FCC TEST REPORT

for

Acrox Technologies Co., Ltd.

Wireless Keyboard

Model Number: ONA11HO087, ONNLS6400R LS6400R,KBH

FCC ID: PRDKB13

Prepared for	 Acrox Technologies Co., Ltd. 4F., No.89, Minshan St., Neihu Dist., Taipei City 114, ,
Address	Taiwan, R.O.C
Prepared by	: Keyway Testing Technology Co., Ltd.
Address	: Baishun Industrial Zone, Zhangmutou Town

Address : Baishun Industrial Zone, Zhangmutou Town, Dongguan, Guangdong, China

> Tel: 86-769-8718 2258 Fax: 86-769-8718 1058

Report No.:14KWE031193FDate of Test:Mar. 5~6, 2014Date of Report:Mar. 7, 2014

TABLE OF CONTENTS

Test Report Declaration

T	est Re	eport Declaration	Page
1.	TES	ST SUMMARY	4
2.	GEI	VERAL PRODUCT INFORMATION	4
	2.1.	Product Function	
	2.2.	Description of Device (EUT)	
	2.3.	Independent Operation Modes	
	2.4.	Difference between Model Numbers	
3.	TES	ST SITES	5
	3.1.	Test Facilities	
	3.2.	List of Test and Measurement Instruments	6
4.	TES	ST SET-UP AND OPERATION MODES	7
	4.1.	Principle of Configuration Selection	7
	4.2.	Block Diagram of Test Set-up	
	4.3.	Test Operation Mode and Test Software	
	4.4.	Special Accessories and Auxiliary Equipment	
	4.5.	Countermeasures to Achieve EMC Compliance	
5.	EMI	SSION TEST RESULTS	
	5.1.	Radiated Emission Test	
6.	20D	B OCCUPY BANDWIDTH	
	6.1.	Limits	
7.	BAN	ID EDGE COMPLIANCE TEST	
	7.1.	Limits	
	7.2.	Test setup	
8.	ANT	ENNA REQUIREMENT:	
9.	PHC	DTOGRAPHS OF TEST SET-UP	
10		HOTOGRAPHS OF THE EUT	

Keyway Testing Technology Co., Ltd.

Applicant: Address:	Acrox Technologies Co., Ltd. 4F., No.89, Minshan St., Neihu Dist.,Taipei City 114, Taiwan, R.O.C			
Factor: Address:	Acrox Technologies Co Xinmin Industrial, Char Province, China		gguan City, Guangdong	
E.U.T:	Wireless Keyboard			
Model Number:	ONA11HO087, ONNLS	S6400R, LS6400	R,KBH	
Trade Name:	ONN, ACROX	Serial No.:		
Date of Receipt:	Mar.5, 2014	Date of Test:	Mar. 5~6, 2014	
Test Specification:	FCC Part 15 Subpart C Section 15.249:2013 ANSI C63.4:2009			
Test Result:	The equipment under test was found to be compliance with the requirements of the standards applied.			
		lssu	e Date: Mar. 7, 2014	
Tested by: Another	Reviewed by: Jack Yan	Ng	Approved by:	
Andy Gao / Engineer	Jade Yang/ Supe	ervisor	Chris Du / Manager	
Other Aspects: None.				
Abbreviations: OK/P=passe	ed fail/F=failed n.a/N=	=not applicable E	E.U.T=equipment under tested	
-	a single evaluation of one sa n extracts without written appl	•	-	

1. TEST SUMMARY

Test Items	Test Requirement	Result
Conducted Emissions	15.207	N/A
Radiated Emissions	15.209,15.249	PASS
20dB Bandwidth	15.249	PASS
Antenna Requirement	15.203	PASS

2.GENERAL PRODUCT INFORMATION

2.1. Product Function

Refer to Technical Construction Form and User Manual.

2.2. Description of Device (EUT)

Description	:	Wireless Keyboard
M/N	:	ONA11HO087, ONNLS6400R, LS6400R,KBH
Power Supply	:	DC 3V (1.5V AAA Battery*2)
Operation Frequency	:	2408~2474MHz
Modulation Technology	:	GFSK
Antenna Type	:	Integrated antenna
Antenna Gain	:	0.5dBi

2.3. Independent Operation Modes

The basic operation modes are:

2.3.1. EUT work continues TX mode and frequency as below:

Channel	:	Frequency
Low	:	2408MHz
Middle	:	2440MHz
High	:	2474MHz
ote. New battery	used for al	l tast

Note: New battery used for all test.

