TEST REPORT

DT&C Co., Ltd.

42, Yurim-ro, 154Beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea,17042 Tel : 031-321-2664, Fax : 031-321-1664

I. Report NO: DRIFCC1900-020	1.	Report	No:	DRTFCC1906-0204
------------------------------	----	--------	-----	-----------------

Dt&C

- 2. Customer
 - Name : SystemBase Co., Ltd.
 - Address : Daerung Post Tower-1 16F, 288, Digital-ro, Guro-gu, Seoul, South Korea
- 3. Use of Report : FCC Original Grant
- 4. Product Name / Model Name : Bluetooth USB Adapter / TALUS FCC ID : PROTALUS2
- 5. Test Method Used : KDB558074 D01v05r02, ANSI C63.10-2013

Test Specification : FCC Part 15 Subpart C.247

- 6. Date of Test : 2019.05.20 ~ 2019.05.24
- 7. Testing Environment : Refer to appended test report.
- 8. Test Result : Refer to the attached test result.

Affirmation	Tested by		Reviewed by	(An-
	Name : Woohyun Rim	2 Aug	Name : Geunki Son	(Signature)

The test results presented in this test report are limited only to the sample supplied by applicant and the use of this test report is inhibited other than its purpose. This test report shall not be reproduced except in full, without the written approval of DT&C Co., Ltd.

2019.06.10.

DT&C Co., Ltd.

If this report is required to confirmation of authenticity, please contact to report@dtnc.net

Test Report Version

Test Report No.	Date	Description
DRTFCC1906-0204	Jun. 10, 2019	Initial issue

Table of Contents

1. General Information	4
1.1 Testing Laboratory	4
1.2 Test Environment	4
1.3 Measurement Uncertainty	4
1.4 Details of Applicant	5
1.5 Description of EUT	
1.6 Declaration by the applicant / manufacturer	5
1.7 Test Equipment List	
1.8 Summary of Test Results	
•	
2. Test Methodology	
2.1 EUT Configuration	
2.2 EUT Exercise	
2.3 General Test Procedures	
2.4 Description of Test Modes	
2.5 Instrument Calibration	8
3. Test Result	9
3.1 Maximum Peak Conducted Output Power	
3.1.1 Test Setup	
3.1.2 Test Procedures	
3.1.3 Test Results	
3.2 6 dB Bandwidth Measurement	
3.2.1 Test Setup	
3.2.2 Test Procedures	
3.2.3 Test Results	
3.3 Maximum Power Spectral Density	
3.3.1 Test Setup	
3.3.2 Test Procedures	
3.3.3 Test Results	
3.4 Unwanted Emissions (Conducted)	
3.4.1 Test Setup	
3.4.2 Test Procedures	
3.4.3 Test Results	
3.5 Unwanted Emissions (Radiated)	
3.5.1 Test Setup	
3.5.2 Test Procedures	
3.5.2 Test Results	
3.6 Power line Conducted Emissions	
3.6.1 Test Setup	
3.6.2 Test Procedures	
3.6.3 Test Results	
3.7 Occupied Bandwidth	
3.7.1 Test Setup	
3.7.2 Test Procedures	
3.7.3 Test Results	
4. ANTENNA REQUIREMENTS	
APPENDIX I4	1
APPENDIX II	2
APPENDIX III	3

1. General Information

1.1 Testing Laboratory

DT&C Co., Ltd.

The 3 m test site and conducted measurement facility used to collect the radiated data are located at the 42, Yurim-ro, 154beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea 17042. The test site complies with the requirements of § 2.948 according to ANSI C63.4-2014.

- FCC MRA Accredited Test Firm No. : KR0034

www.dtnc.net						
Telephone	:	+ 82-31-321-2664				
FAX	:	+ 82-31-321-1664				

1.2 Test Environment

Ambient Condition				
 Temperature 	+20 °C ~ +25 °C			
 Relative Humidity 	30 % ~ 40 %			

1.3 Measurement Uncertainty

The measurement uncertainties shown below were calculated in accordance with requirements of ANSI C63.4-2014 and ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

Test items	Measurement uncertainty
Transmitter Output Power	0.9 dB (The confidence level is about 95 %, $k = 2$)
Conducted spurious emission	0.9 dB (The confidence level is about 95 %, $k = 2$)
AC conducted emission	2.4 dB (The confidence level is about 95 %, k=2)
Radiated spurious emission (1 GHz Below)	5.1 dB (The confidence level is about 95 %, k = 2)
Radiated spurious emission (1 GHz ~ 18 GHz)	5.4 dB (The confidence level is about 95 %, k = 2)
Radiated spurious emission (18 GHz Above)	5.3 dB (The confidence level is about 95 %, $k = 2$)

1.4 Details of Applicant

Applicant	:	SystemBase Co., Ltd.
Address	:	Daerung Post Tower-1 16F, 288, Digital-ro, Guro-gu, Seoul, South Korea
Contact person	:	Myunghyun Kim

1.5 Description of EUT

EUT	Bluetooth USB Adapter
Model Name	TALUS
Add Model Name	NA
Serial Number	Identical prototype
Power Supply	DC 5 V
Frequency Range	2402 MHz ~ 2480 MHz
Modulation Technique	GFSK
Antenna 1 /Antenna Gain	External Antenna / PK : 5.37 dBi
Antenna 2 /Antenna Gain	External Antenna / PK : 3.17 dBi
Antenna 3 /Antenna Gain	External Antenna / PK : 1.4 dBi

1.6 Declaration by the applicant / manufacturer

N/A

1.7 Test Equipment List

Туре	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal.Date (yy/mm/dd)	S/N
Spectrum Analyzer	Agilent Technologies	N9020A	18/12/19	19/12/19	MY48010133
Spectrum Analyzer	Agilent Technologies	N9020A	18/12/19	19/12/19	MY48011700
DC Power Supply	Agilent Technologies	66332A	18/07/02	19/07/02	US37473422
Multimeter	FLUKE	17B	18/12/18	19/12/18	26030065WS
Signal Generator	Rohde Schwarz	SMBV100A	18/12/19	19/12/19	255571
Signal Generator	ANRITSU	MG3695C	18/12/10	19/12/10	173501
Thermohygrometer	BODYCOM	BJ5478	18/12/27	19/12/27	120612-1
Thermohygrometer	BODYCOM	BJ5478	18/07/09	19/07/09	N/A
HYGROMETER	TESTO	608-H1	19/01/31	20/01/31	34862883
Loop Antenna	Schwarzbeck	FMZB1513	18/01/30	20/01/30	1513-128
BILOG ANTENNA	Schwarzbeck	VULB 9160	18/07/13	20/07/13	3359
Horn Antenna	ETS-Lindgren	3115	19/01/11	21/01/11	9202-3820
Horn Antenna	Schwarzbeck	BBHA 9120C	17/12/04	19/12/04	9120C-561
PreAmplifier	tsj	MLA-0118-J01-45	18/12/19	19/12/19	17138
PreAmplifier	tsj	MLA-1840-J02-45	18/07/06	19/07/06	16966-10728
PreAmplifier	tsj	MLA-10K01-B01- 27	18/10/31	19/10/31	2005354
Attenuator	SMAJK	SMAJK-2-3	18/07/04	19/07/04	4
Attenuator	Aeroflex/Weinschel	56-3	18/07/02	19/07/02	Y2370
Attenuator	SRTechnology	F01-B0606-01	18/07/02	19/07/02	13092403
Attenuator	Hefei Shunze	SS5T2.92-10-40	18/07/03	19/07/03	16012202
High Pass Filter	Wainwright Instruments	WHNX8.0/26.5- 6SS	18/07/03	19/07/03	3
High Pass Filter	Wainwright Instruments	WHKX12-935- 1000-15000-40SS	18/07/02	19/07/02	8
High Pass Filter	Wainwright Instruments	WHKX10-2838- 3300-18000-60SS	18/07/02	19/07/02	1
Power Meter & Wide Bandwidth Sensor	Anritsu	MA2411B MA2490A	18/12/19	19/12/19	1306053 1249303
EMI Test Receiver	Rohde Schwarz	ESW44	18/08/06	20/08/06	101645
EMI Test Receiver PULSE LIMITER	Rohde Schwarz Rohde Schwarz	ESCI7 ESH3-Z2	19/01/30	20/01/30	100910 101333
LISN	SCHWARZBECK	NNLK 8121	19/03/19	20/03/19	06183
Cable	HUBER+SUHNER	SUCOFLEX 106	18/06/25	19/06/25	G-01
Cable	HUBER+SUHNER	SUCOFLEX 104	18/06/25	19/06/25	G-02
Cable	HUBER+SUHNER	SUCOFLEX 104	18/06/25	19/06/25	G-03
Cable	Junkosha	MWX241	18/06/25	19/06/25	G-04
Cable	Junkosha	MWX241	18/06/25	19/06/25	G-07
Cable	DT&C	Cable	18/07/06	19/07/06	G-13
Cable	DT&C	Cable	18/07/06	19/07/06	G-14
Cable	HUBER+SUHNER	SUCOFLEX 104	18/07/06	19/07/06	G-15
Cable	DT&C	Cable	18/07/06	19/07/06	RF-18
Cable	DT&C	CABLE	18/07/05	19/07/05	RF-82

Note1: The measurement antennas were calibrated in accordance to the requirements of ANSI C63.5-2017.

