

FCC ID: PRDMU76 Report No.: T190902D03-RP

RADIO TEST REPORT FCC 47 CFR PART 15 SUBPART C

Test Standard	FCC Part 15.247
Product name	Bluetooth Mouse
Brand Name	SAMSUNG
Model No.	AA-MB1N9DW
Test Result	Pass
Statements of Conformity	Determination of compliance is based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

The test Result was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were given in ANSI C63.10: 2013 and compliance standards.

The test results of this report relate only to the tested sample (EUT) identified in this report.

The test Report of full or partial shall not copy. Without written approval of Compliance Certification Services Inc. (Wugu Laboratory)

Approved by:

Tested by:

1400

Kevin Tsai **Deputy Manager**

Dally Hong Engineer

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部分複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms_and_conditions.htm and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Compliance Certification Service Inc. 程智科技股份有限公司 No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan / 新北市五股區五工六路 11 號 t:(886-2) 2299-9720 f:(886-2) 2298-1882 www.sgs.tw www.ccsrf.com

Page: 2 / 40 Rev.: 01

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	October 14, 2019	Initial Issue	ALL	May Lin
01	October 22, 2019	See the following Note Rev. (01)	P.11, P.22	May Lin

Rev (01):

1. Modify the section 3.2 and section 4.5.4.

Page: 3 / 40 Rev.: 01

Table of contents

1.	GENERAL INFORMATION	. 4
1.1	EUT INFORMATION	. 4
1.2	EUT CHANNEL INFORMATION	. 5
1.3	ANTENNA INFORMATION	. 5
1.4	MEASUREMENT UNCERTAINTY	. 6
1.5	FACILITIES AND TEST LOCATION	. 7
1.6	INSTRUMENT CALIBRATION	. 7
1.7	SUPPORT AND EUT ACCESSORIES EQUIPMENT	. 8
1.8	TEST METHODOLOGY AND APPLIED STANDARDS	. 8
2.	TEST SUMMERY	. 9
3.	DESCRIPTION OF TEST MODES	10
3.1	THE WORST MODE OF OPERATING CONDITION	10
3.2	THE WORST MODE OF MEASUREMENT	11
3.3	EUT DUTY CYCLE	
4.	TEST RESULT	13
4.1	AC POWER LINE CONDUCTED EMISSION	13
4.2	6dB BANDWIDTH AND OCCUPIED BANDWIDTH(99%)	14
4.3	OUTPUT POWER MEASUREMENT	
4.4	POWER SPECTRAL DENSITY	19
4.5	CONDUCTED BAND EDGE AND SPURIOUS EMISSION	21
4.6	RADIATION BANDEDGE AND SPURIOUS EMISSION	25
APPE	NDIX 1 - PHOTOGRAPHS OF EUT	

1. GENERAL INFORMATION

1.1 EUT INFORMATION

Applicant	Acrox Technologies Co., Ltd. 4F., No.89, Minshan St., Neihu Dist., Taipei City 114, Taiwan, R.O.C.		
Manufacturer	urer Acrox Technologies Co., Ltd. 4F., No.89, Minshan St., Neihu Dist., Taipei City 114, Taiwan, R.O.C.		
Equipment	Bluetooth Mouse		
Model No.	AA-MB1N9DW		
Model Discrepancy	N/A		
Trade Name	SAMSUNG		
Received Date	September 02, 2019		
Date of Test	September 06 ~20, 2019		
Output Power (W)	BLE-1Mbps: 0.0004		
Power Supply	Power from Battery. (DC 3V)		

Page: 5 / 40 Rev.: 01

1.2 EUT CHANNEL INFORMATION

Frequency Range	2402MHz-2480MHz		
Modulation Type	GFSK for BLE-1Mbps		
Number of channels	40 Channels		

Remark:

Г

Refer as ANSI C63.10: 2013 clause 5.6.1 Table 4 for test channels

Number of frequencies to be tested					
Frequency range inNumber ofLocation in frequencywhich device operatesfrequenciesrange of operation					
1 MHz or less	1	Middle			
1 MHz to 10 MHz	2	1 near top and 1 near bottom			
More than 10 MHz	3	1 near top, 1 near middle, and 1 near bottom			

1.3 ANTENNA INFORMATION

Antenna Type	□ PIFA ⊠ PCB □ Dipole □ Coils				
Antenna Gain	Gain: -1.5532dBi				
Antenna Connector	N/A				

Page: 6 / 40 Rev.: 01

1.4 MEASUREMENT UNCERTAINTY

PARAMETER	UNCERTAINTY
AC Powerline Conducted Emission	+/- 1.2575
Emission bandwidth, 20dB bandwidth	+/- 0.0014
RF output power, conducted	+/- 1.14
Power density, conducted	+/- 1.40
3M Semi Anechoic Chamber / 30M~200M	+/- 4.12
3M Semi Anechoic Chamber / 200M~1000M	+/- 4.68
3M Semi Anechoic Chamber / 1G~8G	+/- 5.18
3M Semi Anechoic Chamber / 8G~18G	+/- 5.47
3M Semi Anechoic Chamber / 18G~26G	+/- 3.81
3M Semi Anechoic Chamber / 26G~40G	+/- 3.87

Remark:

1. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

2. ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report.

