

FCC TEST REPORT

 REPORT NO.:
 RF990729C07

 MODEL NO.:
 GKA

 FCC ID:
 PRDOPWIRWMU20

 RECEIVED:
 Jul. 29, 2010

 TESTED:
 Aug. 02, 2010

 ISSUED:
 Aug. 05, 2010

APPLICANT: Acrox Technologies Co., Ltd

- ADDRESS: 4F., No. 89, Minshan St., Neihu Dist., Taipei City 114, Taiwan, R.O.C.
- **ISSUED BY :** Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch
- LAB ADDRESS : No. 47, 14th Ling, Chia Pau Tsuen, Lin Kou Hsiang, Taipei Hsien 244, Taiwan, R.O.C.
- **TEST LOCATION :** No. 19, Hwa Ya 2nd Rd, Wen Hwa Tsuen, Kwei Shan Hsiang, Taoyuan Hsien 333, Taiwan, R.O.C.

This test report consists of 24 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product certification, approval, or endorsement by TAF or any government agency. The test results in the report only apply to the tested sample.

Table of Contents

1.	CERTIFICATION	3
2.	SUMMARY OF TEST RESULTS	4
2.1	MEASUREMENT UNCERTAINTY	4
3.	GENERAL INFORMATION	5
3.1	GENERAL DESCRIPTION OF EUT	5
3.2	DESCRIPTION OF TEST MODES	6
3.2.1	CONFIGURATION OF SYSTEM UNDER TEST	6
3.2.2	TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL	7
3.3	GENERAL DESCRIPTION OF APPLIED STANDARDS	8
3.4	DESCRIPTION OF SUPPORT UNITS	8
4.	TEST TYPES AND RESULTS	9
4.1	RADIATED EMISSION MEASUREMENT	9
4.1.1	LIMITS OF RADIATED EMISSION MEASUREMENT	9
4.1.2	TEST INSTRUMENTS	.10
4.1.3	TEST PROCEDURES	. 11
4.1.4	DEVIATION FROM TEST STANDARD	. 11
4.1.5	TEST SETUP	.12
4.1.6	EUT OPERATING CONDITIONS	.12
4.1.7	TEST RESULTS	.13
4.2	BAND EDGES MEASUREMENT	.19
4.2.1	LIMITS OF BAND EDGES MEASUREMENT	.19
4.2.2	TEST INSTRUMENTS	.19
4.2.3	TEST PROCEDURE	.19
4.2.4	DEVIATION FROM TEST STANDARD	.19
4.2.5	EUT OPERATING CONDITION	.19
4.2.6	TEST RESULTS	.20
5.	PHOTOGRAPHS OF THE TEST CONFIGURATION	.22
6.	INFORMATION ON THE TESTING LABORATORIES	.23
7.	APPENDIX A - MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES	
	TO THE EUT BY THE LAB	.24

1. CERTIFICATION

PRODUCT: Wireless Blue Trace Mouse
MODEL NO.: GKA
BRAND: ACROX
APPLICANT: Acrox Technologies Co., Ltd
TESTED: Aug. 02, 2010
TEST SAMPLE: ENGINEERING SAMPLE
STANDARDS: FCC Part 15, Subpart C (Section 15.249) ANSI C63.4-2003

The above equipment (model: GKA) have been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

PREPARED BY

, DATE : Aug. 05, 2010

Joanna Wang / Senior Specialist

TECHNICAL ACCEPTANCE Responsible for RF

Long **, DATE :** Aug. 05, 2010 Cher / Senior Engineer

APPROVED BY

Gary Chang'/ Assistant Manager

, DATE : Aug. 05, 2010

2. SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC Part 15, Subpart C (Section 15.249)

STANDARD PARAGRAPH			REMARK
15.207	Conducted Emission Test	NA	Power supply is 3Vdc from batteries.
15.209 15.249 15.249 (d)	Radiated Emission Test Band Edge Measurement Limit: 50dB less than the peak value of fundamental frequency or meet radiated emission limit in section 15.209	PASS	Meet the requirement of limit. Minimum passing margin is -7.7dB at 4880.00MHz.