Note2: The cable is not a regular calibration item, so it has been calibrated by DT & C itself.

1.8 Summary of Test Results

FCC Part	RSS Std.	Parameter	Limit	Test Condition	Status Note 1	
15.247(a)	RSS-247 [5.2]	6 dB Bandwidth	> 500 kHz		С	
15.247(b)	RSS-247 [5.4]	Transmitter Output Power	< 1 Watt		С	
15.247(d)	RSS-247 [5.5]	Out of Band Emissions / Band Edge	20 dBc in any 100 kHz BW	Conducted	С	
15.247(e)	RSS-247 [5.2]	Transmitter Power Spectral Density	< 8 dBm/3 kHz		С	
-	RSS-Gen [6.7]	Occupied Bandwidth (99 %)	NA		NA	
15.247(d) 15.205 15.209	205 RSS-GEN [8.9] (Restricted Bands and Radiated FCC		FCC 15.209 limits	Radiated	C Note 3	
15.207 RSS-Gen [8.8]		AC Line Conducted Emissions	FCC 15.207 limits	AC Line Conducted	С	
15.203 -		Antenna Requirements	FCC 15.203	-	С	
Note 1: C =Comply NC =Not Comply NT =Not Tested NA =Not Applicable Note 2: For radiated emission tests below 30 MHz were performed on semi-anechoic chamber which is correlated with OATS. Note 3: This test item was performed in each axis and the worst case data was reported.						

2. Test Methodology

The measurement procedures described in the ANSI C63.10-2013 and the guidance provided in KDB558074 D01v05r02 were used in measurement of the EUT.

The EUT was tested per the guidance of KDB558074 D01v05r02. And ANSI C63.10-2013 was used to reference appropriate EUT setup and maximizing procedures of radiated spurious emission and AC line conducted emission testing.

2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2 EUT Exercise

The EUT was operated in the test mode to fix the TX frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

2.3 General Test Procedures

Conducted Emissions

The power-line conducted emission test procedure is not described on the KDB558074 D01v05r02.

So this test was fulfilled with the requirements in Section 6.2 of ANSI C63.10-2013.

The EUT is placed on the wooden table, which is 0.8 m above ground plane and the conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-peak and Average detector.

Radiated Emissions

Basically the radiated tests were performed with KDB558074 D01v05r02. But some requirements and procedures like test site requirements, EUT setup and maximizing procedure were fulfilled with the requirements in Section 5 and 6 of the ANSI C63.10-2013. The EUT is placed on a non-conductive table. For emission measurements at or below 1 GHz, the table height is 80 cm. For emission measurements above 1 GHz, the table height is 1.5 m. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the highest emission, the relative positions of the EUT were rotated through three orthogonal axes.

2.4 Description of Test Modes

The EUT has been tested with the operating condition for maximizing the emission characteristics. A test program is used to control the EUT for staying in continuous transmitting. The Bluetooth low energy mode with below low, middle and high channels were tested and reported.

		Frequency [MHz]			
	Test Mode	Lowest Frequency	Middle Frequency	Highest Frequency	
TM 1	BT LE	2402 2440		2480	

2.5 Instrument Calibration

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

3. Test Result

3.1 Maximum Peak Conducted Output Power

Test Requirements and limit, §15.247(b) & RSS-247 [5.4]

A transmitter antenna terminal of EUT is connected to the input of a spectrum analyzer.

Measurement is made while the EUT is operating in transmission mode at the appropriate frequencies.

The maximum permissible conducted output power is 1 Watt.

3.1.1 Test Setup

Refer to the APPENDIX I.

3.1.2 Test Procedures

- KDB558074 D01v05r02 Section 8.3.1.3
- ANSI C63.10-2013 Section 11.9.1.1

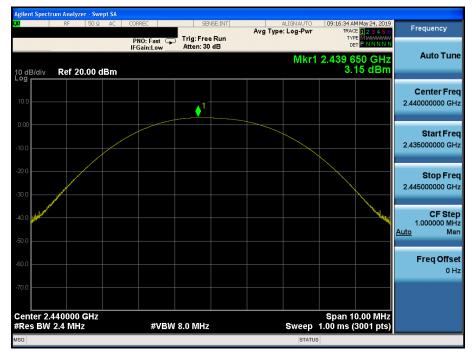
RBW ≥ DTS bandwidth

- 1. Set the RBW ≥ DTS bandwidth. Actual RBW = 2.4 MHz
- 2. Set VBW \ge 3 x RBW. Actual VBW = 8 MHz
- 3. Set span ≥ 3 x RBW.
- 4. Sweep time = **auto couple**
- 5. Detector = **peak**
- 6. Trace mode = max hold
- 7. Allow trace to fully stabilize
- 8. Use peak marker function to determine the peak amplitude level.

3.1.3 Test Results

Test mode	Tested Channel	Burst Average Output Power	Peak Output Power	
		dBm	dBm	
TM 1	Lowest	-2.21	0.41	
	Middle	1.30	3.15	
	Highest	2.39	4.41	

Note 1 : The Burst average output power was tested using an average power meter for reference only. Note 2 : See next pages for actual measured spectrum plots.


Peak Output Power

TM 1 Test Channel : Lowest

Peak Output Power

TM 1 Test Channel : Middle

Peak Output Power

TM 1 Test Channel : Highest

3.2 6 dB Bandwidth Measurement

Test Requirements and limit, §15.247(a) & RSS-247 [5.2]

The bandwidth at 6 dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the EUT's antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies.

The minimum permissible 6 dB bandwidth is 500 kHz.

3.2.1 Test Setup

Refer to the APPENDIX I.

3.2.2 Test Procedures

- KDB558074 D01v05r02 Section 8.2
- ANSI C63.10-2013 Section 11.8.2
- 1. Set resolution bandwidth (RBW) = 100 kHz
- 2. Set the video bandwidth (VBW) \ge 3 x RBW.

(RBW : 100 kHz / VBW : 300 kHz)

- 3. Detector = **peak**.
- 4. Trace mode = **max hold**.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Option 1 Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

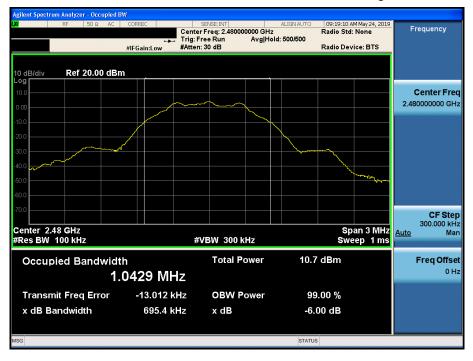

Option 2 - The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW \ge 3 × RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \ge 6 dB.

3.2.3 Test Results

Test Mode	Tested Channel	Test Results [MHz]
	Lowest	0.701
TM 1	Middle	0.695
	Highest	0.695

6 dB Bandwidth

TM 1 Test Channel : Lowest


6 dB Bandwidth

TM 1 Test Channel : Middle

6 dB Bandwidth

TM 1 Test Channel : Highest

3.3 Maximum Power Spectral Density.

■ Test requirements and limit, §15.247(e) & RSS-247 [5.2]

The peak power density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies.

Minimum Standard

The power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission

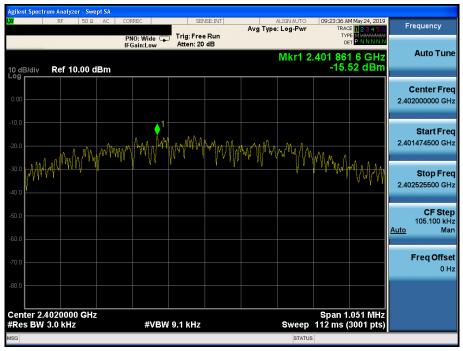
3.3.1 Test Setup

Refer to the APPENDIX I.

