	BU REAU
	VERITAS
	FCC Test Report
Report No.:	RFBDYV-WTW-P22060608-1
FCC ID:	PRDMU108
Test Model:	TPA-A001M
Received Date:	2022/4/8
Test Date:	2022/7/15 ~ 2022/7/20
Issued Date:	2022/8/26
Annlinget	Acrov Technologica Co. 1 td
	Acrox Technologies Co., Ltd
Autross.	4F., No. 89, Minshan St., Neihu Dist., Taipei City 114, Taiwan, R.O.C.
Issued By:	Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Lin Kou Laboratories
	No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan
FCC Registration / Designation Number:	198487 / TW2021
	summer and a second s
	Hac-MRA
	Testing Laboratory 2021
http://www.bureauveritas.com/home/about-u report to or for any other person or entity, or	by reference, the Conditions of Testing as posted at the date of issuance of this report at <u>us/our-business/cps/about-us/terms-conditions/</u> and is intended for your exclusive use. Any copying or replication of this use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely
which a test sample was taken or any simila results thereof based upon the information t	erein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from r or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the hat you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of
date of issuance of this report to notify us of such notice shall be in writing and shall spec	criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that cifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your of this report, the tests conducted and the correctness of the report contents.

Table of Contents

R	Release Control Record					
1	С	Certificate of Conformity	4			
2	S	Summary of Test Results	5			
	2.1 2.2	Measurement Uncertainty Modification Record				
3	G	General Information	6			
	3.1 3.2 3.2.1 3.3 3.4 3.4.1 3.5	General Description of EUT Description of Test Modes Test Mode Applicability and Tested Channel Detail Duty Cycle of Test Signal Description of Support Units Configuration of System under Test General Description of Applied Standards	7 8 9 10 10			
4	т	est Types and Results	13			
		Radiated Emission and Bandedge Measurement Limits of Radiated Emission and Bandedge Measurement Test Instruments	13			
	4.1.3 4.1.4	Test Procedures Deviation from Test Standard Test Setup	16 16			
	4.1.6 4.1.7	EUT Operating Conditions Test Results	18 19			
		Conducted Emission Measurement Limits of Conducted Emission Measurement Test Instruments	24			
	4.2.4	Test Procedures Deviation From Test Standard Test Setup	25			
	4.2.6	EUT Operating Condition Test Results Channel Bandwidth	25 26			
	4.3.1 4.3.2	Test Setup Test Instruments	30 30			
	4.3.4 4.3.5	Test Procedure Deviation from Test Standard EUT Operating Condition	30 30			
5		Test Results				
		lix – Information of the Testing Laboratories				
~	pheno	nn – Information of the resulty Laboratories	55			

Release Control Record

Issue No.	Description	Date Issued
RFBDYV-WTW-P22060608-1	Original release.	2022/8/26

1 Certificate of Conformity

Product:	Wireless Mouse
Brand:	hp
Test Model:	TPA-A001M
Sample Status:	Engineering sample
Applicant:	Acrox Technologies Co., Ltd
Test Date:	2022/7/15 ~ 2022/7/20
Standards:	47 CFR FCC Part 15, Subpart C (Section 15.249)
	ANSI C63.10: 2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Prepared by :

Jessica Cheng / Senior Specialist

Date:

_____, Date:

2022/8/26

2022/8/26

Approved by :

Vem-1

Jeremy Lin / Project Engineer

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (SECTION 15.249)						
FCC Clause	Test Item	Result	Remarks			
15.207	AC Power Conducted Emission	PASS	Meet the requirement of limit. Minimum passing margin is -6.04dB at 0.53281MHz.			
15.215	Channel Bandwidth Measurement	PASS	Meet the requirement of limit.			
15.209 15.249 (a) 15.249 (d)	Radiated Emission and Bandedge Measurement	PASS	Meet the requirement of limit. Minimum passing margin is -6.1dB at 363.19MHz.			
15.203	Antenna Requirement	PASS	No antenna connector is used.			

Note: Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Parameter	Specification	Expanded Uncertainty (k=2) (±)
Conducted Out of Band Emissions	9 kHz ~ 40 GHz	2.63 dB
AC Power Conducted Emissions	150 kHz ~ 30 MHz	2.94 dB
Unwanted Emissions below 1 GHz	9 kHz ~ 30 MHz	2.38 dB
Onwanted Emissions below 1 GHz	30 MHz ~ 1 GHz	5.62 dB
	1 GHz ~ 6 GHz	4.61 dB
Unwanted Emissions above 1 GHz	6 GHz ~ 18 GHz	5.41 dB
	18 GHz ~ 40 GHz	5.14 dB

The other instruments specified are routine verified to remain within the calibrated levels, no measurement uncertainty is required to be calculated.

