

243 Jubug-Ri, Yangji-Myeon, Yongin-Si, Gyeonggi-Do, Korea 449-822 Tel: +82-31-323-6008 Fax: +82-31-323-6010 http://www.ltalab.com

Dates of Tests: September 20~ October 11, 2012

Test Report S/N: LR500111210A Test Site: LTA CO., LTD.

CERTIFICATION OF COMPLIANCE

FCC ID.

PSAIM-1000

APPLICANT

TOPCON TECHNOHOUSE CORPORATION

Equipment Class : Digital Transmission System (DTS)

Manufacturing Description:Illuminance spectro meter(WLAN embedded)Manufacturer:TOPCON TECHNOHOUSE CORPORATION

Model name : IM-1000

Test Device Serial No.: : Identical prototype

Rule Part(s) : FCC Part 15.247 Subpart C; ANSI C-63.4-2003

Frequency Range : 2412MHz ~ 2462MHz

Max. Output Power : Max 12.54dBm - Conducted

Data of issue : October 11, 2012

This test report is issued under the authority of:

Kyu-Hyun Lee, Manager

The test was supervised by:

Jung-Moo Her, Test Engineer

This test result only responds to the tested sample. It is not allowed to copy this report even partly without the allowance of the test laboratory. This report must not be used by the applicant to claim product endorsement by any agency.

NVLAP

NVLAP LAB Code.: 200723-0

TABLE OF CONTENTS

	_
3. TEST REPORT	5
3.1 SUMMARY OF TESTS	 5
3.2 TECHNICAL CHARACTERISTICS TEST	 6
3.2.1 6dB BANDWIDTH	 6
3.2.2 PEAK OUTPUT POWER	 9
3.2.3 POWER SPECTRAL DENSITY	 12
3.2.4 BAND – EDGE & SPURIOUS	 15
3.2.5 FIELD STRENGTH OF HARMONICS	 21
3.2.6 AC CONDUCTED EMISSIONS	 24

1. General information's

1-1 Test Performed

Company name : LTA Co., Ltd.

Address : 243, Jubug-ri, Yangji-Myeon, Youngin-Si, Kyunggi-Do, Korea. 449-822

Web site : http://www.ltalab.com
E-mail : chahn@ltalab.com
Telephone : +82-31-323-6008
Facsimile +82-31-323-6010

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competents of calibration and testing laboratory".

1-2 Accredited agencies

LTA Co., Ltd. is approved to perform EMC testing by the following agencies:

Agency	Country	Accreditation No.	Validity	Reference
NVLAP	U.S.A	200723-0	2013-09-30	ECT accredited Lab.
RRL	KOREA	KR0049	2013-04-24	EMC accredited Lab.
FCC	U.S.A	610755	2014-04-27	FCC filing
FCC	U.S.A	649054	2013-04-13	FCC CAB
VCCI	JAPAN	R2133(10m), C2307	2014-06-21	VCCI registration
VCCI	JAPAN	T-2009	2013-12-23	VCCI registration
VCCI	JAPAN	G-563	2015-05-28	VCCI registration
IC	CANADA	5799A-1	2015-06-21	IC filing

2. Information's about test item

2-1 Client& Manufacturer

Company name : TOPCON TECHNOHOUSE CORPORATION

Address : 75-1, Hasunuma-cho, Itabashi-ku, Tokyo 174-8580, Japan

Tel / Fax : Tel : +81-3-3558-2774 / Fax : +81-3-3966-2486

2-2 Equipment Under Test (EUT)

Trade name : TOPCON TECHNOHOUSE CORPORATION

Model name : IM-1000

Serial number : Identical prototype

Date of receipt : September 17, 2012

EUT condition : Pre-production, not damaged

Antenna type : Chip antenna with Max 2.0 dBi gain

Frequency Range : 2412MHz ~ 2462MHz (DSSS)