3.3.2 Test Procedures

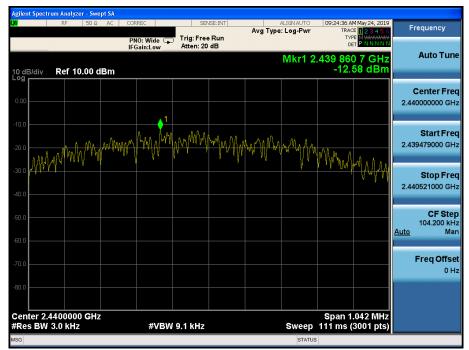
- KDB558074 D01v05r02 Section 8.4
- ANSI C63.10-2013 Section 11.10.2

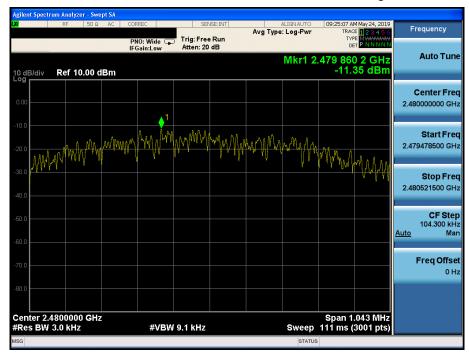
Method PKPSD (peak PSD)


- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to **1.5 times** the DTS bandwidth.
- 3. Set the RBW : 3 kHz ≤ RBW ≤ 100 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = **peak.**
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the **peak marker function** to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

3.3.3 Test Results

Test Mode	Tested Channel	PKPSD [dBm]
	Lowest	-15.52
TM 1	Middle	-12.58
	Highest	-11.35


Maximum PKPSD


Maximum PKPSD

TM 1 Test Channel : Middle

Maximum PKPSD

TM 1 Test Channel : Highest

3.4 Unwanted Emissions (Conducted)

Test requirements and limit, §15.247(d) & RSS-247 [5.5]

§15.247(d) specifies that in any 100 kHz bandwidth outside of the authorized frequency band, the power shall be attenuated according to the following conditions :

If the peak output power procedure is used to measure the fundamental emission power to demonstrate compliance to **15.247(b)(3)** requirements, then the peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated **by at least 20 dB** relative to the maximum measured in-band peak PSD level.

If the average output power procedure is used to measure the fundamental emission power to demonstrate compliance to **15.247(b)(3)** requirements, then the power in any 100 kHz outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum measured inband average PSD level.

In either case, attenuation to levels below the general emission limits specified in §15.209(a) is not required.

3.4.1 Test Setup

Refer to the APPENDIX I including path loss

3.4.2 Test Procedures

- KDB558074 D01v05r02 Section 8.5
- ANSI C63.10-2013 Section 11.11

Reference level measurement

- 1. Set instrument center frequency to DTS channel center frequency.
- 2. Set the span to \geq 1.5 times the DTS bandwidth.
- 3. Set the RBW = 100 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum PSD level LIMIT LINE = 20 dB below of the reference level.

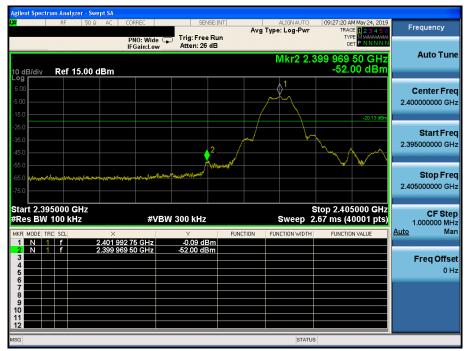
Emission level measurement

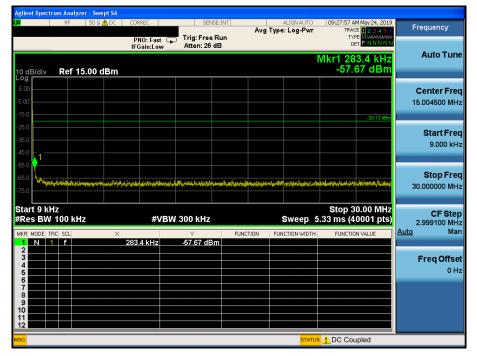
- 1. Set the center frequency and span to encompass frequency range to be measured.
- 2. Set the RBW = 100 kHz.(Actual 1 MHz , See below note)
- 3. Set the VBW ≥ 3 x RBW.(Actual 3 MHz, See below note)
- 4. Detector = **peak**.
- 5. Ensure that the number of measurement points \geq span / RBW
- 6. Sweep time = auto couple.
- 7. Trace mode = **max hold.**
- 8. Allow the trace to stabilize (this may take some time, depending on the extent of the span).
- 9. Use the peak marker function to determine the maximum amplitude level.

Note : The conducted spurious emission was tested with below settings.

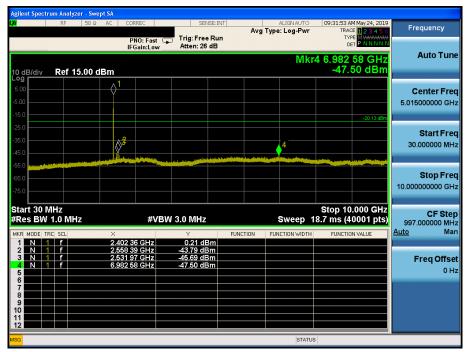
Frequency range	RBW	VBW	Detector	Trace	Sweep Point
9 kHz ~ 30 MHz	100 kHz	300 kHz			
30 MHz ~ 10 GHz	1 MHz	3 MHz	Peak	Max Hold	40001
10 GHz ~ 26.5 GHz	1 MHz	3 MHz			

If the emission level with above setting was close to the limit (ie, less than 3 dB margin) then zoom scan is required using RBW = 100 kHz, VBW = 300 kHz, SPAN = 100 MHz and BINS = 2001 to get accurate emission level within 100 kHz BW.


3.4.3 Test Results


🛈 Dt&C

TM 1 Reference (Test Channel : Lowest)


TM 1 Low Band-edge (Test Channel : Lowest)

TM 1 Conducted Spurious Emissions 1 (Test Channel : Lowest)

TM 1 Conducted Spurious Emissions 2 (Test Channel : Lowest)

50 Ω AC CORREC	SENSE:INT	ALIGN AUTO	09:32:53 AM May 24, 2019	Frequency
		Avg Type: Log-Pwr	TRACE 123456 TYPE MWWWWW DET PNNNNN	
I0 dBm		Mkr4 1	6.767 625 GHz -41.83 dBm	Auto Tun
			-20.13 dBm	Center Fre 17.500000000 GF
youtput in the provide a line of the second s			² ♦	Start Fre 10.000000000 G⊦
				Stop Fre 25.000000000 GH
				CF Ste 1.50000000 GH Auto Ma
24.748 000 GHz 24.160 000 GHz 21.508 375 GHz 16.767 625 GHz	-34.83 dBm -35.82 dBm -38.21 dBm -41.83 dBm			Freq Offs
				01
	PN0: Fas IFGain:Lo 0 dBm 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	PNO: Fast (IFGain:Low Trig: Free Run Atten: 26 dB 0 dBm	Avg Type: Log-Pwr Trig: Free Run Atten: 26 dB Mkr4 1 0 dBm 4 4 4 4 4 4 4 4 4 4 4 4 4	PNO: Fast IFGain:Low Trig: Free Run Atten: 26 dB Avg Type: Log-Pwr Truce Det Trace Truce Det Det Det 0 dBm Mkr4 16.767 625 GHz

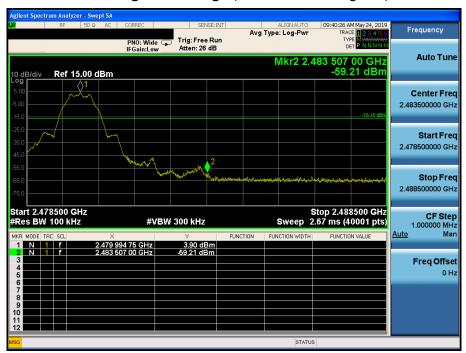
TM 1 Conducted Spurious Emissions 3 (Test Channel : Lowest)

TM 1 Reference (Test Channel : Middle)

TM 1 Conducted Spurious Emissions 1 (Test Channel : Middle)

Agilent Spectrum An						
LXI RF		REC S		ALIGN AUTO Type: Log-Pwr	09:34:48 AM May 24, 2019 TRACE 1 2 3 4 5 6 TYPE M WWWWW	Frequency
10 dB/div Re	f 15.00 dBm	Sain:Low Atten: 2			Det P NN NN N Mkr1 297.7 kHz -60.40 dBm	Auto Tune
5.00 -5.00 -15.0						Center Fre 15.004500 MH
-25.0 -35.0 -45.0						Start Fre 9.000 kH
-55.0	ander frankrige staat die ferder geheerde geheerde geheerde geheerde geheerde geheerde geheerde geheerde geheer	โรงอาโอโรโรโรการสุดมีประทั่งอาจาร	arganinnasi di karangi maningka	Yanyaidhayaa wijayihi Juguybagana	firs Jaggal of the energy on syntax bill this a drive	Stop Fre 30.000000 MH
Start 9 kHz #Res BW 100		#VBW 300 kH	Z	Sweep 5	Stop 30.00 MHz .33 ms (40001 pts)	CF Ste 2.999100 MH Auto Ma
1 N 1 f 2 3 4 5		.7 kHz -60.40 c				Freq Offs
6 7 8 9 10 11						
				STATUS	DC Coupled	

