

FCC CFR47 PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 8

CERTIFICATION TEST REPORT

FOR

TABLET

MODEL NUMBER: BP710A

FCC ID: PSZ-BP710A IC: 1000F-BP710A

REPORT NUMBER: 12U14748-1, REVISION C

ISSUE DATE: APRIL 2, 2013

Prepared for

INTEL CORPORATION 2200 MISSION COLLEGE BLVD. SANTA CLARA, CA 95054-1549, USA

Prepared by
UL CCS
47173 BENICIA STREET
FREMONT, CA 94538, U.S.A.
TEL: (510) 771-1000

TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	Issue Date	Revisions	Revised By
	3/6/2013	Initial Issue	T. LEE
A	3/18/2013	Corrections to report.	G. Persons
В	3/28/2013	Correction to model number on Attestation page	G. Persons
С	4/2/2013	Correction to address	G. Persons

TABLE OF CONTENTS

1.	A	ATTEST	ATION OF TEST RESULTS	5
2.	7	TEST MI	ETHODOLOGY	6
3.	F	FACILIT	IES AND ACCREDITATION	6
4.	(CALIBR	ATION AND UNCERTAINTY	6
	4.1	I. MEA	ASURING INSTRUMENT CALIBRATION	6
	4.2	. SAN	MPLE CALCULATION	6
	4.3	B. MEA	ASUREMENT UNCERTAINTY	6
5.	E	EQUIPM	ENT UNDER TEST	7
	5.1	. DES	SCRIPTION OF EUT	7
	5.2	2. MA)	KIMUM PEAK OUTPUT POWER	7
	5.3	B. DES	SCRIPTION OF AVAILABLE ANTENNAS	7
	5.4	. SOF	TWARE AND FIRMWARE	7
	5.5	5. WO	RST-CASE CONFIGURATION AND MODE	8
	5.6	6. DES	SCRIPTION OF TEST SETUP	9
6.	7	ΓEST ΑΝ	ND MEASUREMENT EQUIPMENT	.11
7.	N	MEASUF	REMENT METHODS	.12
	7.1		TIME, DUTY CYCLE AND MEASUREMENT METHODS	
8.	ļ	ANTENN	IA PORT TEST RESULTS	.16
	8.1		11b MODE IN THE 2.4 GHz BAND	
	_		6 dB BANDWIDTH99% BANDWIDTH	
			AVERAGE POWER	
	_	3.1.4.	PEAK OUTPUT POWER	.23
			PSD OUT-OF-BAND EMISSIONS	.27 30
	8.2		.11g MODE IN THE 2.4 GHz BAND	
	_		6 dB BANDWIDTH	
			99% BANDWIDTH	
			AVERAGE POWER PEAK OUTPUT POWER	
		3.2.5.	PSD	.46
	8	3.2.6.	OUT-OF-BAND EMISSIONS	.49
			11n HT20 MODE IN THE 2.4 GHz BAND	_
			6 dB BANDWIDTH	
			AVERAGE POWER	
			PEAK OUTPUT POWER	
			Page 3 of 111	

8	3.3.5.	PSD	65
8	3.3.6.	OUT-OF-BAND EMISSIONS	68
9. F	RADIAT	ED TEST RESULTS	73
9.1	. LIM	ITS AND PROCEDURE	73
9.2	2. TX	ABOVE 1 GHz 802.11b MODE IN THE 2.4 GHz BAND	74
9.3	3. TX	ABOVE 1 GHz 802.11g MODE IN THE 2.4 GHz BAND	79
9.4	1. TX	ABOVE 1 GHz 802.11n HT20 MODE IN THE 2.4 GHz BAND	88
9.5	5. WO	RST-CASE BELOW 1 GHz	97
10.	AC PO	OWER LINE CONDUCTED EMISSIONS	100
11.	SETU	P PHOTOS	104

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: INTEL CORPORATION

2200 MISSION COLLEGE BLVD. SANTA CLARA, CA 95054-1549, USA

EUT DESCRIPTION: Tablet

MODEL: BP710A

SERIAL NUMBER: YKB311604755 (Radiated unit), YKB311605082 (Conducted unit)

DATE TESTED: FEBRUARY 2 to March 5, 2013

APPLICABLE STANDARDS

STANDARD TEST RESULTS

CFR 47 Part 15 Subpart C Pass

INDUSTRY CANADA RSS-210 Issue 8 Annex 8 Pass

INDUSTRY CANADA RSS-GEN Issue 3 Pass

UL CCS tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL CCS By: Tested By:

TIM LEE

WISE PROGRAM MANAGER

UL CCS

TOM C HEN EMC ENGINEER UL CCS

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, ANSI C63.10-2009, RSS-GEN Issue 3, and RSS-210 Issue 8.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a tablet with 802.11b/g/n and Bluetooth.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum conducted output power as follows:

Frequency Range (MHz)	Mode	Output Power (dBm)	Output Power (mW)
2412 - 2462	802.11b	16.82	48.08
2412 - 2462	802.11g	22.4	173.78
2412 - 2462	802.11n HT20	22.13	163.31

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a chip antenna, with a maximum gain of 2.5 dBi.

5.4. SOFTWARE AND FIRMWARE

The test utility software used during testing was YKB JB 11976

5.5. WORST-CASE CONFIGURATION AND MODE

The fundamental of the EUT was investigated in three orthogonal orientations X,Y,Z, and it was found that Y orientation is worst-case orientation; therefore, final radiated testing was performed with the EUT in the Y orientation.

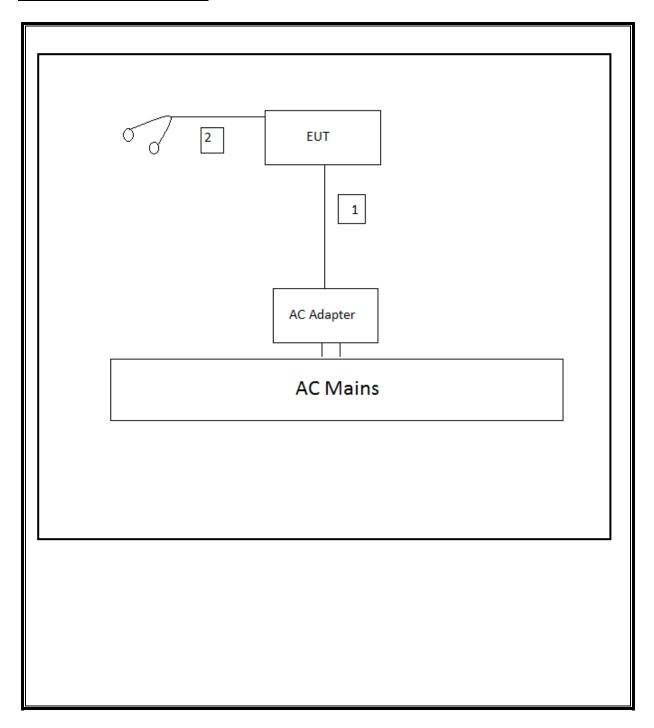
For Radiated Emissions below 1 GHz and Power line Conducted Emissions, the channel with the highest conducted output power was selected as a worst-case scenario.

Based on the baseline scan, the worst-case data rates were:

All final tests in the 802.11b mode were made at 1 Mb/s. All final tests in the 802.11g mode were made at 6 Mb/s. All final tests in the 802.11n HT20 mode were made at MCS0

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT


PERIPHERAL SUPPORT EQUIPMENT LIST							
Description Manufacturer Model Serial Number FCC ID							
AC Adapter	Intel	S11A02	130300073060	DoC			
Power Splitter	Krytar	158010	99250	N/A			
Headset	N/A	N/A	N/A	N/A			

I/O CABLES

	I/O Cable List						
Cable No	Cable Port # of identical Connector Cable Type Cable ports Type Length (m)						
1	DC	1	MINI USB	UN-SHELDED	0.7m	N/A	
2	AUDIO	1	MINI JACK	UN-SHELDED	1.0m	N/A	

TEST SETUP

SETUP DIAGRAM FOR TESTS

This report shall not be reproduced except in full, without the written approval of UL CCS.

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Test Equipment List				
Description	Manufacturer	Model	Asset	Cal Due
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C01052	11/11/13
Antenna, Horn, 18 GHz	EMCO	3115	C00945	10/06/13
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00580	11/11/13
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	C01011	03/23/13
Horn Antenna, 26.5 GHz	ARA	MWH-1826/B	C00589	04/23/13
Reject Filter, 2.0-2.9 GHz	Micro-Tronics	BRM50702	N02684	CNR
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C01069	12/20/14
E-Series Power Sensor 9 kHg~18 GHz	Agilent	E9304A	1260847C	05/23/13
P-Series single channel Power Meter	Agilent / HP	N1911A	T229	07/27/13
Reject Filter, 5.725-5.825 GHz	Micro-Tronics	BRC13192	N02676	CNR
Reject Filter, 2.4-2.5 GHz	Micro-Tronics	BRM50702	N02685	CNR
Highpass Filter, 7.6 GHz	Micro-Tronics	HPM13195	N02682	CNR
EMI Test Receiver, 30MHz	R & S	ESHS 20	N02396	08/08/13
LISN, 30 MHz	FCC	LISN-50/250-25-2	N02625	01/14/14

7. MEASUREMENT METHODS

KDB 558074 Measurement Procedure PK2 is used for power and PKPSD is used for power spectral density.

Unwanted emissions within Restricted Bands are measured using traditional radiated procedures.

7.1. ON TIME, DUTY CYCLE AND MEASUREMENT METHODS

DATE: APRIL 2, 2013

IC: 1000F-BP710A

LIMITS

None; for reporting purposes only.

PROCEDURE

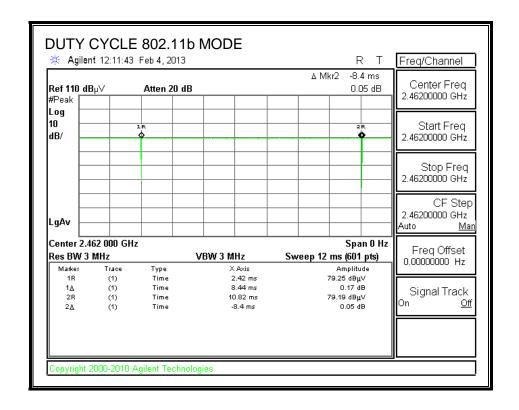
KDB 789033 Zero-Span Spectrum Analyzer Method.

