Issued on Aug. 15, 2005

FCC TEST REPORT

CATEGORY: Portable

PRODUCT NAME: Bluetooth Stereo Headset

FCC ID.: PQY-4710874203754

FILING TYPE : Certification

BRAND NAME: Cellink

MODEL NAME: BTST-9300

APPLICANT: CELLINK CO., LTD

11F, No. 102, Sec. 1, Hsin Tai Wu Rd., Hsi-Chih, Taipei,

Taiwan, R.O.C.

MANUFACTURER : CELLINK CO., LTD

11F, No. 102, Sec. 1, Hsin Tai Wu Rd., Hsi-Chih, Taipei,

Taiwan, R.O.C.

ISSUED BY: SPORTON INTERNATIONAL INC.

6F, No. 106, Sec. 1, Hsin Tai Wu Rd., Hsi Chih, Taipei Hsien,

Taiwan, R.O.C.

Statements:

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

Certificate or Test Report could not be used by the applicant to claim the product endorsement by NVLAP and any agency of U.S. government.

The test equipment used to perform the test is calibrated and traceable to NML/ROC or NIST/USA.

U Lab Code: 200079-0

Issued on Aug. 15, 2005

Table of Contents

HISTORY OF THIS TEST REPORT	
CERTIFICATE OF COMPLIANCE	III
1. GENERAL DESCRIPTION OF EQUIPMENT UNDER TEST	1
1.1. Applicant	1
1.2. Manufacturer	1
1.3. Basic Description of Equipment under Test	1
1.4. Features of Equipment under Test	1
1.5. Antenna Description	2
1.6. Table for Carrier Frequencies	2
2. TEST CONFIGURATION OF THE EQUIPMENT UNDER TEST	3
2.1. Connection Diagram of Test System	3
2.2. The Test Mode Description	4
2.3. Description of Test Supporting Units	4
3. GENERAL INFORMATION OF TEST	5
3.1. Test Facility	5
3.2. Standards for Methods of Measurement	5
3.3. Frequency Range Investigated	5
3.4. Test Distance	
3.5. Test Software	5
4. LIST OF MEASUREMENTS	6
4.1. Summary of the Test Results	6
5. TEST RESULT	7
5.1. Test of Hopping Channel Bandwidth	7
5.2. Test of Hopping Channel Separation	11
5.3. Test of Number of Hopping Frequency	15
5.4. Test of Dwell Time of Each Frequency	
5.5. Maximum Peak Output Power	
5.6. Test of Band Edges Emission	
5.7. Test of AC Power Line Conducted Emission	
5.8. Test of Spurious Radiated Emission	
5.9. Antenna Requirements	55
6. LIST OF MEASURING EQUIPMENTS USED	56
7. COMPANY PROFILE	58
7.1. Certificate of Accreditation	58
7.2. Test Location	58
8. CERTIFICATE OF NVLAP ACCREDITATION	59
APPENDIX A PHOTOGRAPHS OF FUT	Δ1 ~ Δ10

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255:

Issued on Aug. 15, 2005

HISTORY OF THIS TEST REPORT

Re	ceiv	ed	Date:	Ju	n.	14,	2005
_				_			

Test Date: Aug. 3, 2005

Original Report Issue Date: Aug. 15, 2005

Report No.: FR551937

No additional attachment.

☐ Additional attachment were issued as following record:

Attachment No.	Issue Date	Description

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255: Report No.: FR551937

Issued on Aug. 15, 2005

CERTIFICATE OF COMPLIANCE

with

47 CFR FCC Part 15 Subpart C

PRODUCT NAME: Bluetooth Stereo Headset

BRAND NAME: Cellink

MODEL NAME: BTST-9300

APPLICANT: CELLINK CO., LTD

11F, No. 102, Sec. 1, Hsin Tai Wu Rd., Hsi-Chih, Taipei,

Taiwan, R.O.C.

MANUFACTURER : CELLINK CO., LTD

11F, No. 102, Sec. 1, Hsin Tai Wu Rd., Hsi-Chih, Taipei,

Taiwan, R.O.C.

I HEREBY CERTIFY THAT:

The measurements shown in this test report were made in accordance with the procedures given in ANSI C63.4-2003 and all test are performed according to 47 CFR FCC Part 15 Subpart C. Testing was carried out on Aug. 3, 2005 at SPORTON International Inc. LAB.

Wayne Hsu / Supervisor Sporton International Inc.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255: Page No. : iii

Report No.: FR551937

Issued on Aug. 15, 2005 Report No.: FR551937

1. General Description of Equipment under Test

1.1. Applicant

CELLINK CO., LTD

11F, No. 102, Sec. 1, Hsin Tai Wu Rd., Hsi-Chih, Taipei, Taiwan, R.O.C.

1.2. Manufacturer

CELLINK CO., LTD

11F, No. 102, Sec. 1, Hsin Tai Wu Rd., Hsi-Chih, Taipei, Taiwan, R.O.C.

1.3. Basic Description of Equipment under Test

This product is a Bluetooth Stereo Headset. The technical data has been listed on section "Features of Equipment under Test".

1.4. Features of Equipment under Test

Items	Description
Type of Modulation	GFSK
Number of Channels	79
Frequency Band	2400 MHz ~ 2483.5 MHz
Carrier Frequency	See section 1.6 for details
Channel Bandwidth	1MHz
Max. Peak Power	0.43 dBm
Antenna Type	See section 1.5 for details
Testing Duty Cycle	50.00%
Test Power Source	3.7V DC from battery
Temperature Range (Operating)	0 ~ 55 °C

SPORTON International Inc.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 1 of 59

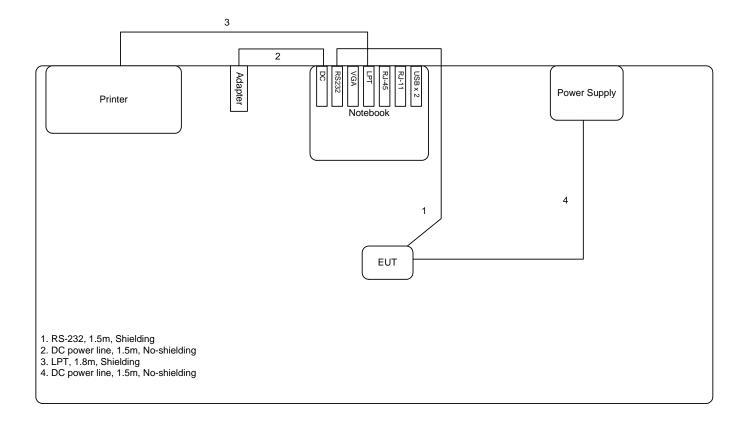
Issued on Aug. 15, 2005

1.5. Antenna Description

No.	Antenna Type	Gain (dBi)
1	Chip Antenna	1.00

1.6. Table for Carrier Frequencies

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
00	2402 MHz	20	2422 MHz	40	2442 MHz	60	2462 MHz
01	2403 MHz	21	2423 MHz	41	2443 MHz	61	2463 MHz
02	2404 MHz	22	2424 MHz	42	2444 MHz	62	2464 MHz
03	2405 MHz	23	2425 MHz	43	2445 MHz	63	2465 MHz
04	2406 MHz	24	2426 MHz	44	2446 MHz	64	2466 MHz
05	2407 MHz	25	2427 MHz	45	2447 MHz	65	2467 MHz
06	2408 MHz	26	2428 MHz	46	2448 MHz	66	2468 MHz
07	2409 MHz	27	2429 MHz	47	2449 MHz	67	2469 MHz
08	2410 MHz	28	2430 MHz	48	2450 MHz	68	2470 MHz
09	2411 MHz	29	2431 MHz	49	2451 MHz	69	2471 MHz
10	2412 MHz	30	2432 MHz	50	2452 MHz	70	2472 MHz
11	2413 MHz	31	2433 MHz	51	2453 MHz	71	2473 MHz
12	2414 MHz	32	2434 MHz	52	2454 MHz	72	2474 MHz
13	2415 MHz	33	2435 MHz	53	2455 MHz	73	2475 MHz
14	2416 MHz	34	2436 MHz	54	2456 MHz	74	2476 MHz
15	2417 MHz	35	2437 MHz	55	2457 MHz	75	2477 MHz
16	2418 MHz	36	2438 MHz	56	2458 MHz	76	2478 MHz
17	2419 MHz	37	2439 MHz	57	2459 MHz	77	2479 MHz
18	2420 MHz	38	2440 MHz	58	2460 MHz	78	2480 MHz
19	2421 MHz	39	2441 MHz	59	2461 MHz		