TM 1 Conducted Spurious Emissions 2 (Test Channel : Middle)


TM 1 Conducted Spurious Emissions 3 (Test Channel : Middle)

TM 1 Reference (Test Channel : Highest)

TM 1 High Band-edge (Test Channel : Highest)

Agilent Spec	trum Analyze							
L <mark>XI</mark>	RF	50 Ω 🧥 DC 📗	CORREC	SEN:	BE:INT	ALIGN AUTO	09:40:58 AM May 24, TRACE 1 2 3	Frequency
			PNO: Fast C	Trig: Free Atten: 26	Run		DET P N.N.	MAN N
	_		IFGain:Low	Attent. 20	40	Miles	2 24.095 5 M	Auto Tuno
10 dB/div	Ref 15	i.00 dBm				IVINI	-64.88 dE	
Log								
5.00								Center Freq
-5.00							-16.16	15.004500 MHz
-15.0							-15.15	
-25.0								Start Freq
-35.0								9.000 kHz
-45.0								
-55.0							2	Stop Freq
	And in month in the	بالمعدمين المبتد المعدد	وراوالمناجد وروجوا والتجوي	villener, manual	Aniw Margaret	Landary and an and a second	question of the second	30.000000 MHz
-75.0								00.000000 Mil 12
Start 9 k	Hz						Stop 30.00 M	
	/ 100 kHz	z	#VB	W 300 kHz		Sweep :	5.33 ms (40001	
MKR MODE	TRC SCL	×		Y	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	Auto Man
	1 f	24	293.9 kHz 095 5 MHz	-60.26 dB -64.88 dB	m			
3		24.	090 0 10112	-04.00 UD				Freq Offset
4 5								0 Hz
6								
8								
9								
11								
MSG						STATU	<mark>s</mark> <u>!</u> DC Coupled	

TM 1 Conducted Spurious Emissions 1 (Test Channel : Highest)

TM 1 Conducted Spurious Emissions 2 (Test Channel : Highest)

Agilent Spectrum Analyzer - Sv XI RF 50 G		SENSE: IN	Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6	Frequency
10 dB/div Ref 15.00	PNO: Fast (IFGain:Low	Trig: Free Rur Atten: 26 dB		r6 7.653 31 GHz -47.73 dBm	Auto Tune
5.00 -5.00 -15.0	1 			-16.16 dBm	Center Fred 5.015000000 GHz
-25.0			An al balance of the first state		Start Free 30.000000 MH;
-55.0 -65.0 -75.0					Stop Free 10.000000000 GH
Start 30 MHz #Res BW 1.0 MHz	#VB	W 3.0 MHz		Stop 10.000 GHz 18.7 ms (40001 pts)	CF Step 997.000000 MH: Auto Mar
MKR MODE; TRC SCL 1 N 1 F 2 N 1 F 3 N 1 F 4 N 1 F 6 N 1 F 7	× 2.479 88 GHz 2.584 31 GHz 2.557 64 GHz 2.536 16 GHz 2.324 10 GHz 7.653 31 GHz	4.18 dBm -44.64 dBm -45.59 dBm -46.84 dBm -47.13 dBm -47.73 dBm	FUNCTION FUNCTION WIDT	H FUNCTION VALUE	Freq Offse 0 H
SG			STAT	us	

Agilent Spectrum Analyzer - Swept SA	
CXI RF 50 Ω AC CORREC SENSE:INT ALIGN AUTO 09:43:17 AM May 24, 2019	Frequency
Avg Type: Log-Pwr TRACE 123 4 5 6 PNO: Fast 🕞 Trig: Free Run	rioqueney
IFGain:Low Atten: 26 dB DET PININNIN	
Mkr4 18.893 500 GHz	Auto Tune
10 dB/div Ref 15.00 dBm -41.67 dBm	
	Contor From
	Center Freq
	7.500000000 GHz
$\sqrt{4}$	Start Freq
	0.000000000 GHz
	0.000000000000000
-65.0	Stop Freq
	5.000000000 GHz
Start 10.000 GHz Stop 25.000 GHz	05.04.0
	CF Step 1.50000000 GHz
MKR MODE TRC SCL X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE	
1 N 1 f 24.905 875 GHz -34.28 dBm	
2 N 1 f 24.225 625 GHz -35.65 dBm 3 N 1 f 20.925 625 GHz -38.01 dBm	Freq Offset
4 N 1 f 18.893 500 GHz -41.67 dBm	0 Hz
	0 H2
MSG	

TM 1 Conducted Spurious Emissions 3 (Test Channel : Highest)

3.5 Unwanted Emissions (Radiated)

Test Requirements and limit,

§15.247(d), §15.205, §15.209 & RSS-247 [5.5], RSS-Gen [8.9], RSS-Gen [8.10]

In any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a) and (b), then the 15.209(a) limit in the table below has to be followed.

• FCC Part 15.209(a) and (b)

Frequency (MHz)	Limit (uV/m)	Measurement Distance (meter)
0.009 ~ 0.490	2400/F (kHz)	300
0.490 ~ 1.705	24000/F (kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100 **	3
88 ~ 216	150 **	3
216 ~ 960	200 **	3
Above 960	500	3

** Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54 ~ 72 MHz, 76 ~ 88 MHz, 174 ~ 216 MHz or 470 ~ 806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

MHz	MHz	MHz	MHz	GHz	GHz
0.009 ~ 0.110	8.41425 ~ 8.41475	108 ~ 121.94	1300 ~ 1427	4.5 ~ 5.15	14.47 ~ 14.5
0.495 ~ 0.505	12.29 ~ 12.293	123 ~ 138	1435 ~ 1626.5	5.35 ~ 5.46	15.35 ~ 16.2
2.1735 ~ 2.1905	12.51975 ~	149.9 ~ 150.05	1645.5 ~ 1646.5	7.25 ~ 7.75	17.7 ~ 21.4
4.125 ~ 4.128	12.52025	156.52475 ~	1660 ~ 1710	8.025 ~ 8.5	22.01 ~ 23.12
4.17725 ~ 4.17775	12.57675 ~	156.52525	1718.8 ~ 1722.2	9.0 ~ 9.2	23.6 ~ 24.0
4.20725 ~ 4.20775	12.57725	156.7 ~ 156.9	2200 ~ 2300	9.3 ~ 9.5	31.2 ~ 31.8
6.215 ~ 6.218	13.36 ~ 13.41	162.0125 ~ 167.17	2310 ~ 2390	10.6 ~ 12.7	36.43 ~ 36.5
6.26775 ~ 6.26825	16.42 ~ 16.423	167.72 ~ 173.2	2483.5 ~ 2500	13.25 ~ 13.4	Above 38.6
6.31175 ~ 6.31225	16.69475 ~	240 ~ 285	2655 ~ 2900		
8.291 ~ 8.294	16.69525	322 ~ 335.4	3260 ~ 3267		
8.362 ~ 8.366	16.80425 ~	399.90 ~ 410	3332 ~ 3339		
8.37625 ~ 8.38675	16.80475	608 ~ 614	3345.8 ~ 3358		
	25.5 ~ 25.67	960 ~ 1240	3600 ~ 4400		
	37.5 ~ 38.25				
	73 ~ 74.6				
	74.8 ~ 75.2				

• FCC Part 15.205 (a) : Only spurious emissions are permitted in any of the frequency bands listed below :

• FCC Part 15.205(b) : The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

3.5.1 Test Setup

Refer to the APPENDIX I.

3.5.2 Test Procedures

- 1. The EUT is placed on a non-conductive table. For emission measurements at or below 1 GHz, the table height is 80 cm. For emission measurements above 1 GHz, the table height is 1.5 m.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3 m away from the receiving antenna, which is varied from 1 m to 4 m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.

Note: Measurement Instrument Setting for Radiated Emission Measurements.

- KDB558074 D01v05r02 Section 8.6
- ANSI C63.10-2013 Section 11.12
- 1. Frequency Range Below 1 GHz

RBW = 100 or 120 kHz, VBW = 3 x RBW, Detector = Peak or Quasi Peak

- 2. Frequency Range > 1 GHz
 - Peak Measurement > 1 GHz

RBW = 1 MHz, VBW = 3 MHz, Detector = Peak, Sweep time = Auto, Trace mode = Max Hold until the trace stabilizes Average Measurement> 1GHz

- 1. RBW = 1 MHz (unless otherwise specified).
- 2. VBW ≥ $3 \times RBW$.
- 3. Detector = RMS (Number of points ≥ 2 x Span / RBW)
- 4. Averaging type = power (i.e., RMS).
- 5. Sweep time = auto.
- 6. Perform a trace average of at least 100 traces.
- 7. A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. The correction factor is computed as follows:
- 1) If power averaging (RMS) mode was used in step 4, then the applicable correction factor is 10 log(1/x), where x is the duty cycle.
- 2) If linear voltage averaging mode was used in step 4, then the applicable correction factor is 20 log(1/x), where x is the duty cycle.
- 3) If a specific emission is demonstrated to be continuous (≥ 98 percent duty cycle) rather than turning on and off with the transmit cycle, then no duty cycle correction is required for that emission.