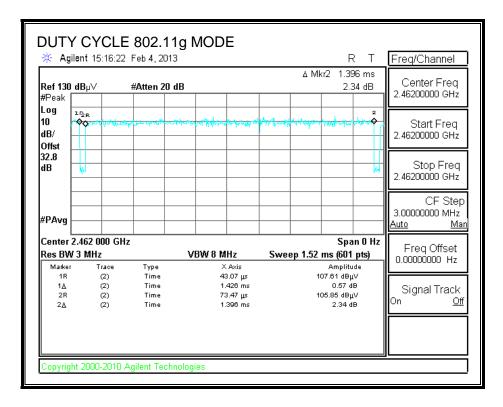
ON TIME AND DUTY CYCLE RESULTS

Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle	1/T
	В		x	Cycle	Correction Factor	Minimum VBW
	(msec)	(msec)	(linear)	(%)	(dB)	(kHz)
802.11b	8.40	8.44	0.995	99.5%	0.00	0.010
802.11g	1.40	1.43	0.979	97.9%	0.09	0.716
802.11n HT20	1.31	1.34	0.977	97.7%	0.10	0.766

MEASUREMENT METHOD FOR POWER AND PPSD

The Duty Cycle is greater than or equal to 98% therefore KDB 789033 Method SA-1 is used.


The Duty Cycle is less than 98% therefore KDB 789033 Method SA-2 is used.


MEASUREMENT METHOD FOR AVERAGE SPURIOUS EMISSIONS ABOVE 1 GHz

The Duty Cycle is greater than or equal to 98%, KDB 789033 Method AD with Power RMS Averaging is used.

The Duty Cycle is less than 98% and consistent, KDB 789033 Method AD with Power RMS Averaging and duty cycle correction is used.

DUTY CYCLE PLOTS

(2) (2) (2)

Copyright 2000-2010 Agilent Technologies

1<u>∆</u> 2R Time

Time

Time

44.2 μs 1.336 ms

44.2 µs

1.305 ms

105.93 dBμV -0.25 dB

105.93 dBµV

Signal Track

<u>Off</u>

DATE: APRIL 2, 2013

IC: 1000F-BP710A

8. ANTENNA PORT TEST RESULTS

8.1. 802.11b MODE IN THE 2.4 GHz BAND

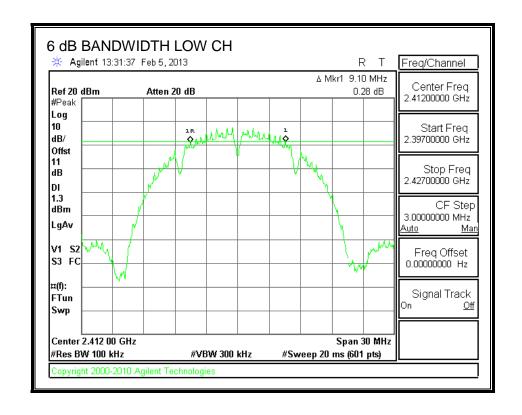
8.1.1. 6 dB BANDWIDTH

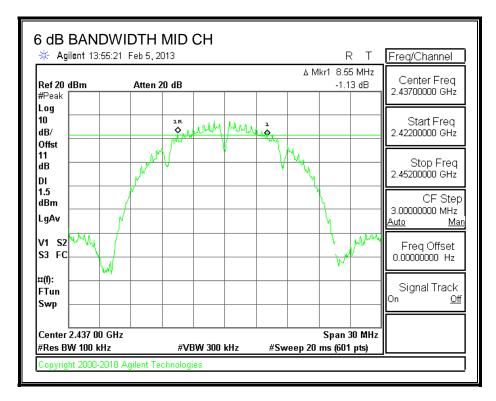
LIMITS

FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.


TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer with the RBW set between 1% and 5% of the EBW, the VBW \geq 3 x RBW, peak detector and max hold.

RESULTS

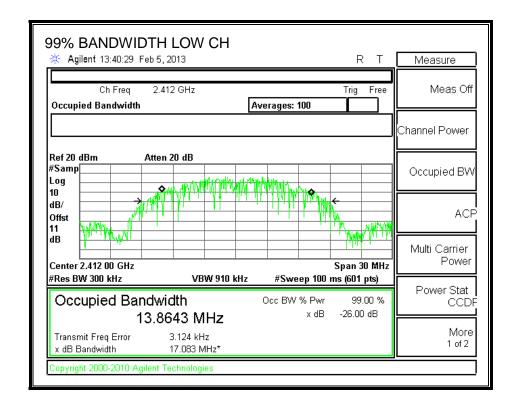
Channel	Frequency	6 dB Bandwidth	Minimum Limit
	(MHz)	(MHz)	(MHz)
Low	2412	9.100	0.5
Mid	2437	8.550	0.5
High	2462	9.050	0.5

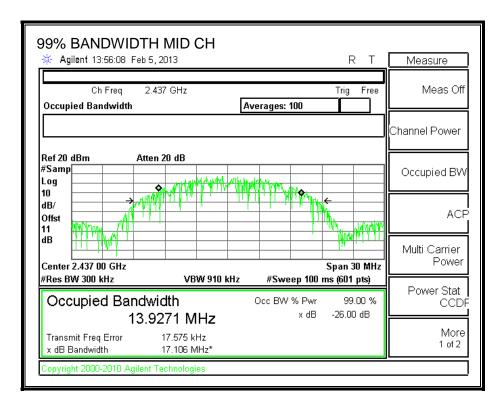
6 dB BANDWIDTH

DATE: APRIL 2, 2013

IC: 1000F-BP710A

8.1.2. 99% BANDWIDTH


LIMITS


None; for reporting purposes only.

RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2412	13.8643
Mid	2437	13.9271
High	2462	13.9276

99% BANDWIDTH

DATE: APRIL 2, 2013

IC: 1000F-BP710A

8.1.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

RESULTS

Channel	Frequency	Power
	(MHz)	(dBm)
Low	2412	13.73
Mid	2437	13.56
High	2462	13.98

8.1.4. MAXIMUM OUTPUT POWER

LIMITS

FCC §15.247

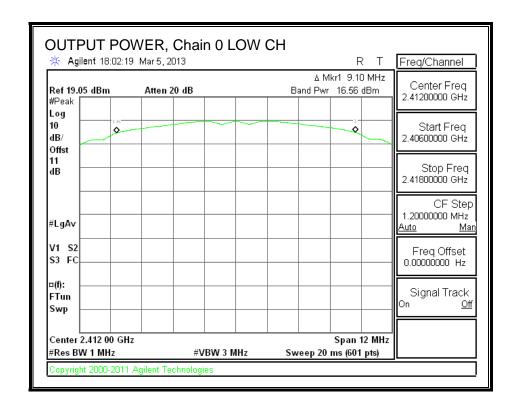
IC RSS-210 A8.4

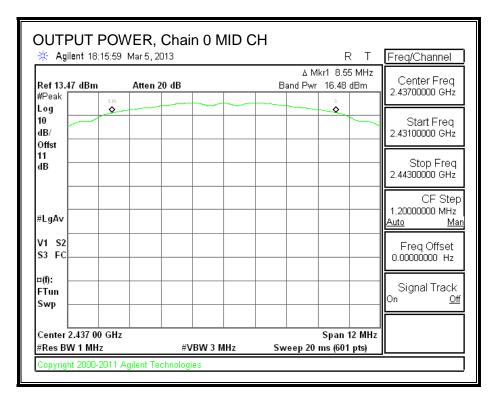
For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt, based on the use of antennas with directional gains that do not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

RESULTS


Limits


Channel	Frequency	Directional	FCC	IC	IC	Max
		Gain	Power	Power	EIRP	Power
			Limit	Limit	Limit	
	(MHz)	(dBi)	(dBm)	(dBm)	(dBm)	(dBm)
Low	2412	2.50	30.00	30	36	30.00
Mid	2437	2.50	30.00	30	36	30.00
High	2462	2.50	30.00	30	36	30.00

Results

itesuits					
Channel	Frequency	Chain 0	Total	Power	Margin
		Meas	Corr'd	Limit	
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	2412	16.56	16.56	30.00	-13.44
Mid	2437	16.48	16.48	30.00	-13.52
High	2462	16.82	16.82	30.00	-13.18

OUTPUT POWER, Chain 0

DATE: APRIL 2, 2013

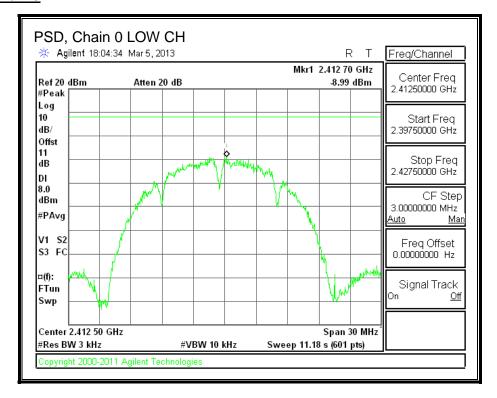
IC: 1000F-BP710A

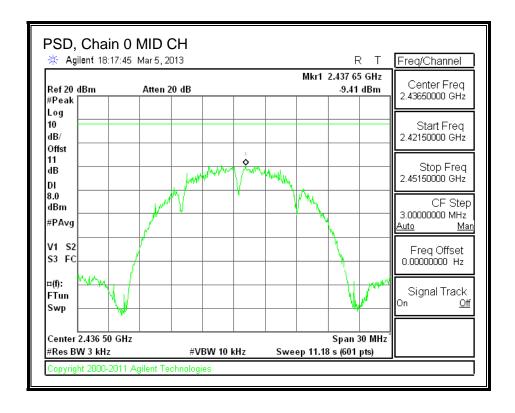
8.1.5. PSD

LIMITS

FCC §15.247

IC RSS-210 A8.2


The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.