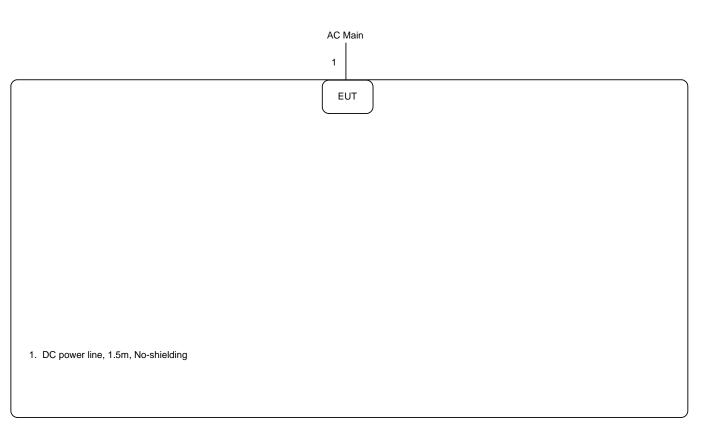

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 2 of 59 Issued Date : Aug. 15, 2005

Issued on Aug. 15, 2005 Report No.: FR551937

2. Test Configuration of the Equipment under Test

2.1. Connection Diagram of Test System

Tx Mode



TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 3 of 59

Issued on Aug. 15, 2005

Charger Mode

2.2. The Test Mode Description

- 1. For FHSS modulation, GFSK is the worst case on all test items.
- 2. According to ANSI C63.4-2003: If frequency range of EUT is more than 10 MHz, we have to test the lowest, middle and highest channels of EUT.
- 3. Spurious emission below 1GHz is independent of channel selection, it is measured in charger mode and EUT was linking to Notebook wirelessly.
- 4. AC conduction emission is measured in charger mode and EUT was linking with Notebook wirelessly.

2.3. Description of Test Supporting Units

Support unit	Brand	Model No.	FCC ID	Data cable (m)
Notebook	DELL	D505	Yes	-
Printer	EPSON	LQ-300	Yes	1.35
Power supply	GW	GPC-6030D	-	-

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 4 of 59
Issued Date : Aug. 15, 2005

Issued on Aug. 15, 2005 Report No.: FR551937

3. General Information of Test

3.1. Test Facility

Test Site Location : No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiag, Tao

Yuan Hsien, Taiwan, R.O.C.

: TEL 886-3-327-3456 : FAX 886-3-318-0055

Test Site No : 03CH03-HY / TH01-HY / CO04-HY

3.2. Standards for Methods of Measurement

Here is the list of the standards followed in this test report.

ANSI C63.4-2003

47 CFR FCC Part 15 Subpart C

3.3. Frequency Range Investigated

Radiated emission test: from 9kHz to 10th carrier harmonic

3.4. Test Distance

- The test distance of radiated emission (9kHz~1GHz) test from antenna to EUT is 3 M.
- The test distance of radiated emission (1GHz~10th carrier harmonic) test from antenna to EUT is 3 M.

3.5. Test Software

During testing, Channel & Power Controlling Software: This was provided by the manufacturer and is able to let the test engineer select the operating channel as well as the RF output power. The parameters for channel selection is trying to offer the test engineer the ability to fix the operating channel for testing, both normal data and continuously transmitting modes are allowed, and that for RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

Power Parameter Table

Test Software	Bluetest				
Test Channel	CH 00	CH 39	CH 79		
Test Frequency	2402MHz	2441MHz	2480MHz		
TX Power	55	55	55		

SPORTON International Inc.

Page No. : 5 of 59 TEL: 886-2-2696-2468 Issued Date : Aug. 15, 2005 FAX: 886-2-2696-2255

Issued on Aug. 15, 2005

4. List of Measurements

4.1. Summary of the Test Results

	Applied Standard: 47 CFR FCC Part 15 Subpart C					
Paragraph	Paragraph FCC Section Description of Test					
5.1	15.247(a)(1)	Hopping Channel Bandwidth	Pass			
5.2	15.247(a)(1)	Hopping Channel Separation	Pass			
5.3	15.247(b)(1)	Number of Hopping Frequency Used	Pass			
5.4	15.247(a)(1)(iii)	Dwell Time of Each Frequency	Pass			
5.5	15.247(b)(1)	Maximum Peak Output Power	Pass			
5.6	15.247(d)	Band Edges Emission	Pass			
5.7	15.207	AC Power Line Conducted Emission	Pass			
5.8	15.247(d)	Spurious Radiated Emission	Pass			
5.9	15.203/15.247(b)/(c)	Antenna Requirement	Pass			

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 6 of 59
Issued Date : Aug. 15, 2005

Issued on Aug. 15, 2005

5. Test Result

5.1. Test of Hopping Channel Bandwidth

5.1.1. Applicable Standard

Section 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

5.1.2. Measuring Instruments

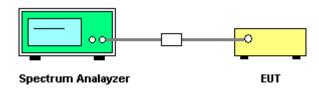
The table on section 6.

5.1.3. Description of Major Test Instruments Setting

Spectrum Analyzer : R&S FSP30

Attenuation · Auto

Center Frequency : 2402 MHz / 2441 MHz / 2480 MHz


Span Frequency : > 20dB Bandwidth

RB : 30 kHz
VB : 100 kHz
Detector : Peak
Trace : Max Hold
Sweep Time : Auto

5.1.4. Test Procedures

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator.
- 2. Set RBW of spectrum analyzer to 30KHz and VBW to 100KHz.
- 3. Set Detector to Peak, Trace to Max Hold and Sweep Time is Auto.
- 4. The spectrum width with level higher than 20dB below the peak level.
- 5. Repeat above 1~3 points for the middle and highest channel of the EUT.

5.1.5. Test Setup Layout

5.1.6. Test Criteria

All test results complied with the requirements of Section 15.247(a)(1). Measurement Uncertainty is 1x10⁻⁵.

SPORTON International Inc.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 7 of 59

Issued Date : Aug. 15, 2005

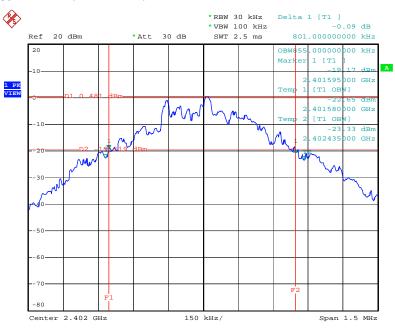
Issued on Aug. 15, 2005

5.1.7. Test Result

Temperature: 24°CRelative Humidity: 64%

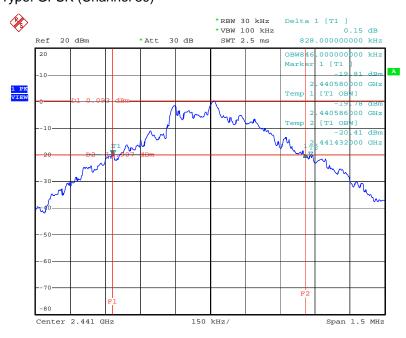
• Duty Cycle of the Equipment During the Test: 50.00%

Test Engineer: Leo Hung


Modulation Type	Channel No.	Frequency (MHz)	20dB Bandwidth (kHz)	Min. Limit (kHz)
GFSK	00	2402 MHz	801.00	25
GFSK	39	2441 MHz	828.00	25
GFSK	78	2480 MHz	837.00	25

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 8 of 59

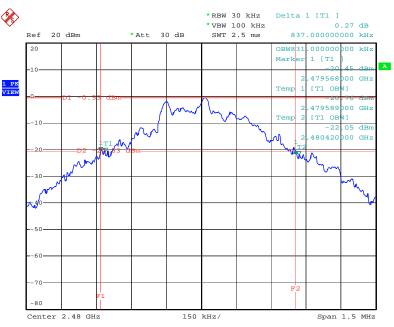
Report No.: FR551937


Issued on Aug. 15, 2005

Modulation Type: GFSK (Channel 00):

Date: 8.JUL.2005 14:58:24

Modulation Type: GFSK (Channel 39):


Date: 8.JUL.2005 15:01:11

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 9 of 59

Report No.: FR551937

Issued on Aug. 15, 2005 Report No.: FR551937

Modulation Type: GFSK (Channel 78):

Date: 8.JUL.2005 15:02:41

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 10 of 59
Issued Date : Aug. 15, 2005

Issued on Aug. 15, 2005

5.2. Test of Hopping Channel Separation

5.2.1. Applicable Standard

Section 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

5.2.2. Measuring Instruments

The table on section 6.