Page: 7 / 40 Rev.: 01

1.5 FACILITIES AND TEST LOCATION

All measurement facilities used to collect the measurement data are located at No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan. (R.O.C.)

Test site Test Engineer		Remark
AC Conduction Room	N/A	Not applicable, because EUT not connect to AC Main Source direct.
Radiation	Jerry Lu	-
RF Conducted	Dally Hong	-

Remark: The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

1.6 INSTRUMENT CALIBRATION

RF Conducted Test Site						
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
Coaxial Cable	Woken	WC12	CC003	06/28/2019	06/27/2020	
EXA Signal Analyzer	KEYSIGHT	N9010B	MY55460167	07/31/2019	07/30/2020	
Power Meter	Anritsu	ML2495A	1149001	02/12/2019	02/11/2020	
Power Seneor	Anritsu	MA2491A	030982	02/12/2019	02/11/2020	
Software			N/A			
		3M 966 Ch	amber Test Site			
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
Band Reject Filters	MICRO TRONICS	BRM 50702	120	02/26/2019	02/25/2020	
Bilog Antenna	Sunol Sciences	JB3	A030105	07/26/2019	07/25/2020	
Cable	HUBER SUHNER	SUCOFLEX 104PEA	25157	02/26/2019	02/25/2020	
Cable	HUBER SUHNER	SUCOFLEX 104PEA	20995	02/26/2019	02/25/2020	
Digital Thermo- Hygro Meter	WISEWIND	1206	D07	01/30/2019	01/29/2020	
Horn Antenna	ETS LINDGREN	3117	00143280	07/16/2019	07/15/2020	
Loop Ant	COM-POWER	AL-130	121051	03/22/2019	03/21/2020	
Pre-Amplifier	EMEC	EM330	060609	02/26/2019	02/25/2020	
Pre-Amplifier	HP	8449B	3008A00965	02/26/2019	02/25/2020	
PSA Series Spectrum Analyzer	Agilent	E4446A	MY46180323	05/29/2019	05/28/2020	
Antenna Tower	CCS	CC-A-1F	N/A	N.C.R	N.C.R	
Controller	CCS	CC-C-1F	N/A	N.C.R	N.C.R	
Turn Table	CCS	CC-T-1F	N/A	N.C.R	N.C.R	
Software	e3 6.11-20180413					

Note:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. N.C.R. = No Calibration Required.

This document cannot be reproduced except in full, without prior written approval of the Company. 本報告未經本公司書面許可,不可部份複製。

Page: 8 / 40 Rev.: 01

Report No.: T190902D03-RP

.

1.7 SUPPORT AND EUT ACCESSORIES EQUIPMENT

EUT Accessories Equipment							
No.	No. Equipment Brand Model Series No. FCC ID						
	N/A						

	Support Equipment							
No.	No. Equipment Brand Model Series No. FCC ID							
	N/A							

1.8 TEST METHODOLOGY AND APPLIED STANDARDS

The test methodology, setups and results comply with all requirements in accordance with ANSI C63.10:2013, FCC Part 2, FCC Part 15.247, KDB 558074 D01.

Page: 9 / 40 Rev.: 01

2. TEST SUMMERY

FCC Standard Section	Report Section	Test Item	Result
15.203	1.3	Antenna Requirement	Pass
15.207(a)	4.1	AC Conducted Emission	N/A
15.247(a)(2)	4.2	6 dB Bandwidth	Pass
-	4.2	Occupied Bandwidth (99%)	Pass
15.247(b)(3)	4.3	Output Power Measurement	Pass
15.247(e)	4.4	Power Spectral Density	Pass
15.247(d)	4.5	Conducted Spurious Emission	Pass
15.247(d)	4.5	Conducted Emission	Pass
15.247(d)	4.6	Radiation Band Edge	Pass
15.247(d)	4.6	Radiation Spurious Emission	Pass

Page: 10 / 40 Rev.: 01

3. DESCRIPTION OF TEST MODES

3.1 THE WORST MODE OF OPERATING CONDITION

Operation mode	BLE Mode (1Mbps)
Test Channel Frequencies	1.Lowest Channel : 2402MHz 2.Middle Channel : 2440MHz 3.Highest Channel : 2480MHz

Remark:

г

1. EUT pre-scanned data rate of output power for each mode, the worst data rate were recorded in this report.

Page: 11 / 40 Rev.: 01

3.2 THE WORST MODE OF MEASUREMENT

Radiated Emission Measurement Above 1G			
Test Condition	Radiated Emission Above 1G		
Power supply Mode	Power supply Mode Mode 1: EUT power by Battery (DC 3V)		
Worst Mode	☑ Mode 1		
Worst Position	Placed in fixed position. Placed in fixed position at X-Plane (F2-Plane)		

Radiated Emission Measurement Below 1G		
Test Condition Radiated Emission Below 1G		
Power supply Mode Mode 1: EUT power by Battery (DC 3V)		
Worst Mode Mode 1 Mode 2 Mode 3 Mode 4		