2.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	FREQUENCY	UNCERTAINTY
	30MHz ~ 200MHz	3.34dB
Dedicted emissions	200MHz ~1000MHz	3.35dB
Radiated emissions	1GHz ~ 18GHz	2.26dB
	18GHz ~ 40GHz	1.94dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3. GENERAL INFORMATION

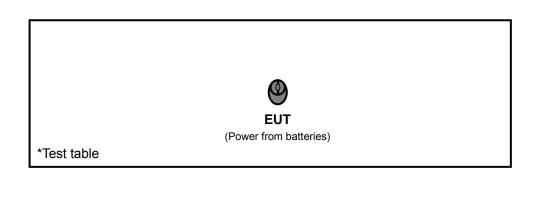
3.1 GENERAL DESCRIPTION OF EUT

EUT	Wireless Blue Trace Mouse
MODEL NO.	GKA
FCC ID	PRDOPWIRWMU20
POWER SUPPLY	3Vdc from batteries (1.5V AAA x 2)
MODULATION TYPE	GFSK
DATA RATE	1Mbps
OPERATING FREQUENCY	2403 ~ 2480MHz
NUMBER OF CHANNEL	78
ANTENNA TYPE	Printed antenna
DATA CABLE	NA
I/O PORT	NA
ACCESSORY DEVICES	NA

NOTE:

1. The EUT has transmitter and receiver functions.

2. The above EUT information was declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.



3.2 DESCRIPTION OF TEST MODES

78 channels are provided to this EUT.

Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
1	2403	27	2429	53	2455
2	2404	28	2430	54	2456
3	2405	29	2431	55	2457
4	2406	30	2432	56	2458
5	2407	31	2433	57	2459
6	2408	32	2434	58	2460
7	2409	33	2435	59	2461
8	2410	34	2436	60	2462
9	2411	35	2437	61	2463
10	2412	36	2438	62	2464
11	2413	37	2439	63	2465
12	2414	38	2440	64	2466
13	2415	39	2441	65	2467
14	2416	40	2442	66	2468
15	2417	41	2443	67	2469
16	2418	42	2444	68	2470
17	2419	43	2445	69	2471
18	2420	44	2446	70	2472
19	2421	45	2447	71	2473
20	2422	46	2448	72	2474
21	2423	47	2449	73	2475
22	2424	48	2450	74	2476
23	2425	49	2451	75	2477
24	2426	50	2452	76	2478
25	2427	51	2453	77	2479
26	2428	52	2454	78	2480