5.2.3. Description of Major Test Instruments Setting

• Spectrum Analyzer : R&S FSP30

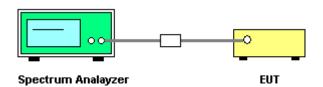
Attenuation · Auto

Center Frequency : 2402 MHz / 2441 MHz / 2480 MHz Span Frequency : > One time channel separation

 RB
 : 100 kHz

 VB
 : 100 kHz

 Detector
 : Peak


 Trace
 : Max Hold

 Sweep Time
 : Auto

5.2.4. Test Procedures

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator.
- 2. Set RBW of spectrum analyzer to 100KHz and VBW to 100KHz.
- 3. Set Detector to Peak, Trace to Max Hold and Sweep Time is Auto.
- 4. The Hopping Channel Separation is defined as the separation between 2 neighboring hopping frequencies.
- 5. Repeat above 1~3 points for the lowest middle and highest channel of the EUT.

5.2.5. Test Setup Layout

5.2.6. Test Criteria

All test results complied with the requirements of Section 15.247(a)(1). Measurement Uncertainty is 1x10⁻⁵.

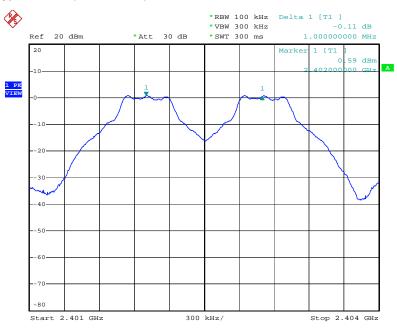
TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 11 of 59
Issued Date : Aug. 15, 2005

Issued on Aug. 15, 2005 Report No.: FR551937

5.2.7. Test Result

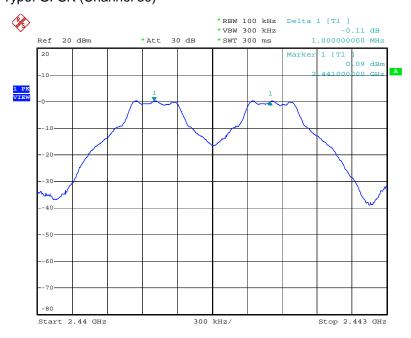
Temperature: 24°CRelative Humidity: 64%

• Duty Cycle of the Equipment During the Test: 50.00%


Test Engineer: Leo Hung

Modulation Type	Channel No.	Frequency (MHz)	Hopping Channel Separation (kHz)	Min. Limit (kHz)
GFSK	00	2402 MHz	1000	801.00
GFSK	39	2441 MHz	1000	828.00
GFSK	78	2480 MHz	1000	837.00

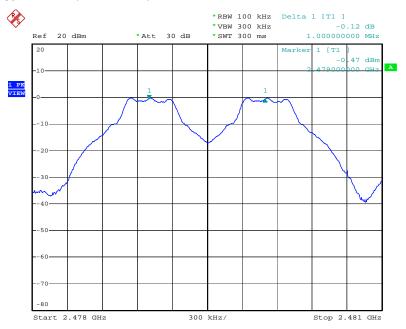
TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 12 of 59
Issued Date : Aug. 15, 2005


Issued on Aug. 15, 2005

Modulation Type: GFSK (Channel 00):

Date: 8.JUL.2005 14:58:09

Modulation Type: GFSK (Channel 39):



Date: 8.JUL.2005 15:00:55

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 13 of 59 Issued Date : Aug. 15, 2005

Issued on Aug. 15, 2005 Report No.: FR551937

Modulation Type: GFSK (Channel 78):

Date: 8.JUL.2005 15:02:26

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 14 of 59
Issued Date : Aug. 15, 2005

Issued on Aug. 15, 2005

Report No.: FR551937

5.3. Test of Number of Hopping Frequency

5.3.1. Applicable Standard

Section 15.247(b)(1): For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels.

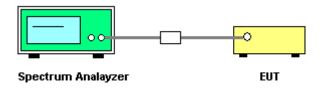
5.3.2. Measuring Instruments

The table on section 6.

5.3.3. Description of Major Test Instruments Setting

• Spectrum Analyzer : R&S FSP30

Attenuation Auto


Center Frequency : 2402 MHz ~ 2480 MHz Span Frequency > Operation frequency range

RB 100 kHz VΒ 100 kHz

5.3.4. Test Procedures

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator.
- 2. Set RBW of spectrum analyzer to 100KHz and VBW to 100KHz.
- 3. Set Detector to Peak, Trace to Max Hold and Sweep Time is Auto.
- 4. Observe frequency hopping in 2400MHz~2483.5MHz, there are at least 75 non-overlapping channels.

5.3.5. Test Setup Layout

5.3.6. Test Criteria

All test results complied with the requirements of Section 15.247(b)(1).

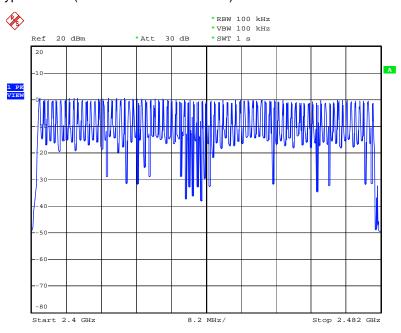
5.3.7. Test Result

Temperature: 24°C Relative Humidity: 64%

Duty Cycle of the Equipment During the Test: 50.00%

Test Engineer: Leo Hung

Modulation	Channel	Frequency	Number of Hopping Ch. (Channels)	Min. Limit
Type	No.	(MHz)		(Channels)
GFSK	00 ~ 78	2402 MHz ~ 2480 MHz	79	75


SPORTON International Inc.

Page No. : 15 of 59 TEL: 886-2-2696-2468 Issued Date : Aug. 15, 2005

FAX: 886-2-2696-2255

Issued on Aug. 15, 2005

Modulation Type: GFSK (Channel 00 ~ Channel 78):

Date: 8.JUL.2005 15:00:11

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 16 of 59 Issued Date : Aug. 15, 2005

Issued on Aug. 15, 2005

Report No.: FR551937

5.4. Test of Dwell Time of Each Frequency

5.4.1. Applicable Standard

Section 15.247(a)(1)(iii): For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels.

5.4.2. Measuring Instruments

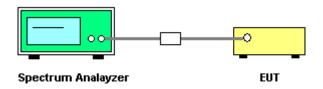
The table on section 6.

5.4.3. Description of Major Test Instruments Setting

R&S FSP30 Spectrum Analyzer :

Attenuation Auto

Center Frequency 2402 MHz / 2441 MHz / 2480 MHz


Span Frequency 0MHz RB 1 MHz VΒ 1 MHz Detector Peak Trigger Video

Sweep Time > One pulse time

5.4.4. T Test Procedures and Test Instruments Setting

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator.
- 2. Set RBW of spectrum analyzer to 1000kHz and VBW to 1000kHz.
- 3. Set Detector to Peak, Trace to Max Hold and Sweep Time is more than once pulse time.
- 4. Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- 5. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- 6. Measure the maximum time duration of one single pulse.
- 7. DH5 Packet permit maximum 3.37 hops per second in each channel. So, the dwell time is the time duration of the pulse times 106.6 within 31.6 seconds.
- 8. DH3 Packet permit maximum 5.06 hops per second in each channel. So, the dwell time is the time duration of the pulse times 160 within 31.6 seconds.
- 9. DH1 Packet permit maximum 10.12 hops per second in each channel. So, the dwell time is the time duration of the pulse times 320 within 31.6 seconds.

5.4.5. Test Setup Layout

5.4.6. Test Criteria

All test results complied with the requirements of Section 15.247(a)(1)(iii). Measurement Uncertainty is 1x10⁻⁵.

SPORTON International Inc.