Remark:

1. The worst mode was record in this test report.

2. EUT pre-scanned in three axis, X, Y, Z and two polarity, Horizontal and Vertical for radiated measurement. The worst case (X-Plane) were recorded in this report

Page: 12 / 40 Rev.: 01

3.3 EUT DUTY CYCLE

Duty Cycle					
Configuration	TX ON (ms)	TX ALL (ms)	Duty Cycle (%)		
BLE-1Mbps	-	-	100.00%		

🔆 Agilent				R	Т	Sweep
Ref 96.99 dB µ V #Peak	#Atten 0 dE	3).17 ms dB µ V	Sweep Time 100.0 ms
Log						
10 dB/						Sweep Single <u>Cont</u>
· · · · · · · · · · · · · · · · · · ·		\$				Auto Sweep
						Time Norm
						Gate
LgAv						0n <u>0ff</u>
W1 S2 S3 FC						Gate Setup
£(f):						Deinte
FTun						Points 601
Center 2.402 000	<u> </u>				n 0 Hz	
Res BW 1 MHz		VBW 1 MHz	Sween	100 ms (60	1 nts)	

Page: 13 / 40 Rev.: 01

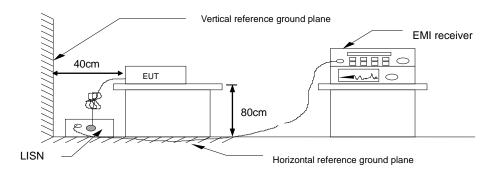
4. TEST RESULT

4.1 AC POWER LINE CONDUCTED EMISSION

4.1.1 Test Limit

According to §15.207(a),

Frequency Range	Limits(dBµV)		
(MHz)	Quasi-peak	Average	
0.15 to 0.50	66 to 56*	56 to 46*	
0.50 to 5	56	46	
5 to 30	60	50	


* Decreases with the logarithm of the frequency.

4.1.2 Test Procedure

Test method Refer as ANSI C63.10: 2013 clause 6.2,

- 1. The EUT was placed above horizontal ground plane and 0.4m above vertical ground plane
- 2. EUT connected to the line impedance stabilization network (LISN)
- 3. Receiver set RBW of 9kHz and Detector Peak, and note as quasi-peak and average.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. Recorded Line for Neutral and Line.

4.1.3 Test Setup

4.1.4 Test Result

Not applicable, because EUT not connect to AC Main Source direct.

Page: 14 / 40 Rev.: 01

4.26dB BANDWIDTH AND OCCUPIED BANDWIDTH (99%)

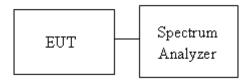
4.2.1 Test Limit

According to §15.247(a)(2),

6 dB Bandwidth :

Limit

Shall be at least 500kHz

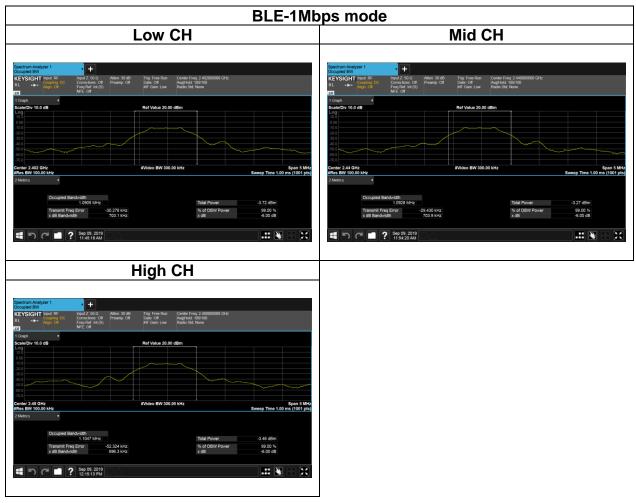

Occupied Bandwidth(99%) : For reporting purposes only.

4.2.2 Test Procedure

Test method Refer as KDB 558074 D01 and ANSI C63.10: 2013 clause 6.9.2,

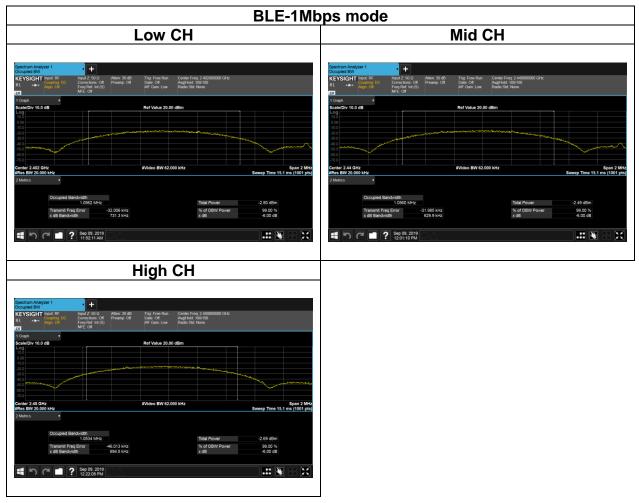
- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. SA set RBW =100KHz, VBW = 300KHz and Detector = Peak, to measurement 6dB Bandwidth.
- 4. SA set RBW = 1% ~ 5% OBW, VBW = three times the RBW and Detector = Peak, to measurement 99% Bandwidth.
- 5. Measure and record the result of 6 dB Bandwidth and 99% Bandwidth. in the test report.