RF output power : Max 12.54dBm - Conducted

Number of channels : 11

Type of Modulation : CCK, DQPSK, DBPSK for DSSS

Transfer Rate : 11/5.5/2/1Mbps

Power for Adaptor. : Input: 100-240Vac, 0.4A Output: 5.0Vdc, 2A

Power for Batt. : Battery Pack: 6Vdc (1.5Vdc battery(AA Size) x 4)

Firmware Version : V1.0.0

2-3 Tested frequency

	LOW	MID	HIGH
Frequency (MHz)	2412	2437	2462

2-4 Ancillary Equipment

Equipment	Model No.	Serial No.	Manufacturer		
-	-	-	-		

3. Test Report

3.1 Summary of tests

FCC Part Section(s)	Parameter	Limit	Test Conditio n	Status (note 1)
15.247(a)	6 dB Bandwidth	> 500kHz		С
15.247(b)	Transmitter Peak Output Power	< 1 Watt	Condonal	С
15.247(d)	Transmitter Power Spectral Density	< 8dBm @ 3kHz	Conducted @	
15.247(d)	Band Edge & Spurious	> 20 dBc		С
15.209	Field Strength of Harmonics	Emission	Radiated	С
15.207	AC Conducted Emissions	Emissions	Conducted	С
15.203	Antenna requirement	-	-	С
Note 1: C=Complies NC=	Not Complies NT=Not Tested NA=1	Not Applicable	1	

Note 2: The data in this test report are traceable to the national or international standards.

Note 1: Antenna Requirement

The TOPCON TECHNOHOUSE CORPORATION FCC ID: PSAIM-1000 unit complies with the requirement of §15.203. The antenna type is chip antenna.

Note 2: The sample was tested according to the following specification:

*FCC Parts 15.247; ANSI C-63.4-2003

*FCC KDB Publication No. 558074 D01 DTS Meas. Guidance V01

*FCC TCB Workshop 2012, April

3.2 Technical Characteristics Test

3.2.1 6 dB Bandwidth

Procedure:

The bandwidth at 6dB below the highest in-band spectral density was measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate frequencies.

After the trace being stable, Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 6dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 6 dB bandwidth of the emission.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels

RBW = 100 kHz Span = 30 MHz

 $VBW = 100 \text{ kHz} (VBW \ge RBW)$ Sweep = auto

Trace = max hold Detector function = peak

Measurement Data:

	Frequency	Channel No.	Test Res	ults
	(MHz)	Channel 140.	Measured Bandwidth (MHz)	Result
	2412	1	7.29	Complies
802.11b	2437	6	8.08	Complies
	2462	11	7.34	Complies

⁻ See next pages for actual measured spectrum plots.

Minimum Standard:

6 dB Bandwidth > 500kHz

Measurement Setup

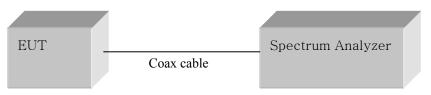



Figure 1: Measurement setup for the carrier frequency separation

802.11b CH 1

3.2.2 Peak Output Power Measurement

Procedure:

The maximum peak output power was measured with the spectrum analyzer connected to the antenna output of the EUT. The spectrum analyzer's internal channel power integration function is used to integrate the power over a bandwidth greater than or equal to the 99% bandwidth. The EUT was operating in transmit mode at the appropriate center frequency.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels

RBW = 1MHz Span = auto

 $VBW = 1MHz (VBW \ge RBW)$ Sweep = auto

Detector function = peak

Measurement Data:

Mode Frequency (MHz)		Channel No.	Test Results			
		Measured Data (dBm)	Result			
	2412	1	11.30	Complies		
802.11b	2437	6	11.85	Complies		
	2462	11	12.54	Complies		

⁻ See next pages for actual measured spectrum plots.

