

Korea Technology Institute Co., Ltd.

Page 2 of 13

Test Report					
Test Report No.:	KTI02EF07004				
Registration No.:	99058				
Applicant:	Digital Device, Inc.				
Applicant Address:	4 th FL.,HanWha B/D 78-1 Ka	rakdong Songpagu	Seoul,Korea		
Product:	TFT LCD Monitor				
FCC ID:	PQZLD-500T	Model No.	LD-500T		
Receipt No.:	02-0274	Date of receipt:	Mach 25, 2002		
Date of Issue:	July 16, 2002				
Testing location	Korea Technology Institute 51-19, Sanglim3-Ri, Docheo	-	Shi, Gyeungki-Do, Korea		
Test Standards:	ANSI. C63.4 : 1992				
Rule Parts:	FCC Part 15, Subpart B				
Equipment Class:	Computing Device				
Test Result:	The above mentioned produ	uct has been tested	and passed.		
Tested by: M.H.J	lang/ Engineer	Approved by:	G. C. Min/ President		
Zh	nfty	GCA	Min		
Signatu	re Date	Signature	Date		
Other Aspects :					
Abbreviations :	• OK, Pass=passed • Fail=	failed • N/A=not	applicable		
 This test report i 	s not permitted to copy partly	without our permis	sion.		
	s dependent on only equipme				
	s based on a single evaluatior	-			
 This test report must not be used by the client to claim product endorsement by NVLAP or 					
	e U.S Government.	he measurement of	andarda that is trassable to		
 We certify this test report has been based on the measurement standards that is traceable to the national or international standards. 					

\bigotimes	Korea Technology Institute Co., Ltd.	Page 2 of 13
	Contents	
	Contents 2	2
	List of Tables 2	2
	List of Figures 2	2
	List of Photographs 2	2
1.	General 3	6
2.	Test Site 3	6
	2.1 Location 3	6
	2.2 List of Test and Measurement Instruments 4	L .
	2.3 Test Data 4	L .
	2.4 Test Environment 4	L .
3.	Description of the tested samples 5	j
	3.1 Rating and Physical characteristics 5	j
	3.2 Submitted documents 5	;
4.	Measurement conditions 6	i
	4.1 Modes of operation 6	i
	4.2 List of peripherals 6	5
	4.3 Uncertainty 6	i
	4.4 Test Setup 7	,
5.	Emission Test 8	•
	5.1 Conducted Emissions 8	6
	5.2 Radiated Emissions 1	2
6.	Photographs of the Test Set-up 1	4
Annex1	Label 1	6
Annex2	Photographs of EUT 1	8~20
List	of Tables	
Table	List of test and measurement equipment 4	
Table	e 2 Test Data. Conducted Emissions 11	I
Та	ble 3 Test Data. Radiated Emissions 13	3
List	of Figures	
Fig	Jure 1 Spectral Diagram, LINE-PE 9	
Fig	Jure 2 Spectral Diagram, Neutral-PE 10)
List	of Photographs	
Photog	raph 1 Setup for Radiated Emissions 14	1
Photo	graph 2 Setup for Conducted Emissions 15	5

Korea Technology Institute Co., Ltd.

Page 3 of 13

1. General

This equipment has been shown to be capable of compliance with the applicable technical standards and was tested in accordance with the measurement procedures as indicated in this report.

We attest to the accuracy of data. Korea Technology Institute Co., Ltd. performed all measurements reported herein. And were made under Chief Engineer's supervisor. We assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

2. Test Site

Korea Technology Institute Co., Ltd.

2.1 Location

51-19, Sanglim3-Ri, Docheok-Myeun, Gwangju-Shi, Gyeungki-Do, Korea

The Test Site is in compliance with ANSI C63.4/1992 for measurement of radio Interference.

Korea Technology Institute Co., Ltd.