Test Mode	Duty Cycle (%)	T _{on} (ms)	T _{on} + T _{off} (ms)	DCF = 10 log(1/Duty) (dB)
TM 1	59.72	0.387	0.648	2.24

Note: Refer to Appendix II for duty cycle measurement procedure and plots.

3.5.3 Test Results

Frequency Range : 9 kHz ~ 25 GHz _ Antenna 1

Lowest Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F (dB)	Distance Factor(dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2324.25	V	Z	PK	51.95	2.22	N/A	N/A	54.17	74.00	19.83
2324.25	V	Z	AV	41.94	2.22	2.24	N/A	46.40	54.00	7.60
4803.77	Н	Х	PK	49.65	1.63	N/A	N/A	51.28	74.00	22.72
4803.92	Н	Х	AV	39.43	1.63	2.24	N/A	43.30	54.00	10.70
7206.42	Н	Y	PK	47.48	7.66	N/A	N/A	55.14	74.00	18.86
7206.07	Н	Y	AV	36.60	7.66	2.24	N/A	46.50	54.00	7.50

Middle Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F (dB)	Distance Factor(dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
4879.91	Н	Х	PK	50.03	1.61	N/A	N/A	51.64	74.00	22.36
4880.05	Н	Х	AV	39.49	1.61	2.24	N/A	43.34	54.00	10.66
7320.02	Н	Y	PK	47.31	7.91	N/A	N/A	55.22	74.00	18.78
7319.87	Н	Y	AV	36.63	7.91	2.24	N/A	46.78	54.00	7.22

Highest Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F (dB)	Distance Factor(dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2483.64	V	Z	PK	51.70	3.26	N/A	N/A	54.96	74.00	19.04
2483.69	V	Z	AV	42.21	3.26	2.24	N/A	47.71	54.00	6.29
4960.27	Н	Х	PK	49.98	1.75	N/A	N/A	51.73	74.00	22.27
4959.71	Н	Х	AV	40.05	1.75	2.24	N/A	44.04	54.00	9.96
7439.79	Н	Y	PK	48.23	7.98	N/A	N/A	56.21	74.00	17.79
7440.51	Н	Y	AV	37.87	7.98	2.24	N/A	48.09	54.00	5.91

Note.

1. The radiated emissions were investigated 9kHz to 25GHz. And no other spurious and harmonic emissions were found above listed frequencies.

2. Information of Distance Factor

For finding emissions, the test distance might be reduced from 3 m to 1 m. In this case, the distance factor (-9.54 dB) is applied to the result.

- Calculation of distance factor = 20 log(applied distance / required distance) = 20 log(1 m / 3 m) = -9.54 dB

When distance factor is "N/A", the distance is 3 m and distance factor is not applied.

3. Sample Calculation.

Margin = Limit - Result / Result = Reading + T.F + D.C.F / T.F = AF + CL - AG

Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, DCF = Duty Cycle Correction Factor.

Frequency Range : 9 kHz ~ 25 GHz _ Antenna 2

Lowest Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F (dB)	Distance Factor(dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2324.21	V	Z	PK	52.43	2.22	N/A	N/A	54.65	74.00	19.35
2324.50	V	Z	AV	41.26	2.22	2.24	N/A	45.72	54.00	8.28
4804.22	Н	Х	PK	50.52	1.63	N/A	N/A	52.15	74.00	21.85
4803.55	Н	Х	AV	39.89	1.63	2.24	N/A	43.76	54.00	10.24
7205.59	Н	Y	PK	47.76	7.66	N/A	N/A	55.42	74.00	18.58
7206.02	Н	Y	AV	36.85	7.66	2.24	N/A	46.75	54.00	7.25

Middle Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F (dB)	Distance Factor(dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
4879.64	Н	Х	PK	51.46	1.61	N/A	N/A	53.07	74.00	20.93
4879.68	Н	Х	AV	40.14	1.61	2.24	N/A	43.99	54.00	10.01
7319.98	Н	Y	PK	47.61	7.91	N/A	N/A	55.52	74.00	18.48
7319.72	Н	Y	AV	36.91	7.91	2.24	N/A	47.06	54.00	6.94

Highest Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F (dB)	Distance Factor(dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2483.58	V	Z	PK	52.95	3.26	N/A	N/A	56.21	74.00	17.79
2483.61	V	Z	AV	41.46	3.26	2.24	N/A	46.96	54.00	7.04
4960.24	Н	Х	PK	50.73	1.75	N/A	N/A	52.48	74.00	21.52
4959.97	Н	Х	AV	40.06	1.75	2.24	N/A	44.05	54.00	9.95
7439.74	Н	Y	PK	47.99	7.98	N/A	N/A	55.97	74.00	18.03
7439.52	Н	Y	AV	37.60	7.98	2.24	N/A	47.82	54.00	6.18

Note.

1. The radiated emissions were investigated 9kHz to 25GHz. And no other spurious and harmonic emissions were found above listed frequencies.

2. Information of Distance Factor

For finding emissions, the test distance might be reduced from 3 m to 1 m. In this case, the distance factor (-9.54 dB) is applied to the result.

- Calculation of distance factor = 20 log(applied distance / required distance) = 20 log(1 m / 3 m) = -9.54 dB

When distance factor is "N/A", the distance is 3 m and distance factor is not applied.

3. Sample Calculation.

Margin = Limit - Result / Result = Reading + T.F + D.C.F / T.F = AF + CL - AG

Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain,

DCF = Duty Cycle Correction Factor.

Frequency Range : 9 kHz ~ 25 GHz _ Antenna 3

Lowest Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F (dB)	Distance Factor(dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2323.05	V	Z	PK	52.85	2.22	N/A	N/A	55.07	74.00	18.93
2323.39	V	Z	AV	41.87	2.22	2.24	N/A	46.33	54.00	7.67
4803.58	Н	Х	PK	50.37	1.63	N/A	N/A	52.00	74.00	22.00
4803.87	Н	Х	AV	39.72	1.63	2.24	N/A	43.59	54.00	10.41
7205.86	Н	Y	PK	47.36	7.66	N/A	N/A	55.02	74.00	18.98
7205.94	Н	Y	AV	36.67	7.66	2.24	N/A	46.57	54.00	7.43

Middle Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F (dB)	Distance Factor(dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
4880.32	Н	Х	PK	50.72	1.61	N/A	N/A	52.33	74.00	21.67
4879.97	Н	Х	AV	39.89	1.61	2.24	N/A	43.74	54.00	10.26
7320.31	Н	Y	PK	47.27	7.91	N/A	N/A	55.18	74.00	18.82
7319.72	Н	Y	AV	36.87	7.91	2.24	N/A	47.02	54.00	6.98

Highest Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F (dB)	Distance Factor(dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2483.68	V	Z	PK	51.68	3.26	N/A	N/A	54.94	74.00	19.06
2483.72	V	Z	AV	42.07	3.26	2.24	N/A	47.57	54.00	6.43
4960.24	Н	Х	PK	49.99	1.75	N/A	N/A	51.74	74.00	22.26
4959.92	Н	Х	AV	40.35	1.75	2.24	N/A	44.34	54.00	9.66
7439.74	Н	Y	PK	48.59	7.98	N/A	N/A	56.57	74.00	17.43
7439.72	Н	Y	AV	38.22	7.98	2.24	N/A	48.44	54.00	5.56

Note.

1. The radiated emissions were investigated 9kHz to 25GHz. And no other spurious and harmonic emissions were found above listed frequencies.

2. Information of Distance Factor

For finding emissions, the test distance might be reduced from 3 m to 1 m. In this case, the distance factor (-9.54 dB) is applied to the result.

- Calculation of distance factor = 20 log(applied distance / required distance) = 20 log(1 m / 3 m) = -9.54 dB

When distance factor is "N/A", the distance is 3 m and distance factor is not applied.

3. Sample Calculation.

 $Margin = Limit - Result \ / \ Result = Reading + T.F + D.C.F \ / \ T.F = AF + CL - AG$

Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain,

DCF = Duty Cycle Correction Factor.

3.6 Power line Conducted Emissions

Test Requirements and limit, §15.207 & RSS-Gen [8.8]

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN).