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	Wireless Mouse
Brand	hp
Test Model	TPA-A001M
Status of EUT	Engineering sample
Power Supply Rating	3.7Vdc from battery or 5Vdc from USB Type C port
Modulation Type	GFSK
Operating Frequency	2402MHz ~ 2480MHz
Number of Channel	79
Field Strength	63.7dBuV/m (3m)
Antenna Type	PCB antenna with -0.61dBi gain
Antenna Connector	N/A
Accessory Device	N/A
Data Cable Supplied	Shielded USB type A to C cable (1.0m)

Note:

- 1. There are Bluetooth technology and SRD GFSK technology used for the EUT.
- 2. Bluetooth & SRD GFSK technologies can not transmit at same time.
- 3. Due to radiated measurements are made and the antenna gain is already accounted for this device, so provide an antenna datasheet and/or antenna measurement report is not required. The antenna dimensions and pictures (include antenna wire length if have) are stated in EUT photo exhibit.
- 4. For Radiated Emissions test, following modes were pre-tested:
 - Operating Mode (EUT only)
 - Operating + Charging Mode (EUT + Adapter)
 - Operating + Charging Mode (EUT + Notebook)

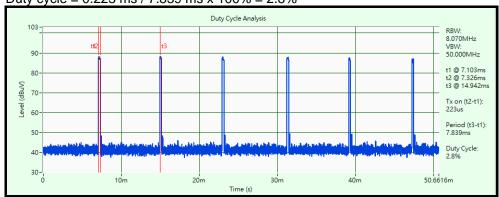
The worst emission level was found when the EUT was tested under **Operating + Charging Mode (EUT + Notebook)** mode, therefore, only its test data was recorded in this report.

5. The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

3.2 Description of Test Modes

79 channels are provided to this EUT:

Channel	Freq. (MHz)						
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	79	2480
19	2421	39	2441	59	2461		



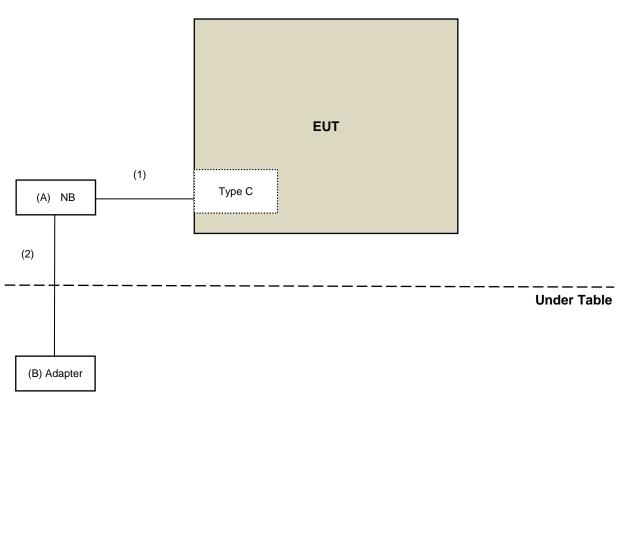
3.2.1 Test Mode Applicability and Tested Channel Detail

EUT Configure				Applica	ble To				Description		
Mode	RE≥1	G	RE<1	IG	PLC		APCM		Description		
А	\checkmark		\checkmark		V			Operating + Charging Mode (EUT + Note			
В	-		-	- $$ - Operating + Charging Mode (EUT + Ac							
Vhere Bandeo	: Radiate Ige Meas ower Line	surement			RE<1G			sion below 1GHz conducted Measur	ement		
available m	s been odulatio	condu ons, da	cted to ta rates	deterr s and a		(if E	UT with	antenna diver	ole combinations betwee sity architecture).		
EUT Configu	ure Mode	e	A	vailable	Channel		Tested	Channel	Modulation Type		
А				0 to	78		0, 3	38, 78	GFSK		
	annel(s	s) was	(were)	selecte	ed for the fina		as liste		na diversity architecture Modulation Type		
A				0 to	78			0	GFSK		
	annel(s	s) was	(were)	selecte	ed for the fina			d below.	na diversity architecture Modulation Type		
A & E				0 to		0			GFSK		
 Antenna Port Conducted Measurement: This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode. Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. 											
EUT Configu		-	A		Channel			Channel	Modulation Type		
A est Condition: Applicable To	- E	EUT Con	figure	0 to	78 nmental Condit	ione		nput Power	GFSK Tested By		
		Mod	le			10115			-		
RE≥1G	1G A 25deg. C, 68%RH 120Vac,		25deg. C, 68%RH		ac, 60Hz (System)						
RE<1G	A A				25deg. C, 68%RH			ac, 60Hz (System)			
PLC		A		25deg. C, 75%RH				ac, 60Hz (System)			
		B			25deg. C,75%RH			20Vac, 60Hz	Jed Wu		
APCM	APCM A 25deg. C, 76%RH 120Vac		ac, 60Hz (System)	Dalen Dai							