4.2.3 Test Setup


4.2.4 Test Result

Test mode: BLE-1Mbps mode / 2402-2480 MHz					
Channel	Frequency (MHz)	OBW (99%) (MHz)	6dB BW (MHz)	6dB limit (kHz)	
Low	2402	1.0562	0.7031		
Mid	2440	1.0560	0.7039	>500	
High	2480	1.0534	0.6963		

Page: 15 / 40 Rev.: 01


6dB BANDWIDTH Test Data

Page: 16 / 40 Rev.: 01

BANDWIDTH (99%) Test Data

Page: 17 / 40 Rev.: 01

4.3 OUTPUT POWER MEASUREMENT

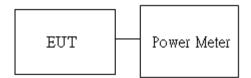
4.3.1 Test Limit

According to §15.247(b)(3).

Peak output power :

For systems using digital modulation in the 2400-2483.5 MHz: 1 Watt(30 dBm), base on the use of antennas with directional gain not exceed 6 dBi If transmitting antennas of directional gain greater than 6dBi are used the peak output power the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

Limit	Antenna not exceed 6 dBi : 30dBm
	[Limit = 30 – (DG – 6)]


Average output power : For reporting purposes only.

4.3.2 Test Procedure

Test method Refer as KDB 558074 D01.

- 1. The EUT RF output connected to the power meter by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. The path loss was compensated to the results for each measurement.
- 4. Measure and record the result of Peak output power and Average output power. in the test report.

4.3.3 Test Setup

Page: 18 / 40 Rev.: 01

4.3.4 Test Result

Peak output power :

BLE Mode						
Config.	СН	Freq. (MHz)	Power Setting	PK Power (dBm)	PK Power (W)	Limit (dBm)
	0	2402	Default	-4.58	0.0003	
BLE Data rate: 1Mbps	19	2440	Default	-4.46	0.0004	30
	39	2480	Default	-4.20	0.0004	

Average output power :

BLE Mode				
Config.	СН	Freq. (MHz)	AV Power (dBm)	
BLE	0	2402	-9.17	
Data rate: 1Mbps	19	2440	-9.67	
	39	2480	-9.73	

Page: 19 / 40 Rev.: 01

4.4 POWER SPECTRAL DENSITY

4.4.1 Test Limit

According to §15.247(e),

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Limit	 Antenna not exceed 6 dBi : 8dBm Antenna with DG greater than 6 dBi [Limit = 8 - (DG - 6)] Point-to-point operation :
-------	---

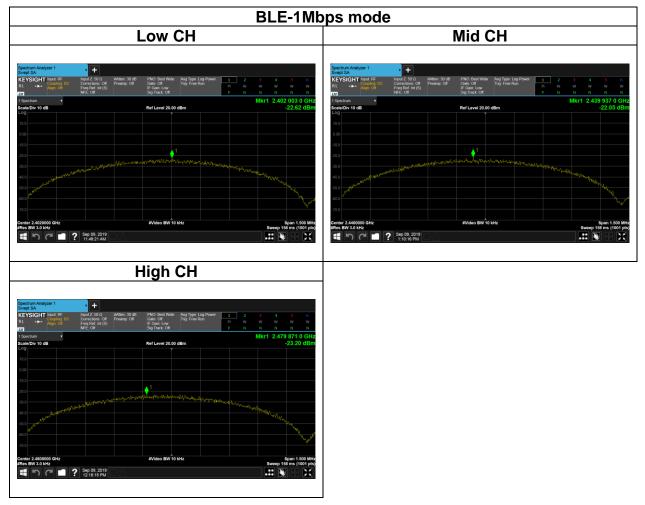
4.4.2 Test Procedure

Test method Refer as KDB 558074 D01.

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 3kHz, VBW = 30kHz, Span = 1.5 times DTS Bandwidth (6 dB BW), Detector = Peak, Sweep Time = Auto and Trace = Max hold.
- 4. The path loss and Duty Factor were compensated to the results for each measurement by SA.
- 5. Mark the maximum level.
- 6. Measure and record the result of power spectral density. in the test report.