	Conducted Limit (dBuV)					
Frequency Range (MHz)	Quasi-Peak	Average				
0.15 ~ 0.5	66 to 56 *	56 to 46 *				
0.5 ~ 5	56	46				
5 ~ 30	60	50				

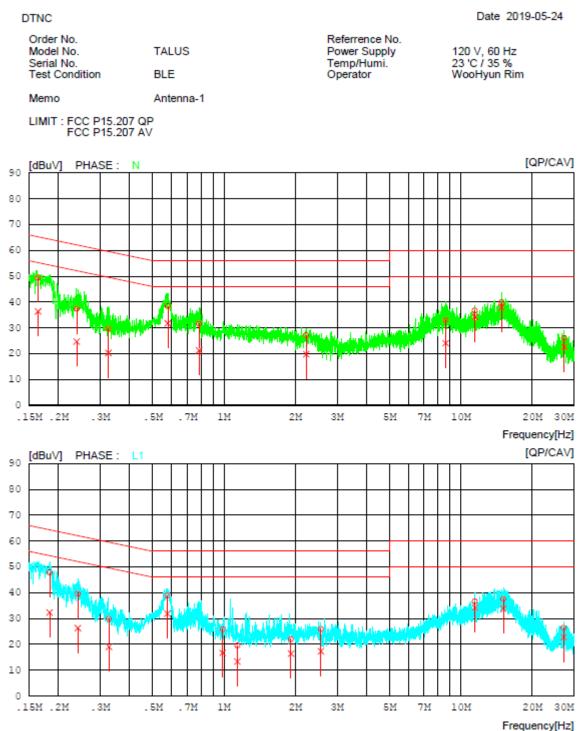
* Decreases with the logarithm of the frequency

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

3.6.1 Test Setup

See test photographs for the actual connections between EUT and support equipment.

3.6.2 Test Procedures


Conducted emissions from the EUT were measured according to the ANSI C63.10-2013.

- The test procedure is performed in a 6.5 m × 3.5 m × 3.5 m (L × W × H) shielded room. The EUT along with its peripherals were placed on a 1.0 m (W) × 1.5 m (L) and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.
- 2. The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room.
- 3. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.
- 4. The excess power cable between the EUT and the LISN was bundled. The power cables of peripherals were unbundled. All connecting cables of EUT and peripherals were moved to find the maximum emission.

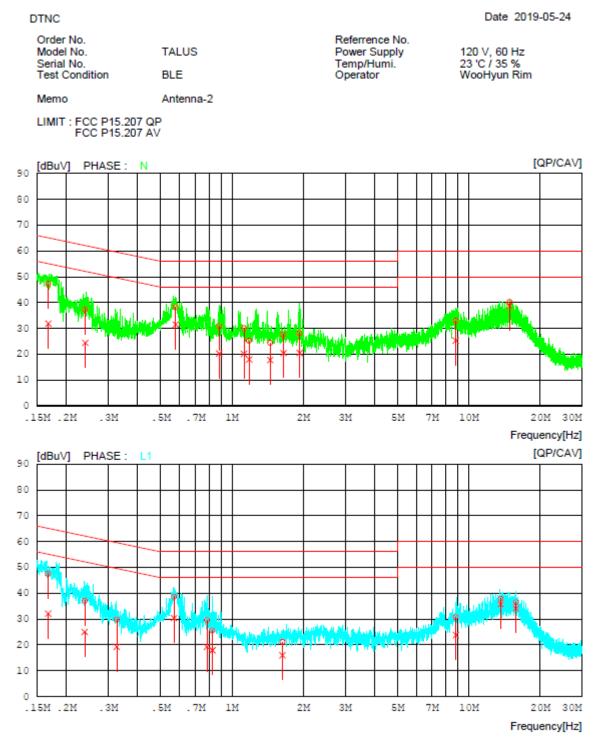
3.6.3 Test Results

AC Line Conducted Emissions (Graph) Antenna 1

Results of Conducted Emission

AC Line Conducted Emissions (List)

Results of Conducted Emission


DTNC

Date 2019-05-24

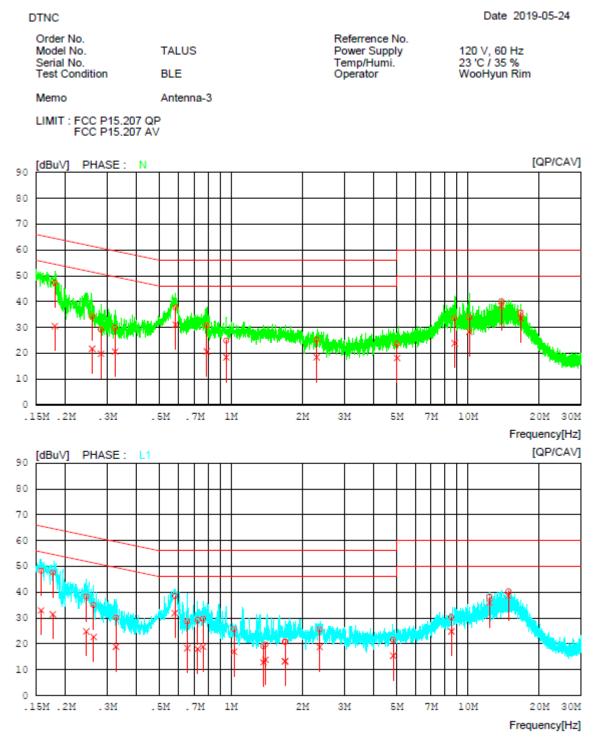
Order No. Model No. Serial No. Test Condition	TALUS BLE	Referrence No. Power Supply Temp/Humi. Operator	120 V, 60 Hz 23 'C / 35 % WooHyun Rim
Memo	Antenna-1		
LIMIT : FCC P15 FCC P15			
NO FREQ [MHz]	READING C.FACTOR QP CAV [dBuV][dBuV] [dB]	QP CAV QP CAV	MARGIN PHASE QP CAV] [dBuV][dBuV]
2 0.23864 3 0.32507 4 0.57872 5 0.78453 6 2.22280 7 8.62640 8 11.46740 9 14.83600 10 27.30680 11 0.18359 12 0.24146 13 0.32634 14 0.57636 15 0.98660 16 1.13820 17 1.91780 18 2.56480 19 11.46880 20 15.11560	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15.7918.79 N 24.7027.47 N 29.8829.26 N 17.6214.27 N 24.3524.74 N 28.7926.20 N 26.9425.92 N 23.2615.72 N 20.1112.12 N 33.9627.32 N 16.4722.07 L1 22.5625.80 L1 29.6930.55 L1 17.2214.12 L1 30.2729.34 L1 36.4732.75 L1 34.1229.60 L1 30.1128.68 L1 23.4115.87 L1 22.5216.23 L1 33.6727.26 L1

AC Line Conducted Emissions (Graph) Antenna 2

Results of Conducted Emission

DTNC

AC Line Conducted Emissions (List)


Results of Conducted Emission

Date 2019-05-24

Order No. Model No. Serial No. Test Condition	TALUS BLE	Referrence No. Power Supply Temp/Humi. Operator	120 V, 60 Hz 23 'C / 35 % WooHyun Rim
Memo	Antenna-2		
LIMIT : FCC P15 FCC P15			
NO FREQ	READING C.FACTOR OP CAV	RESULT LIMIT OP CAV OP CAV	MARGIN PHASE OP CAV
[MHz]	[dBuV][dBuV] [dB]	[dBuV][dBuV] [dBuV][dBuV]	-
2 0.23991 3 0.57764 4 0.88286 5 1.12280 6 1.18000 7 1.44820 8 1.64880 9 1.92880 10 8.80220 11 14.83820 12 0.16727 13 0.23870 14 0.32605 15 0.56898	20.1610.18 9.98 15.29 8.00 9.99 14.40 7.80 9.99 17.6210.44 10.01 18.0110.46 10.03 22.7114.97 10.30 29.7328.22 10.49 37.5322.13 9.94 27.0615.03 9.94 19.81 9.31 9.94 28.6020.34 9.95	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	17.7523.22 N 24.8027.65 N 17.8214.49 N 25.0425.74 N 25.8625.84 N 30.7228.01 N 31.6128.21 N 28.3725.55 N 27.9625.51 N 26.9924.73 N 19.7811.29 N 17.6223.02 L1 25.1427.17 L1 29.8030.30 L1 17.4515.71 L1
	15.55 7.85 9.96 11.10 5.94 10.01	29.5119.25 56.00 46.00 25.5117.81 56.00 46.00 21.1115.95 56.00 46.00 30.6623.73 60.00 50.00 37.8235.65 60.00 50.00 36.4534.06 60.00 50.00	26.4926.75 L1 30.4928.19 L1 34.8930.05 L1 29.3426.27 L1 22.1814.35 L1 23.5515.94 L1

AC Line Conducted Emissions (Graph) Antenna 3

Results of Conducted Emission

AC Line Conducted Emissions (List)

Results of Conducted Emission

DTNC			Date 2	2019-05-24
Serial No.	TALUS BLE	Referrence No. Power Supply Temp/Humi. Operator	120 V, 60 Hz 23 'C / 35 % WooHyun Rim	
Memo	Antenna-3			
LIMIT : FCC P15.207 QP FCC P15.207 AV				
QP	DING C.FACTOR RESULT CAV QP CA][dBuV] [dB] [dBuV][dB		MARGIN QP CAV BuV][dBuV]	PHASE
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19 24.01 15 29.74 60 30.94 69 28.94 26 14.91 20 25.26 13 27.52 80 27.56 40 31.80 33 26.04 08 21.69 84 11.72 16 16.44 30 22.65 07 23.31 35 28.68 40 30.70 56 14.13 44 27.71 81 28.03 30 27.10 34 29.09 26 32.20 98 33.22 20 32.75 51 27.20 45 30.69 69 25.18 83 14.11 63 11.44	N N N N N N N N N N N N N N N N N N N

3.7 Occupied Bandwidth

Test Requirements, RSS-Gen [6.7]

When an occupied bandwidth value is not specified in the applicable RSS, the transmitted signal bandwidth to be reported is to be its 99 % emission bandwidth, as calculated or measured.