RESULTS

PSD Results

Channel	Frequency	Chain 0	Limit	Margin
		Meas		
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	-8.99	8.0	-17.0
Mid	2437	-9.41	8.0	-17.4
High	2462	-7.44	8.0	-15.4

PSD, Chain 0

DATE: APRIL 2, 2013

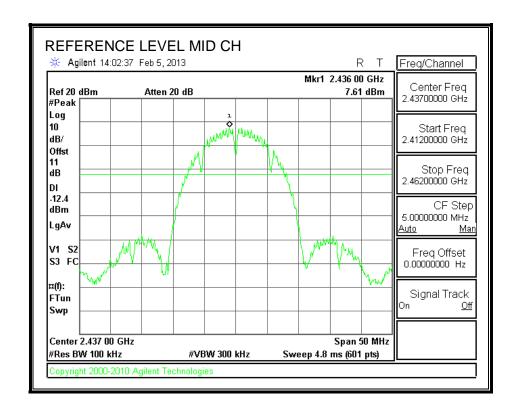
IC: 1000F-BP710A

8.1.6. OUT-OF-BAND EMISSIONS

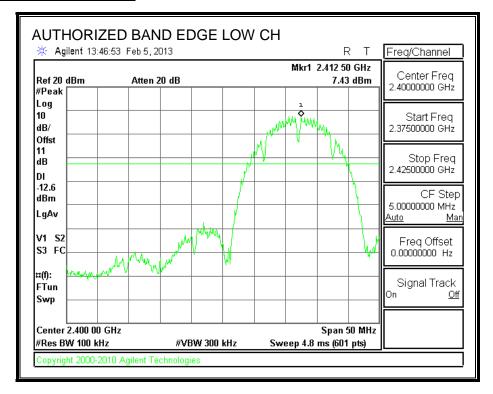
LIMITS

FCC §15.247 (d)

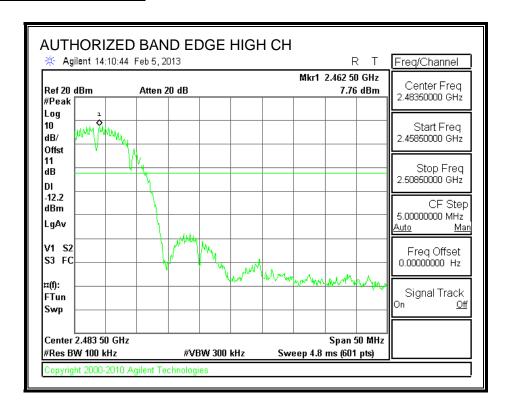
IC RSS-210 A8.5

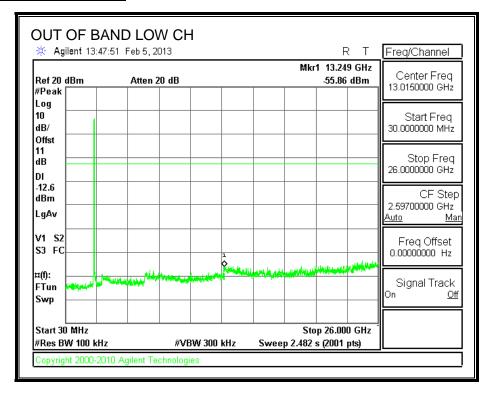

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

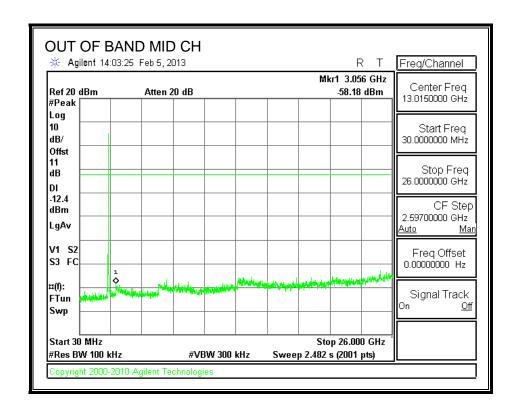
TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer with RBW = 100 kHz, VBW = 300 kHz, peak detector, and max hold. Measurements utilizing these settings are made of the inband reference level, bandedge (where measurements to the general radiated limits will not be made) and out-of-band emissions.

RESULTS


IN-BAND REFERENCE LEVEL


LOW CHANNEL BANDEDGE



HIGH CHANNEL BANDEDGE

OUT-OF-BAND EMISSIONS

DATE: APRIL 2, 2013

IC: 1000F-BP710A

8.2. 802.11g MODE IN THE 2.4 GHz BAND

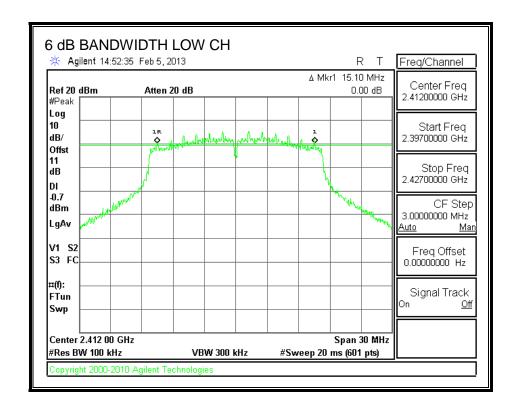
8.2.1. 6 dB BANDWIDTH

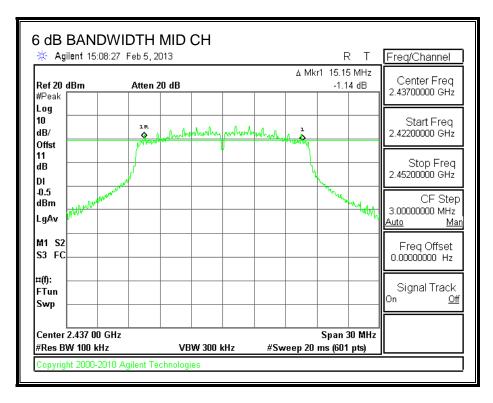
<u>LIMITS</u>

FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.


TEST PROCEDURE

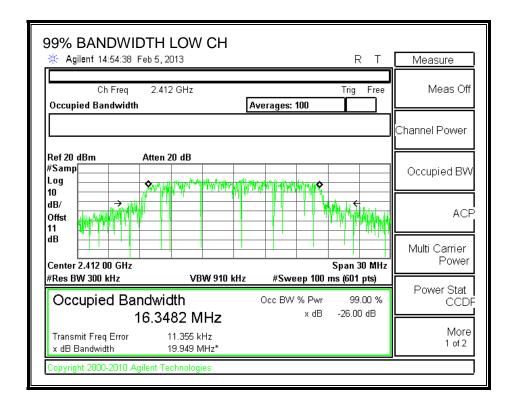

The transmitter output is connected to a spectrum analyzer with the RBW set between 1% and 5% of the EBW, the VBW >= 3 x RBW, peak detector and max hold.

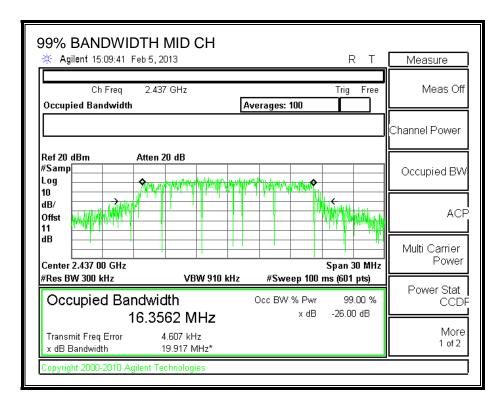
RESULTS

Channel	Frequency	6 dB Bandwidth	Minimum Limit
	(MHz)	(MHz)	(MHz)
Low	2412	15.100	0.5
Mid	2437	15.150	0.5
High	2462	15.900	0.5

6 dB BANDWIDTH

8.2.2. 99% BANDWIDTH


LIMITS


None; for reporting purposes only.

RESULTS

Channel Frequency		99% Bandwidth	
	(MHz)	(MHz)	
Low	2412	16.3482	
Mid	2437	16.3562	
High	2462	16.3539	

99% BANDWIDTH

8.2.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

RESULTS

Channel	Frequency	Power
	(MHz)	(dBm)
Low	2412	13.45
Mid	2437	13.63
High	2462	13.79

8.2.4. MAXIMUM OUTPUT POWER

LIMITS

FCC §15.247

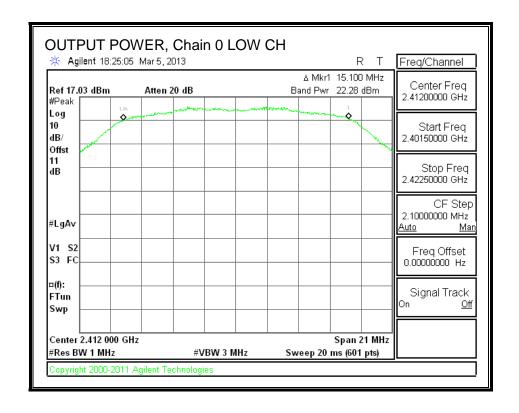
IC RSS-210 A8.4

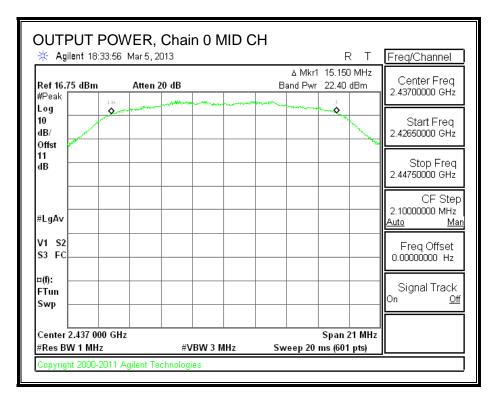
For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt, based on the use of antennas with directional gains that do not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

RESULTS


Limits


Channel	Frequency	Directional	FCC	IC	IC	Max
		Gain	Power	Power	EIRP	Power
			Limit	Limit	Limit	
	(MHz)	(dBi)	(dBm)	(dBm)	(dBm)	(dBm)
Low	2412	2.50	30.00	30	36	30.00
Mid	2437	2.50	30.00	30	36	30.00
High	2462	2.50	30.00	30	36	30.00