3.2.1 CONFIGURATION OF SYSTEM UNDER TEST

3.2.2 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

	EUT CONFIGURE		APPLIC	ICABLE TO		DESCRIPTION		
	MODE	RE≥1G	RE<1G	PLC	BM		DESCI	
	-	\checkmark	\checkmark	NOTE	\checkmark			-
	Where PLC: Po	ower Line C	Conducted E	mission		RE<1G: Rad	liated Emiss	ion below 1GHz
	RE≥1G:	Radiated I	Emission ab	ove 1GHz		BM: Banded	ge Measure	ment
	NOTE: No need	to concern	of Conduct	ed Emission	due to th	ne EUT is powe	red by batte	ery.
<u>KAD</u>	IATED EMISS	ION TES		<u>E 1 GHZ)</u> :	_			
\leq	Pre-Scan has							•
	combinations diversity archi		available	modulatio	ons axis	s and antenn	ia ports (il	f EUT with antenna
\triangleleft	Following cha		as (were)) selected	for the	final test as	listed belo	SW.
_			Ì		ED CHA			DULATION TYPE
		I to 78			1, 38, 78	8		GFSK
					.,, .	-		
	IATED EMISS	been co	nducted to	o determir	e the w			
\square	Pre-Scan has	been co between itecture).	nducted to available	o determir modulatio	ie the work ons axis	s and antenn	ia ports (if	FEUT with antenna
\triangleleft	Pre-Scan has combinations diversity archi Following cha	been co between itecture).	nducted to available vas (were)	o determir modulatic) selected	ie the work ons axis	s and antenn final test as	a ports (if	FEUT with antenna
\square	Pre-Scan has combinations diversity archi Following cha	been con between itecture). innel(s) w	nducted to available vas (were)	o determir modulatic) selected	ie the work ons axis	s and antenn final test as	a ports (if	f EUT with antenna
	Pre-Scan has combinations diversity archi Following cha AVAILAB	been col between itecture). Innel(s) w BLE CHANN to 78 SUREME been col between	nducted to available /as (were) //IEL	o determir modulatio) selected TEST	for the works axis for the FED CHA 78	s and antenn final test as ANNEL vorst-case m l antenna po	na ports (ii listed belo MO node from rts (if EU ⁻	f EUT with antenna ow. DULATION TYPE GFSK all possible F with antenna dive
	Pre-Scan has combinations diversity archi Following cha AVAILAB DEDGE MEAS Pre-Scan has combinations architecture). Following cha	been col between itecture). Innel(s) w BLE CHANN to 78 SUREME been col between	nducted to available /as (were) IEL INT: nducted to available /as (were)	o determir modulatio) selected TEST o determir modulatio) selected	for the works axis for the FED CHA 78	s and antenn final test as NNEL vorst-case m l antenna po final test as	ia ports (ii listed belo mode from rts (if EU ⁻ listed belo	f EUT with antenna ow. DULATION TYPE GFSK all possible F with antenna dive
\boxtimes	Pre-Scan has combinations diversity archi Following cha AVAILAB DEDGE MEAS Pre-Scan has combinations architecture). Following cha	been col between itecture). Innel(s) w LE CHANN to 78 SUREME been col between	nducted to available /as (were) IEL INT: nducted to available /as (were)	o determir modulatio) selected TEST o determir modulatio) selected	for the works axis for the TED CHA	s and antenn final test as NNEL vorst-case m l antenna po final test as	ia ports (ii listed belo mode from rts (if EU ⁻ listed belo	f EUT with antenna ow. DULATION TYPE GFSK all possible Γ with antenna dive
3 3 3 3 3 3	Pre-Scan has combinations diversity archi Following cha AVAILAB DEDGE MEAS Pre-Scan has combinations architecture). Following cha	been col between itecture). Innel(s) w BLE CHANN been col between innel(s) w BLE CHANN I to 78	nducted to available /as (were) IEL INT: nducted to available /as (were)	o determir modulatio) selected TEST o determir modulatio) selected	for the works axis for the TED CHA	s and antenn final test as NNEL vorst-case m l antenna po final test as	ia ports (ii listed belo mode from rts (if EU ⁻ listed belo	f EUT with antenna ow. DULATION TYPE GFSK all possible Γ with antenna dive ow. DULATION TYPE
3 3 3 3 3 3 3	Pre-Scan has combinations diversity archi Following cha AVAILAB DEDGE MEAS Pre-Scan has combinations architecture). Following cha	been col between itecture). Innel(s) w I to 78 SUREME been col between innel(s) w I to 78 LE CHANN L to 78	inducted to available ist (were) iEL inducted to available ist (were) iEL	o determir modulatio) selected TEST o determir modulatio) selected	for the wons axis for the TED CHA 78	s and antenn final test as NNEL vorst-case m l antenna po final test as	na ports (ii listed belo mode from rts (if EU ⁻ listed belo MO	f EUT with antenna ow. DULATION TYPE GFSK all possible Γ with antenna dive ow. DULATION TYPE
BAN	Pre-Scan has combinations diversity archi Following cha AVAILAB DEDGE MEAS Pre-Scan has combinations architecture). Following cha AVAILAB	been col between itecture). Innel(s) w I to 78 SUREME been col between innel(s) w I to 78 LE CHANN I to 78 LE CHANN I to 78	IRONMENT	o determir modulatio) selected TEST o determir modulatio) selected TEST	ie the wons axis for the rED CHA 78 ne the wons and for the rED CHA 1, 78	s and antenn final test as ANNEL vorst-case m antenna po final test as ANNEL	na ports (ii listed belo mode from rts (if EU ⁻ listed belo MO	f EUT with antenna ow. DULATION TYPE GFSK all possible Γ with antenna dive ow. DULATION TYPE GFSK
BAN	Pre-Scan has diversity archi Following cha AVAILAB DEDGE MEAS Pre-Scan has combinations architecture). Following cha AVAILAB	been con between itecture). innel(s) w ite CHANN ito 78 SUREME been con between innel(s) w ite CHANN ito 78 ite CHANN ito 78 ite CHANN ite 78 ite 78	IRONMENT	o determir modulatio) selected TEST o determir modulatio) selected TEST	red cha red cha 78 red cha 78 red cha 78 red cha for the red cha 1, 78	s and antenn final test as ANNEL vorst-case m l antenna po final test as ANNEL	ia ports (ii listed belo mode from rts (if EU ⁻ listed belo MO	f EUT with antenna ow. DULATION TYPE GFSK all possible Γ with antenna dive ow. DULATION TYPE GFSK TESTED BY