3.7.1 Test Setup

Not tested

3.7.2 Test Procedures

The 99 % power bandwidth was measured with a calibrated spectrum analyzer.

The resolution bandwidth (RBW) shall be in the range of 1 % to 5 % of the occupied bandwidth (OBW) and video bandwidth (VBW) shall be approximately 3 × RBW.

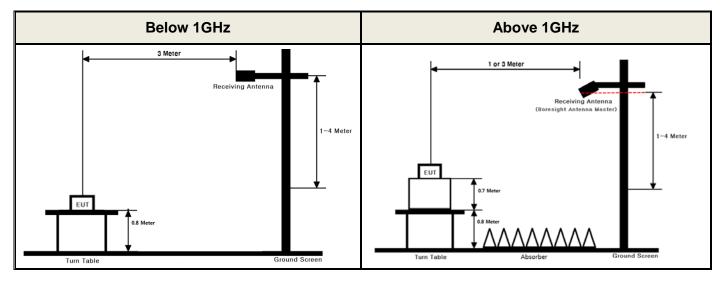
Spectrum analyzer plots are included on the following pages.

3.7.3 Test Results

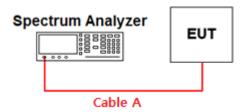
Not tested

4. ANTENNA REQUIREMENTS

According to FCC 47 CFR §15.203


"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

The external antenna employs a unique antenna connector.


APPENDIX I

Test set up diagrams

Radiated Measurement

Conducted Measurement

Path loss information

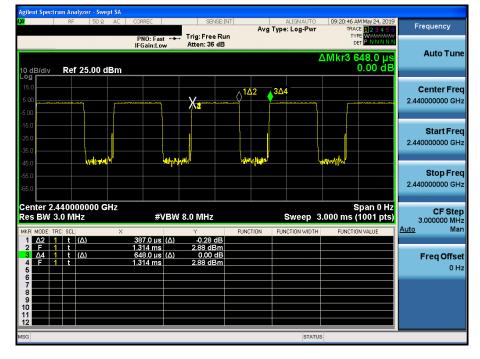
Frequency (GHz)	Path Loss (dB)	Frequency (GHz)	Path Loss (dB)
0.03	0.22	15	4.27
1	0.93	20	5.41
2.402 & 2.440 & 2.480	1.70	25	5.60
5	2.10	-	-
10	2.70	-	-

Note 1: The path loss from EUT to Spectrum analyzer was measured and used for test. Path loss (S/A's correction factor) = Cable A

APPENDIX II

Duty cycle plots

Test Procedure

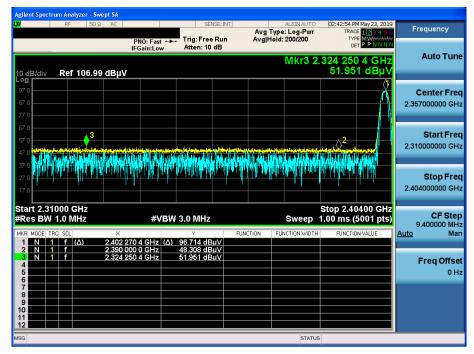

Duty Cycle was measured using Section 6.0 b) of KDB558074 D01v05r02 :

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average.

The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

Duty Cycle

TM 1 Test Channel : Middle


Detector Mode : PK

APPENDIX III

Unwanted Emissions (Radiated) Test Plot

Antenna 1

TM1 & Lowest & Z & Ver


TM1 & Lowest & Z & Ver

	RF	50Ω AC				ALIGNAUTO vg Type: RMS	TRAC	M May 23, 2019	Frequency
	_		PNO: Fast IFGain:Lov			/g Hold: 200/200	TY D		
0 dB/div	Ref 1	06.99 dBµ	١V			Mkr3 2		0 4 GHz 4 dBµV	Auto Tu
. og 97.0								(Center Fr
87.0								— A	2.357000000 G
77.0								-+	
67.0									Start Fr
57.0		▲3					^2		2.310000000
47.0					****		²	لسم	
27.0									Oton E
									Stop FI
17.0	31000 GH	17					Stop 2.4	0400 GH7	2.404000000
17.0	31000 GH V 1.0 MH		#V	BW 3.0 MHz*		Sweep		0400 GHz 5001 pts)	CF St
17.0	N 1.0 MH	lz ×		Y	FUNCTION		1.00 ms (5001 pts)	2.404000000 G CF St 9.400000 M
17.0 Res BV IKR MODE 1 N 2 N	N 1.0 MH	lz) 2.402 2.390	2 270 4 GHz 0 000 0 GHz	γ (Δ) 93.038 dBμ 41.118 dBμ	₩ ₩		1.00 ms (5001 pts)	2.404000000 G CF St 9.400000 M
17.0 Start 2.3 Res BV (KR MODE 1 N 2 N 3 N 4	TRC SCL	lz) 2.402 2.390	2 270 4 GHz	γ (Δ) 93.038 dBμ	₩ ₩		1.00 ms (5001 pts)	2.40400000 G CF St 9.400000 N <u>Auto</u> N
17.0 Start 2.3 Res BV 4KR MODE 1 N 2 N 3 N	N 1.0 MH	lz) 2.402 2.390	2 270 4 GHz 0 000 0 GHz	γ (Δ) 93.038 dBμ 41.118 dBμ	₩ ₩		1.00 ms (5001 pts)	2.40400000 G CF St 9.400000 N <u>Auto</u> N
17.0 Start 2.3 Res BV (KR MODE 1 N 2 N 3 N 4 5	N 1.0 MH	lz) 2.402 2.390	2 270 4 GHz 0 000 0 GHz	γ (Δ) 93.038 dBμ 41.118 dBμ	₩ ₩		1.00 ms (5001 pts)	2.404000000 G CF St 9.400000 M
17.0 Start 2.3 Res BV MKR MODE 1 N 2 N 3 N 4 5 5 6 7	N 1.0 MH	lz) 2.402 2.390	2 270 4 GHz 0 000 0 GHz	γ (Δ) 93.038 dBμ 41.118 dBμ	₩ ₩		1.00 ms (5001 pts)	2.40400000 G CF St 9.400000 N <u>Auto</u> N

Dt&C

TM1 & Highest & Z & Ver

Detector Mode : PK

TM1 & Highest & Z & Ver

ilent Spectrum Analyzer - Swept SA Avg Type: RMS Avg|Hold: 200/200 Frequency Trig: Free Run Atten: 10 dB TYPE A W PNO: Fast IFGain:Low Auto Tune Mkr3 2.483 684 8 GHz 42.214 dBµV Ref 106.99 dBµV **Center Freq** 2.489000000 GHz Start Freq 2.478000000 GHz ()3 Stop Freq 2.50000000 GHz Stop 2.50000 GHz 1.00 ms (5001 pts) Start 2.47800 GHz #Res BW 1.0 MHz CF Step 2.200000 MHz #VBW 3.0 MHz* Sweep FUNCTION FUNCT Auto Mai lz (Δ) 95.494 dBμV 41.709 dBμV 42.214 dBμV Freq Offset 0 Hz 11 STATUS