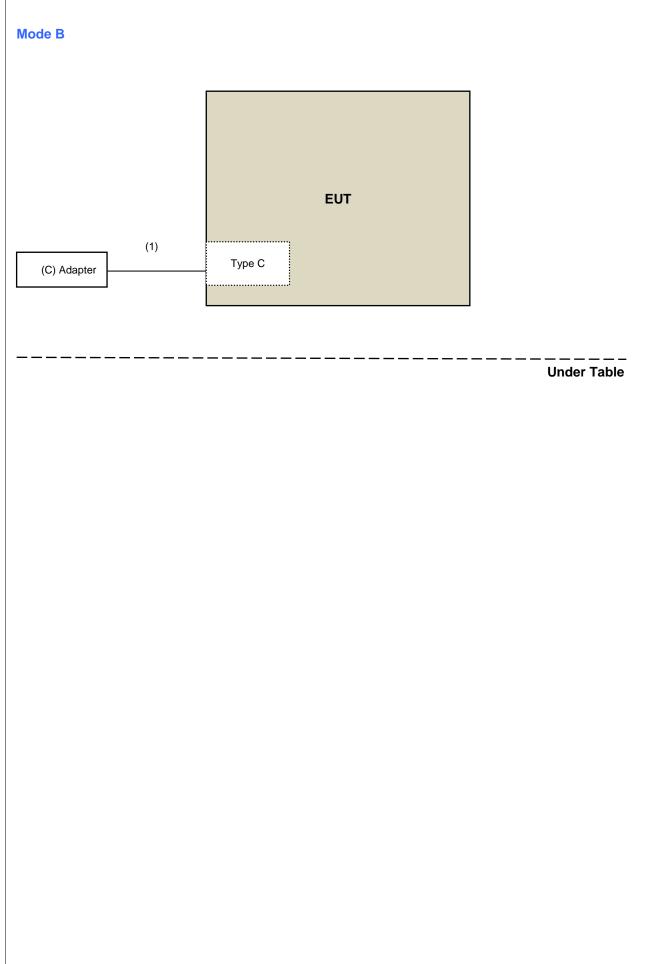
3.3 Duty Cycle of Test Signal

Duty cycle = 0.223 ms / 7.839 ms x 100% = 2.8%

3.4 Description of Support Units


The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
А	Notebook	Lenovo	80WG	YD01YRC9	N/A	Provided by Lab
В	Adapter	Lenovo	ADLX65CLGU2A	N/A	N/A	Provided by Lab
С	Adapter	Apple	A1385	N/A	N/A	Provided by Lab


ID	Cable Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1	USB type A to C cable	1	1.0	Y	0	Supplied by applicant
2	DC Cable	1	1.9	Ν	0	Provided by Lab

3.4.1 Configuration of System under Test

Mode A

3.5 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.249)

ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

The field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following

Fundamental Frequency	Field Strength of Fundamental (millivolts/meter)	Field Strength of Harmonics (microvolts/meter)
902 ~ 928 MHz	50	500
2400 ~ 2483.5 MHz	50	500
5725 ~ 5875 MHz	50	500
24 ~ 24.25 GHz	250	2500

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits as below table, whichever is the lesser attenuation

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

1. The lower limit shall apply at the transition frequencies.

2. Emission level (dBuV/m) = 20 log Emission level (uV/m).

3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

Below 1 GHz:

Description & Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
* LOOP ANTENNA EMCI	LPA600	270	2021/9/2	2023/9/1
Bi_Log Antenna Schwarzbeck	VULB 9168	137	2021/10/27	2022/10/26
Pre_Amplifier EMCI	EMC001340	980269	2022/6/28	2023/6/27
Pre_Amplifier HP	8447D	2432A03504	2022/2/17	2023/2/16
RF Coaxial Cable Pacific	8D-FB	Cable-CH6-02	2022/7/12	2023/7/11
Software BVADT	Radiated_V8.7.08	N/A	N/A	N/A
Spectrum Analyzer R&S	FSV40	101544	2022/5/9	2023/5/8
Test Receiver Agilent	N9038A	MY51210129	2022/4/8	2023/4/7
Tower ADT	AT100	0306	N/A	N/A
Turn Table ADT	TT100	0306	N/A	N/A

Notes:

1. The calibration interval of the above test instruments is 12/24 months and the calibrations are traceable to NML/ROC and NIST/USA

2. The test was performed in Linkou 966 Chamber 6 (CH 6).

3. Tested Date: 2022/7/19

Above 1 GHz:

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
BandPass Filter MICRO-TRONICS	BRM17690	005	2022/5/26	2023/5/25
Boresight antenna tower fixture BV	BAF-02	6	N/A	N/A
Highpass filter Wainwright Instruments	WHK 3.1/18G-10SS	SN 8	2022/5/26	2023/5/25
Horn Antenna ETS-Lindgren	3117-PA	00215857	2021/11/14	2022/11/13
Horn Antenna	3115	00028257	2021/11/14	2022/11/13
ЕМСО	3115	00027024	2021/11/14	2022/11/13
Horn Antenna Schwarzbeck	BBHA 9170	212	2021/10/13	2022/10/12
Notch filter MICRO-TRONICS	BRC50703-01	010	2022/5/26	2023/5/25
Pre_Amplifier	EMC0126545	980076	2022/2/17	2023/2/16
EMCI	EMC184045B	980235	2022/2/17	2023/2/16
Pre-amplifier HP	8449B	3008A01201	2022/2/17	2023/2/16
Pre-amplifier (18GHz-40GHz) EMCI	EMC184045B	980175	2021/9/4	2022/9/3
RF Coaxial Cable HUBER SUHNER	SF-102	Cable-CH6-01	2022/7/7	2023/7/6
RF Coaxial Cable EM	EM102-KMKM-3.5+1M	EM102-KMKM- 3.5+1M-01	2022/7/7	2023/7/6
RF Coaxial Cable WOKEN	WC01	Cable-CH10-03	2022/7/7	2023/7/6
RF Coaxial Cable Rosnol	K1K50-UP0279- K1K50-3000	Cable-CH10(3m)-04	2022/7/7	2023/7/6
Software BVADT	Radiated_V8.7.08	N/A	N/A	N/A
Spectrum Analyzer Agilent	E4446A	MY51100009	2022/6/27	2023/6/26
Spectrum Analyzer KEYSIGHT	N9030A	MY54490260	2021/7/23	2022/7/22
Spectrum Analyzer		101544	2022/5/9	2023/5/8
R&S	FSV40	101042	2021/9/9	2022/9/8
Test Receiver Agilent	N9038A	MY51210129	2022/4/8	2023/4/7
Tower ADT	AT100	0306	N/A	N/A
Turn Table ADT	TT100	0306	N/A	N/A

Notes:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA

2. The test was performed in Linkou 966 Chamber 6 (CH 6).

3. Tested Date: 2022/7/15

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

NOTE:

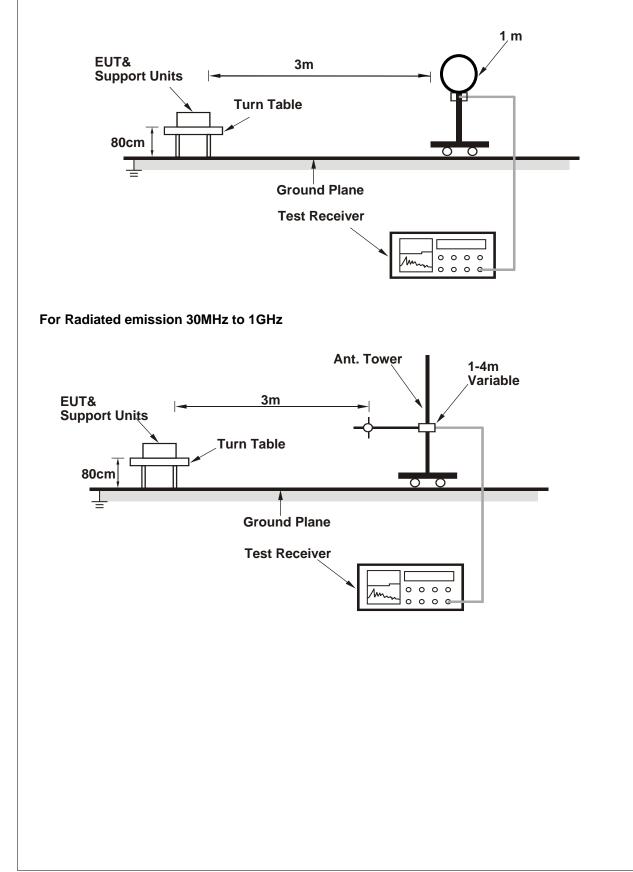
1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

For Radiated emission above 30MHz

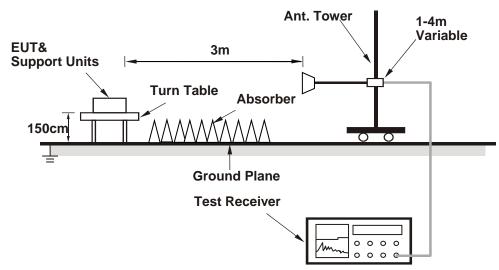
- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasipeak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) and Average detection at frequency above 1GHz. For fundamental and harmonic signal measurement, according to ANSI C63.10 section 7.5, the average value = peak value + duty factor. The duty factor refer to Chapter 3.3 of this report.
- 3. All modes of operation were investigated and the worst-case emissions are reported.


4.1.4 Deviation from Test Standard

No deviation.


4.1.5 Test Setup

For Radiated emission below 30MHz

For Radiated emission above 1GHz

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

- a. Connected the EUT to Notebook.
- b. Set the EUT under transmission condition continuously at specific channel frequency.