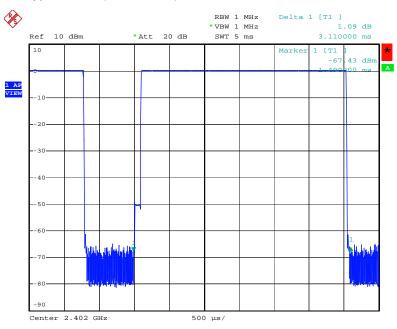
Page No. : 17 of 59 TEL: 886-2-2696-2468 Issued Date : Aug. 15, 2005 FAX: 886-2-2696-2255

Issued on Aug. 15, 2005

5.4.7. Test Result

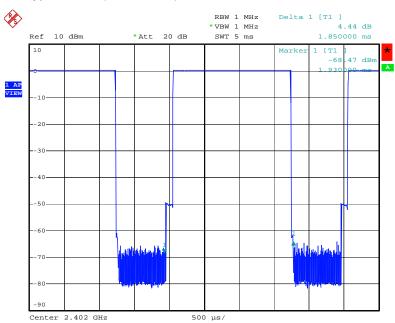
Temperature: 24°CRelative Humidity: 64%

Duty Cycle of the Equipment During the Test: 50.00%


Test Engineer: Leo Hung

Data Packet	Frequency (MHz)	Pulse Duration (ms)	Dwell Time (s)	Limits (s)
DH5	2402 MHz	3.1100	0.3317	0.4
DH3	2402 MHz	1.8500	0.2960	0.4
DH1	2402 MHz	0.5750	0.1840	0.4
DH5	2441 MHz	3.1100	0.3317	0.4
DH3	2441 MHz	1.8500	0.2960	0.4
DH1	2441 MHz	0.5900	0.1888	0.4
DH5	2480 MHz	3.1300	0.3339	0.4
DH3	2480 MHz	1.8500	0.2960	0.4
DH1	2480 MHz	0.5900	0.1888	0.4

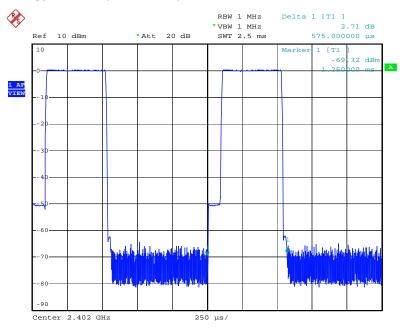
TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 18 of 59
Issued Date : Aug. 15, 2005


Issued on Aug. 15, 2005

DH5 Modulation Type: GFSK (Channel 00):

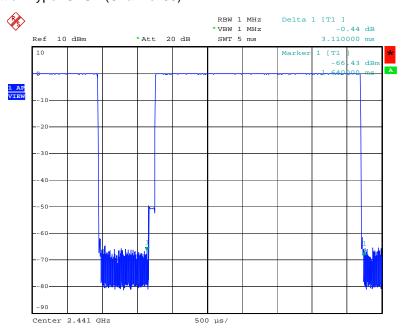
Date: 8.JUL.2005 15:07:55

DH3 Modulation Type: GFSK (Channel 00):


Date: 8.JUL.2005 15:07:27

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 19 of 59

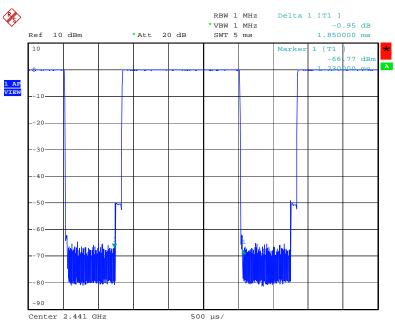
Report No.: FR551937


Issued on Aug. 15, 2005

DH1 Modulation Type: GFSK (Channel 00):

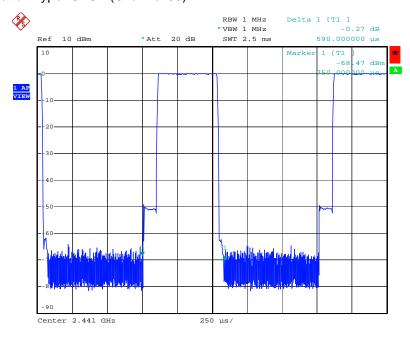
Date: 8.JUL.2005 15:06:38

DH5 Modulation Type: GFSK (Channel 39):



Date: 8.JUL.2005 15:08:48

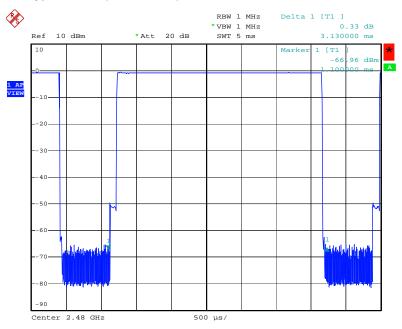
TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 20 of 59
Issued Date : Aug. 15, 2005


Issued on Aug. 15, 2005

DH3 Modulation Type: GFSK (Channel 39):

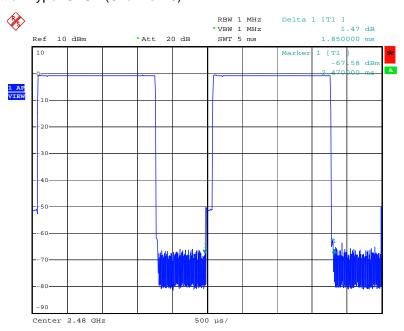
Date: 8.JUL.2005 15:09:21

DH1 Modulation Type: GFSK (Channel 39):



Date: 8.JUL.2005 15:09:50

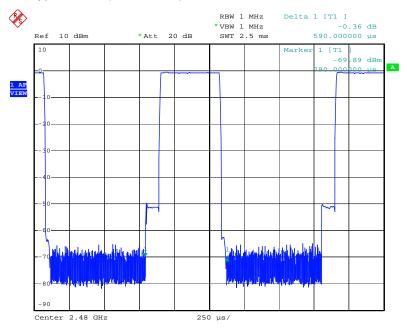
TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 21 of 59
Issued Date : Aug. 15, 2005


Issued on Aug. 15, 2005

DH5 Modulation Type: GFSK (Channel 78):

Date: 8.JUL.2005 15:11:22

DH3 Modulation Type: GFSK (Channel 78):



Date: 8.JUL.2005 15:10:58

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 22 of 59
Issued Date : Aug. 15, 2005

Issued on Aug. 15, 2005 Report No.: FR551937

DH1 Modulation Type: GFSK (Channel 78):

Date: 8.JUL.2005 15:10:20

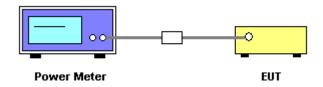
TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 23 of 59 Issued Date : Aug. 15, 2005

Issued on Aug. 15, 2005

5.5. Maximum Peak Output Power

5.5.1. Applicable Standard

Section 15.247(b)(1): For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels and The maximum peak output power shall not exceed 1 watt.


5.5.2. Measuring Instruments

The table on section 6.

5.5.3. Test Procedures and Test Instruments Setting

- 1. The transmitter output was connected to the peak power meter and recorded the peak value.
- 2. The filter and attenuator has the same peak value instrument parameters.
- 3. Repeated the 1 for the lowest middle and highest channel of the EUT.

5.5.4. Test Setup Layout

5.5.5. Test Criteria

All test results complied with the requirements of 15.247(b)(1). Measurement Uncertainty is 1.5dB.

5.5.6. Test Result of Conducted Peak Power

Temperature: 24°CRelative Humidity: 64%

Duty Cycle of the Equipment During the Test: 50.00%

Test Engineer: Leo Hung

Modulation Type	Channel No.	Frequency (MHz)	Output Power (dBm)	Limits (dBm)
GFSK	00	2402 MHz	0.43	30
GFSK	39	2441 MHz	-0.10	30
GFSK	78	2480 MHz	-0.68	30

SPORTON International Inc.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 24 of 59
Issued Date : Aug. 15, 2005

Issued on Aug. 15, 2005 Report No.: FR551937

5.5.7. Test Result of EIRP Power

Temperature: 24°CRelative Humidity: 64%

• Duty Cycle of the Equipment During the Test: 50.00%

Test Engineer: Leo Hung

Antenna No.	Gain (dBi)	Modulation Type	Channel No.	Frequency (MHz)	Power (dBm)	Limits (dBm)
1	1.00	GFSK	00	2402 MHz	1.43	36
1	1.00	GFSK	39	2441 MHz	0.9	36
1	1.00	GFSK	78	2480 MHz	0.32	36

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 25 of 59
Issued Date : Aug. 15, 2005

Issued on Aug. 15, 2005

5.6. Test of Band Edges Emission

5.6.1. Applicable Standard

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. In addition, radiated emissions that fall in the restricted bands, as defined in Section 15.205, must also comply with the radiated emission limits specified in Section 15.209.