4.4.3 Test Setup

4.4.4 Test Result


	Test mode: BLE-1Mbps mode / 2402-2480 MHz									
Channel Frequency (MHz)		PSD (dBm)	FCC limit (dBm)							
Low	2402	-22.62								
Mid	2440	-22.05	8							
High	2480	-23.20								

This document cannot be reproduced except in full, without prior written approval of the Company. 本報告未經本公司書面許可,不可部份複製。

Page: 20 / 40 Rev.: 01

Test Data

Page: 21 / 40 Rev.: 01

4.5 CONDUCTED BAND EDGE AND SPURIOUS EMISSION

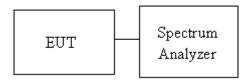
4.5.1 Test Limit

According to §15.247(d),

In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

4.5.2 Test Procedure

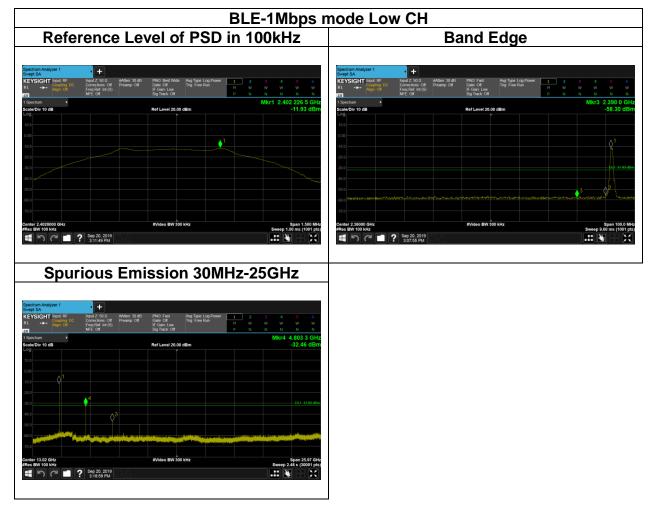

Test method Refer as KDB 558074 D01.

1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.

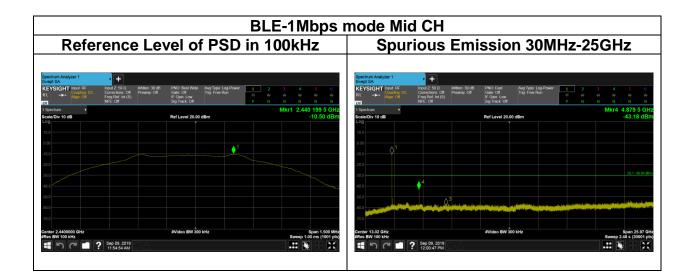
2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.

3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

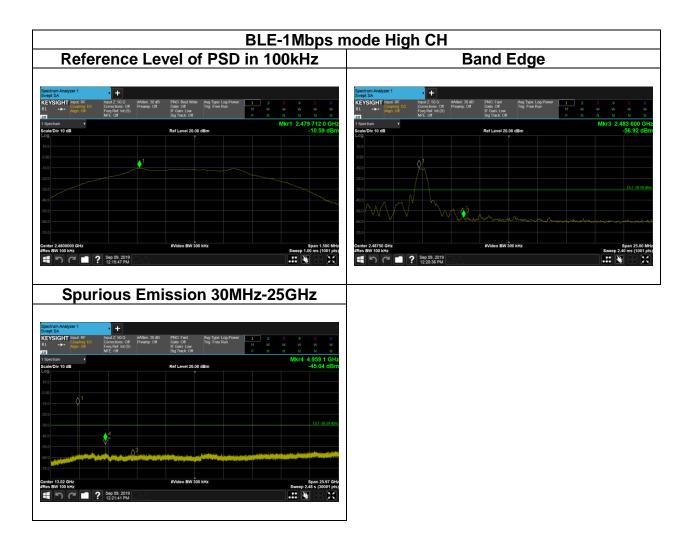
4.5.3 Test Setup



Page: 22 / 40 Rev.: 01


4.5.4 Test Result

Test Data



Page: 23 / 40 Rev.: 01

Page: 24 / 40 Rev.: 01

Page: 25 / 40 Rev.: 01

4.6 RADIATION BANDEDGE AND SPURIOUS EMISSION

4.6.1 Test Limit

FCC according to §15.247(d), §15.209 and §15.205,

In any 100 kHz bandwidth outside the authorized frequency band, all harmonic and spurious must be least 20 dB below the highest emission level with the authorized frequency band. Radiation emission which fall in the restricted bands must also follow the FCC section 15.209 as below limit in table.

Below 30 MHz

Frequency	Field Strength (microvolts/m)	Magnetic H-Field (microamperes/m)	Measurement Distance (metres)
9-490 kHz	2,400/F (F in kHz)	2,400/F (F in kHz)	300
490-1,705 kHz	24,000/F (F in kHz)	24,000/F (F in kHz)	30
1.705-30 MHz	30	N/A	30

Above 30 MHz

Frequency	Field Strength microvolts/m at 3 metres (watts, e.i.r.p.)				
(MHz)	Transmitters	Receivers			
30-88	100 (3 nW)	100 (3 nW)			
88-216	150 (6.8 nW)	150 (6.8 nW)			
216-960	200 (12 nW)	200 (12 nW)			
Above 960	500 (75 nW)	500 (75 nW)			

Remark:

Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

Page: 26 / 40 Rev.: 01

4.6.2 Test Procedure

Test method Refer as KDB 558074 D01.

1. The EUT is placed on a turntable, Above 1 GHz is 1.5m and below 1 GHz is 0.8m above ground plane. The EUT Configured un accordance with ANSI C63.10: 2013, and the EUT set in a continuous mode.