2.4. Difference between Model Numbers

Note: The products are all the same except the model number and trade name.

3. TEST SITES

3.1. Test Facilities	
Lab Qualifications :	944 Shielded Room built by ETS-Lindgren, USA Date of completion: March 28, 2011
	966 Chamber built by ETS-Lindgren, USA Date of completion: March 28, 2011
	Certificated by TUV Rheinland, Germany. Registration No.: UA 50207153 Date of registration: July 13, 2011
	Certificated by UL, USA Registration No.: 100567-237 Date of registration: September 1, 2011
	Certificated by Intertek Registration No.: 2011-RTL-L1-31 Date of registration: October 11, 2011
	Certificated by Industry Canada Registration No.: 9868A Date of registration: December 8, 2011
	Certificated by FCC, USA Registration No.: 370994 Date of registration: February 21, 2012
	Certificated by CNAS China Registration No.: CNAS L5783 Date of registration: August 8, 2012
Name of Firm :	Keyway Testing Technology Co., Ltd.
Site Location :	Baishun Industrial Zone, Zhangmutou Town, Dongguan, Guangdong, China

3.2. List of Test and Measurement Instruments

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
EMI Test Receiver	Rohde&Schwarz	ESCI	101156	May 9,13	May 9,14
Bilog Antenna	ETS-LINDGREEN	3142D	135452	May 20,13	May 20,14
Spectrum Analyzer	Agilent	8593E	3911A04271	May 9,13	May 9,14
3m Semi-anechoic Chamber	ETS-LINDGREEN	966	KW01	May 9,13	May 9,14
Signal Amplifier	SONOMA	310	187016	May 9,13	May 9,14
Horn Antenna	DAZE	ZN30701	11003	May 11,13	May 11,14
Signal Amplifier	DAZE	ZN3380C	11001	May 9,13	May 9,14
Signal Amplifier	Agilent	8449B	3008A00251	May 9,13	May 9,14
RF Cable	IMRO	IMRO-400	966 Cable 1#	May 9,13	May 9,14
MULTI-DEVICE Controller	ETS-LINDGREEN	2090	126913	N/A	N/A

3.2.1. For radiated emission test

4. TEST SET-UP AND OPERATION MODES

4.1. Principle of Configuration Selection

Emission: The equipment under test (EUT) was configured to measure its highest possible radiation level. The test modes were adapted accordingly in reference to the Operating Instructions.

4.2. Block Diagram of Test Set-up

System Diagram of Connections between EUT and Simulators

(EUT: Wireless Keyboard)

Note: 1:By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "Y axis" position was the worst, then the final test was executed the worst condition and test data were recorded in this report. Test data as below.

2:For all test, used new battery.

Frequency	Axis	Field Strength	Antenna
(MHz)	AXIS	(dBuV/m)	Polarization
2408	Х	98.49	Vertical
2408	Y	99.98	Vertical
2408	Z	98.61	Vertical

4.3. Test Operation Mode and Test Software

None.

- 4.4. Special Accessories and Auxiliary Equipment None.
- 4.5. Countermeasures to Achieve EMC Compliance None.

5. EMISSION TEST RESULTS

5.1. Radiated Emission Test

5.1.1. Limit 15.209 limits

FREQUENCY	DISTANCE	FIELD STREN	NGTHS LIMIT
MHz	Meters	$\mu V/m$	$dB(\mu V)/m$
$30 \sim 88$	3	100	40.0
$88 \sim 216$	3	150	43.5
$216 \sim 960$	3	200	46.0
$960 \sim 1000$	3	500	54.0
Above 1000	3	74.0 dB(µV)/m (Peak)	
		54.0 dB(μ V)/m (Average	

5.1.2. Fundamental and harmonics emission limits

Fundamental	Field Strength of Fundamental		Field Strength of	of Harmonics
Frequency	mV/m dBuV/m		uV/m	dBuV/m
902~928 MHz	50	94	500	54
2400~2483.5 MHz	50	94	500	54
5725~5875MHz	50	94	500	54
24.0~24.25GHz	250	108	2500	68

5.1.3. Restricted bands of operation

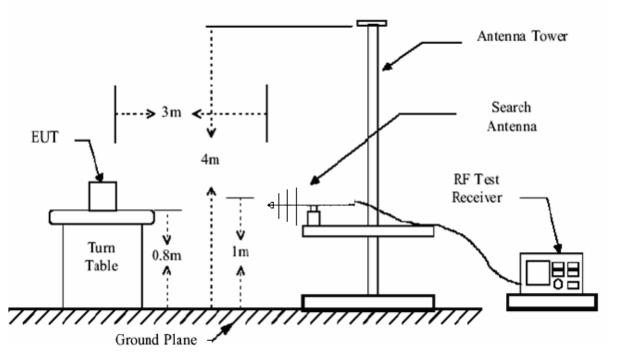
MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)

All the emissions appearing within 15.205 restricted frequency bands shall not exceed the limits shown in 15.209, all the other emissions shall be at least 20dB below the fundamental emissions, or comply with 15.209 limits.