Results

····	. to during						
Channel	Frequency	Chain 0	Total	Power	Margin		
		Meas	Corr'd	Limit			
		Power	Power				
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)		
Low	2412	22.28	22.28	30.00	-7.72		
Mid	2437	22.40	22.40	30.00	-7.60		
High	2462	22.38	22.38	30.00	-7.62		

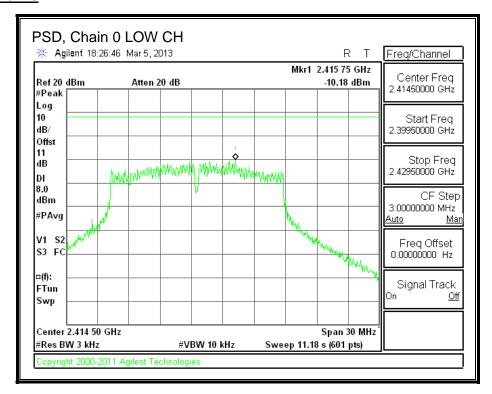
OUTPUT POWER, Chain 0

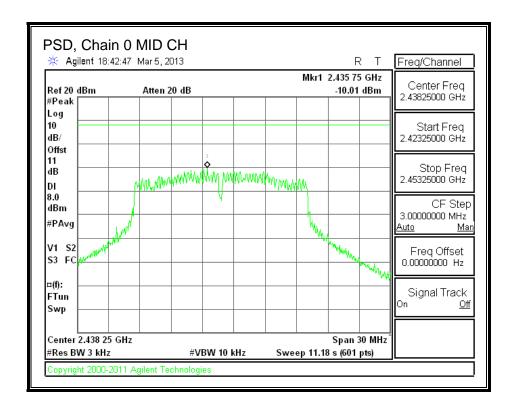
8.2.5. PSD

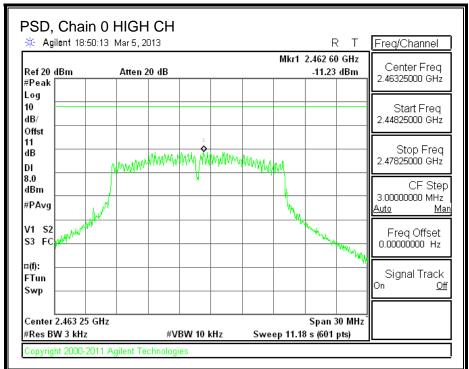
LIMITS

FCC §15.247

IC RSS-210 A8.2


The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.


RESULTS


PSD Results

Channel	Frequency	Chain 0	Limit	Margin
		Meas		
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	-10.18	8.0	-18.2
Mid	2437	-10.01	8.0	-18.0
High	2462	-11.23	8.0	-19.2

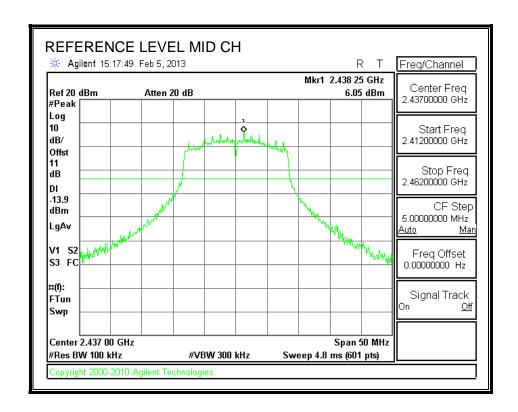
PSD, Chain 0

8.2.6. OUT-OF-BAND EMISSIONS

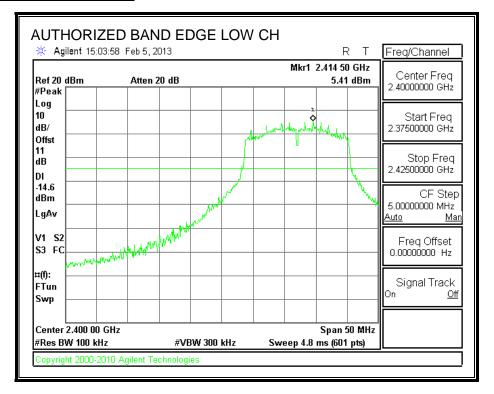
LIMITS

FCC §15.247 (d)

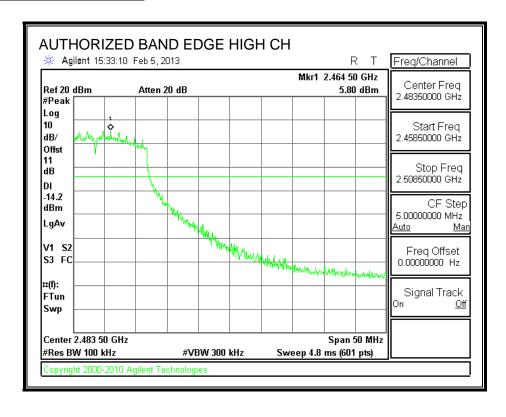
IC RSS-210 A8.5

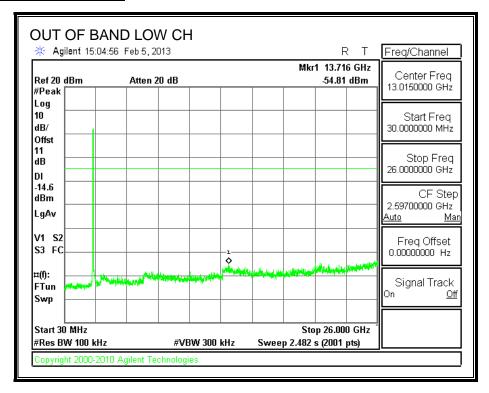

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

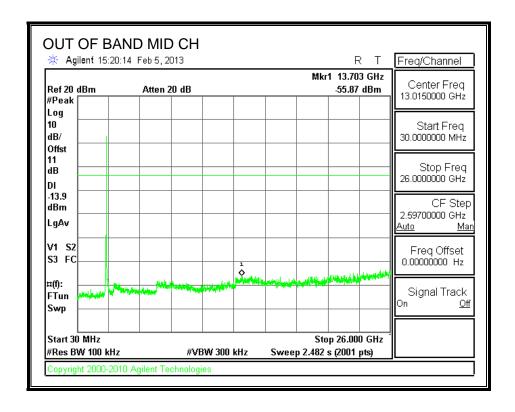
TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer with RBW = 100 kHz, VBW = 300 kHz, peak detector, and max hold. Measurements utilizing these settings are made of the inband reference level, bandedge (where measurements to the general radiated limits will not be made) and out-of-band emissions.

RESULTS


IN-BAND REFERENCE LEVEL


LOW CHANNEL BANDEDGE



HIGH CHANNEL BANDEDGE

OUT-OF-BAND EMISSIONS

8.3. 802.11n HT20 MODE IN THE 2.4 GHz BAND

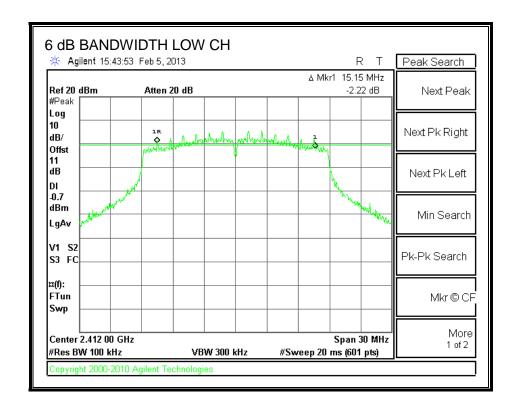
8.3.1. 6 dB BANDWIDTH

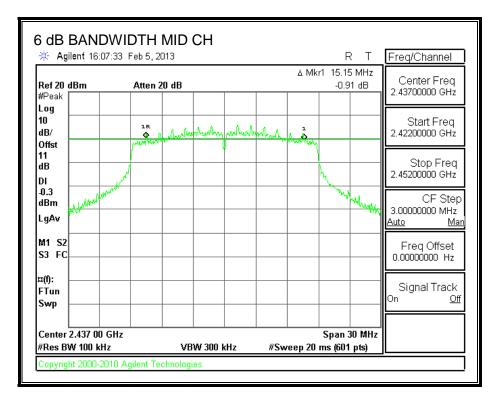
<u>LIMITS</u>

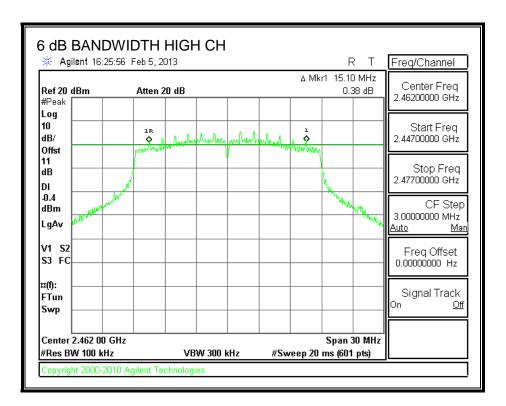
FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.


TEST PROCEDURE

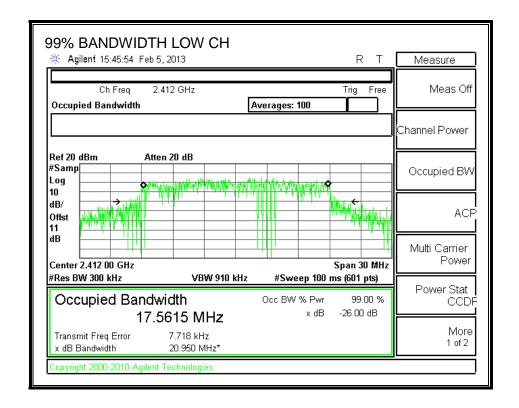

The transmitter output is connected to a spectrum analyzer with the RBW set between 1% and 5% of the EBW, the VBW >= 3 x RBW, peak detector and max hold.