5.6.2. Description of Major Test Instruments Setting

Spectrum Analyzer : R&S FSP30 (Conducted Measurement)

Attenuation : Auto

Center Frequency : 2402 MHz / 2480 MHz

Span Frequency : 100MHz
RB : 100 kHz
VB : 100 kHz
Detector : Peak
Trace : Max Hold
Sweep Time : Auto

Spectrum Analyzer : R&S FSP40 (Radiated Measurement)

Attenuation · Auto

Center Frequency : 2402 MHz / 2480 MHz

Span Frequency : 100MHz

RB : 1 MHz for PK value / 1 MHz for AV value VB : 1 MHz for PK value / 10 Hz for AV value

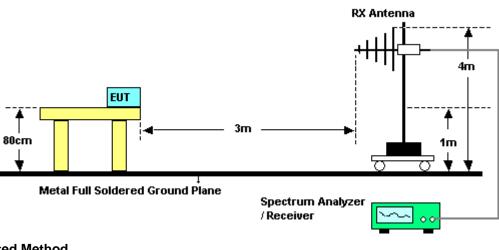
Detector : Peak
Trace : Max Hold
Sweep Time : Auto

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 26 of 59
Issued Date : Aug. 15, 2005

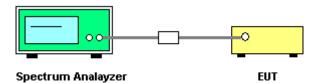
Issued on Aug. 15, 2005

5.6.3. Test Procedures

Conducted Measurement


- 1. The transmitter is set to the lowest channel.
- 2. The transmitter output was connected to the spectrum analyzer via a cable and cable loss is used as the offset of the spectrum analyzer.
- 3. Set both RBW and VBW of spectrum analyzer to 100KHz with convenient frequency span including 100MHz bandwidth from lower band edge. Then detector set to peak and max hold this trace.
- 4. The lowest band edges emission was measured and recorded.
- 5. The transmitter set to the highest channel and repeated 2~4.

Radiated Measurement


- 1. Configure the EUT according to ANSI C63.4.
- 2. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emission field strength of both horizontal and vertical polarization.
- 4. For band edge emission, the antenna tower was scan (from 1 M to 4 M) and then the turn table was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. For band edge emission, use 10Hz VBW and 1MHz RBW for reading under AV and use 1MHz VBW and 1 MHz RBW for reading under PK.
- 6. The transmitter set to the highest channel and repeated 2~5.

5.6.4. Test Setup

Radiated Method

Conducted Method

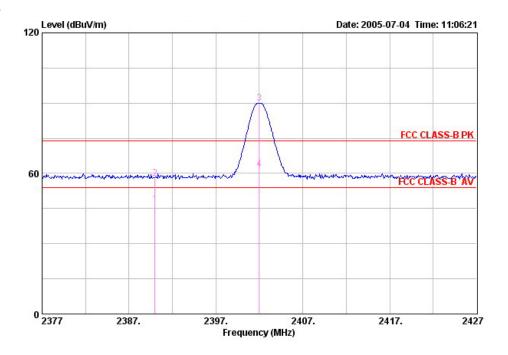
SPORTON International Inc.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 27 of 59
Issued Date : Aug. 15, 2005

Issued on Aug. 15, 2005

5.6.5. Test Criteria

All test results complied with the requirements of 15.247(d). Measurement Uncertainty is 2.26dB.


5.6.6. Test Result of Radiated Emission

Temperature: 24°CRelative Humidity: 64%

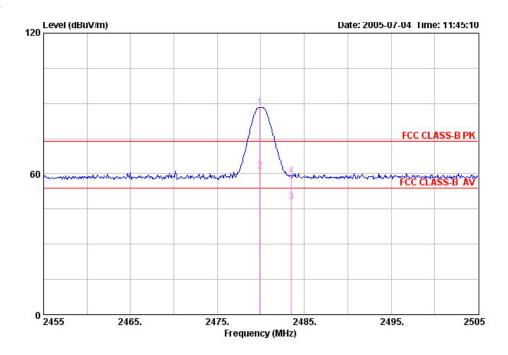
Duty Cycle of the Equipment During the Test: 50.00%

Test Engineer: Leo Hung

2402 MHz

	Freq	Level			Intenna Factor				Remark
	Mkz	dBuV/m	dB	dBuV/m	dB/m	dB	dB	dBuV	· · · · · · · ·
1	2390.000	46.86	-7.14	54.00	28.88	6.72	0.00	11.27	AVERAGE
2	2390.000	57.99	-16.01	74.00	28.88	6.72	0.00	22.39	PEAK

SPORTON International Inc.

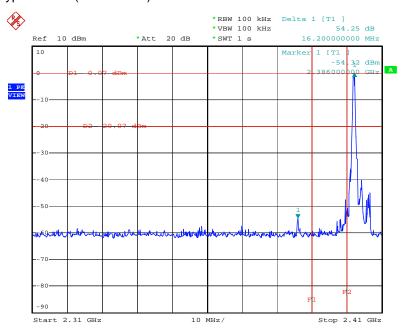

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 28 of 59

Report No.: FR551937

Issued on Aug. 15, 2005

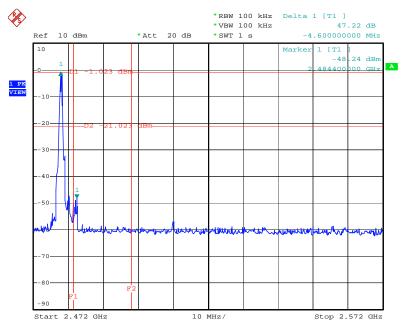
2480 MHz

	Freq		LimitAntenna Line Factor				Remark		
	MHz	dBuV/m	dB	dBuV/m	dB/m	dB	dB	dBuV	
3	2483.500	48.04	-5.96	54.00	28.98	6.94	0.00	12.12	AVERAGE
4	2483.500	59.17	-14.83	74.00	28.98	6.94	0.00	23.25	PERK


Level*: The max field strength in the restricted bands.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 29 of 59 Issued Date : Aug. 15, 2005

Issued on Aug. 15, 2005


Test Result of Conducted Emission

Modulation Type: GFSK (Channel 00):

Date: 8.JUL.2005 14:59:07

Modulation Type: GFSK (Channel 78):

Date: 8.JUL.2005 15:03:33

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 30 of 59

Report No.: FR551937

Issued on Aug. 15, 2005 Report No.: FR551937

5.7. Test of AC Power Line Conducted Emission

5.7.1. Applicable Standard

Section 15.207: For a Low-power Radio-frequency Device is designed to be connected to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

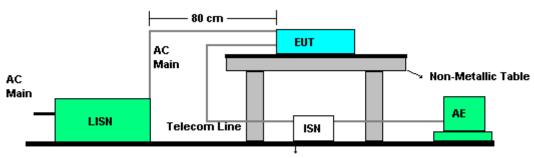
Frequency (MHz)	QP Limit (dBuV)	AV Limit (dBuV)		
0.15~0.5	66~56	56~46		
0.5~5	56	46		
5~30	60	50		

5.7.2. Description of Major Test Instruments Setting

Test Receiver : R&S ESCS 30

Attenuation : 10 dB
Start Frequency : 0.15 MHz
Stop Frequency : 30 MHz
IF Bandwidth : 9 KHz

5.7.3. Test Procedures


- 1. Configure the EUT according to ANSI C63.4.:2003
- 2. The EUT has to be placed 0.4 meter far from the conducting wall of the shielding room and at least 80 centimeters from any other grounded conducting surface.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN)
- 4. All the support units are connected to the other LISNs. The LISN should provides 50uH/50ohms coupling impedance.
- 5. The frequency range from 150 KHz to 30 MHz was searched.
- 6. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 7. The measurement has to be done between each power line and ground at the power terminal for each RF channel. Only one RF channel has to be investigated since this test is independent with the RF channel selection.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 31 of 59
Issued Date : Aug. 15, 2005