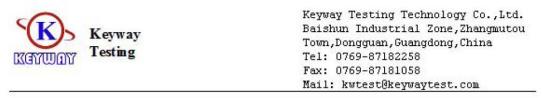
5.1.4. Test setup

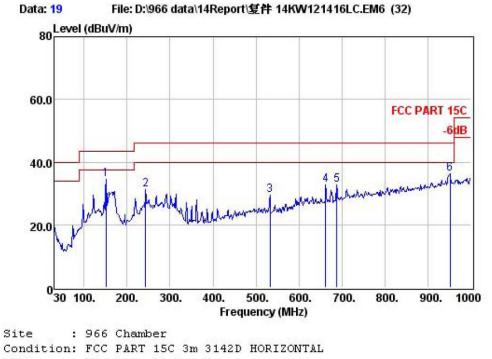
The EUT was placed on a turn table which was 0.8 m above the ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was set 3 m away from the receiving antenna which was mounted on an antenna tower. The measuring antenna moved up and down to find out the maximum emission level. It moved from 1 m to 4 m for both horizontal and vertical polarizations.

The EUT was tested in the Chamber Site. It was pre-scanned with a Peak detector from the spectrum, and all the final readings from the test receiver were measured with the Quasi-Peak detector.


The bandwidth of the EMI test receiver is set at 120kHz for frequency range from 30MHz to 1000 MHz.

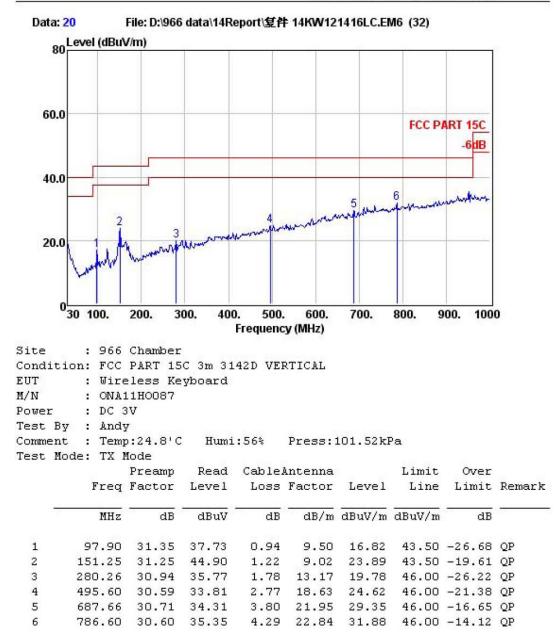
The bandwidth of the Spectrum's VBW is set at 3MHz and RBW is set at 1MHz for peak emissions measurement above 1GHz and 1MHz RBW, 10Hz VBW for average emissions measure above 1GHz.

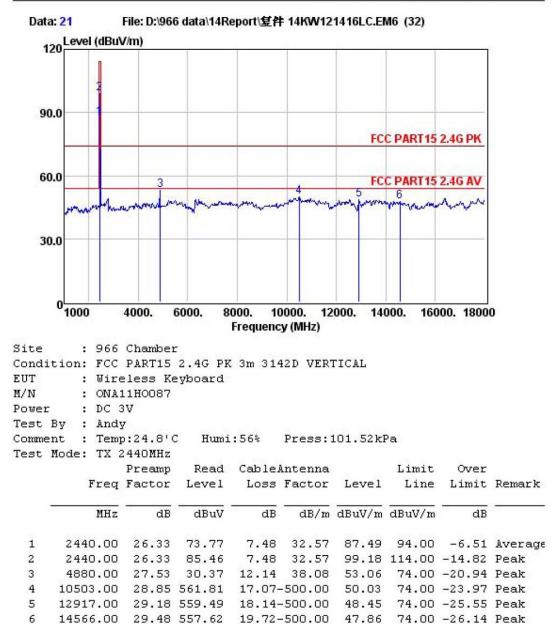

The frequency range from 30MHz to 10th harmonic (25GHz) are checked. and no any emissions were found from 18GHz to 25 GHz, So the radiated emissions from 18GHz to 25GHz were not record.