4.1.7 Test Results

ABOVE 1GHz DATA

Mode A

RF Mode	TX GFSK	Channel	CH 0:2402 MHz
Frequency Range	1 GHz ~ 25 GHz	Detector Function & Bandwidth	(PK) RB = 1 MHz, VB = 3 MHz (AV) RB = 1 MHz, VB = 3 MHz (RMS)

	Antenna Polarity & Test Distance : Horizontal at 3 m											
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)				
1	2390.00	53.7 PK	74.0	-20.3	1.31 H	201	55.5	-1.8				
2	2390.00	42.8 AV	54.0	-11.2	1.31 H	201	44.6	-1.8				
3	2400.00	51.8 PK	74.0	-22.2	1.31 H	201	53.7	-1.9				
4	2400.00	20.7 AV	54.0	-33.3	1.31 H	201	22.6	-1.9				
5	*2402.00	94.8 PK	114.0	-19.2	1.31 H	201	96.7	-1.9				
6	*2402.00	63.7 AV	94.0	-30.3	1.31 H	201	65.6	-1.9				
7	4804.00	51.9 PK	74.0	-22.1	1.00 H	345	46.1	5.8				
8	4804.00	20.8 AV	54.0	-33.2	1.00 H	345	15.0	5.8				
		An	tenna Polari	ty & Test Dis	stance : Vert	ical at 3 m						

No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	2390.00	52.6 PK	74.0	-21.4	3.47 V	111	54.4	-1.8
2	2390.00	42.1 AV	54.0	-11.9	3.47 V	111	43.9	-1.8
3	2400.00	49.4 PK	74.0	-24.6	3.47 V	111	51.3	-1.9
4	2400.00	18.3 AV	54.0	-35.7	3.47 V	111	20.2	-1.9
5	*2402.00	92.6 PK	114.0	-21.4	3.47 V	111	94.5	-1.9
6	*2402.00	61.5 AV	94.0	-32.5	3.47 V	111	63.4	-1.9
7	4804.00	49.6 PK	74.0	-24.4	2.29 V	293	43.8	5.8
8	4804.00	18.5 AV	54.0	-35.5	2.29 V	293	12.7	5.8

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency.

6. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle) Where the duty cycle correction factor is calculated from following formula:
20 log(Duty cycle) = 20 log(0.028) = -31.1dB

RF Mode	TX GFSK	Channel	CH 38:2440 MHz
Frequency Range	1 GHz ~ 25 GHz	Detector Function	(PK) RB = 1 MHz, VB = 3 MHz (AV) RB = 1 MHz, VB = 3 MHz (RMS)

	Antenna Polarity & Test Distance : Horizontal at 3 m											
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)				
1	*2440.00	93.8 PK	114.0	-20.2	1.63 H	206	95.6	-1.8				
2	*2440.00	62.7 AV	94.0	-31.3	1.63 H	206	64.5	-1.8				
3	4880.00	51.0 PK	74.0	-23.0	1.32 H	350	45.0	6.0				
4	4880.00	19.9 AV	54.0	-34.1	1.32 H	350	13.9	6.0				
		An	tenna Polari	ty & Test Dis	stance : Vert	ical at 3 m						
No	Frequency Emission Limit Margin Antenna Table Raw Correctio											
1	*2440.00	91.6 PK	114.0	-22.4	3.79 V	116	93.4	-1.8				
2	*2440.00	60.5 AV	94.0	-33.5	3.79 V	116	62.3	-1.8				
3	4880.00	48.7 PK	74.0	-25.3	2.61 V	298	42.7	6.0				
4	4880.00	17.6 AV	54.0	-36.4	2.61 V	298	11.6	6.0				

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

- 5. " * ": Fundamental frequency.
- The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle) Where the duty cycle correction factor is calculated from following formula:
 20 log(Duty cycle) = 20 log(0.028) = -31.1dB

RF Mode	TX GFSK	Channel	CH 78:2480 MHz
Frequency Range	1 GHz ~ 25 GHz	Detector Function	(PK) RB = 1 MHz, VB = 3 MHz (AV) RB = 1 MHz, VB = 3 MHz (RMS)