3.3 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (Section 15.249) ANSI C63.4-2003

All test items have been performed and recorded as per the above standards.

NOTE: The EUT is also considered as a kind of computer peripheral, because the connection to computer is necessary for typical use. It has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (DoC). The test report has been issued separately.

3.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit.

4. TEST TYPES AND RESULTS

4.1 RADIATED EMISSION MEASUREMENT

4.1.1 LIMITS OF RADIATED EMISSION MEASUREMENT

Emissions radiated outside of the specified bands, shall be according to the general radiated limits in 15.209, 15.249 as following:

15.209 Limit					
Frequencies (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)			
0.009 ~ 0.490	2400/F(kHz)	300			
0.490 ~ 1.705	24000/F(kHz)	30			
1.705 ~ 30.0	30	30			
30 ~ 88	100	3			
88 ~ 216	150	3			
216 ~ 960	200	3			
Above 960	500	3			
15.249 Limit					
Fundamental Frequency	Field Strength of Fundamental (millivolts/meter)	Field Strength of Harmonics (microvolts/meter)			
902 ~ 928 MHz	50	500			
2400 ~ 2483.5 MHz	50	500			
5725 ~ 5875 MHz	50	500			
24 ~ 24.25 GHz	250	2500			

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
Test Receiver ROHDE & SCHWARZ	ESIB7	100188	Dec. 21, 2009	Dec. 20, 2010
Spectrum Analyzer ROHDE & SCHWARZ	FSP40	100269	Dec. 31, 2009	Dec. 30, 2010
BILOG Antenna SCHWARZBECK	VULB9168	9168-160	Apr. 27, 2010	Apr. 26, 2011
HORN Antenna SCHWARZBECK	9120D	9120D-405	Feb. 03, 2010	Feb. 02, 2011
HORN Antenna SCHWARZBECK	BBHA 9170	BBHA9170243	Dec. 25, 2009	Dec. 24, 2010
Preamplifier Agilent	8447D	2944A10633	Nov. 10, 2009	Nov. 09, 2010
Preamplifier Agilent	8449B	3008A01964	Nov. 09, 2009	Nov. 08, 2010
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	238141/4	May 14, 2010	May 13, 2011
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	12738/6	May 14, 2010	May 13, 2011
Software ADT.	ADT_Radiated_ V7.6.15.9.2	NA	NA	NA
Antenna Tower inn-co GmbH	MA 4000	013303	NA	NA
Antenna Tower Controller inn-co GmbH	CO2000	017303	NA	NA
Turn Table ADT.	TT100.	TT93021703	NA	NA
Turn Table Controller ADT.	SC100.	SC93021703	NA	NA

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in HwaYa Chamber 3.

3. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.

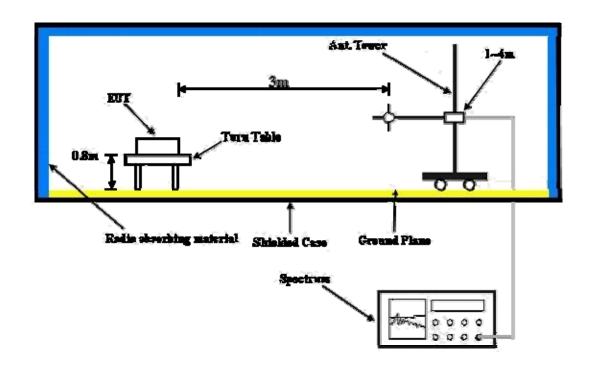
4. The FCC Site Registration No. is 988962.