2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. And EUT is set 3m away from the receiving antenna, which is scanned from 1m to 4m above the ground plane to find out the highest emissions. Measurement are made polarized in both the vertical and the horizontal positions with antenna.

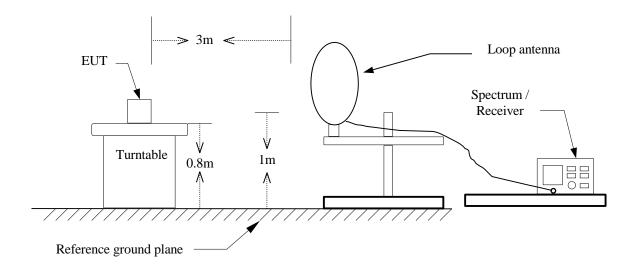
3. Span shall wide enough to full capture the emission measured. The SA from 9KHz to 26.5GHz set to the low, Mid and High channels with the EUT transmit.

Remark:

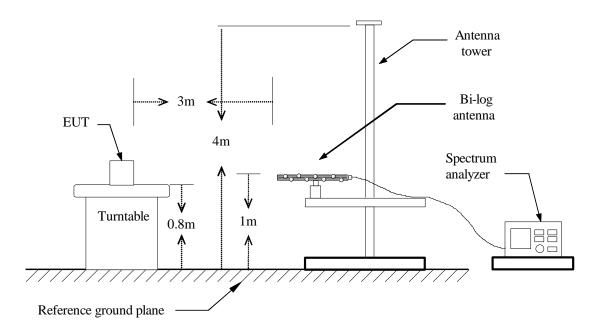
 Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.
 No emission found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz).

- 4. The SA setting following :
 - (1) Below 1G : RBW = 100kHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
 - (2) Above 1G:
 - (2.1) For Peak measurement : RBW = 1MHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
 - (2.2) For Average measurement : RBW = 1MHz, VBW

'If Duty Cycle ≥ 98%, VBW=10Hz.

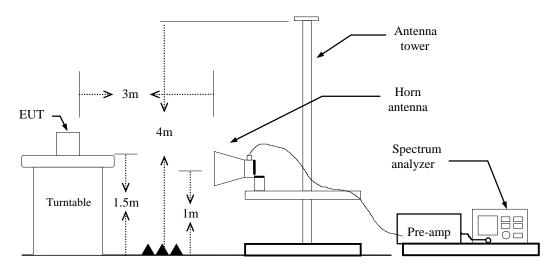

'If Duty Cycle < 98%, VBW=1/T.

Configuration	Duty Cycle (%)	T(ms)	1/T (kHz)	VBW Setting
BLE-1Mbps	100%	40.1700	-	10Hz



Page: 27 / 40 Rev.: 01

4.6.3 Test Setup 9kHz ~ 30MHz


<u>30MHz ~ 1GHz</u>

Page: 28 / 40 Rev.: 01

Above 1 GHz

Page: 29 / 40 Rev.: 01

4.6.4 Test Result

Band Edge Test Data

Test Mode:	BLE	-1Mbps Lov	v CH	Temp/Hum	28.9(°C	.)/ 51%RH	
Test Item		Band Edge	•	Test Date	Septemb	September 06, 201	
Polarize		Vertical		Test Engineer	Je	rry Lu	
Detector	P	eak / Avera	ge				
130 Level (dBuV/m)							
120		· · · · · · · · · · · · · · · · · · ·				 	
100							
80		· · · · · · · · · · · · · · · · · · ·				A	
60						f{	
40		-		and the second second	andragana	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
40							
20						1 1 1	
0 <mark></mark> 2310	2330.	2350	Frequency (MH	2370.	2390.	2410	
			Trequency (min	L)			
_		Correct	_				
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	
0000 00	39.57	-3.38	36.19	54.00	-17.81	Average	
2390.00			49.36	74.00	-24.64		

Page: 30 / 40 Rev.: 01

Test Mode	: BLE	-1Mbps Lov	v CH T	ēmp/Hum	28.9(°C)/ 51%RH
Test Item		Band Edge		Test Date	September 06, 20	
Polarize		Horizontal	Те	st Engineer	Jei	rry Lu
Detector	Р	eak / Avera	ge			
130)					
120						
100						\wedge
80	 					<i>[</i> \
60		2		· · · · · · · · · · · · · · · · · · ·	man	
40					3	
20						
0 <mark></mark>	2330.	2350.	2	370.	2390.	2410
2310	2330.	2330.	Frequency (MHz)		2330.	2410
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
2338.30	46.63	-3.29	43.34	54.00	-10.66	Average
2338.30	54.95	-3.29	51.66	74.00	-22.34	Peak
	41.36	-3.38	37.98	54.00	-16.02	Average
2390.00				74.00	-23.31	Peak