Minimum Standard:

Measurement Setup

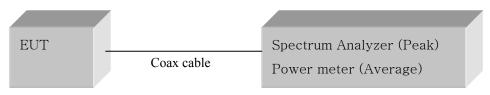
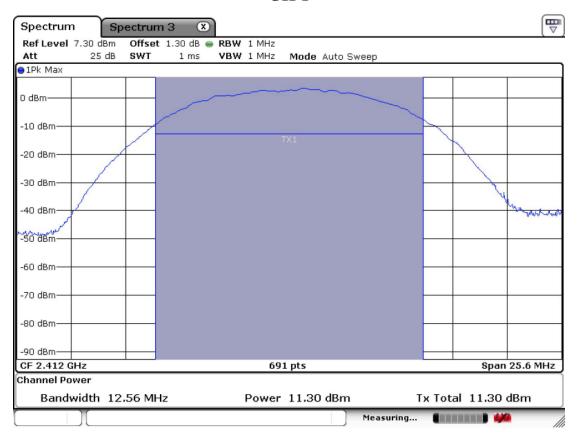
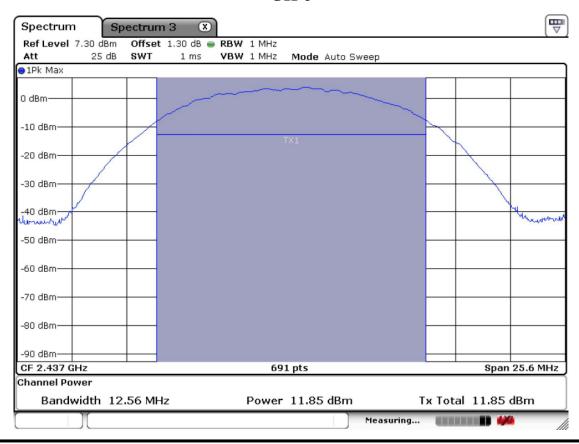
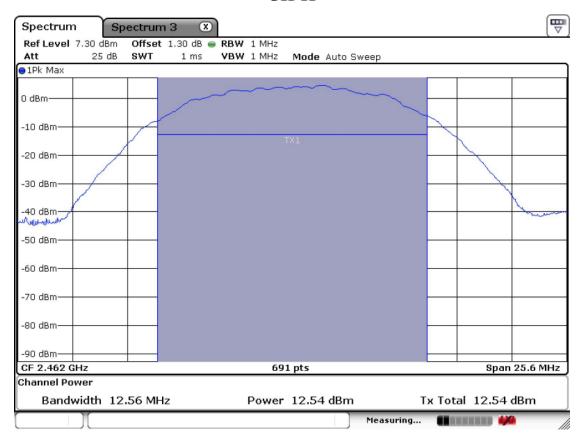





Figure 1: Measurement setup for the carrier frequency separation

802.11b CH 1

3.2.3 Power Spectral Density

Procedure:

The peak power density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies.

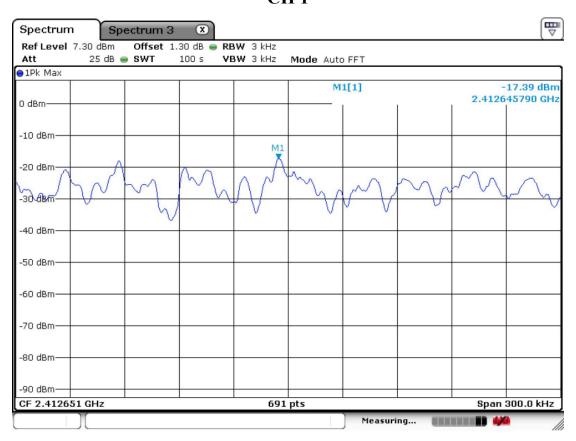
The spectrum analyzer is set to:

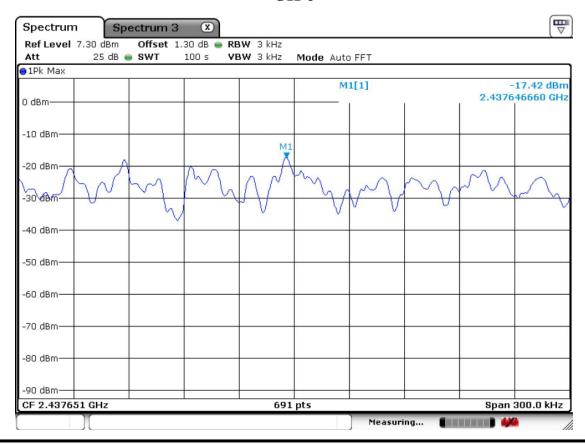
RBW = 3 kHz Span = 300 kHz VBW = 3 kHz Sweep = 100 sec Detector function = peak Trace = max hold

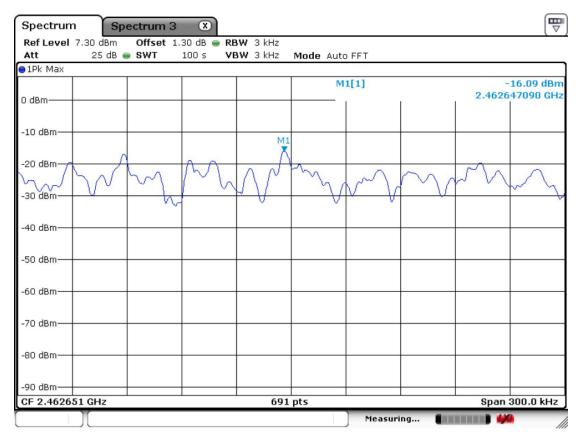
Measurement Data:

Mode	Frequency	Ch.	Test R	Results	
Wiode	(MHz)	CII.	dBm	Result	
	2412	1	-17.39	Complies	
802.11b	2437	6	-17.42	Complies	
	2462	11	-16.09	Complies	

⁻ See next pages for actual measured spectrum plots.


Minimum Standard:


Power Spectral Density < 8dBm @ 3kHz BW


Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

802.11b Power Density Measurement CH 1

3.2.4 Band - edge

Procedure:

The bandwidth at 20dB down from the highest inband spectral density is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate frequencies.

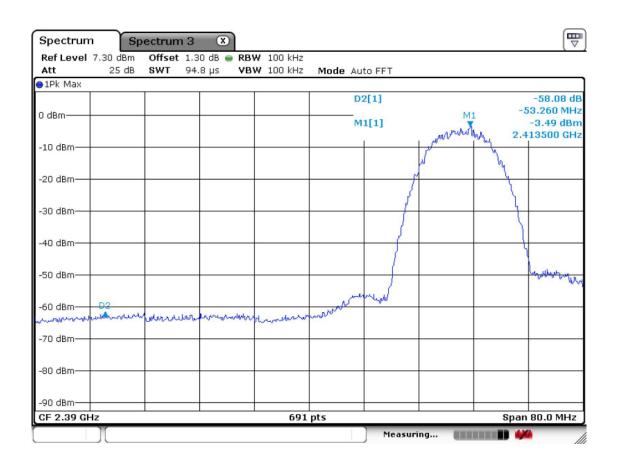
After the trace being stable, Use the marker-to-peak function to measure 20 dB down both sides of the intentional emission.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels

RBW = 100 kHz VBW = 100 kHz

Span = 80 MHz Detector function = peak


Trace = \max hold Sweep = auto

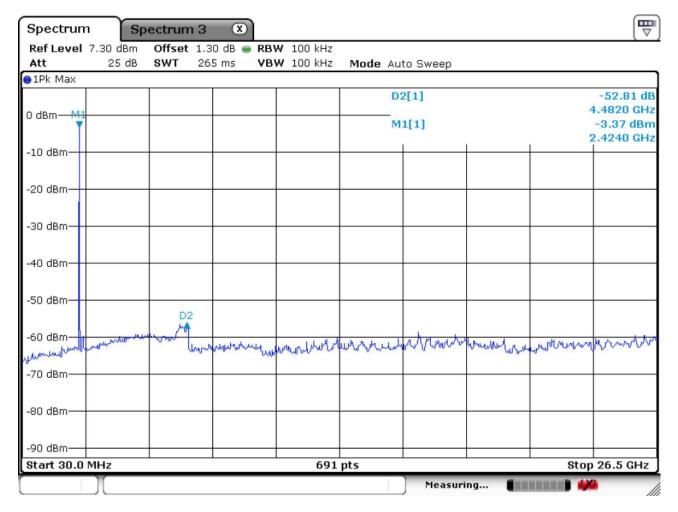
Measurement Data: Complies

- All conducted emission in any 100kHz bandwidth outside of the spread spectrum band was at least 20dB lower than the highest inband spectral density. Therefore the applying equipment meets the requirement.
- See next pages for actual measured spectrum plots.

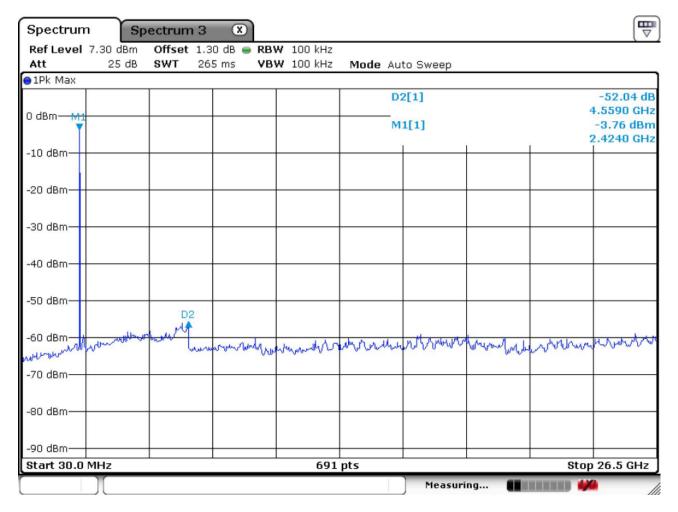
Minimum Standard:	> 20 dBc
-------------------	----------

802.11b Band-edge: Conducted Measurements

Band-edges in the restricted band 2310-2390 MHz measurement


Frequency	Rea	Reading		Correction		Lin	nits	Res	sult	Ма	rgin
Trequency	[dBu	V/m]	Pol.	Factor		[dBuV/m]		V/m] [dBuV/m]		[dB]	
[MHz]	AV /	/ Peak		Antenna	Amp.Gain+Cable	AV / Peak		AV /	Peak	AV /	Peak
2319.2	30.8	44.6	Н	28.2	26.3	54.0	74.0	32.7	46.5	21.3	27.5

Band-edges in the restricted band 2483.5-2500 MHz measurement


Frequency	Read [dBu		Pol.	Correction Factor		Limits [dBuV/m]	Result [dBuV/m]	Margin [dB]	
[MHz]	AV /	Peak		Antenna	ntenna Amp.Gain+Cable		AV / Peak	AV / Peak	
2497.3	31.6	44.5	Н	28.2	26.3	54.0 74.0	33.5 46.4	20.5 27.6	

Note: This EUT was tested in 3 orthogonal positions and the worst-case data was presented


802.11b - Low channel Frequency Range = $30 \text{ MHz} \sim 10^{th}$ harmonic.

 $802.11b - Mid \ channel$ Frequency Range = 30 MHz $\sim 10^{th}$ harmonic.

$802.11b-High\ channel$ $Frequency\ Range=30\ MHz\sim10^{th}\ harmonic.$

3.2.5 Field Strength of Harmonics

Procedure:

The EUT was placed on a 0.8m high wooden table inside a shielded enclosure. An antenna was placed near the EUT and measurements of frequencies and amplitudes of field strengths were recorded for reference during final measurements. For final radiated testing, measurements were performed in OATS. Measurements were performed with the EUT oriented in 3 orthogonal axis and rotated 360 degrees to determine worst-case orientation for maximum emissions.