5. The IC Site Registration No. is IC 7450F-3.

4.1.3 TEST PROCEDURES

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

NOTE:


- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
- 3. All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 DEVIATION FROM TEST STANDARD

No deviation.

4.1.5 TEST SETUP

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT OPERATING CONDITIONS

Set the EUT under transmission condition continuously at specific channel frequency.

4.1.7 TEST RESULTS

ABOVE 1GHz DATA

EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL Channel 1		FREQUENCY RANGE	1 ~ 25GHz	
INPUT POWER	3Vdc	DETECTOR FUNCTION	Peak (PK) Average (AV)	
ENVIRONMENTAL CONDITIONS	26deg. C, 65%RH 1009 hPa	TESTED BY	Frank Wang	

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	Correction Factor (dB/m)	
1	2390.00	39.8 PK	74.0	-34.2	1.09 H	0	9.30	30.50	
2	2390.00	28.5 AV	54.0	-25.5	1.09 H	0	-2.00	30.50	
3	2398.00	40.6 PK	74.0	-33.4	1.09 H	0	10.10	30.50	
4	2398.00	28.9 AV	54.0	-25.1	1.09 H	0	-1.60	30.50	
5	2400.00	63.9 PK	74.0	-10.1	1.09 H	360	33.40	30.50	
6	2400.00	12.5 AV	54.0	-41.5	1.09 H	360	-18.00	30.50	
7	*2403.00	92.2 PK	114.0	-21.8	1.09 H	360	61.70	30.50	
8	*2403.00	40.8 AV	94.0	-53.2	1.09 H	360	10.30	30.50	
9	4806.00	65.5 PK	74.0	-8.5	1.02 H	177	29.40	36.10	
10	4806.00	14.1 AV	54.0	-39.9	1.02 H	177	-22.00	36.10	

REMARKS: 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. " * " : Fundamental frequency

6. The average value of fundamental frequency is: Average = Peak value + 20log(Duty cycle) Where the duty factor is calculated from following formula: 20 log (Duty cycle) = 20 log (0.27 ms / 100 ms) = -51.4 dB

EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL Channel 1		FREQUENCY RANGE	1 ~ 25GHz	
INPUT POWER	3Vdc	DETECTOR FUNCTION	Peak (PK) Average (AV)	
ENVIRONMENTAL CONDITIONS	26deg. C, 65%RH 1009 hPa	TESTED BY	Frank Wang	

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	Correction Factor (dB/m)	
1	2390.00	25.6 PK	74.0	-48.4	1.00 V	47	-4.90	30.50	
2	2390.00	13.5 AV	54.0	-40.5	1.00 V	47	-17.00	30.50	
3	2398.00	26.0 PK	74.0	-48.0	1.00 V	47	-4.50	30.50	
4	2398.00	13.7 AV	54.0	-40.3	1.00 V	47	-16.80	30.50	
5	2400.00	52.8 PK	74.0	-21.2	1.00 V	47	22.30	30.50	
6	2400.00	1.4 AV	54.0	-52.6	1.00 V	47	-29.10	30.50	
7	*2403.00	81.1 PK	114.0	-32.9	1.00 V	47	50.60	30.50	
8	*2403.00	29.7 AV	94.0	-64.3	1.00 V	47	-0.80	30.50	
9	4806.00	61.6 PK	74.0	-12.4	1.00 V	332	25.50	36.10	
10	4806.00	10.2 AV	54.0	-43.8	1.00 V	332	-25.90	36.10	

REMARKS: 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).