Page: 31 / 40 Rev.: 01

Test Mode:	BLE	E-1Mbps Hig	h CH To	emp/Hum	28.9(°C)/ 51%RH
Test Item		Band Edge		Fest Date	September 06, 20	
Polarize		Vertical		st Engineer	Jei	ry Lu
Detector	F	Peak / Avera	ge			
130 Level (dBuV/m)				:		
120						
100						
80						
60		2		· · · · · · · · · · · · · · · · · · ·		
40		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		94000000000000000000000000000000000000		
20						
0						
0 <mark></mark> 2475	2480.	2485.	24 Frequency (MHz)	490.	2495.	2500
Frequency	Reading	Correct	Result	Limit	Margin	
(MHz)	(dBuV)	Factor (dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Remark
2483.50	39.28	-2.83	36.45	54.00	-17.55	Average
2483.50	52.63	-2.83	49.80	74.00	-24.20	Peak
	1	1		1	1	1

Page: 32 / 40 Rev.: 01

Test Mode:	BLE	1Mbps Hig	h CH T	emp/Hum	28.9(°C)/ 51%RH
Test Item		Band Edge		Test Date	Septemb	er 06, 201
Polarize		Horizontal		st Engineer	Je	rry Lu
Detector	P	eak / Avera	ge			
130 120 100 80 60 40 20 0 2475	2480.	2485.	2: Frequency (MHz)	490.	2495.	2500
		Correct				
Frequency (MHz)	Reading (dBuV)	Factor	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
						Remark Average

Page: 33 / 40 Rev.: 01

Below 1G Test Data

Test Mode:	Test Mode: BLE		ode	ſemp/Hum	28.9(°C))/ 51%RH
Test Item	3	80MHz-1GH	z	Test Date	September 06, 20	
Polarize		Vertical	Te	est Engineer	Jer	ry Lu
Detector		Peak				
100 Level (dBuV/m))					
90			 			
80	 					
70						
60	 					
50	 		 			
40		· · · · · · · · · · · · · · · · · · ·				
2 30 1	 				5	6
		3 4				
20	 					
10						
0 <mark></mark>	224.	418.	Frequency (MHz)	612.	806.	1000
		Correct				
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
49.40	41.94	-14.98	26.96	40.00	-13.04	Peak
105.66	42.51	-11.02	31.49	43.50	-12.01	Peak
	32.06	-7.12	24.94	46.00	-21.06	Peak
345.25			26.60	46.00	-19.40	Peak
345.25 437.40	30.86	-4.26	20.00	10.00	10.10	1 0011
	30.86 26.43	-4.26 3.81	30.24	46.00	-15.76	Peak

Page: 34 / 40 Rev.: 01

Test Mode	: BL	E-1Mbps M	lode	Temp/Hu	Im	28.9(°C)/ 51%RH
Test Item		30MHz-1GH	Ηz	Test Dat	e	Septemb	er 06, 20 ⁻
Polarize		Horizonta	I	Test Engir	eer	Jer	ry Lu
Detector		Peak					
100 Level (dBuV/m)						
90							
80					 		
70		· · · · · · · · · · · · · · · · · · ·			1 1 1 1	· · · · · · · · · · · · · · · · · · ·	
60				 	 		
50					 		
40						· · · · · · · · · · · · · · · · · · ·	
30		2-3	4		5		6
20						· · · · · · · · · · · · · · · · · · ·	
10		· · · · · · · · · · · · · · · · · · ·					
0	224.	418.		612.		806.	1000
50	224.	410.	Frequency (N			000.	1000
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resul (dBuV/			Margin (dB)	Remark
48.43	45.34	-14.63	30.7	1 40.0	00	-9.29	Peak
327.79	33.42	-7.25	26.1	7 46.0	00	-19.83	Peak
352.04	33.79	-6.87	26.92	2 46.0	00	-19.08	Peak
	30.66	-3.34	27.3	2 46.0	00	-18.68	Peak
469.41					<u>הר</u>	-15.37	Peak
469.41 755.56	28.69	1.94	30.6	3 46.0	00	-15.57	FEak

Page: 35 / 40 Rev.: 01

Above 1G Test Data

Test Mode:	BLE	E-1Mbps Lov	v CH 🛛 🏾	emp/Hum	28.9(°C)/ 51%RH
Test Item		Harmonic		Test Date	Septemb	er 06, 201
Polarize		Vertical	Te	st Engineer	Jei	rry Lu
Detector	F	Peak / Avera	ge			
100 Level (dBuV/m)						
90			 		, , , , ,	, ,
80			 			
70						
60						
50	2 4					
40	3					
30						
20				- -	1 1 1 1 1 1	
10				-		
0 ^L 1000	6100.	11200	. 10 Frequency (MHz)	5300.	21400.	26500
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4804.00	43.32	3.05	46.37	54.00	-7.63	Average
4804.00	48.43	3.05	51.48	74.00	-22.52	Peak
7206.00	31.35	10.64	41.99	54.00	-12.01	Average
7206.00	41.62	10.64	52.26	74.00	-21.74	Peak
N/A						

Remark:

Page: 36 / 40 Rev.: 01

Test Mode:	: BLE	BLE-1Mbps Low CH		Temp/Hum	28.9(°C)/ 51%R	
Test Item		Harmonic		Test Date	Septemb	oer 06, 201
Polarize		Horizontal	Te	est Engineer	Je	rry Lu
Detector	F	Peak / Avera	ige			
100 Level (dBuV/m)						
90						
80					 	
70						
60	2	· · · · · · · · · · · · · · · · · · ·				
50	1				 	I I I
40		· · · · · · · · · · · · · · · · · · ·				
30		·				
20			· · · · · · · · · · · · · · · · · · ·			
10				-		
0 <mark></mark>	6100.	11200.	- 1	6300.	21400.	26500
1000	0100.	11200.	Frequency (MHz)		21400.	20000
F	Reading	Correct	Desult	Linet		
Frequency (MHz)	(dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4804.00	50.00	3.05	53.05	54.00	-0.95	Average
4804.00	53.67	3.05	56.72	74.00	-17.28	Peak
	25.04	10.64	46.45	54.00	-7.55	Average
7206.00	35.81	10.04				
	44.88	10.64	55.52	74.00	-18.48	Peak

Remark:

Page: 37 / 40 Rev.: 01

Test Mode	: BLE	E-1Mbps Mi	d CH	ſemp/Hum	28.9(°C)/ 51%RH	
Test Item		Harmonic		Test Date	Septemb	er 06, 201
Polarize		Vertical		st Engineer	Jerry Lu	
Detector	F	Peak / Avera	ge			
100 Level (dBuV/m))					
90	1				1	
80						
70						
60	2 4					
50	3					
40						
30						
20						
10			 			
0 <mark>:</mark> 1000	6100.	11200	: . 1	6300.	21400.	26500
			Frequency (MHz)			
				-		
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4880.00	41.89	3.37	45.26	54.00	-8.74	Average
4880.00	47.53	3.37	50.90	74.00	-23.10	Peak
7320.00	31.05	11.02	42.07	54.00	-11.93	Average
7320.00	40.53	11.02	51.55	74.00	-22.45	Peak
N/A						

Remark:

Test Mode:	BLE	-1Mbps Mic	ІСН Т	emp/Hum	28.9(°C)/ 51%RH	
Test Item		Harmonic	-	Test Date	September 06, 201	
Polarize		Horizontal		st Engineer	Jerry Lu	
Detector	P	eak / Avera	ge			
100Level (dBuV/m))					
90					·	
80		·				
70						
60	2 4					
50						
40						
30						
20						
10		·				
0 <mark>1000</mark>	6100.	11200.	11	5300.	21400.	26500
			Frequency (MHz)			20000
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4880.00	48.75	3.37	52.12	54.00	-1.88	Average
	52.57	3.37	55.94	74.00	-18.06	Peak
4880.00			40.04	54.00	-7.76	Average
4880.00 7320.00	35.22	11.02	46.24	54.00	-7.70	Tworage
	35.22 43.18	11.02 11.02	46.24 54.20	74.00	-19.80	Peak

Remark:

Page: 39 / 40 Rev.: 01

Test Mode:	Test Mode: BLE-1Mbps High CH		n CH T	emp/Hum	28.9(°C)/ 51%RH		
		Harmonic	7	Test Date	September 06, 201		
Polarize		Vertical		st Engineer	Jerry Lu		
Detector	Р	eak / Averaç	ge				
	·						
100 Level (dBuV/m)							
90					- - - -		
80							
70							
60							
50	2 4						
40	3					 	
30							
20							
10					, , , , ,	 	
0L 1000	6100.	100. 11200. 16300. Frequency (MHz)			21400. 26500		
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	
4960.00	41.26	4.06	45.32	54.00	-8.68	Average	
4960.00	45.83	4.06	49.89	74.00	-24.11	Peak	
7440.00	30.66	10.67	41.33	54.00	-12.67	Average	
7440.00	40.19	10.67	50.86	74.00	-23.14	Peak	
1110.00							

Remark:

Test Mode: BLE-1Mbp		Vbps High CH Te		28.9(°C)/ 51%RH	
			Test Date	Septemb	er 06, 201
	Horizontal	1	Test Engineer	Jerry Lu	
P	eak / Avera	ge			
				1	
				1	
4					
3					
				1 1 1 1 1	
	·			1 1 1 1	
6100.	11200.			21400.	26500
Deeding	Correct	Descult	Lingt	Manasia	
(dBuV)	Factor (dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Remark
46.05	4.06	50.11	54.00	-3.89	Average
51.55	4.06	55.61	74.00	-18.39	Peak
33.75	10.67	44.42	54.00	-9.58	Average
42.87	10.67	53.54	74.00	-20.46	Peak
	2 4 3 6100. Reading (dBuV) 46.05 51.55 33.75	Peak / Avera 2 4 3 1 6100. 11200. 6100. 11200. 6100. 11200. 6100. 11200. 6100. 11200. 6100. 11200. 6100. 11200. 6100. 11200. 6100. 11200.	Horizontal 1 Peak / Average 1 2 4 3 1 6100. 11200. 6100. 11200. Frequency (MHz) 6100. 11200. 6100. 11200. Frequency (MHz) 6100. 11200. 51.55 4.06 51.55 4.06 33.75 10.67	Horizontal Test Engineer Peak / Average	Horizontal Test Engineer Jer Peak / Average Image: Second Se

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

--End of Test Report--