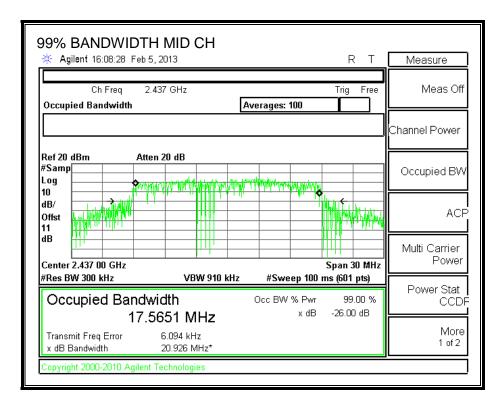

RESULTS

Channel	Frequency	6 dB Bandwidth	Minimum Limit
	(MHz)	(MHz)	(MHz)
Low	2412	15.150	0.5
Mid	2437	15.150	0.5
High	2462	15.100	0.5

6 dB BANDWIDTH

8.3.2. 99% BANDWIDTH


LIMITS


None; for reporting purposes only.

RESULTS

Channel Frequency		99% Bandwidth
	(MHz)	(MHz)
Low	2412	17.5615
Mid	2437	17.5651
High	2462	17.5483

99% BANDWIDTH

8.3.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

RESULTS

Channel	Frequency	Power
	(MHz)	(dBm)
Low	2412	13.55
Mid	2437	13.61
High	2462	13.51

8.3.4. MAXIMUM OUTPUT POWER

LIMITS

FCC §15.247

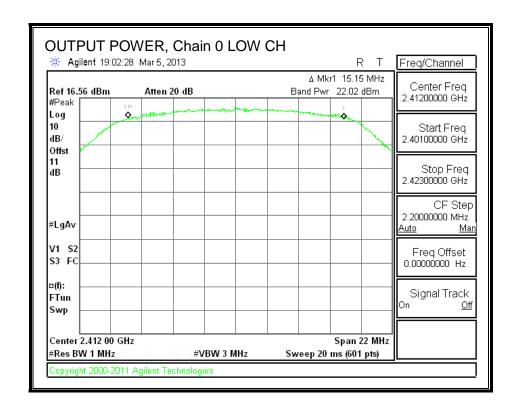
IC RSS-210 A8.4

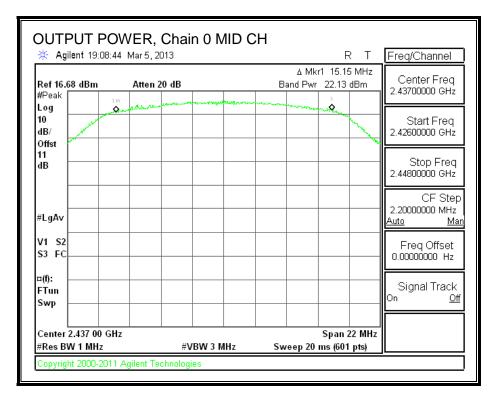
For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt, based on the use of antennas with directional gains that do not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

RESULTS


Limits


Channel	Frequency	Directional	FCC	IC	IC	Max
		Gain	Power	Power	EIRP	Power
			Limit	Limit	Limit	
	(MHz)	(dBi)	(dBm)	(dBm)	(dBm)	(dBm)
Low	2412	2.50	30.00	30	36	30.00
Mid	2437	2.50	30.00	30	36	30.00
High	2462	2.50	30.00	30	36	30.00

Results

Channel	Frequency	Chain 0	Total	Power	Margin
		Meas	Corr'd	Limit	
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	2412	22.02	22.02	30.00	-7.98
Mid	2437	22.13	22.13	30.00	-7.87
High	2462	22.02	22.02	30.00	-7.98

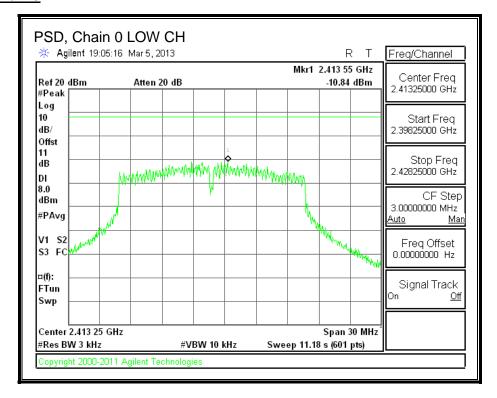
OUTPUT POWER, Chain 0

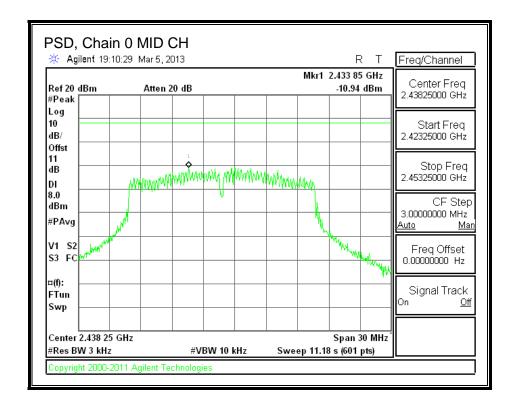
8.3.5. PSD

LIMITS

FCC §15.247

IC RSS-210 A8.2


The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.


RESULTS

PSD Results

Channel	Frequency	Chain 0	Limit	Margin
		Meas		
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	-10.84	8.0	-18.8
Mid	2437	-10.94	8.0	-18.9
High	2462	-10.53	8.0	-18.5

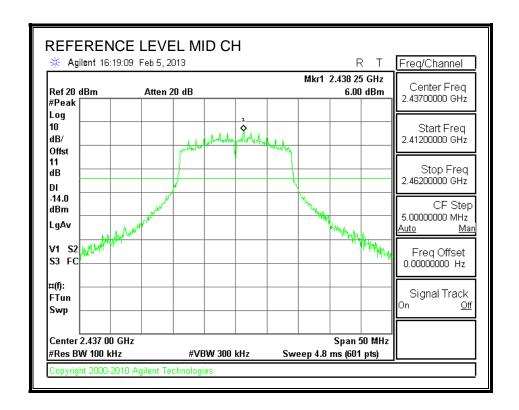
PSD, Chain 0

8.3.6. OUT-OF-BAND EMISSIONS

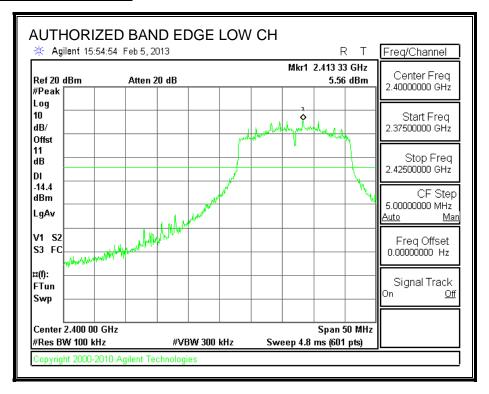
LIMITS

FCC §15.247 (d)

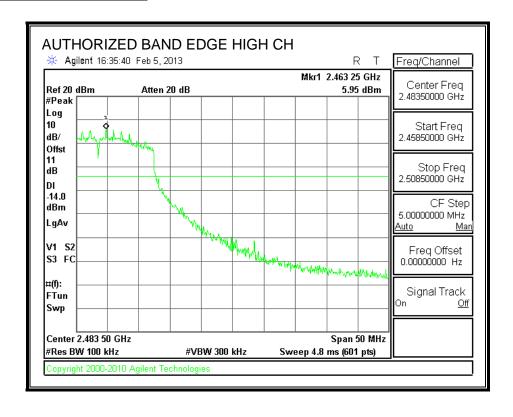
IC RSS-210 A8.5

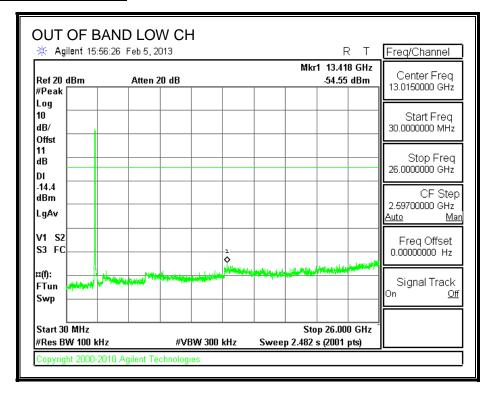

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

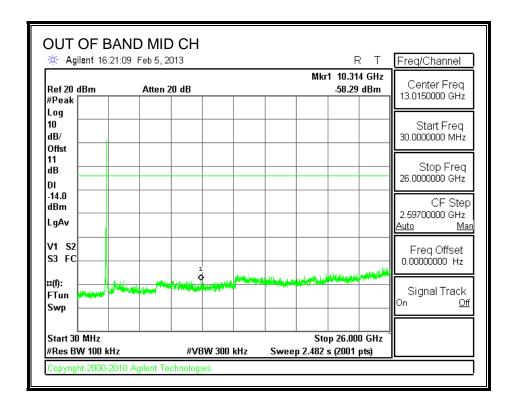
TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer with RBW = 100 kHz, VBW = 300 kHz, peak detector, and max hold. Measurements utilizing these settings are made of the inband reference level, bandedge (where measurements to the general radiated limits will not be made) and out-of-band emissions.