3. The other emission levels were very low against the limit.

4. Margin value = Emission level – Limit value.

5. " * " : Fundamental frequency

 The average value of fundamental frequency is: Average = Peak value + 20log(Duty cycle) Where the duty factor is calculated from following formula: 20 log (Duty cycle) = 20 log (0.27 ms / 100 ms) = -51.4 dB

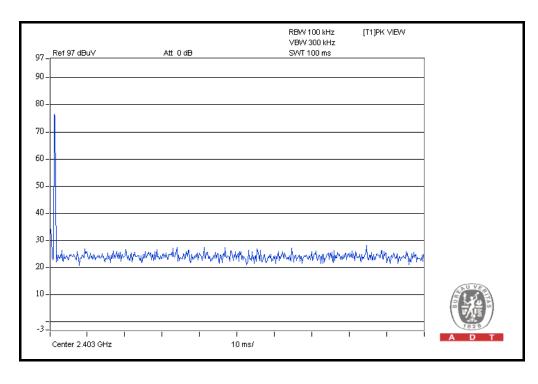
EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL	Channel 39	FREQUENCY RANGE	1 ~ 25GHz	
INPUT POWER	3Vdc	DETECTOR FUNCTION	Peak (PK) Average (AV)	
ENVIRONMENTAL CONDITIONS	26deg. C, 65%RH 1009 hPa	TESTED BY	Frank Wang	

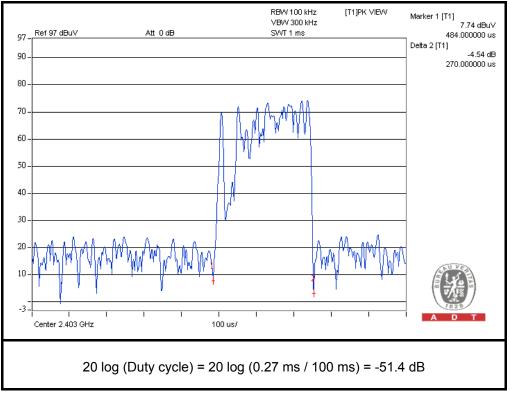
	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	Correction Factor (dB/m)	
1	*2440.00	92.5 PK	114.0	-21.5	1.06 V	351	61.80	30.70	
2	*2440.00	41.1 AV	94.0	-52.9	1.06 V	351	10.40	30.70	
3	4880.00	66.3 PK	74.0	-7.7	1.02 V	181	30.10	36.20	
4	4880.00	14.9 AV	54.0	-39.1	1.02 V	181	-21.30	36.20	
		ANTENNA		/ & TEST DI	STANCE: V	ERTICAL A	Т 3 М		
NO.	NO. FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (m) TABLE ANGLE (dBuV) (dBuV) (dBuV) (dB/m)								
1	*2440.00	85.9 PK	114.0	-28.1	1.12 V	307	55.20	30.70	
2	*2440.00	34.5 AV	94.0	-59.5	1.12 V	307	3.80	30.70	
3	4880.00	61.6 PK	74.0	-12.4	1.02 V	300	25.40	36.20	
4	4880.00	10.2 AV	54.0	-43.8	1.02 V	300	-26.00	36.20	

REMARKS: 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).

- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. "* ": Fundamental frequency
- The average value of fundamental frequency is: Average = Peak value + 20log(Duty cycle) Where the duty factor is calculated from following formula: 20 log (Duty cycle) = 20 log (0.27 ms / 100 ms) = -51.4 dB


EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL	Channel 78		1 ~ 25GHz	
		DETECTOR FUNCTION	Peak (PK) Average (AV)	
ENVIRONMENTAL CONDITIONS26deg. C, 65%RH 1009 hPa		TESTED BY	Frank Wang	