2.2 List of Test and Measurement Instruments

Table 1: List of Test and Measurement Equipment

- Conducted Emissions

Kind of Equipment	Туре	S/N	Calibrated until	
Spectrum Analyzer	R3261C	61720417	11.2002	
Field Strength Meter	ESPC	832827/011	9.2002	
LISN	KNW407	8-1157-2	10.2002	
LISN	ESH2-Z5	8254601019	6.2002	
Conducted Cable	N/A	N/A	11.2002	

- Radiated Emissions

Kind of Equipment	Туре	S/N	Calibrated until
Field Strength Meter	ESPC	832827/011	9.2002
Spectrum Analyzer	R3261C	61720417	11.2002
Pre Amplifier	8447D	2944A06874	11.2002
BiconiLog Antenna	3142B	1705	12.2002
Horn Antenna	3115	6443	7.2002
Open Site Cable	N/A	N/A	N/A
Antenna Mast	DETT-03	N/A	N/A
Antenna & Turntable controller	DETT-04	91X519	N/A

2.3 Test Date

Date of Application: March 25, 2002 Date of Test: June 28, 2002

2.4 Test Environment

See each test item's description.

Korea Technology Institute Co., Ltd. Page 5 of 13 3. Description of the tested samples The EUT is TFT LCD Monitor. 3.1. Rating and Physical Characteristics LCD Size: 15"viewable, diagonal Dot Pitch: 0.29x0.297mm Bightness: 250cd/m² Response time: 20m sec Max Viewing Angle: U/D55°/60°, R/L: 70°/70° Input Signal: RGB Analog Type: 15Pin D-sub Sync H-frq.: 31-60kHz V-frq.: 56-75kHz Video Band With: 80MHz Max Display Active Area: 304.1x228.1mm Color: 262.144(Normal), 16,777,216(Expansion) Resolution(mzx): 1024x768, 75Hz User Controls & OSD Controls: Contrast, Brightness, H/V Position etc Power Manage: As per VESA standard Power Consumption: 25Watt(Max) Plug & Play: VESA DDCI/2B Tilt U/D: 35°/5° Temperature Operating: 0 to 40 Storage: -10 to 50 Humidity Operating: 30% to 80% (Non-condensing) Storage: 5% to 90% (Non-condensing) Weight Unit: 5.3kg Carton: 7.5kg Dimension(WxHxD):487x250x465mm(Carton Box) 3.2. Submitted Documents

- User's Guide

- Block Diagram

Korea Technology Institute Co., Ltd. Page 6 of 13

4. Measurement Conditions

Testing Input Voltage: AC 230V/DC 3.3V,5V,12V Adapter

4.1 Modes of Operation

The EUT was in the following operation mode during all testing;

1. "H" Pattern display.

4.2 Additional Equipment

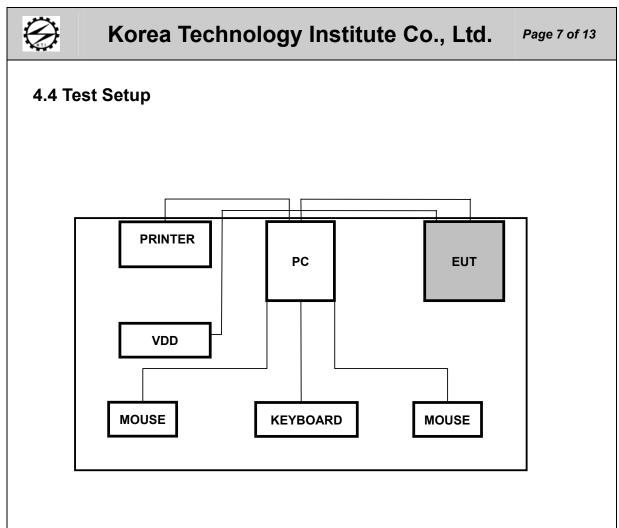
DEVICE TYPE	Manufacturer	M/N	S/N	FCC ID
PC	COMPAQ COMPUTER	Deskpro EXM	6F13JC8JN619	-
Monitor	Samsung Electronics	750S	P223HVAR502035	-
Keyboard	COMPAQ COMPUTER CORPORATION	KB-9963	B26960GBUKKOVW	-
Mouse	logitech	M-S48a	None	JNZ201213
Mouse	SEJIN ELECTRON INC.	SMB-400	0CIM004047	GJJS965M3
Printer	HEWLETT PACKARD	C4569A	SG6A7160PJ	-
DVD Player	Daewoo	DVD-T6300N	None	
Adapter	Seronics Co.	SAD392SE	2100346	-