Antenna Polarity & Test Distance : Horizontal at 3 m											
Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)				
*2480.00	94.4 PK	114.0	-19.6	1.79 H	205	96.1	-1.7				
*2480.00	63.3 AV	94.0	-30.7	1.79 H	205	65.0	-1.7				
2483.50	55.7 PK	74.0	-18.3	1.79 H	205	57.4	-1.7				
2483.50	24.6 AV	54.0	-29.4	1.79 H	205	26.3	-1.7				
4960.00	51.6 PK	74.0	-22.4	1.48 H	349	45.5	6.1				
4960.00	20.5 AV	54.0	-33.5	1.48 H	349	14.4	6.1				
	An	tenna Polari	ty & Test Di	stance : Vert	ical at 3 m						
Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)				
*2480.00	92.3 PK	114.0	-21.7	3.95 V	115	94.0	-1.7				
*2480.00	61.2 AV	94.0	-32.8	3.95 V	115	62.9	-1.7				
2483.50	54.5 PK	74.0	-19.5	3.95 V	115	56.2	-1.7				
2483.50	23.4 AV	54.0	-30.6	3.95 V	115	25.1	-1.7				
4960.00	49.3 PK	74.0	-24.7	2.77 V	297	43.2	6.1				
4960.00	18.2 AV	54.0	-35.8	2.77 V	297	12.1	6.1				
	(MHz) *2480.00 2483.50 2483.50 4960.00 4960.00 Frequency (MHz) *2480.00 *2483.50 2483.50 4960.00	Frequency (MHz) Emission Level (dBuV/m) *2480.00 94.4 PK *2480.00 63.3 AV 2483.50 55.7 PK 2483.50 24.6 AV 4960.00 51.6 PK 4960.00 20.5 AV Prequency (MHz) Emission Level (dBuV/m) *2480.00 92.3 PK *2480.00 61.2 AV 2483.50 23.4 AV 4960.00 49.3 PK	Frequency (MHz) Emission Level (dBuV/m) Limit (dBuV/m) *2480.00 94.4 PK 114.0 *2480.00 63.3 AV 94.0 *2480.00 63.3 AV 94.0 2483.50 55.7 PK 74.0 2483.50 24.6 AV 54.0 4960.00 51.6 PK 74.0 4960.00 20.5 AV 54.0 *2480.00 92.3 PK 114.0 *2480.00 92.3 PK 114.0 *2480.00 92.3 PK 114.0 *2480.00 54.5 PK 74.0 2483.50 23.4 AV 54.0 2483.50 23.4 AV 54.0 4960.00 49.3 PK 74.0	Frequency (MHz) Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) *2480.00 94.4 PK 114.0 -19.6 *2480.00 63.3 AV 94.0 -30.7 2483.50 55.7 PK 74.0 -18.3 2483.50 24.6 AV 54.0 -29.4 4960.00 51.6 PK 74.0 -22.4 4960.00 20.5 AV 54.0 -33.5 Automation Polarity & Test Dis Frequency (MHz) Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) *2480.00 92.3 PK 114.0 -21.7 *2480.00 61.2 AV 94.0 -32.8 2483.50 54.5 PK 74.0 -19.5 2483.50 23.4 AV 54.0 -30.6 4960.00 49.3 PK 74.0 -21.7	Frequency (MHz) Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) Antenna Height (dB) *2480.00 94.4 PK 114.0 -19.6 1.79 H *2480.00 63.3 AV 94.0 -30.7 1.79 H 2483.50 55.7 PK 74.0 -18.3 1.79 H 2483.50 24.6 AV 54.0 -29.4 1.79 H 4960.00 51.6 PK 74.0 -22.4 1.48 H 4960.00 20.5 AV 54.0 -33.5 1.48 H 4960.00 92.3 PK 114.0 -21.7 3.95 V *2480.00 61.2 AV 94.0 -32.8 3.95 V *2483.50 54.5 PK 74.0 -19.5 3.95 V 2483.50 23.4 AV	Frequency (MHz) Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) Antenna Height (dB) Table Angle (Degree) *2480.00 94.4 PK 114.0 -19.6 1.79 H 205 *2480.00 63.3 AV 94.0 -30.7 1.79 H 205 2483.50 55.7 PK 74.0 -18.3 1.79 H 205 2483.50 24.6 AV 54.0 -29.4 1.79 H 205 4960.00 51.6 PK 74.0 -22.4 1.48 H 349 4960.00 20.5 AV 54.0 -33.5 1.48 H 349 4960.00 92.3 PK Limit (dBuV/m) Margin (dB) Height (m) Table (Degree) *2480.00 92.3 PK 114.0 -21.7 3.95 V 115 *2480.00<	Frequency (MHz) Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) Antenna Height (dB) Table Angle (bgpree) Raw Value (dBuV) *2480.00 94.4 PK 114.0 -19.6 1.79 H 205 96.1 *2480.00 63.3 AV 94.0 -30.7 1.79 H 205 96.1 *2480.00 65.7 PK 74.0 -18.3 1.79 H 205 65.0 2483.50 24.6 AV 54.0 -29.4 1.79 H 205 26.3 4960.00 51.6 PK 74.0 -22.4 1.48 H 349 45.5 4960.00 20.5 AV 54.0 -22.4 1.48 H 349 14.4 4960.00 20.5 AV 54.0 -33.5 1.48 H 349 14.4 4960.00 20.5 AV 54.0 -33.5 1.48 H 349 14.4 Frequency (MHz) Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) Antenna Height (dB) Table Angle (Degree) Raw Value (dBuV) *2480.00 92.3 PK				

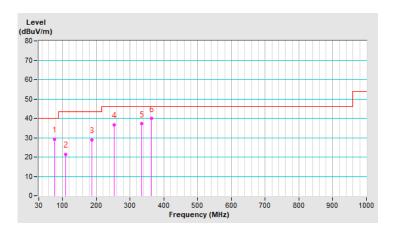
Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency.
- 6. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle) Where the duty cycle correction factor is calculated from following formula:
 20 log(Duty cycle) = 20 log(0.028) = -31.1dB


BELOW 1GHz WORST-CASE DATA

Mode A

RF Mode	TX GFSK	Channel	CH 0:2402 MHz
Frequency Range	9 kHz ~ 1 GHz	Detector Function & Bandwidth	(QP) RB = 120kHz