The test data of the worst case condition(s) was reported on the following pages. Notes: 1. Emission Level = Antenna Factor + Cable Loss + Meter Reading-Preamp Factor.

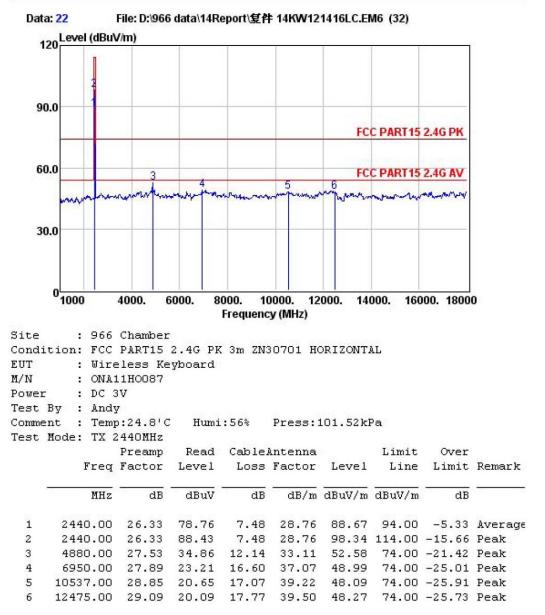
2. Measurement Uncertainty: ±3.2 dB at a level of confidence of 95%.