4.3 Uncertainty

1) Radiated disturbance

Uc (Combined standard Uncertainty) = ± 1.8dB

Expanded uncertainty U=KUc


K = 2

 $U = \pm 3.6 dB$

2) Conducted disturbance

 $Uc = \pm 0.88dB$

 $U = KUc = 2 \times Uc = \pm 1.8 dB$

Korea Technology Institute Co., Ltd. Page 8 of 13

5. EMISSION Test

5.1.Conducted Emissions

Result:

The line-conducted facility is located inside a 2.3M x 3.5M x 5.5M shielded closure.

The shielding effectiveness of the shielded room is in accordance with MIL-Std-285 or NSA 605-05. A 1m x 1.5m wooden table 80cm high is placed 80cm away from the conducting ground plane and 40cm away from the sidewall of the shielded room. Rohde & Schwarz Model ESH2-Z5 (9kHz-30MHz)50ohm/50 uH Line-Impedance Stabilization Networks (LISN) are bonded to the shielded room.

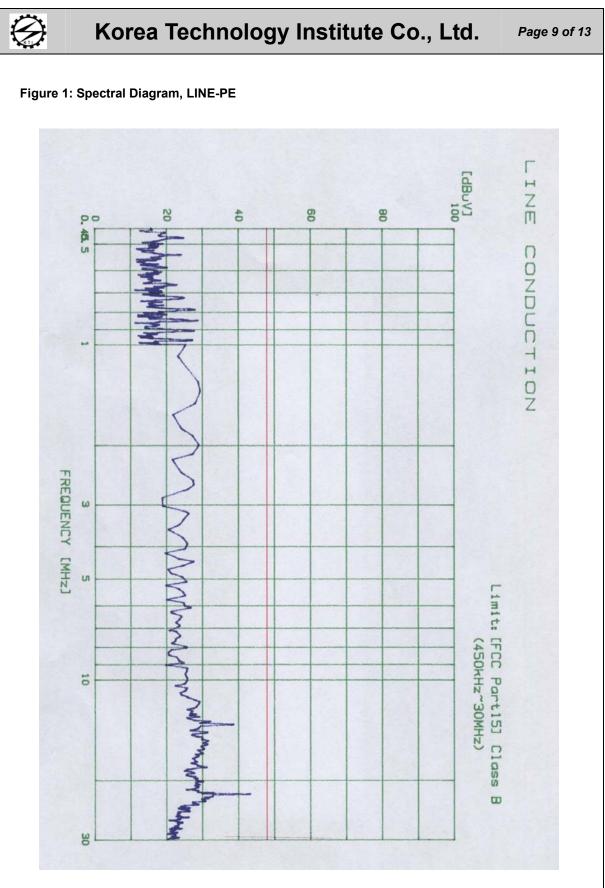
The EUT is powered from the Rohde & Schwarz LISN and the support equipment is powered from the Rohde & Schwarz LISN. Power to the LISN are filtered by a high-current high-insertion loss shield enclosures power line filters (100dB 14kHz-1GHz).

