi-Fi and Bluetooth for antenna <50mm from the user

Antonna	Antenna Tx Frequency Output power (MHz) dBm mW		Frequency Output power			Separation distances (mm)					Calculated Threshold Value					
Antenna			Bottom	Edge 1	Edge 2	Edge 3	Edge 4	Front	Bottom	Edge 1	Edge 2	Edge 3	Edge 4	Front		
WiFi - Main	iFi - Main Antenna															
WLAN Main	WiFi	2412	14.00	25	5	5	187.7	83.65	5		7.8	7.8	> 50 mm	> 50 mm	7.8	N/A
WLAN Main	Bluetooth	2402	10.00	10	5	5	187.7	83.65	5		3.1	3.1	> 50 mm	> 50 mm	3.1	N/A

Note(s):

According to KDB 447498, if the calculated threshold value is >3 then SAR testing is required.

12.1.2. SAR exclusion calculations for Wi-Fi and Bluetooth for antenna >50mm from the user

Antenna Tx Frequency			Output power		Separation distances (mm)					Power Threshold						
Antenna	1.	(MHz)	dBm	mW	Bottom	Edge 1	Edge 2	Edge 3	Edge 4	Front	Bottom	Edge 1	Edge 2	Edge 3	Edge 4	Front
WiFi - Main	/iFi - Main Antenna															
WLAN Main	WiFi	2412	14.00	25	5	5	187.7	83.65	5		< 50 mm	< 50 mm	1474	433	< 50 mm	N/A
WLAN Main	Bluetooth	2402	10.00	10	5	5	187.7	83.65	5		< 50 mm	< 50 mm	1474	433	< 50 mm	N/A

Note(s):

1. According to KDB 447498, if the calculated Power threshold is less than the output power then SAR testing is required.

Page 23 of 32

12.2. Wi-Fi (2.4 GHz Band)

		Dist.		Freq.	Power	(dBm)	1-g SAF	R (W/kg)	Plot		
Test Position	Mode	(mm)	Ch #.	(MHz)	Tune-up limit	Meas.	Meas.	Scaled	No.	Note	
			1	2412	14.0	13.0	0.686	0.864			
Rear	802.11b	0	6	2437	14.0	13.0	0.872	1.098			
		11	2462	14.0	13.3	1.030	1.210				
			1	2412	14.0	13.0				1	
Edge 1	802.11b	0	0	6	2437	14.0	13.0				1
			11	2462	14.0	13.3	0.097	0.114			
			1	2412	14.0	13.0				1	
Edge 4 802.11	802.11b	0	6	2437	14.0	13.0				1	
			11	2462	14.0	13.3	0.596	0.700			

Per KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01, repeated measurement result from section 13 was scaled and used for reporting.

		Dist.		Freq.	Power	(dBm)	1-g SAF	R (W/kg)	Plot	
Test Position	Mode	(mm)	Ch #.	(MHz)	Tune-up limit	Meas.	Meas.	Scaled	No.	Note
Rear	802.11b	0	11	2462	14.0	13.3	1.070	1.257	1	

Note(s):

According to KDB 447498, Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz.

12.3. Bluetooth (Ver 3.0+EDR)

	Mode	Dist. (mm)	Ch #.	Freq. (MHz)	Power (dBm)		1-g SAR (W/kg)		Plot	
Test Position					Tune-up limit	Meas.	Meas.	Scaled	No.	Note
	V3.0 + EDR, GFSK	0	0	2402	10.0	9.2	0.071	0.085		1
Rear			39	2441	10.0	8.9				
			78	2480	10.0	8.8				
	V3.0 + EDR, GFSK	0	0	2402	10.0	9.2	0.011	0.013		1
Edge 1			39	2441	10.0	8.9				
			78	2480	10.0	8.8				
	V3.0 + EDR, GFSK	0	0	2402	10.0	9.2	0.027	0.032		1
Edge 4			39	2441	10.0	8.9				
			78	2480	10.0	8.8				

Note(s):

This report shall not be reproduced except in full, without the written approval of UL CCS.

According to KDB 447498, Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz.

13. SAR Measurement Variability

In accordance with published RF Exposure KDB procedure 865664 D01 SAR measurement 100 MHz to 6 GHz v01. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-q SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

13.1. The Highest Measured SAR Configuration in Each Frequency Band

Body Exposure Condition

Frequency band	Test Position	Mode	Ch. #	Freq. (MHz)	Measured 1g SAR (W/kg)	
2.4 GHz	Rear	802.11b	11	2462	1.03	

13.2. Repeated Measurement Results

Body Exposure Condition

Frequency band	Test Position	Mode	Ch #.	Freq. (MHz)	Meas. SAR (W/kg)		Largest to	
					Original	Repeated	Smallest SAR Ratio	Note
2.4 GHz	Rear	802.11b 1Mbps	11	2462.0	1.030	1.070	1.04	1

Note(s):

14. Appendixes

Refer to separated files for the following appendixes.

- 14.1. System Performance Check Plots
- 14.2. SAR Test Plots for Wi-Fi 2.4 GHz Band
- 14.3. SAR Test Plots for Bluetooth (Ver 3.0+EDR)
- 14.4. Calibration Certificate for E-Field Probe EX3DV4 SN 3885
- 14.5. Calibration Certificate for D2450V2 SN706