RESULTS


IN-BAND REFERENCE LEVEL


LOW CHANNEL BANDEDGE



HIGH CHANNEL BANDEDGE

OUT-OF-BAND EMISSIONS

9. RADIATED TEST RESULTS

9.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

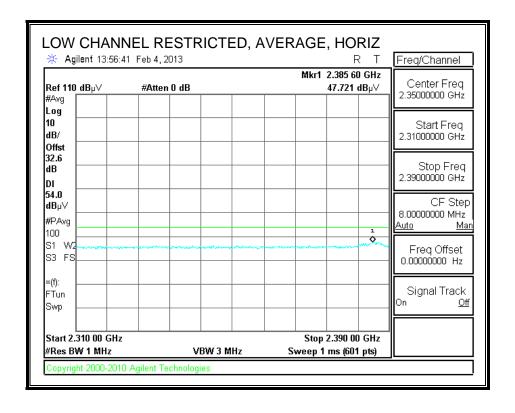
Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

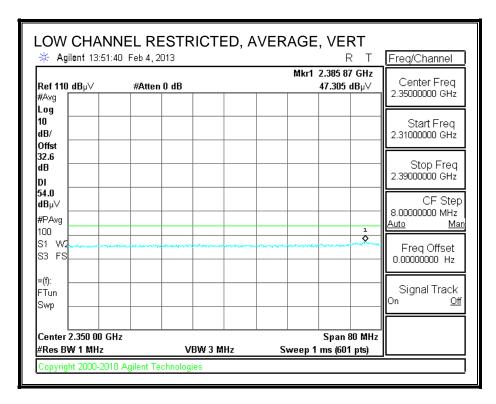
The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

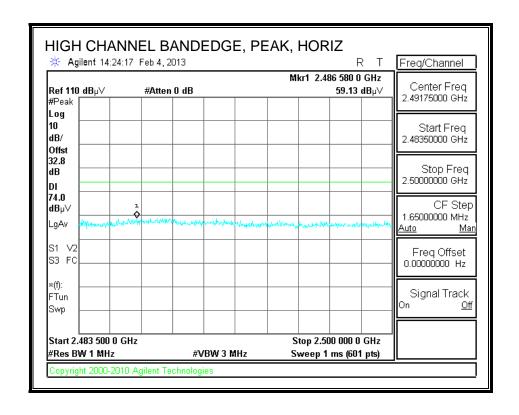
For measurements above 1 GHz the resolution bandwidth is set to 1 MHz; the video bandwidth is set to 1 MHz for peak measurements and as applicable for average measurements.

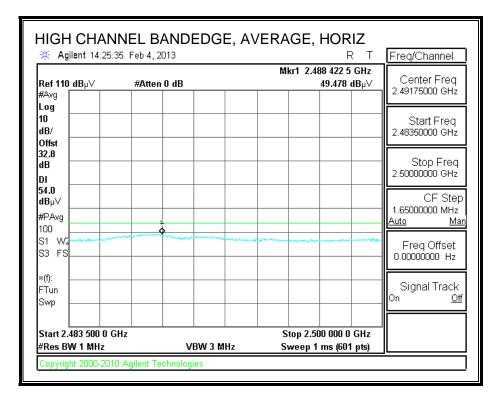

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each applicable band.

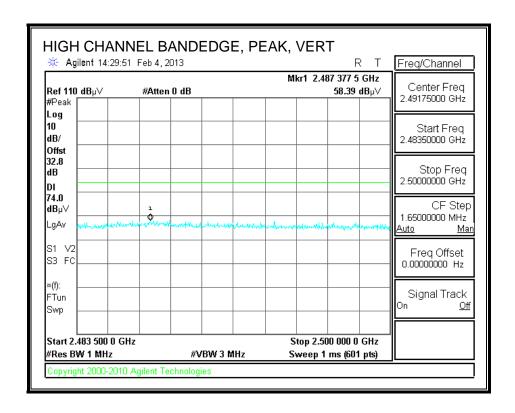
The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

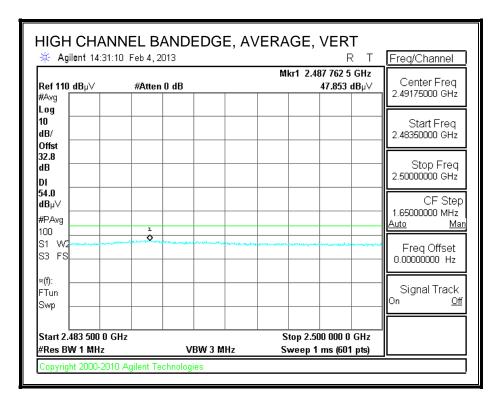

9.2. TX ABOVE 1 GHz 802.11b MODE IN THE 2.4 GHz BAND

RESTRICTED BANDEDGE (LOW CHANNEL)








This report shall not be reproduced except in full, without the written approval of UL CCS.

AUTHORIZED BANDEDGE (HIGH CHANNEL)

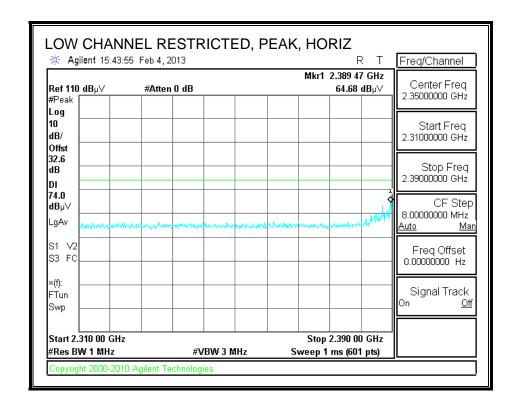
HARMONICS AND SPURIOUS EMISSIONS

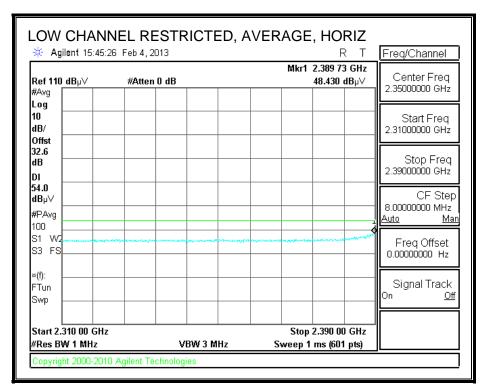
High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: Tom Chen Date: 02/05/13 Project #: 12U14748 Company: Intel Inc. Test Target: FCC Class B Mode Oper: 802.11b, TX mode

> f Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit Analyzer Reading Avg Average Field Strength @ 3 m Antenna Factor Peak Calculated Peak Field Strength Cable Loss HPF High Pass Filter Read Margin vs. Average Limit AF Margin vs. Peak Limit

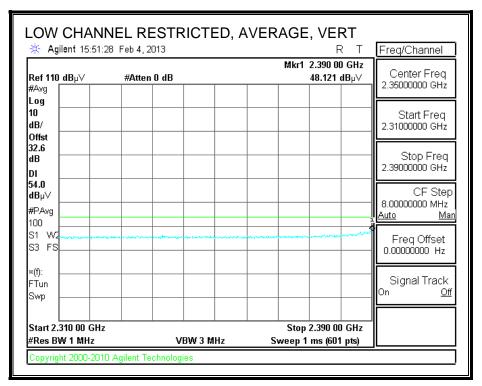

f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	Notes
GHz	(m)	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	
2412 MHz													
4.824	3.0	36.9	33.1	6.8	-34.1	0.0	0.0	42.8	74.0	-31.2	V	P	
4.824	3.0	26.5	33.1	6.8	-34.1	0.0	0.0	32.3	54.0	-21.7	V	A	
4.824	3.0	36.6	33.1	6.8	-34.1	0.0	0.0	42.5	74.0	-31.5	H	P	
4.824	3.0	26.4	33.1	6.8	-34.1	0.0	0.0	32.3	54.0	-21.7	H	A	
2437 MHz													
4.874	3.0	36.1	33.2	6.8	-34.0	0.0	0.0	42.0	74.0	-32.0	H	P	
4.874	3.0	25.8	33.2	6.8	-34.0	0.0	0.0	31.8	54.0	-22.2	Н	A	
4.874	3.0	36.1	33.2	6.8	-34.0	0.0	0.0	42.0	74.0	-32.0	V	P	
4.874	3.0	25.9	33.2	6.8	-34.0	0.0	0.0	31.8	54.0	-22.2	V	A	
2462 MHz	11b												
4.924	3.0	36.4	33.2	6.8	-34.0	0.0	0.0	42.5	74.0	-31.5	V	P	
4.924	3.0	30.8	33.2	6.8	-34.0	0.0	0.0	36.8	54.0	-17.2	V	A	
4.924	3.0	36.0	33.2	6.8	-34.0	0.0	0.0	42.0	74.0	-32.0	H	P	
4.924	3.0	25.8	33.2	6.8	-34.0	0.0	0.0	31.8	54.0	-22.2	H	A	


Rev. 4.1.2.7

Note: No other emissions were detected above the system noise floor.

9.3. TX ABOVE 1 GHz 802.11g MODE IN THE 2.4 GHz BAND

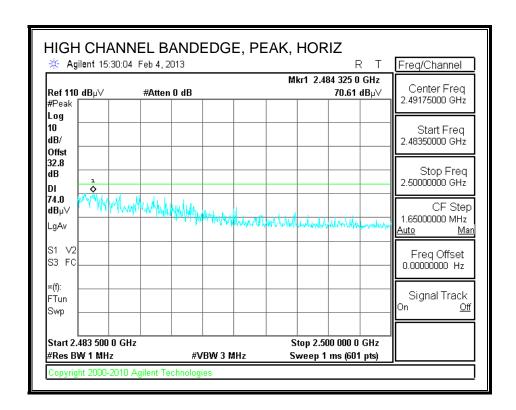
RESTRICTED BANDEDGE (LOW CHANNEL)

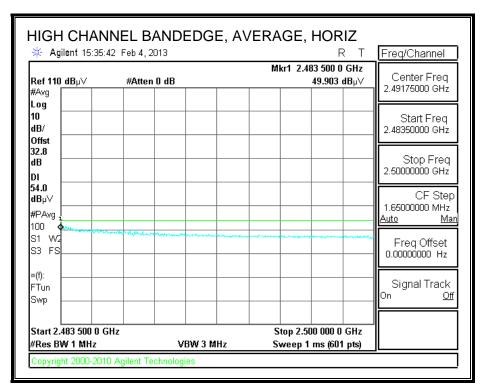


Actual Average = Measured Average + Correction Factor

= 48.430 dBuV + 0.09

= 48.52 dBuV

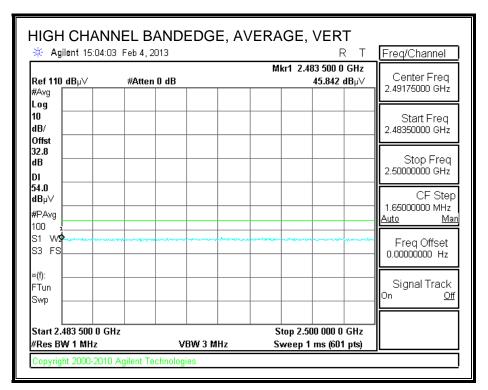

DATE: APRIL 2, 2013



Actual Average

- Measured Average + Correction Factor
- 48.121 dBuV + 0.09 =
- 48.211 dBuV

AUTHORIZED BANDEDGE (HIGH CHANNEL)