The spectrum analyzer is set to:

Center frequency = the worst channel

Frequency Range = $30 \text{ MHz} \sim 10^{\text{th}} \text{ harmonic.}$

 $RBW = 100 \text{ kHz} (30 \text{MHz} \sim 1 \text{ GHz})$ $VBW \geq RBW$

= 1 MHz $(1 \text{ GHz} \sim 10^{\text{th}} \text{ harmonic})$

Span = 100 MHz Detector function = peak

Trace = $\max \text{ hold}$ Sweep = auto

Measurement Data: Complies

- See next pages for actual measured data.

Minimum Standard: FCC Part 15.109

Frequency (MHz)	Limit (uV/m) @ 10m
$0.009 \sim 0.490$	2400/F (kHz) @ 300m
0.490 ~ 1.705	24000/F (kHz) @ 30m
1.705 ~ 30	30 @ 30m
30 ~ 88	90
88 ~ 216	150
216 ~ 960	210
Above 960	300

^{**} Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88MHz, 174-216MHz or 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

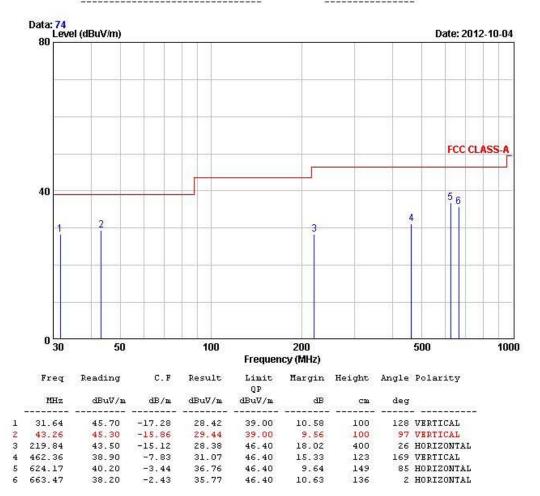
*802.11b Measurement Data: (Above 1GHz)

Frequency	Reading	9	Correction		Limits	Result	Margin	
riequency	[dBuV/m]		Factor		[dBuV/m]	[dBuV/m]	[dB]	
[MHz]	AV / Pe	eak	Antenna Amp.Gain+Cable		AV / Peak	AV / Peak	AV / Peak	
-	-		-	-				
-	N	o emissions	were detec	ted at a level greater th	an 20dB below	limit.	-	
-	-		-	-				
-	-		-	-				
Frequency	Reading		Correction		Limits	Result	Margin	
Trequency	[dBuV/m] Po		Factor		[dBuV/m]	[dBuV/m]	[dB]	
[MHz]	AV / Pe	eak	Antenna Amp.Gain+Cable		AV / Peak	AV / Peak	AV / Peak	
-	-		-	-				
-	N	o emissions	were detec	were detected at a level greater th		an 20dB below limit.		
-	-		-	-				
-	-	-] -	-	-				
Frequency	Reading	Reading		Correction		Result	Margin	
riequelicy	[dBuV/m] Pol.		Factor		[dBuV/m]	[dBuV/m]	[dB]	
[MHz]	AV / Pe	ak	Antenna Amp.Gain+Cable		AV / Peak	AV / Peak	AV / Peak	
-	-		-	-				
-	N	o emissions	were detected at a level greater tha		an 20dB below limit.		-	
-	-	- -	-	-				
-	-		-	-				

No emissions were detected at a level greater than 20dB below limit.

*802.11b Measurement Data: (9kHz - 30MHz)

Frequency	Reading [dBuV/m]	Pol.	Correction Factor		Limits [dBuV/m]	Result [dBuV/m]	Margin [dB]	
[MHz]	AV / Pea		Antenna	Amp. Gain	Cable	AV / Peak	AV / Peak	AV / Peak
-		-	-	-	-		- -	
No emissions were detected at a level greater than 20dB below limit.								
-		-	-	-	-			
-		_	-	-	-			


^{*}No emissions were detected at a level greater than 20dB below limit.