	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	Correction Factor (dB/m)		
1	*2480.00	93.0 PK	114.0	-21.0	1.04 H	360	62.20	30.80		
2	*2480.00	41.6 AV	94.0	-52.4	1.04 H	360	10.80	30.80		
3	2483.50	53.6 PK	74.0	-20.4	1.04 H	360	22.80	30.80		
4	2483.50	2.2 AV	54.0	-51.8	1.04 H	360	-28.60	30.80		
5	2485.50	40.4 PK	74.0	-33.6	1.04 H	360	9.60	30.80		
6	2485.50	29.2 AV	54.0	-24.8	1.04 H	360	-1.60	30.80		
7	4960.00	64.8 PK	74.0	-9.2	1.08 H	120	28.40	36.40		
8	4960.00	13.4 AV	54.0	-40.6	1.08 H	120	-23.00	36.40		
		ANTENNA	POLARIT	Y & TEST DI	STANCE: V	ERTICAL A	T 3 M			
NO.	NO. FREQ. (MHz) LEVEL MARGIN (dB) ANGLE					RAW VALUE (dBuV)	Correction Factor (dB/m)			
1	*2480.00	85.6 PK	114.0	-28.4	1.09 V	299	54.80	30.80		
2	*2480.00	34.1 AV	94.0	-59.9	1.09 V	299	3.30	30.80		
3	2483.50	62.9 PK	74.0	-11.1	1.09 V	299	32.10	30.80		
4	2483.50	11.5 AV	54.0	-42.5	1.09 V	299	-19.30	30.80		
5	2485.50	40.5 PK	74.0	-33.5	1.09 V	299	9.70	30.80		
6	2485.50	29.5 AV	54.0	-24.5	1.09 V	299	-1.30	30.80		
7	4960.00	62.8 PK	74.0	-11.2	1.09 V	333	26.40	36.40		
8	4960.00	11.4 AV	54.0	-42.6	1.09 V	333	-25.00	36.40		

REMARKS: 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. " * " : Fundamental frequency
- 6. The average value of fundamental frequency is: Average = Peak value + 20log(Duty cycle) Where the duty factor is calculated from following formula: 20 log (Duty cycle) = 20 log (0.27 ms / 100 ms) = -51.4 dB

BELOW 1GHz WORST-CASE DATA

EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL Channel 78		FREQUENCY RANGE	Below 1000MHz	
INPUT POWER 3Vdc		DETECTOR FUNCTION	Quasi-Peak	
ENVIRONMENTAL CONDITIONS26deg. C, 65%RH 1009 hPa		TESTED BY	Frank Wang	

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	Correction Factor (dB/m)		
1	43.51	17.6 QP	40.0	-22.4	1.00 H	10	3.20	14.40		
2	146.56	18.4 QP	43.5	-25.1	1.25 H	10	4.20	14.20		
3	235.99	17.9 QP	46.0	-28.1	1.75 H	94	5.80	12.10		
4	358.48	19.8 QP	46.0	-26.2	1.75 H	100	3.70	16.10		
5	473.20	21.6 QP	46.0	-24.4	1.25 H	127	2.50	19.10		
6	745.40	23.6 QP	46.0	-22.4	1.25 H	241	-0.40	24.00		
		ANTENNA		Y & TEST DI	STANCE: V	ERTICAL A	T 3 M			
NO.	NO. FREQ. (MHz) EMISSION LEVEL (dBuV/m) (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (m) (Degree) RAW VALUE (dBuV) (dBuV) (dBuV)									
1	37.68	24.4 QP	40.0	-15.6	1.00 V	55	10.90	13.50		
2	125.17	24.8 QP	43.5	-18.7	1.00 V	55	12.00	12.80		
3	171.83	26.3 QP	43.5	-17.2	1.50 V	130	13.20	13.10		
4	243.77	22.2 QP	46.0	-23.8	2.00 V	286	9.70	12.50		
5	492.64	19.7 QP	46.0	-26.3	1.25 V	124	0.10	19.60		
6	753.18	24.3 QP	46.0	-21.7	1.25 V	196	0.20	24.10		

REMARKS: 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).

3. The other emission levels were very low against the limit.

4. Margin value = Emission level – Limit value.

4.2 BAND EDGES MEASUREMENT

4.2.1 LIMITS OF BAND EDGES MEASUREMENT

Below –50dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

4.2.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
SPECTRUM ANALYZER R&S	FSP40	100040	Jul. 17, 2010	Jul. 16, 2011