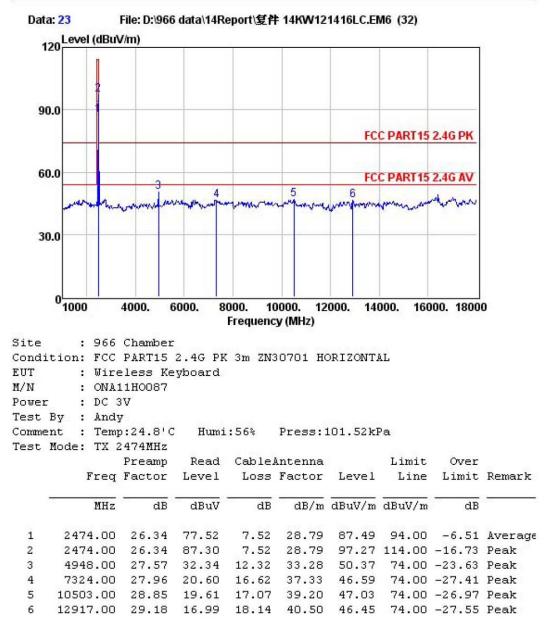
Test Data

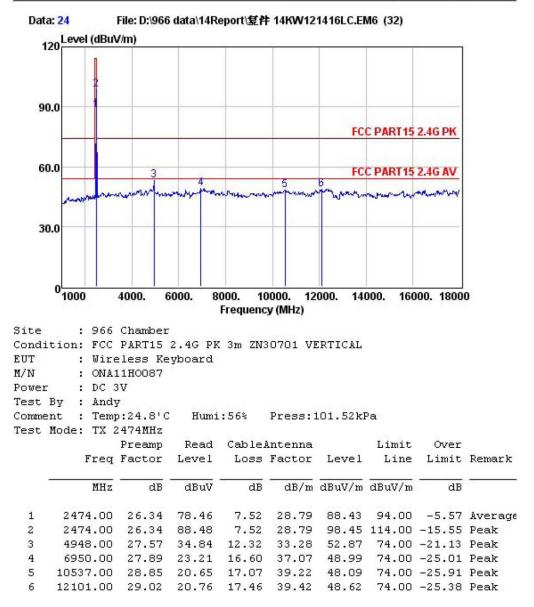


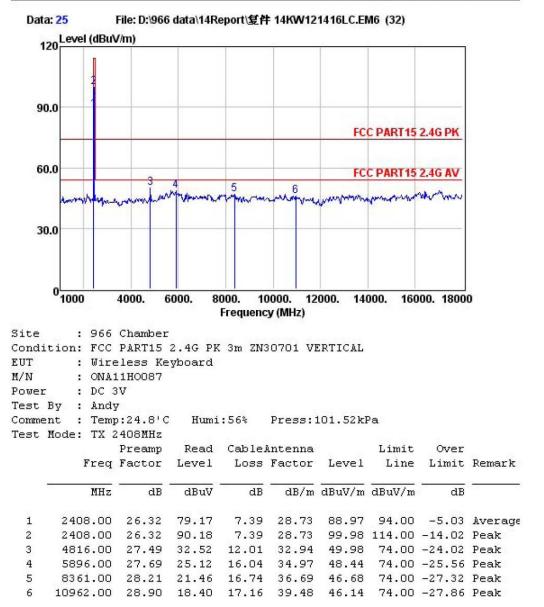

Condition:	FCC PART 15C	3m 3142D HG	DRIZONTAL			
EUT :	Wireless Keyk	board				
M/N :	ONA11H0087					
Power :	DC 3V					
Test By :	Andy					
Comment :	Temp:24.8'C	Humi:56%	Press:101.52kH	a		
Test Mode:	TX Mode					
	Preamp	Read Cable	Antenna	Limit	Over	
(Freq Factor I	Level Loss	Factor Level	Line	Limit	Rema

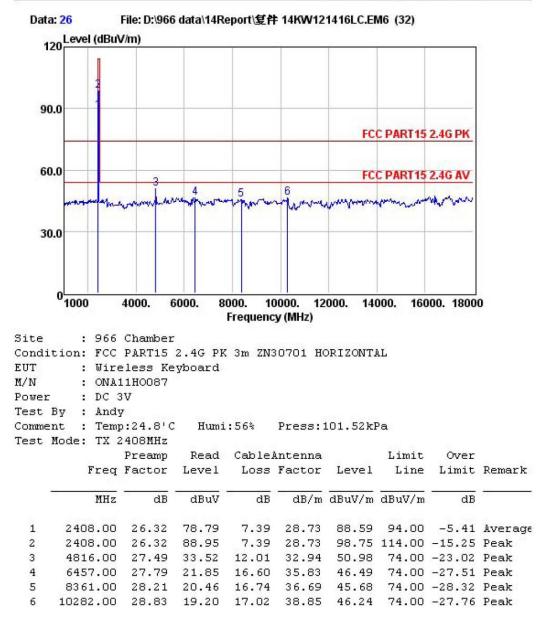
	Freq	Factor	Level	Loss	Factor	Level	Line	Limit	Remark
9	MHz	dB	dBuV	dB	dB/m	dBuV/m	$\overline{dBuV/m}$	dB	
1	151.25	31.25	55.38	1.22	9.02	34.37	43.50	-9.13	QP
2	243.40	30.95	47.88	1.61	12.72	31.26	46.00	-14.74	QP
3	532.46	30.76	37.78	3.03	19.29	29.34	46.00	-16.66	QP
4	662.44	30.81	38.25	3.69	21.70	32.83	46.00	-13.17	QP
5	687.66	30.71	37.76	3.80	21.95	32.80	46.00	-13.20	QP
6	951.50	29.60	36.27	4.92	24.61	36.20	46.00	-9.80	QP





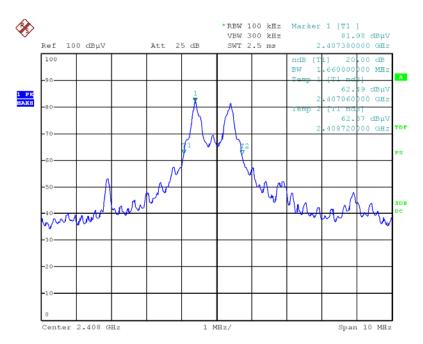




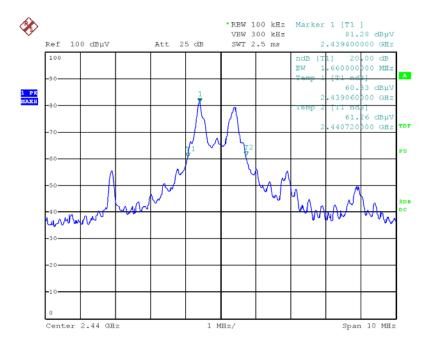


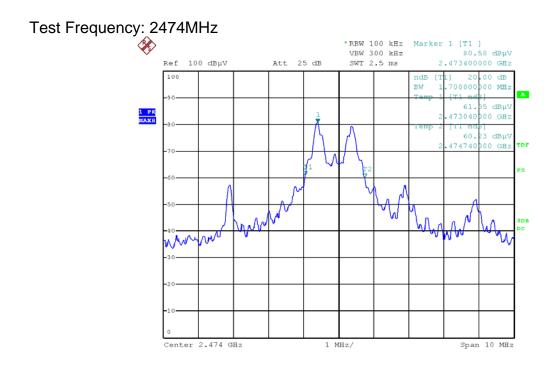
6. 20DB OCCUPY BANDWIDTH

6.1. Limits


Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

Test data:


Channel Frequency (MHz)	20dB Bandwidth (MHz)	Limit (kHz)
2408	1.66	N/A
2440	1.66	N/A
2474	1.70	N/A


Test plot as follows:

Test Frequency: 2408MHz

Test Frequency: 2440MHz

7. BAND EDGE COMPLIANCE TEST

7.1. Limits

All the lower and upper band-edges emissions appearing within 2310MHz to 2390MHz and 2483.5MHz to 2500MHz restricted frequency bands shall not exceed the limits shown in 15.209, all the other emissions outside operation frequency band 2400MHz to 2483.5MHz shall be at least 20dB below the fundamental emissions, or comply with 15.209 limits.

7.2. Test setup

The EUT was placed on a turn table which was 0.8 m above the ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was set 3 m away from the receiving antenna which was mounted on an antenna tower. The measuring antenna moved up and down to find out the maximum emission level. It moved from 1 m to 4 m for both horizontal and vertical polarizations.

The bandwidth of the Spectrum's VBW is set at 3MHz and RBW is set at 1MHz for peak emissions measurement above 1GHz and 1MHz RBW, 10Hz VBW for average emissions measure.

Note: If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.

Test plot as follows:

Frequency (MHz)	Antenna polarization	Emission (dBuV/m)	Band edge Limit (dBuV/m)		
	(H/V)	РК	PK	AV	
<2400	Н	51.23	74.00	54.00	
<2400	V	50.61	74.00	54.00	
>2483.5	Н	51.84	74.00	54.00	
>2483.5	V	50.57	74.00	54.00	

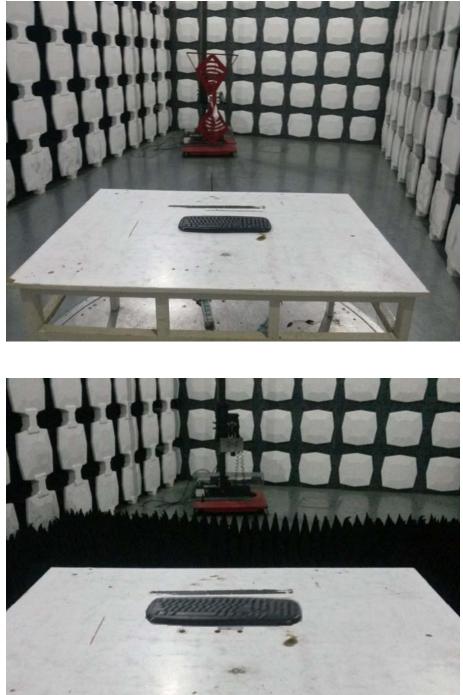
8. ANTENNA REQUIREMENT:

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

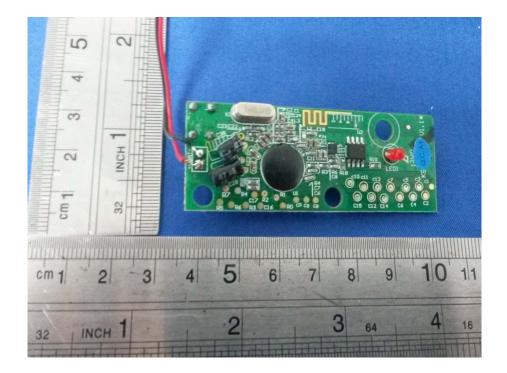

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

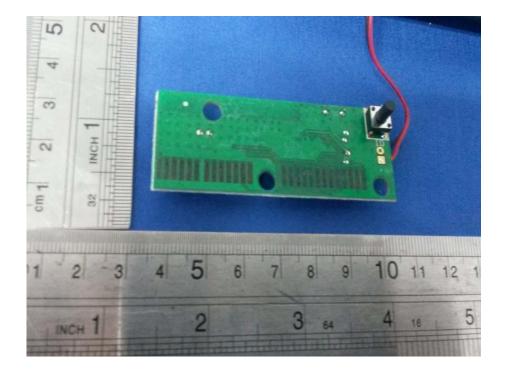
E.U.T Antenna:

The antenna is Integral antenna, the best case gain of the antenna is 0.5dBi

9. PHOTOGRAPHS OF TEST SET-UP

Radiated Emission




10. PHOTOGRAPHS OF THE EUT

END.