TM1 & Highest & Y & Hor

XU I	RF	50Ω AC	PNO:Fast ↔ IFGain:High	Trig: Free R #Atten: 0 dB	Avg un Avg l	ALIGNAUTO Type: RMS Hold: 200/200	D3:51:05 PM May 23, 20 TRACE 1 2 3 4 5 TYPE A WWWW DET A P N N N	6 Frequency
og	Ref 61	.99 dBµV	ir Gain:nign	inden o de		Mkr1	7.440 510 GH 37.867 dBµ	z Auto Tui
57.0								Center Fr 7.440000000 G
47.0								Start Fr 7.437500000 G
42.0 37.0 <mark>http://www.</mark>	asta da yanasana	tiper and the second	May or Manager and Manager	and and the second s	1 protony production for pro-	ningharisan myo-ang-maliya	And the production of the product of	Stop Fr 7.442500000 G
32.0 <u> </u>								CF St 2.480000000 G Auto <u>M</u>
22.0								Freq Offs 0
17.0	440000 (Span 5.000 MH	

Antenna 2

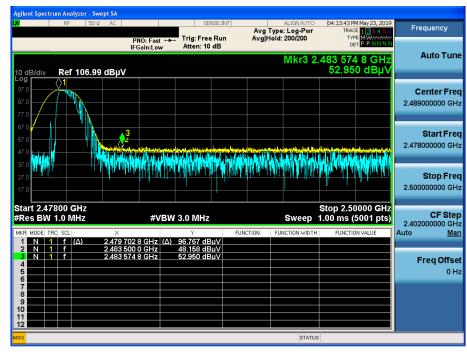
TM1 & Lowest & Z & Ver

Detector Mode : PK

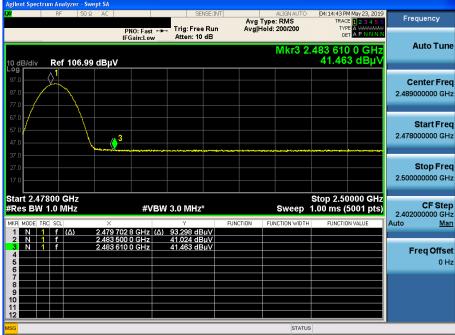
lgilent Spectrum Analyzer - Swept SA					
X/ RF 50Ω AC		SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr	D4:17:23 PM May 23, 2019 TRACE 1 2 3 4 5 6	
	PNO: Fast +	Trig: Free Run	Avg Hold: 200/200	TYPE MWWWWW DET P P N N N N	
	IFGain:Low	Atten: 6 dB			Auto Tune
			Mkr2 2	.324 212 8 GHz	Autorune
10 dB/div Ref 96.99 dBµ\	/			52.431 dBµV	
87.0				M	Center Freq
77.0					2.357000000 GHz
67.0					
57.0					
47.0 Avid the Densit Profit of the second section	and the state of the		i an	at his all to pake with the	Start Fred
37.0	illen for de la company				2.310000000 GHz
27.0	adionalia kada da ka	l i ju tu, nala bili	ditada din di di se te te	alle alle the to dille call a	
17.0				· · · ·	Stop Fred
6.99					2.40400000 GHz
Start 2.31000 GHz	<i>10</i> (514)	0 0 MIL-		Stop 2.40400 GHz	CF Step
#Res BW 1.0 MHz	#VBW	3.0 MHz	sweep	1.00 ms (5001 pts)	2.402000000 GHz
MKR MODE TRC SCL X		Y FU 92.071 dBµV	NCTION FUNCTION WIDTH	FUNCTION VALUE	Auto <u>Mar</u>
2 N 1 f 2.32	4 212 8 GHz	52.431 dBµV			
3					Freq Offset
5					0 Hz
6					
8					
10					
11					
ISG			STATU		
			01110	-	

TM1 & Lowest & Z & Ver

Detector Mode : AV


ent Spectrum Analyzer - Swept SA Frequency Avg Type: RMS Avg|Hold: 200/200 TRACE PNO: Fast +++ IFGain:Low Atten: 6 dB TYPE A WAN Auto Tune Mkr2 2.324 494 8 GHz 41.257 dBµV 0 dB/div Ref 96.99 dBµV **Center Freq** 2.357000000 GHz 2 Start Freq 2.310000000 GHz Stop Freq 2.404000000 GHz Stop 2.40400 GHz Sweep 1.00 ms (5001 pts) Start 2.31000 GHz #Res BW 1.0 MHz CF Step 2.402000000 GHz #VBW 3.0 MHz* Man Auto 2.402 270 4 GHz (Δ) 88.625 dBµV 2.324 494 8 GHz 41.257 dBµV N Freq Offset 0 Hz

Dt&C


TM1 & Highest & Z & Ver

Detector Mode : PK

TM1 & Highest & Z & Ver

H39MMay23,2019 TRACE 328450 TYPE A STO TYPE A STO

TM1 & Highest & Y & Hor

XI	RF	50Ω AC		SENS	BE:INT	Avg Type			4 May 23, 2019	Frequency	
			PNO: Fast ↔ IFGain:Low	Trig: Free Atten: 6 di	Run A	Avg Hold:		TYP	123456 A WWWWW A P N N N N		
5 dB/div	Ref 66	.99 dBµV					Mkr1	7.439 5 37.60	17 GHz 4 dBµV	Auto Tu	
-09										Center Fr	
62.0										7.440000000 G	
57.0											
52.0										Start Fr 7.437500000 G	
32.0											
47.0										Stop Fr	
42.0										7.442500000 G	
				∳ ¹						CF St	
37.0 37.0	lan serie in the series of the	ter and the second s			hin mar in the second secon		inere and a second s	egelyek en op i de en op	I	2.480000000 G Auto <u>M</u>	
										Freq Offs	
27.0										0	
22.0											
			#VB\	N 3.0 MHz*			Sweep	.5 Span 1.00 ms	000 MHz 5001 pts)		
Center 7.4 #Res BW			#VB\	₩ 3.0 MHz*			Sweep status	Span 5. 1.00 ms (:	000 MHz 5001 pts)		

Antenna 3

TM1 & Lowest & Z & Ver

Detector Mode : PK

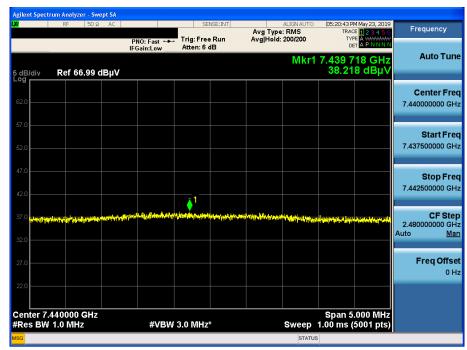
Agilent Spectrum Analyzer - Swept SA 👘					
RF 50Ω AC	Tria		ALIGNAUTO Type: Log-Pwr Hold: 200/200	D4:49:05 PM May 23, 2019 TRACE 123456 TYPE MWATALWA	Frequency
10 dB/div Ref 106.99 dBµV	IFGain:Low Atter	n: 10 dB		323 047 2 GHz 52.847 dBμV	Auto Tune
97.0 87.0 77.0					Center Free 2.357000000 GH
67.0 57.0 47.0 47.0	likini shekara				Start Fred 2.310000000 GH;
37.0 27.0 17.0					Stop Fred 2.404000000 GH:
Start 2.31000 GHz #Res BW 1.0 MHz	#VBW 3.0 N	1Hz		Stop 2.40400 GHz 1.00 ms (5001 pts)	CF Step 2.48000000 GH
			FUNCTION WIDTH	FUNCTION VALUE	Auto <u>Mar</u>
		7 dBμV 7 dBμV			Freq Offse 0 Hi
7 8 9 9 10					
11 12 12 13 13 14			STATUS		

TM1 & Lowest & Z & Ver

TM1 & Highest & Z & Ver

Dt&C

Detector Mode : PK


ilent Spectrum Analyze RF	50 Ω AC			SEN:	SE:INT		ALIGN AUTO		PM May 23, 2019	Frequency
		PNO: Fast IFGain:Lov		rig: Free Atten: 10 d			ype: Log-Pwr old: 200/200	T	ACE 123456 APE MWAAAAAA DET P P N N N N	Trequency
B/div Ref 10	i6.99 dBµV		v ,	Attent to t			Mkr3 2	2.483 68 51.6	0 4 GHz 82 dBµV	Auto Tune
										Center Fred 2.489000000 GH:
		3					(Landida, ().			Start Fred 2.478000000 GH:
] 		u par i pr		N. U. D. N.			<u>no da pre</u> ta			Stop Fred 2.500000000 GH
rt 2.47800 GH s BW 1.0 MH		#V	'BW 3.	0 MHz			Sweep	Stop 2.5 1.00 ms	0000 GHz (5001 pts)	CF Step 2.48000000 GH
MODE TRC SCL N 1 f (A) N 1 f		29 2 GHz		Y .206 dBj .973 dBj	IV I	CTION	FUNCTION WIDTH	H FUNCT	ION VALUE	Auto <u>Mar</u>
N 1 f N 1 f		80 4 GHz		l.682 dBj						Freq Offse 0 Ha
3							STATU	IS		

TM1 & Highest & Z & Ver

TM1 & Highest & Y & Hor