Actual Average Measured Average + Correction Factor

49.903 dBuV + 0.09

49.993 dBuV

DATE: APRIL 2, 2013

Actual Average Measured Average + Correction Factor

45.842 dBuV + 0.09

45.932 dBuV

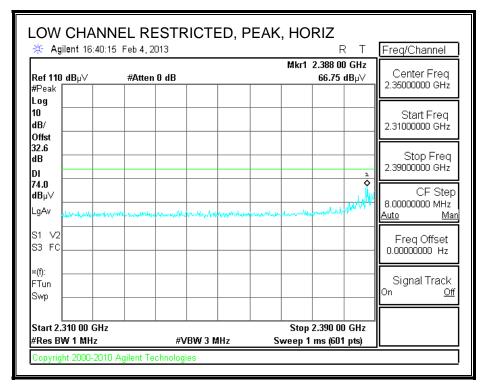
HARMONICS AND SPURIOUS EMISSIONS

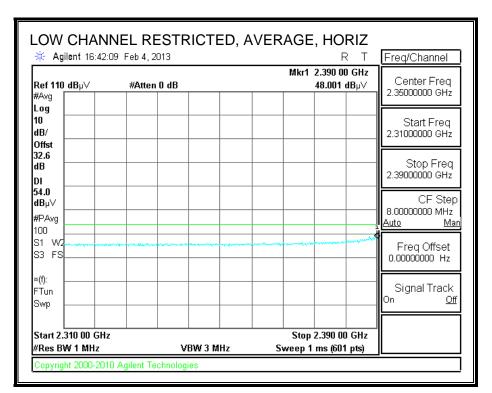
High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: Tom Chen Date: 02/05/13 Project #: 12U14748 Company: Intel Inc. Test Target: FCC Class B Mode Oper: 802.11g, TX mode

> f Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit Analyzer Reading Avg Average Field Strength @ 3 m Antenna Factor Peak Calculated Peak Field Strength Read Margin vs. Average Limit Antenna Factor Peak Carcumce-AF Margin vs. Peak Limit

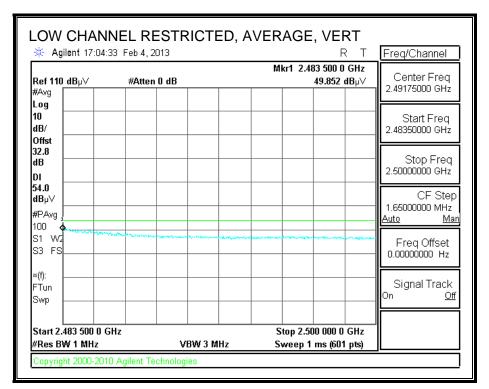

f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	Notes
GHz	(m)	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	
2412 MHz	11g												
4.824	3.0	36.5	33.1	6.8	-34.1	0.1	0.0	42.4	74.0	-31.6	V	P	
4.824	3.0	26.1	33.1	6.8	-34.1	0.1	0.0	32.0	54.0	-22.0	V	A	
4.824	3.0	35.8	33.1	6.8	-34.1	0.1	0.0	41.7	74.0	-32.3	H	P	
4.824	3.0	26.2	33.1	6.8	-34.1	0.1	0.0	32.2	54.0	-21.8	H	A	
2437 MHz	11g												
4.874	3.0	36.0	33.2	6.8	-34.0	0.1	0.0	42.0	74.0	-32.0	H	P	
4.874	3.0	26.0	33.2	6.8	-34.0	0.1	0.0	32.0	54.0	-22.0	H	A	
4.874	3.0	36.5	33.2	6.8	-34.0	0.1	0.0	42.6	74.0	-31.4	V	P	
4.874	3.0	25.6	33.2	6.8	-34.0	0.1	0.0	31.6	54.0	-22.4	V	A	
2462 MHz	11g												
4.924	3.0	36.4	33.2	6.8	-34.0	0.1	0.0	42.5	74.0	-31.5	H	P	
4.924	3.0	25.7	33.2	6.8	-34.0	0.1	0.0	31.8	54.0	-22.2	H	A	
4.924	3.0	35.8	33.2	6.8	-34.0	0.1	0.0	41.9	74.0	-32.1	V	P	
4.924	3.0	29.1	33.2	6.8	-34.0	0.1	0.0	35.3	54.0	-18.8	V	A	


Rev. 4.1.2.7

Note: No other emissions were detected above the system noise floor.

9.4. TX ABOVE 1 GHz 802.11n HT20 MODE IN THE 2.4 GHz BAND

RESTRICTED BANDEDGE (LOW CHANNEL)

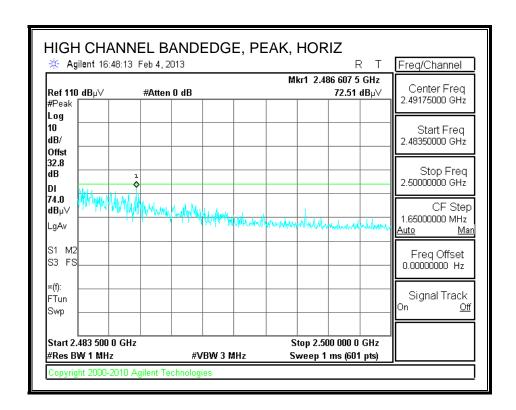


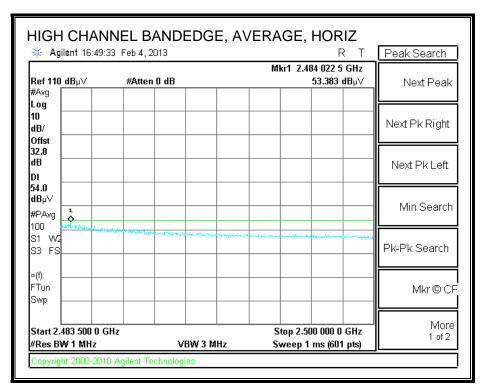
Actual Average = Measured Average + Correction Factor

= 48.001 dBuV + 0.1

= 48.101 dBuV

DATE: APRIL 2, 2013

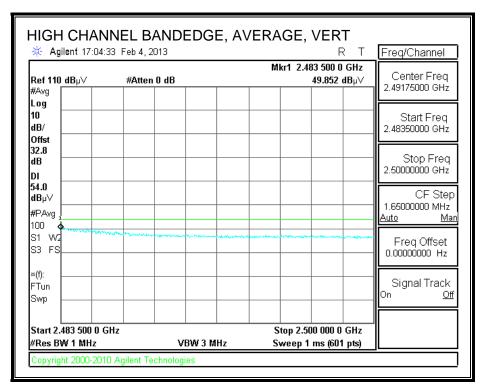



Actual Average Measured Average + Correction Factor

49.852 dBuV + 0.1

49.952 dBuV

AUTHORIZED BANDEDGE (HIGH CHANNEL)



Actual Average Measured Average + Correction Factor

53.383 dBuV + 0.1

53.483 dBuV

DATE: APRIL 2, 2013

Actual Average

- Measured Average + Correction Factor
- 49.852 dBuV + 0.1
- 49.952 dBuV

HARMONICS AND SPURIOUS EMISSIONS

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: Tom Chen
Date: 02/05/13
Project #: 12U14748
Company: Intel Inc.
Test Target: FCC Class B

Mode Oper: 802.11n HT20, TX mode

 f
 Measurement Frequency
 Amp
 Preamp Gain
 Average Field Strength Limit

 Dist
 Distance to Antenna
 D Corr
 Distance Correct to 3 meters
 Peak Field Strength Limit

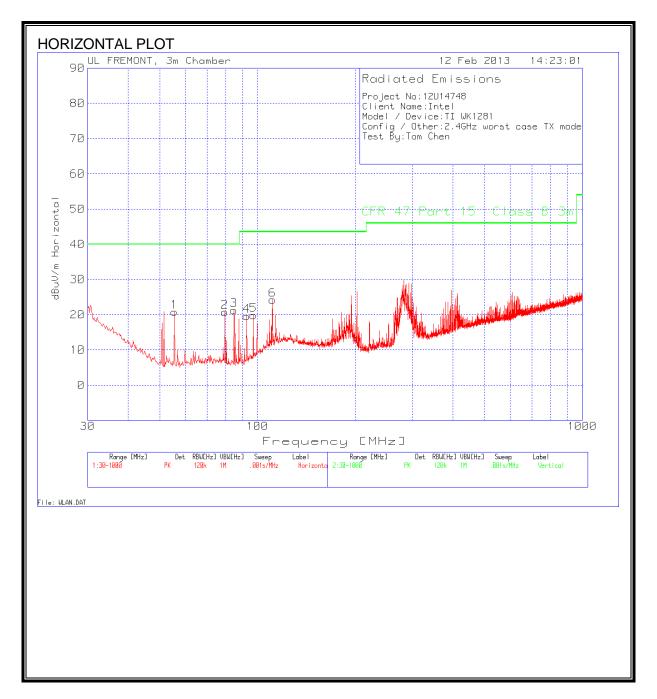
 Read
 Analyzer Reading
 Avg
 Average Field Strength @ 3 m
 Margin vs. Average Limit