Radiated Emissions -WLAN Mode

243 Jubug-ri, yangji-Myeon, Youngin-si, Gyeonggi-do 449-822 Korea Tel:+82-31-3236008,9 Fax:+82-31-3236010

EUT/Model No.: IM-1000 TEST MODE: Wi-Fi mode
Temp Humi : 20 / 48 Tested by: PARK.H.W

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

3.2.6 AC Conducted Emissions

Procedure:

The conducted emissions are measured in the shielded room with a spectrum analyzer in peak hold. While the measurement, EUT had its hopping function disabled at the middle channels in line with Section 15.31(m). Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation and Exerciser operation. The highest emissions relative to the limit are listed.

Measurement Data: Complies

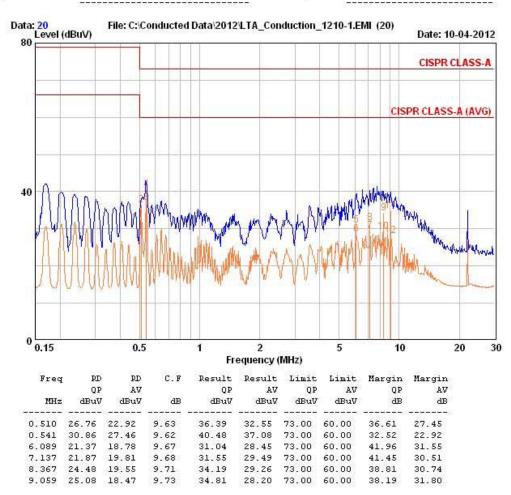
- Refer to the next page.
- No other emissions were detected at a level greater than 20dB below limit
- It gave the worse case emissions

Minimum Standard: FCC Part 15.107

Frequency Range	Conducted Limit (dBuV)			
(MHz)	Quasi-Peak	Average		
0.15 ~ 0.5	79 dBuV	66 dBuV		
0.5 ~ 30	73 dBuV	60 dBuV		