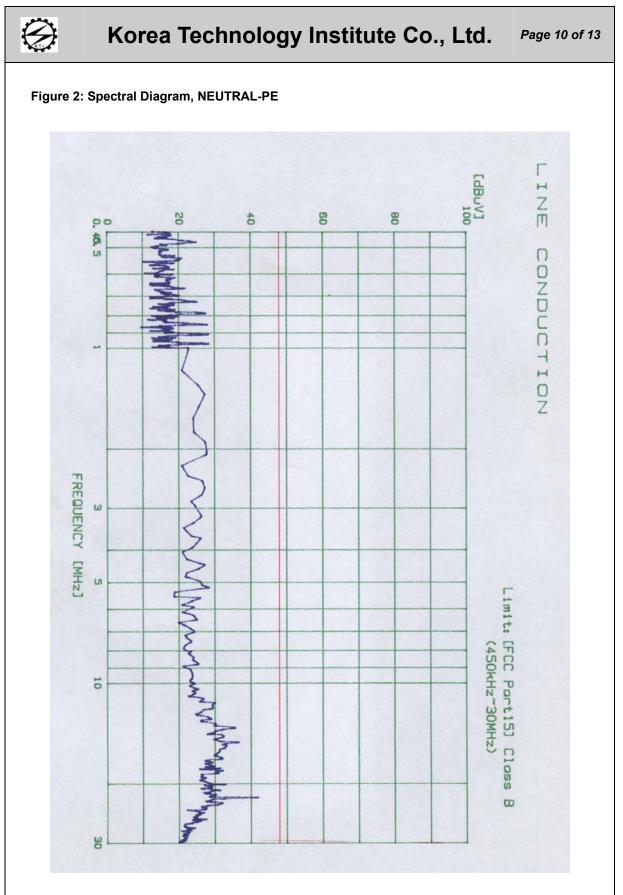
The purpose of the filter is to attenuate ambient signal interference and this filter is also bonded to the shielded enclosure.

All electrical cables are shielded by braided tinned copper zipper tubing with inner diameter of 1/2".

If the EUT is a DC-Powered device, power will be derived from the source power supply it normally will be powered from and this supply lines will be connected to the Rohde & Schwarz LISN.

All interconnecting cables more than 1 meter were shortened by non-inductive bundling (serpentine fashion) to a 1-meter length.


Sufficient time for the EUT, Support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer to determine the frequency producing the maximum EME from the EUT. The spectrum was scanned from 450kHz to 30MHz with 100msec. Sweep time.


The frequency producing the maximum level was reexamined using EMI field Intensity meter (ESPC) and Quasi-Peak adapter. The detector function was set to CISPR quasi-peak mode.

The bandwidth of the receiver was set to 10kHZ. The EUT, support equipment, and interconnecting Each emission was maximized by: switching power lines; varying the mode of operation or resolution; clock or data exchange speed; if applicable; whichever determined the worst-case emission.

Photographs of the worst-case emission can be seen in photograph of conducted test. Each EME reported was calibrated using self-calibrating mode.

Pass

\bigotimes

Korea Technology Institute Co., Ltd.

Page 11 of 13

Table 2: Test Data, Conducted Emissions

Frequency (MHz)	(1) Reading (dBμV)	Line	(2) Limit (dBµV)	(3) Margin (dB)
13.85	38.95	L2		9.15
15.88	37.05	L1		10.95
16.97	33.01	L2		14.99
18.04	33.50	L1	48	14.50
20.00	33.53	L2		14.47
22.48	43.50	L2		4.50
23.52	42.2	L1		5.80

NOTES:

1. All modes of operation were investigated

And the worst-case emissions are reported.

2. All other emissions are non-significant.

3. All readings are calibrated by self-mode in receiver.

4. Measurements using CISPR peak mode.

5. L1 = LINE-PE, L2 = NEUTRAL-PE

6. C/F = Correction Factor

7. C/L = Cable Loss

8. The limit for Class B digital device is 250 uV (48dBuV)

from 450KHz to 30MHz

Margin Calculation

(6) Margin = (2) Limit – (1) Reading

\bigotimes

Korea Technology Institute Co., Ltd. Page 112 of 13

5.2 Radiated Emissions

Result:

Pass

Preliminary measurements were made indoors at 1 meter using broadband antennas, broadband Amplifier, and spectrum analyzer to determine the frequency producing the maximum EME. Appropriate precaution was taken to ensure that all EME from the EUT were maximized and Investigated. The system configurations, clock speed, mode of operation or video resolution, turntable azimuth with respect to the antenna were noted for each frequency found. The spectrum was scanned from 30 to 1000 MHz using biconiLog antenna. Above 1 GHz, linearly polarized double ridge horn antennas were used.

