FCC ID: PST-FP5X

Maximum Permissible Exposure (MPE)

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency(RF) Radiation as specified in §1.1307(b)

Limits for Maximum Permissible Exposure (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	$\begin{aligned} & \text { Power density } \\ & \left(\mathrm{mW} / \mathrm{cm}^{2}\right) \end{aligned}$	Averaging time (minutes)
(A) Limits for Occupational/Controlled Exposure				
0.3-3.0	614	1.63	*100	6
3.0-30	1842/f	4.89/f	*900/f ${ }^{2}$	6
30-300	61.4	0.163	1.0	6
300-1,500			f/300	6
1,500-100,000			5	6
(B) Limits for General Population/Uncontrolled Exposure				
0.3-1.34	614	1.63	*100	30
1.34-30	824/f	2.19/f	*180/fi ${ }^{2}$	30
30-300	27.5	0.073	0.2	30
300-1,500			6/1500	30
1,500-100,000			1.0	30

$\mathrm{f}=$ frequency in $\mathrm{MHz}^{*}=$ Plane-wave equivalent power density

MPE Calculation Method

$\mathrm{E}(\mathrm{V} / \mathrm{m})=\frac{\sqrt{30^{*} P^{*} G}}{d}$
Power Density: $\operatorname{Pd}\left(\mathrm{W} / \mathrm{m}^{2}\right)=\frac{E^{2}}{377}$
$E=$ Electric field (V/m)
P = Average RF output power (W)
$\mathrm{G}=\mathrm{EUT}$ Antenna numeric gain (numeric)
$\mathrm{d}=$ Separation distance between radiator and human body (m)
The formula can be changed to
$P d=\frac{30 * P * G}{377 * D^{2}}$
From the EUT RF output power, the minimum mobile separation distance, $\mathrm{d}=0.2 \mathrm{~m}$, as well as the gain of the used antenna, the RF power density can be obtained.

BT:
Measurement Result
Operation Frequency: 2402MHz~2480MHz
Power density limited: $1 \mathrm{~mW} / \mathrm{cm}^{2}$
Antenna Type: Metal Antenna
antenna gain: 1 dBi ;
$\mathrm{R}=20 \mathrm{~cm}$
$\mathrm{mW}=10^{\wedge}(\mathrm{dBm} / 10)$
antenna gain Numeric $=10^{\wedge}(\mathrm{dBi} / 10)=10^{\wedge}(1 / 10)=1.26$

BLE:

Channel Freq. (MHz)	modulation	conducted power	Tune-up power (dBm)	Max		Antenna		Evaluation result	density _ـimite
		(dBm)		tune-	power				
				(dBm)	(mW)	(dBi)	Numeric	(mW/am2)	(cme)
2402	GFSK	0.970	0.5 ± 1	1.5	1.413	1.00	1.26	0.0004	1
2440		1.361	0.5 ± 1	1.5	1.413	1.00	1.26	0.0004	1
2480		-0.115	0.5 ± 1	1.5	1.413	1.00	1.26	0.0004	1

Conclusion:

For the max result : $0.0004 \leq 1 \mathrm{~mW} / \mathrm{cm}^{2}$ for Power density, compliance with RF expos

Signature:
Date: 2022-07-19

NAME AND TITLE (Please print or type): alex li/Manager
COMPANY (Please print or type): Shenzhen NTEK Testing Technology Co., Ltd./ 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen P.R. China.