^{*} Decreases with the logarithm of the frequency

Radiated Emissions – WLAN - LINE



243 Jubug-ri, yangji-Myeon, Youngin-si, Gyeonggi-do 449-822 Korea Tel:+82-31-3236008,9 Fax:+82-31-3236010

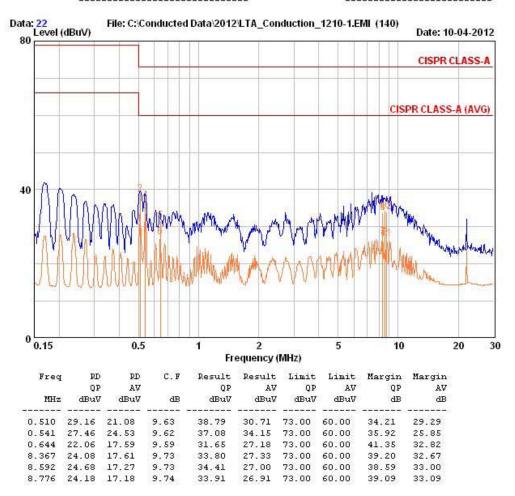
EUT / Model No. : IM-1000 Phase : LINE

Test Mode : WiFi mode Test Power : 120 / 60

Temp./Humi. : 26 / 54 Test Engineer : PARK.H.W

Remarks: C.F (Correction Factor) = Insertion loss + Cable loss

Radiated Emissions – WLAN - NEUTRAL



243 Jubug-ri, yangji-Myeon, Youngin-si, Gyeonggi-do 449-822 Korea Tel:+82-31-3236008,9 Fax:+82-31-3236010

EUT / Model No. : IM-1000 Phase : NEUTRAL

Test Mode : WiFi mode Test Power : 120 / 60

Temp./Humi. : 26 / 54 Test Engineer : PARK.H.W

Remarks: C.F (Correction Factor) = Insertion loss + Cable loss

APPENDIX

TEST EQUIPMENT USED FOR TESTS

	Description	Model No.	Serial No.	Manufacturer	Interval	Last Cal. Date
1	Spectrum Analyzer (~30GHz)	FSV-30	100757	R&S	1 year	2012-01-10
2	Spectrum Analyzer (~2.9GHz)	8594E	3710A04074	НР	2 year	Self-Calibration
3	Signal Generator (~3.2GHz)	8648C	3623A02597	НР	1 year	2012-03-26
4	Signal Generator (1~20GHz)	83711B	US34490456	НР	1 year	2012-03-26
5	Attenuator (3dB)	8491A	37822	НР	2 year	2012-09-22
6	Attenuator (10dB)	8491A	63196	НР	2 year	2012-09-22
7	Attenuator (30dB)	8498A	3318A10929	НР	2 year	2011-01-05
8	Test Receiver (~30MHz)	ESHS10	828404/009	R&S	1 year	2012-03-26
9	EMI Test Receiver (~7GHz)	ESCI7	100722	R&S	1 year	2012-09-22
10	RF Amplifier (~1.3GHz)	8447D	2439A09058	НР	2 year	2012-09-22
11	RF Amplifier (1~18GHz)	8449B	3008A02126	НР	2 year	2012-03-26
12	Horn Antenna (1~18GHz)	BBHA 9120D	9120D122	SCHWARZBECK	2 year	2010-12-24
13	Horn Antenna (18 ~ 40GHz)	SAS-574	154	Schwarzbeck	2 year	2010-11-25
14	Horn Antenna (18 ~ 40GHz)	SAS-574	155	Schwarzbeck	2 year	2010-11-25
15	TRILOG Antenna	VULB 9160	9160-3172	SCHWARZBECK	2 year	2012-09-20
16	Dipole Antenna	VHA9103	2116	SCHWARZBECK	2 year	2010-11-25
17	Dipole Antenna	VHA9103	2117	SCHWARZBECK	2 year	2010-11-25
18	Dipole Antenna	VHA9105	2261	SCHWARZBECK	2 year	2010-11-25
19	Dipole Antenna	VHA9105	2262	SCHWARZBECK	2 year	2010-11-25
20	Hygro-Thermograph	THB-36	0041557-01	ISUZU	1 year	2012-09-26
21	Splitter (SMA)	ZFSC-2-2500	SF617800326	Mini-Circuits	-	-
22	Power Divider	11636A	6243	НР	2 year	2012-09-22
23	DC Power Supply	6622A	3448A03079	НР	-	-
24	Frequency Counter	5342A	2826A12411	НР	1 year	2012-03-26
25	Power Meter	EPM-441A	GB32481702	НР	1 year	2012-03-26
26	Power Sensor	8481A	US41030291	НР	1 year	2012-09-22
27	Audio Analyzer	8903B	3729A18901	НР	1 year	2012-09-22
28	Modulation Analyzer	8901B	3749A05878	HP	1 year	2012-09-22
29	TEMP & HUMIDITY Chamber	YJ-500	LTAS06041	JinYoung Tech	1 year	2012-09-22
30	Stop Watch	HS-3	601Q09R	CASIO	2 year	2012-03-26
31	LISN	ENV216	100408	R&S	1 year	2012-09-22
32	UNIVERSAL RADIO COMMUNICATION TESTER	CMU200	106243	R&S	2 year	2012-06-27
33	Highpass Filter	WHKX1.5/15G-10SS	74	Wainwright Instruments	-	-
34	Highpass Filter	WHKX3.0/18G-10SS	118	Wainwright Instruments	-	-
35	Loop Antenna	FMZB 1516	151602/94	SCHWARZBECK	2 year	2011-04-05