Final measurements were made outdoors at 3-meter test range using biconiLog and horn antenna. The test equipment was placed on a wooden table situated on a 4x4 meter area adjacent to the measurement area. Turntable was to protect from weather in the dome that made with Polyethylene film. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. Each frequency found during pre-scan measurements was re-examined and investigated using EMI/Field Intensity Meter (ESPC) R & S. The detector function was set to CISPR quasi-peak mode and the bandwidth of the receiver was set to 120kHz or 1 MHz depending on the frequency or type or signal.

The EUT, support equipment and interconnecting cables were re-configured to the set-up producing the maximum emission for the frequency and were placed on top of a 0.8meter high non-metallic 1 x 1.5 meter table.

The EUT, support equipment, and interconnecting cables were re-arranged and manipulated to maximize each EME emission. The turntable containing the system was rotated; the antenna height was varied 1 to 4 meters and stopped at the azimuth or height producing the maximum emission. Each emission was maximized by: varying the mode of operation or resolution; clock or data exchange speed, and/or support equipment, if applicable; and changing the polarity of the antenna, whichever determined the worst-case emission.

Photographs of the worst-case emission can be seen in photograph of radiated emission test. Each EME reported was calibrated using self-calibrating mode.

Korea Technology Institute Co., Ltd. Page 13 of 13

Tahlo	3.	Toet	Data	Radiatod	Emissions
lable	э.	rest	Dala,	Raulaleu	EIIIISSIUIIS

Frequency (MHz)	Pol.	Height [m]	Angle [°]	(1) Reading (dBµV)	(2) AFCL (dB/m)	(3) Actual (dBµV/m)	(4) Limit (dBµV/m)	(5) Margin (dB)
37.85	Н	9.95	188	10.3	16.7	27.0		13.0
42.40	Н	3.85	223	11.0	14.8	25.8		14.2
44.60	Н	3.72	175	10.8	14.8	25.6	40	14.4
59.80	Н	3.75	136	12.3	11.7	24.0	40	16.0
73.20	v	3.58	225	19.8	12.1	31.9		8.1
81.35	н	3.45	105	11.5	12.4	23.9		16.1
126.35	н	3.55	264	11.7	12.0	23.7		16.3
135.50	V	2.85	186	15.4	12.4	27.8		15.7
175.12	v	3.20	225	20.5	15.5	36.0		7.5
182.90	Н	3.04	135	19.0	15.8	34.8	43.5	8.7
203.25	н	2.25	75	15.8	18.1	33.9		9.6
207.95	v	2.65	326	16.5	18.1	34.6		8.9
256.30	V	2.70	65	19.3	18.2	37.5		8.5
260.05	Н	2.45	335	17.5	19.7	37.2		8.8
283.35	н	2.12	257	16.4	19.7	36.1	- 46	9.9
350.25	Н	2.24	188	13.8	22.0	35.8		10.2
383.25	Н	1.84	235	12.5	22.9	35.4		10.6
429.35	Н	1.50	39	11.8	23.7	35.5		13.60

* Radiated Measurements at 3-meters

Notes:1.All modes of operation were investigated.

And the worst-case emission are reported.

2.All other emission is non-significant.

3.All readings are calibrated by self-mode in receiver.

4.Measurements using CISPR quasi-peak mode.

5.AFCL = Antenna factor and cable loss

6.H = Horizontal, V = Vertical Polarization

7. The limit for Class B digital device is 100uV(40dBuV) from 30MHz to 88MHz,

150 uV (43.5dBuV) from 88MHz to 216MHz, 200uV(46dBuV) from 216MHz to 960MHz and 500 uV (54dBuV) from above 960MHz.

Margin Calculation

(5) Margin = (4) Limit – (3) Actual

[(3) Actual = (1) Reading + (2) AFCL]