 AF
 Antenna Factor
 Peak
 Calculated Peak Field Strength
 Margin vs. Peak Limit

 CL
 Cable Loss
 HPF
 High Pass Filter

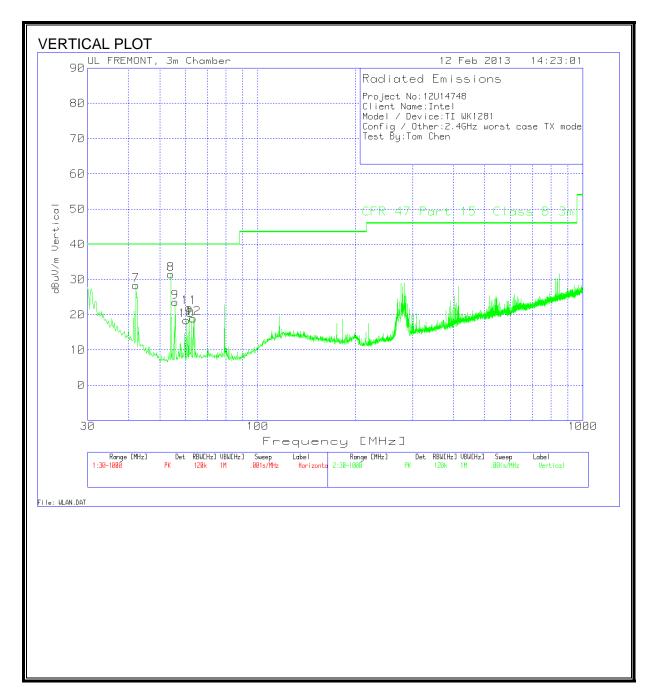
Digt Road AE CI Amp D.Com Etc.

f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	Notes
GHz	(m)	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	
2412 MHz	11n H7	20											
4.824	3.0	36.5	33.1	6.8	-34.1	0.1	0.0	42.4	74.0	-31.6	H	P	
4.824	3.0	23.8	33.1	6.8	-34.1	0.1	0.0	29.7	54.0	-24.3	H	A	
4.824	3.0	36.7	33.1	6.8	-34.1	0.1	0.0	42.6	74.0	-31.4	V	P	
4.824	3.0	23.4	33.1	6.8	-34.1	0.1	0.0	29.4	54.0	-24.6	V	A	
2437 MHz	11n H7	20											
4.874	3.0	36.2	33.2	6.8	-34.0	0.1	0.0	42.3	74.0	-31.8	V	P	
4.874	3.0	23.4	33.2	6.8	-34.0	0.1	0.0	29.4	54.0	-24.6	V	A	
4.874	3.0	36.0	33.2	6.8	-34.0	0.1	0.0	42.0	74.0	-32.0	H	P	
4.874	3.0	23.2	33.2	6.8	-34.0	0.1	0.0	29.2	54.0	-24.8	H	A	
2462 MHz	11n H7	20											
4.924	3.0	35.8	33.2	6.8	-34.0	0.1	0.0	42.0	74.0	-32.0	Н	P	
4.924	3.0	23.2	33.2	6.8	-34.0	0.1	0.0	29.4	54.0	-24.6	H	A	
4.924	3.0	36.1	33.2	6.8	-34.0	0.1	0.0	42.2	74.0	-31.8	V	P	
4.924	3.0	23.1	33.2	6.8	-34.0	0.1	0.0	29.2	54.0	-24.8	V	A	


Rev. 4.1.2.7

Note: No other emissions were detected above the system noise floor.

9.5. WORST-CASE BELOW 1 GHz


SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

DATE: APRIL 2, 2013

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

DATE: APRIL 2, 2013

HORIZONTAL AND VERTICAL DATA

Project No:12U14748 Client Name:Intel

Model / Device:TI WK1281

Config / Other: 2.4GHz worst case TX mode

Test By:Tom Chen

Horizont	al 30 - 1000N	ЛHz							
Marker	Test	Meter		T130 8-14-	3m Loop		CFR 47 Part		
No.	Frequency	Reading	Detector	12 (dB)	(dB)	dBuV/m	15 Class B 3m	Margin	Polarity
1	55.5875	41.14	PK	6.9	-27.2	20.84	40	-19.16	Horz
2	79.4305	40.33	PK	7.5	-27	20.83	40	-19.17	Horz
3	84.6643	41.04	PK	7.2	-27	21.24	40	-18.76	Horz
4	92.6119	38.36	PK	8.1	-26.9	19.56	43.5	-23.94	Horz
5	97.0703	37.35	PK	9.3	-26.8	19.85	43.5	-23.65	Horz
6	111.221	38.2	PK	12.7	-26.7	24.2	43.5	-19.3	Horz

Vertical 30 - 1000MHz

_									
Marker	Test	Meter		T130 8-14-	3m Loop		CFR 47 Part		
No.	Frequency	Reading	Detector	12 (dB)	(dB)	dBuV/m	15 Class B 3m	Margin	Polarity
7	42.2122	43.92	PK	11.9	-27.4	28.42	40	-11.58	Vert
8	54.0368	51.9	PK	6.8	-27.2	31.5	40	-8.5	Vert
9	55.7814	43.92	PK	6.9	-27.2	23.62	40	-16.38	Vert
10	60.4337	38.19	PK	7.4	-27.2	18.39	40	-21.61	Vert
11	61.5967	41.73	PK	7.6	-27.2	22.13	40	-17.87	Vert
12	63.3413	38.38	PK	7.8	-27.2	18.98	40	-21.02	Vert

10. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

RSS-Gen 7.2.2

Frequency of Emission (MHz)	Conducted I	Limit (dBuV)
	Quasi-peak	Average
0.15-0.5	66 to 56 °	56 to 46 *
0.5-5	56	46
5-30	60	50

Decreases with the logarithm of the frequency.

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.

Line conducted data is recorded for both NEUTRAL and HOT lines.

RESULTS

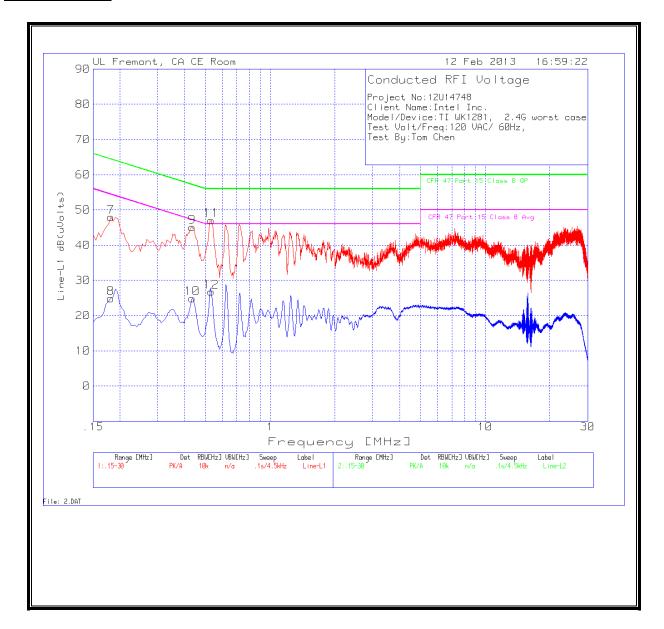
6 WORST EMISSIONS

Project No:12U14748 Client Name:Intel Inc.

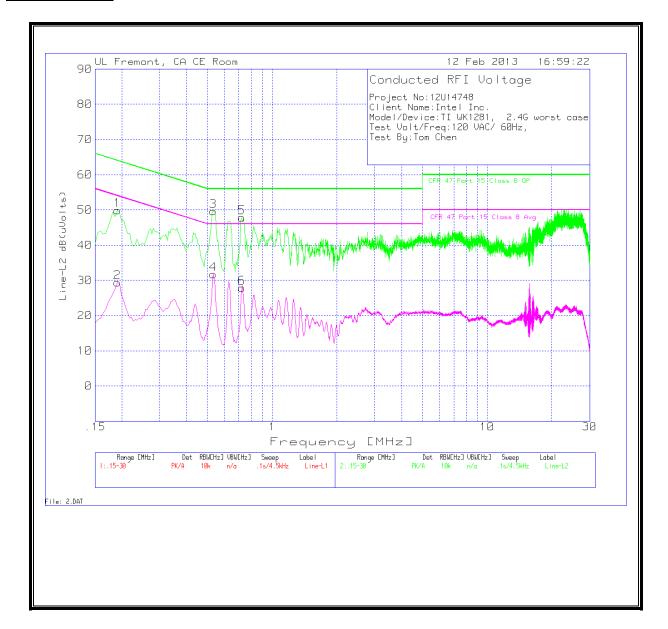
Model/Device:TI WK1281, 2.4G worst case

Test Volt/Freq:120 VAC/60Hz,

Test By:Tom Chen


Line-L1 .15 - 30MHz

rille-r1 .12 -	JUIVII IZ							•	
			T24 IL	LC Cables		CFR 47 Part		CFR 47 Part	
Test	Meter		L1.TXT	1&3.TXT		15 Class B		15 Class B	
Frequency	Reading	Detector	(dB)	(dB)	dB(uVolts)	QP	Margin	Avg	Margin
0.1815	47.81	PK	0.1	0	47.91	64.4	-16.49	-	-
0.1815	24.76	Av	0.1	0	24.86	-	-	54.4	-29.54
0.4335	45.03	PK	0.1	0	45.13	57.2	-12.07	-	-
0.4335	24.85	Av	0.1	0	24.95		-	47.2	-22.25
0.5325	46.97	PK	0.1	0	47.07	56	-8.93	-	-
0.5325	26.66	Av	0.1	0	26.76	-	-	46	-19.24
Line-L2 .15 -	30MHz								
			T24 IL	LC Cables		CFR 47 Part		CFR 47 Part	
Test	Meter		L2.TXT	2&3.TXT		15 Class B		15 Class B	
Frequency	Reading	Detector	(dB)	(dB)	dB(uVolts)	QP	Margin	Avg	Margin
0.1905	49.85	PK	0.1	0	49.95	64	-14.05	-	-
0.1905	29.26	Av	0.1	0	29.36	-	-	54	-24.64
0.5325	49.54	PK	0.1	0	49.64	56	-6.36	-	-
0.5325	31.58	Av	0.1	0	31.68	-	-	46	-14.32
0.7215	47.75	PK	0.1	0	47.85	56	-8.15	-	-
0.7215	27.78	Av	0.1	0	27.88	_	-	46	-18.12


TEL: (510) 771-1000

FORM NO: CCSUP4701H FAX: (510) 661-0888

LINE 1 RESULTS

LINE 2 RESULTS