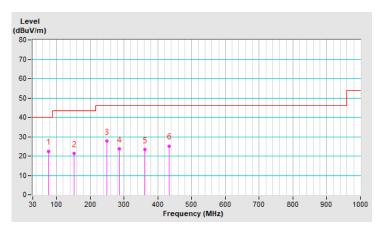
	Antenna Polarity & Test Distance : Horizontal at 3 m												
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)					
1	75.59	29.1 QP	40.0	-10.9	1.63 H	253	41.3	-12.2					
2	108.81	21.4 QP	43.5	-22.1	1.57 H	142	33.2	-11.8					
3	187.38	28.8 QP	43.5	-14.7	1.28 H	173	38.9	-10.1					
4	253.73	36.6 QP	46.0	-9.4	1.49 H	248	44.5	-7.9					
5	333.80	37.2 QP	46.0	-8.8	1.33 H	313	42.1	-4.9					
6	363.19	39.9 QP	46.0	-6.1	1.27 H	202	44.3	-4.4					

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
- 5. The emission levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

RF Mode	TX GFSK	Channel	CH 0:2402 MHz
Frequency Range	$9 \text{ kH7} \sim 1 (9 \text{ H7})$	Detector Function & Bandwidth	(QP) RB = 120kHz

	Antenna Polarity & Test Distance : Vertical at 3 m											
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)				
1	76.37	22.3 QP	40.0	-17.7	1.95 V	225	34.7	-12.4				
2	151.88	21.2 QP	43.5	-22.3	1.83 V	162	29.4	-8.2				
3	249.22	27.7 QP	46.0	-18.3	1.66 V	140	35.9	-8.2				
4	286.86	23.6 QP	46.0	-22.4	1.29 V	172	30.0	-6.4				
5	362.18	23.3 QP	46.0	-22.7	1.34 V	329	27.8	-4.5				
6	434.00	25.1 QP	46.0	-20.9	1.59 V	309	27.6	-2.5				

Remarks:


1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level - Limit value

4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.

5. The emission levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

	Conducted Limit (dBuV)					
Frequency (MHz)	Quasi-peak	Average				
0.15 - 0.5	66 - 56	56 - 46				
0.50 - 5.0	56	46				
5.0 - 30.0	60	50				

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

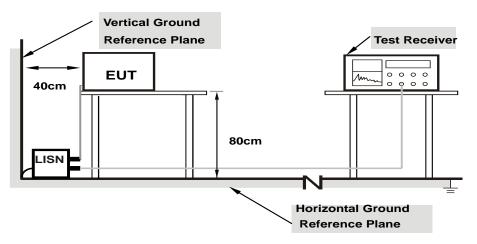
4.2.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Test Receiver R&S	ESR3	102414	2021/12/20	2022/12/19
LISN R&S	ENV216	101197	2022/7/5	2023/7/4
LISN Schwarzbeck	NNLK8129	8129229	2022/6/8	2023/6/7
DC LISN Schwarzbeck	NNLK 8121	8121-808	2022/4/29	2023/4/28
LISN Schwarzbeck	NNLK 8121	8121-731	2022/5/26	2023/5/25
LISN R&S	ENV216	101196	2022/5/24	2023/5/23
DC LISN R&S	ESH3-Z6	844950/018	2021/7/25	2022/7/24
DC LISN R&S	ESH3-Z6	100219	2021/7/25	2022/7/24
RF Coaxial Cable Commate	5D-FB	Cable-CO10-01	2022/2/9	2023/2/8
Attenuator STI	STI02-2200-10	NO.1	2021/9/15	2022/9/14
50 ohm terminal LYNICS	0900510	E1-011484	2022/6/26	2023/6/25
50 ohm terminal LYNICS	0900510	E1-011286	2021/10/1	2022/9/30
50 ohm terminal LYNICS	0900510	E1-011285	2021/10/1	2022/9/30
Isolation Transformer Erika Fiedler	D-65396	017	2021/9/9	2022/9/8
Software BVADT	Cond_V7.3.7.4	NA	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in Linkou Conduction 10

3. Tested Date: 2022/7/19


4.2.3 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.
- **NOTE:** The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

4.2.4 Deviation From Test Standard

No deviation.

4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Condition

- a. Connected the EUT to Notebook or Adapter.
- b. Set the EUT under transmission condition continuously at specific channel frequency.


4.2.7 Test Results

Mode A

RF Mode	TX GFSK	Channel	CH 0:2402 MHz
Frequency Range		Recollition	Quasi-Peak (QP) / Average (AV), 9 kHz

	Phase Of Power : Line (L)										
No	Frequency Corre		Reading Value (dBuV)		Emission Level (dBuV)		Limit (dBuV)		Margin (dB)		
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.16953	9.70	35.77	22.25	45.47	31.95	64.98	54.98	-19.51	-23.03	
2	0.26328	9.75	23.20	11.50	32.95	21.25	61.33	51.33	-28.38	-30.08	
3	0.53281	9.82	34.75	27.72	44.57	37.54	56.00	46.00	-11.43	-8.46	
4	1.55078	9.94	15.27	9.16	25.21	19.10	56.00	46.00	-30.79	-26.90	
5	3.70703	10.05	22.51	11.82	32.56	21.87	56.00	46.00	-23.44	-24.13	
6	7.49219	10.15	17.68	11.78	27.83	21.93	60.00	50.00	-32.17	-28.07	