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

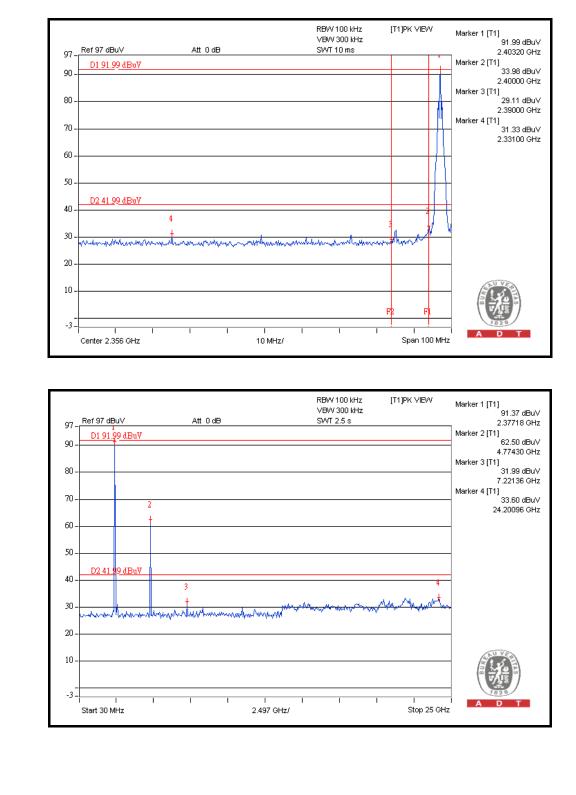
4.2.3 TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer via a low lose cable. Set both RBW and VBW of spectrum analyzer to 100 kHz and 300 kHz with suitable frequency span including 100 MHz bandwidth from band edge. The band edges was measured and recorded.

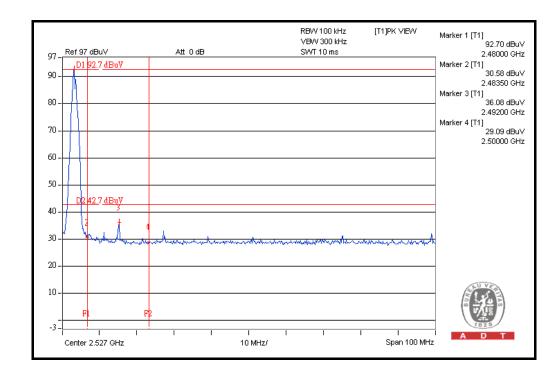
The spectrum plots are attached on the following pages.

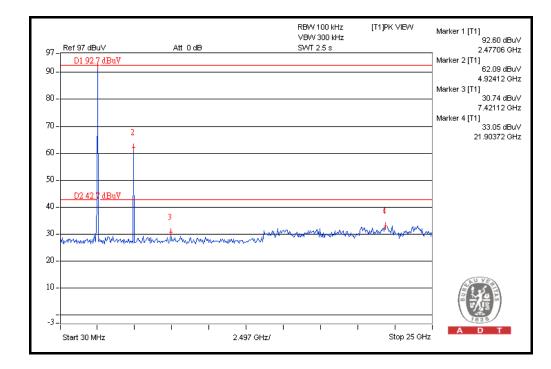
4.2.4 DEVIATION FROM TEST STANDARD

No deviation.


4.2.5 EUT OPERATING CONDITION

The software provided by client to enable the EUT under transmission condition continuously at lowest and highest channel frequencies individually.




4.2.6 TEST RESULTS

The spectrum plots are attached on the following images. D1 line indicates the highest level, and D2 line indicates the 50dB offset below D1. It shows compliance with the requirement in part 15.249 (d).

5. PHOTOGRAPHS OF THE TEST CONFIGURATION

Please refer to the attached file (Test Setup Photo).

6. INFORMATION ON THE TESTING LABORATORIES

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

Copies of accreditation certificates of our laboratories obtained from approval agencies can be downloaded from our web site:

<u>www.adt.com.tw/index.5/phtml</u>. If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab:

Hsin Chu EMC/RF Lab:

Tel: 886-2-26052180 Fax: 886-2-26051924

Tel: 886-3-5935343 Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety Telecom Lab:

Tel: 886-3-3183232 Fax: 886-3-3185050

Web Site: www.adt.com.tw

The address and road map of all our labs can be found in our web site also.

7. APPENDIX A - MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No any modifications are made to the EUT by the lab during the test.

---END----