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

RF Mode	TX GFSK	Channel	CH 0:2402 MHz
Frequency Range	150 kHz ~ 30 MHz	Recollition	Quasi-Peak (QP) / Average (AV), 9 kHz

	Phase Of Power : Neutral (N)										
No	Frequency	Correction Factor	Reading Value (dBuV)		Emission Level (dBuV)		Limit (dBuV)		Margin (dB)		
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.16562	9.73	37.34	20.52	47.07	30.25	65.18	55.18	-18.11	-24.93	
2	0.28672	9.79	24.74	16.10	34.53	25.89	60.62	50.62	-26.09	-24.73	
3	0.53281	9.84	35.85	30.12	45.69	39.96	56.00	46.00	-10.31	-6.04	
4	1.16797	9.93	20.11	14.88	30.04	24.81	56.00	46.00	-25.96	-21.19	
5	3.73828	10.07	22.35	12.21	32.42	22.28	56.00	46.00	-23.58	-23.72	
6	8.67578	10.21	15.54	9.84	25.75	20.05	60.00	50.00	-34.25	-29.95	

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

Mode B

RF Mode	TX GFSK	Channel	CH 0:2402 MHz
Frequency Range		Recollition	Quasi-Peak (QP) / Average (AV), 9 kHz

	Phase Of Power : Line (L)										
No	Frequency	Correction Factor	Reading Value (dBuV)			Emission Level (dBuV)		Limit (dBuV)		Margin (dB)	
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.16562	9.69	25.14	0.64	34.83	10.33	65.18	55.18	-30.35	-44.85	
2	0.36094	9.79	18.96	0.37	28.75	10.16	58.71	48.71	-29.96	-38.55	
3	0.78281	9.85	20.38	5.66	30.23	15.51	56.00	46.00	-25.77	-30.49	
4	2.39453	10.00	12.60	0.57	22.60	10.57	56.00	46.00	-33.40	-35.43	
5	4.34375	10.07	14.73	0.93	24.80	11.00	56.00	46.00	-31.20	-35.00	
6	7.55469	10.15	16.71	2.71	26.86	12.86	60.00	50.00	-33.14	-37.14	


- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

RF Mode	TX GFSK	Channel	CH 0:2402 MHz
Frequency Range	150 kHz ~ 30 MHz	Recollition	Quasi-Peak (QP) / Average (AV), 9 kHz

	Phase Of Power : Neutral (N)										
No	Frequency	Correction Factor	Reading Value (dBuV)		Emission Level (dBuV)		Limit (dBuV)		Margin (dB)		
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.18125	9.75	24.33	2.17	34.08	11.92	64.43	54.43	-30.35	-42.51	
2	0.25938	9.78	20.46	0.08	30.24	9.86	61.45	51.45	-31.21	-41.59	
3	0.44297	9.83	17.39	1.14	27.22	10.97	57.01	47.01	-29.79	-36.04	
4	0.75156	9.87	18.38	2.31	28.25	12.18	56.00	46.00	-27.75	-33.82	
5	4.35547	10.09	13.83	0.05	23.92	10.14	56.00	46.00	-32.08	-35.86	
6	6.83203	10.16	14.36	0.93	24.52	11.09	60.00	50.00	-35.48	-38.91	

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

4.3 Channel Bandwidth

4.3.1 Test Setup

4.3.2 Test Instruments

Description & Manufacturer	Model no.	Serial No.	Calibrated Date	Calibrated Until
Spectrum Analyzer R&S	FSV40	101544	2022/5/9	2023/5/8

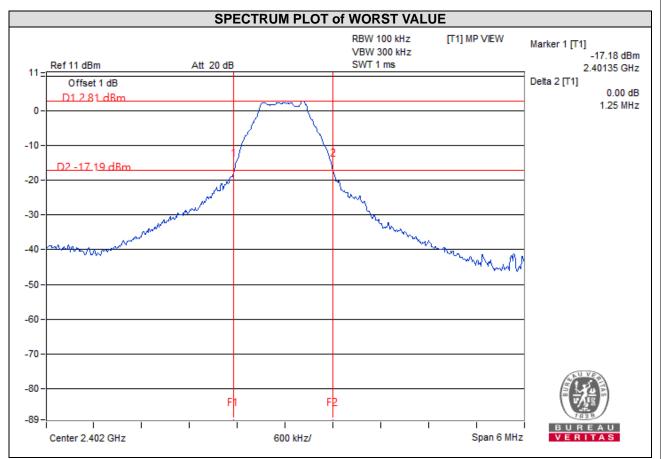
- **NOTE:** 1. The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.
 - 2. The test was performed in LK Oven
 - 3. Tested Date: 2022/7/20

4.3.3 Test Procedure

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.
- d. Repeat above procedures until all frequencies measured were complete.

4.3.4 Deviation from Test Standard

No deviation.


4.3.5 EUT Operating Condition

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.3.6 Test Results

Channel	Frequency (MHz)	20dB Bandwidth (MHz)	
0	2402	1.25	
38	2440	1.25	
78	78 2480		

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab Tel: 886-2-26052180

Fax: 886-2-26052180

Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---