Issued on Aug. 15, 2005 Report No.: FR551937

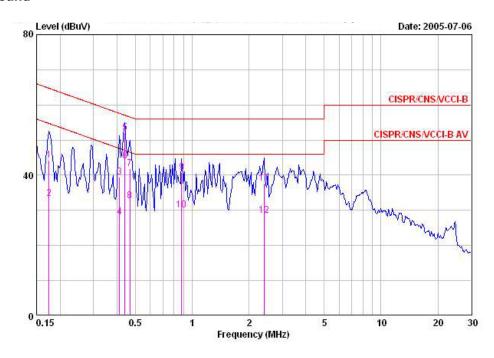
5.7.4. Test Setup Layout

Metal Full Soldered Ground Plane

5.7.5. Test Criteria

All test results complied with the requirements of 15.207. Measurement Uncertainty is 2.54dB.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 32 of 59

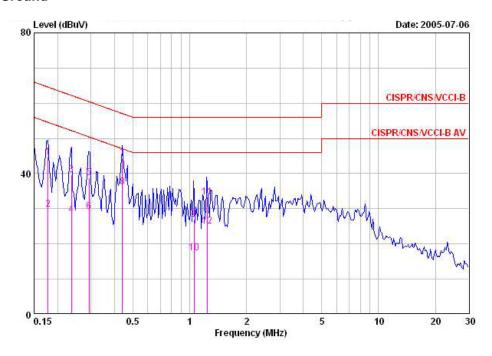


Issued on Aug. 15, 2005

5.7.6. Test Result of Conducted Emission

Test Mode: Charger Mode
Modulation Type: GFSK
Temperature: 26°C
Relative Humidity: 68%
Test Engineer: Stan Peng

Line to Ground


	Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Remark
	MKz	dBuV	<u>dB</u>	dBuV	dBuV	dB	dB	
1	0.17491	44.35	-20.37	64.72	42.35	1.80	0.20	QP
2	0.17491	33.29	-21.43	54.72	31.29	1.80	0.20	AVERAGE
2 3	0.41266	39.40	-18.19	57.59	38.70	0.50	0.20	QP
4	0.41266	28.17	-19.42	47.59	27.47	0.50	0.20	AVERAGE
5	0.44137	52.15	-4.89	57.04	51.45	0.50	0.20	QP
6 @	0.44137	44.07	-2.97	47.04	43.37	0.50	0.20	AVERAGE
7	0.46861	41.90	-14.64	56.54	41.20	0.50	0.20	QP
8	0.46861	32.75	-13.79	46.54	32.05	0.50	0.20	AVERAGE
9	0.88031	40.79	-15.21	56.00	40.29	0.30	0.20	QP
10	0.88031	30.04	-15.96	46.00	29.54	0.30	0.20	AVERAGE
11	2.410	37.66	-18.34	56.00	37.16	0.30	0.20	QP
12	2.410	28.66	-17.34	46.00	28.16	0.30	0.20	AVERAGE

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 33 of 59

Report No.: FR551937

Issued on Aug. 15, 2005

Neutral to Ground

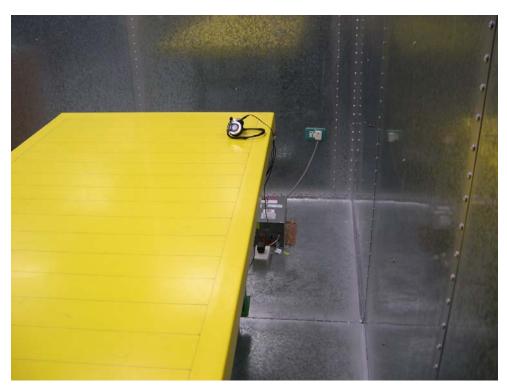
	Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Remark
	MHz	dBuV	dB	dBuV	dBuV		dB	d)e
1	0.17772	44.62	-19.97	64.59	42.88	1.54	0.20	QP
2 3	0.17772	29.81	-24.78	54.59	28.07	1.54	0.20	AVERAGE
3	0.23658	39.61	-22.61	62.22	38.51	0.90	0.20	QP
4	0.23658	28.25	-23.97	52.22	27.15	0.90	0.20	AVERAGE
4 5 6	0.29313	38.90	-21.53	60.44	38.03	0.67	0.20	QP
6	0.29313	29.23	-21.20	50.44	28.36	0.67	0.20	AVERAGE
7	0.43974	44.23	-12.84	57.07	43.63	0.40	0.20	QP
8 @	0.43974	36.08	-10.99	47.07	35.48	0.40	0.20	AVERAGE
9	1.057	26.99	-29.01	56.00	26.50	0.30	0.19	QP
10	1.057	17.36	-28.64	46.00	16.87	0.30	0.19	AVERAGE
11	1.236	33.32	-22.68	56.00	32.87	0.30	0.15	QP
12	1.236	25.06	-20.94	46.00	24.61	0.30	0.15	AVERAGE

Note:

Corrected Reading: Probe (LISN / ISN) Factor + Cable Loss + Read Level = Level.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 34 of 59

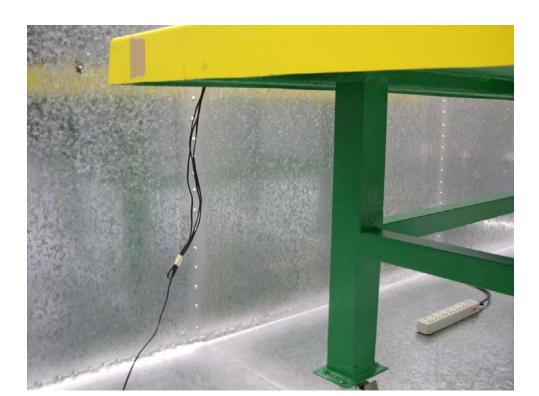
Report No.: FR551937



Issued on Aug. 15, 2005

5.7.7. Photographs of Conducted Emission Test Configuration

FRONT VIEW


REAR VIEW

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 35 of 59

Report No.: FR551937

Issued on Aug. 15, 2005

SIDE VIEW

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 36 of 59

Report No.: FR551937

Issued on Aug. 15, 2005

Report No.: FR551937

5.8. Test of Spurious Radiated Emission

5.8.1. Applicable Standard

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. In addition, radiated emissions that fall in the restricted bands, as defined in Section 15.205, must also comply with the radiated emission limits specified in Section 15.209.

5.8.2. Description of Major Test Instruments Setting

 Spectrum Analyzer : R&S FSP40

Attenuation Auto

Start Frequency 1000 MHz

Stop Frequency 10th carrier harmonic RB / VB 1 MHz / 1MHz for Peak RB/VB 1 MHz / 10Hz for Average

R&S ESCS 30 Test Receiver

Attenuation Auto Start Frequency 30 MHz Stop Frequency 1000 MHz

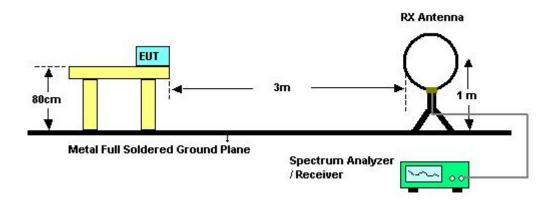
RΒ 120 KHz for QP or PK

5.8.3. Test Procedures

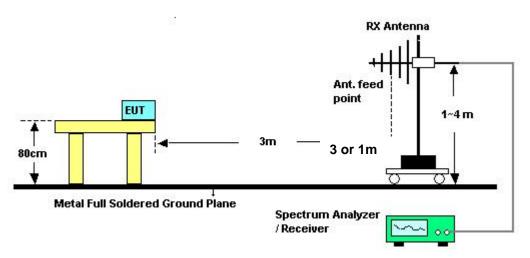
- 1. Configure the EUT according to ANSI C63.4.:2003
- 2. The EUT was placed on the top of the turntable 0.8 meter above ground.
- 3. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 4. Power on the EUT and all the supporting units.
- 5. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 6. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emission field strength of both horizontal and vertical polarization.
- 7. For each suspected emission, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 8. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 9. For emission above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer.
- 10.If the emission level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz and average method for

SPORTON International Inc.

Page No. : 37 of 59 TEL: 886-2-2696-2468 Issued Date : Aug. 15, 2005 FAX: 886-2-2696-2255


Issued on Aug. 15, 2005

above the 1GHz. the reported.


11. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB higher than average limit (that means the emission level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

5.8.4. Test Setup Layout

For radiated emissions below 30MHz

For radiated emissions above 30MHz

5.8.5. Test Criteria

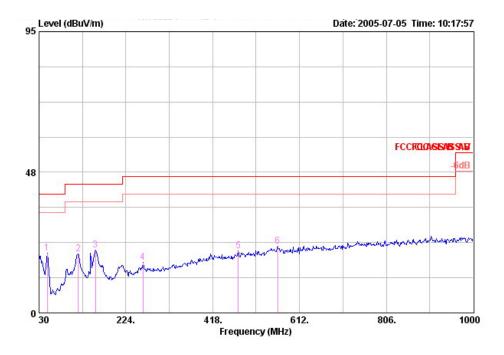
All test results complied with the requirements of 15.247(d). Measurement Uncertainty is 2.26dB.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 38 of 59

Report No.: FR551937

Issued on Aug. 15, 2005

5.8.6. Test Results for emission below 1GHz

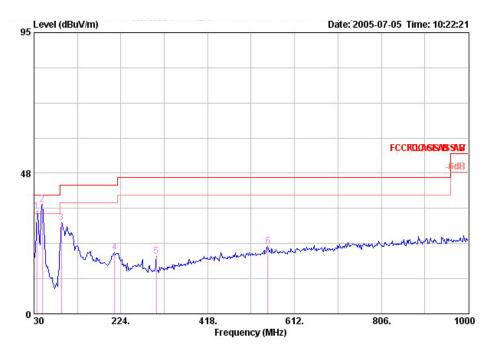

Test Mode: Charger ModeModulation Type: GFSKTemperature: 25°C

Relative Humidity: 50%

Duty Cycle of the Equipment During the Test: 50.00%

Test Engineer: Ken Tu

(A) Polarization: Horizontal



			0ver	Limit	Antenna	Cable	Preamp	Read	
	Freq	Level	Limit	Line	Factor	Loss	Factor	Level	Remark
	MHz	dBuV/m	dB	dBuV/m	dB/m	dB	dВ	dBuV	
1	48.430	20.09	-19.91	40.00	8.50	1.10	31.83	42.32	Peak
2	117.300	19.86	-23.64	43.50	11.37	1.53	31.75	38.71	Peak
3	156.100	21.16	-22.34	43.50	9.53	1.93	31.52	41.22	Peak
4	261.830	17.18	-28.82	46.00	12.85	2.50	31.34	33.17	Peak
5	475.230	21.06	-24.94	46.00	16.94	3.10	30.93	31.95	Peak
6	563.500	22.45	-23.55	46.00	18.52	3.17	30.75	31.51	Peak

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 39 of 59
Issued Date : Aug. 15, 2005

Issued on Aug. 15, 2005

(B) Polarization: Vertical

			Over	Limit	Antenna	Cable	Preamp	Read	
	Freq	Level	Limit	Line	Factor	Loss	Factor	Level	Remark
	MHz	dBuV/m	dB	dBuV/m	dB/m	dB	dB	dBuV	
1 @	36.790	34.70	-5.30	40.00	14.50	1.20	31.72	50.72	Peak
2 @	48.430	36.99	-3.01	40.00	8.50	1.10	31.83	59.22	Peak
3	91.110	30.68	-12.82	43.50	9.00	1.43	31.59	51.84	Peak
4	210.420	20.68	-22.82	43.50	8.47	2.06	31.42	41.57	Peak
5	303.540	19.35	-26.65	46.00	13.08	2.22	31.31	35.37	Peak
6	551.860	22.66	-23.34	46.00	18.70	3.20	30.75	31.51	Peak

Note:

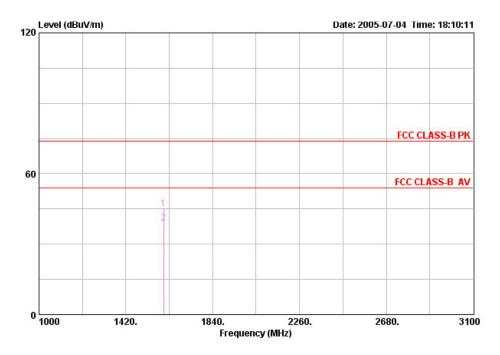
The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 40 of 59
Issued Date : Aug. 15, 2005

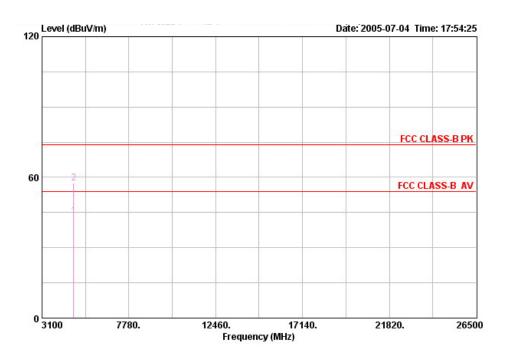
Issued on Aug. 15, 2005


5.8.7. Test Results for CH 00 / 2402 MHz (for emission above 1GHz)

Modulation Type: GFSKTemperature: 25°CRelative Humidity: 50%

Duty Cycle of the Equipment During the Test: 50.00%

Test Engineer: Ken Tu

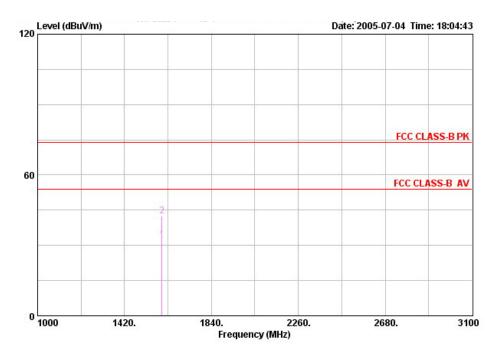

(A) Polarization: Horizontal

	Freq	Level		Line			2000		Remark
	MHz	dBuV/m	dB	dBuV/m	dB/m	dB	dB	dBuV	
1	1601.960	45.03	-28.97	74.00	25.92	5.81	34.72	48.02	PEAK
2 @	1602.030	38.76	-15.24	54.00	25.92	5.81	34.72	41.75	AVERAGE

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 41 of 59 Issued Date : Aug. 15, 2005

Issued on Aug. 15, 2005

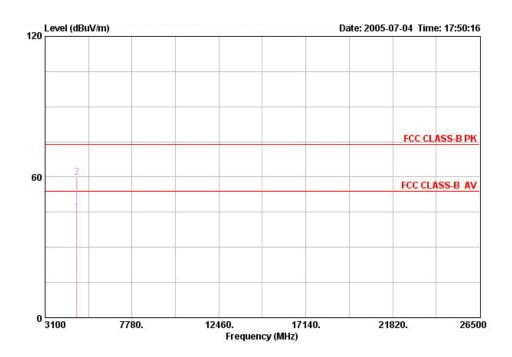
	Freq	Level			Antenna Factor		-	Read Level	Remark
	MHz	dBuV/m	dВ	dBuV/m	dB/m	dB	dB	dBuV	
1 @	4804.048	43.43	-10.57	54.00	32.81	11.82	35.17	33.97	AVERAGE
2	4804.048	57.66	-16.34	74.00	32.81	11.82	35.17	48.20	PEAK


TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 42 of 59

Report No.: FR551937

Issued on Aug. 15, 2005

(B) Polarization: Vertical



			0ver	Limit	Antenna	Cable	Preamp	Read	
	Freq	Level	Limit	Line	Factor	Loss	Factor	Level	Remark
	MHz	dBuV/m	dB	dBuV/m	dB/m	dB	dB	dBuV	2
1 @	1601.390	32.49	-21.51	54.00	25.92	5.81	34.72	35.48	AVERAGE
2	1601.390	42.64	-31.36	74.00	25.92	5.81	34.72	45.63	PEAK

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 43 of 59

Report No.: FR551937

Issued on Aug. 15, 2005

	Freq	Level			Antenna Factor		50500 No.		
	MHz	dBuV/m	uV/m dB	dBuV/m	dB/m	dB	dB	dBuV	<u></u>
1 @	4804.070	44.64	-9.36	54.00	32.81	11.82	35.17	35.18	AVERAGE
2	4804 070	59 88	-14 12	74 00	32 81	11 82	35 17	50 42	PEAK

Note:

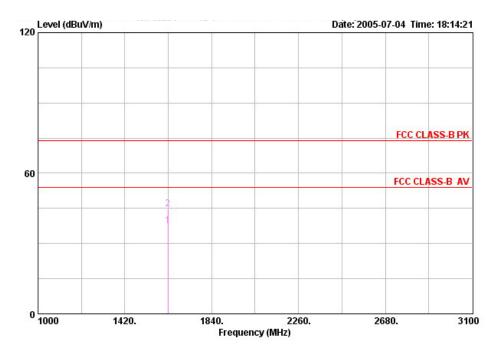
Emission level (dBuV/m) = 20 log Emission level (uV/m)

Corrected Reading: Probe Factor + Cable Loss + Read Level - Preamp Factor = Level

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 44 of 59

Report No.: FR551937

Issued on Aug. 15, 2005

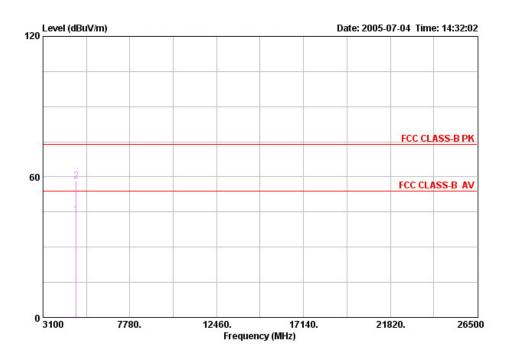

5.8.8. Test Results for CH 39 / 2441 MHz (for emission above 1GHz)

Modulation Type: GFSKTemperature: 25°CRelative Humidity: 50%

Duty Cycle of the Equipment During the Test: 50.00%

Test Engineer: Ken Tu

(A) Polarization: Horizontal


	Freq	Level			Antenna Factor				Remark
	MHz	dBuV/m	dB	dBuV/m	dB/m	dB	dB	dBuV	<u> </u>
1 @	1628.010	37.63	-16.37	54.00	26.13	5.81	34.73	40.42	AVERAGE
2	1628.040	44.68	-29.32	74.00	26.13	5.81	34.73	47.48	PEAK

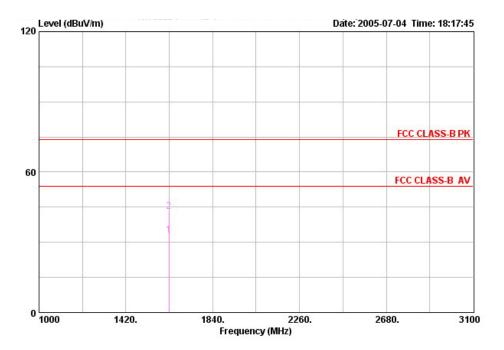
SPORTON International Inc.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 45 of 59

Report No.: FR551937

Issued on Aug. 15, 2005

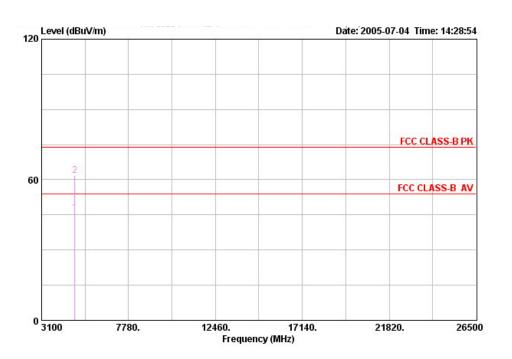
		Freq	Level			Antenna Factor		Preamp Factor	Read Level	Remark
	% <u>-</u>	MHz	dBuV/m	dB	dBuV/m	dB/m	dB	- dB	dBuV	<u> </u>
1	е	4882.010	43.92	-10.08	54.00	32.88	11.87	35.15	34.32	AVERAGE
2		4002 010	E0 24	-15 66	74 00	22 00	11 07	25 15	40 75	DEAU


TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 46 of 59

Issued Date : Aug. 15, 2005

Issued on Aug. 15, 2005

(B) Polarization: Vertical



			0ver	Limit	Antenna	Cable	Preamp	Read	
	Freq	Level	Limit	Line	Factor	Loss	Factor	Level	Remark
	MHz	dBuV/m	dB	dBuV/m	dB/m	dB	dB	dBuV	
1 @	1627.980	33.04	-20.96	54.00	26.13	5.81	34.73	35.84	AVERAGE
2	1628.270	43.27	-30.73	74.00	26.13	5.81	34.73	46.07	PEAK

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 47 of 59

Report No.: FR551937

Issued on Aug. 15, 2005

	Freq	Level			Antenna Factor		Preamp Factor	Read Level	Remark
	MHz	dBuV/m	dB	dBuV/m	dB/m	dB	dB	dBuV	
1 @	4882.050	45.83	-8.17	54.00	32.88	11.87	35.15	36.24	AVERAGE
2	4882.050	61.92	-12.08	74.00	32.88	11.87	35.15	52.32	PEAK

Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m)

Corrected Reading: Probe Factor + Cable Loss + Read Level - Preamp Factor = Level

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 48 of 59

Report No.: FR551937

Issued on Aug. 15, 2005

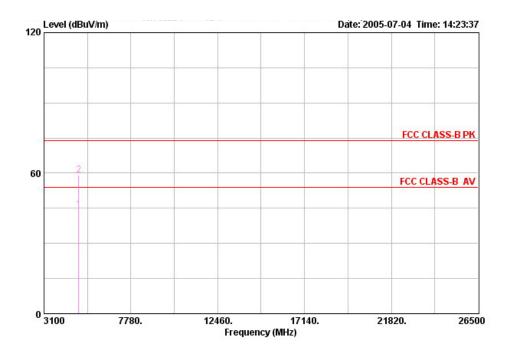
5.8.9. Test Results for CH 78 / 2480 MHz (for emission above 1GHz)

Modulation Type: GFSKTemperature: 25°CRelative Humidity: 50%

Duty Cycle of the Equipment During the Test: 50.00%

Test Engineer: Ken Tu

(A) Polarization: Horizontal



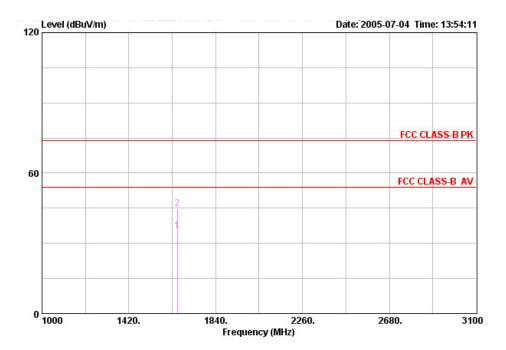
	Freq	Level			Antenna Factor		(c)		Remark
	MHz	dBuV/m	dB	dBuV/m	dB/m	dB	- dB	dBuV	
1 @	1654.038	40.17	-13.83	54.00	26.23	6.29	34.74	42.39	AVERAGE
2	1654.038	45.91	-28.09	74.00	26.23	6.29	34.74	48.13	PEAK

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 49 of 59

Report No.: FR551937

Issued on Aug. 15, 2005

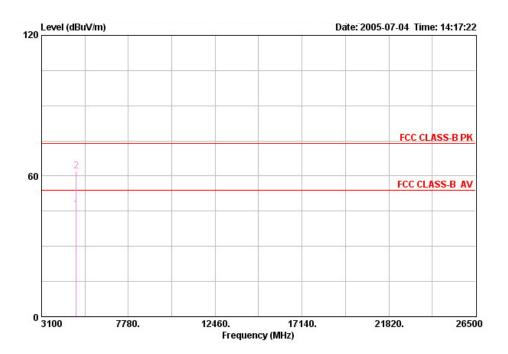
	Freq	Level			Antenna Factor		Preamp Factor	Read Level	Remark
	MHz	dBuV/m	dB	dBuV/m	dB/m	dB	dB	dBuV	<u> </u>
1 @	4960.048	44.47	-9.53	54.00	32.97	11.92	35.14	34.72	AVERAGE
2	4960 049	E9 11	-14 00	74 00	22 97	11 92	25 14	49 26	DEAU


TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 50 of 59

Report No.: FR551937

Issued on Aug. 15, 2005

(B) Polarization: Vertical



	Freq	Level			Antenna Factor			Read Level	Remark
	MHz	dBuV/m	dB	dBuV/m	dB/m	dВ	dB	dBuV	<u> </u>
1 @	1654.000	35.25	-18.75	54.00	26.23	6.29	34.74	37.47	AVERAGE
2	1654.000	44.68	-29.32	74.00	26.23	6.29	34.74	46.90	PEAK

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 51 of 59

Report No.: FR551937

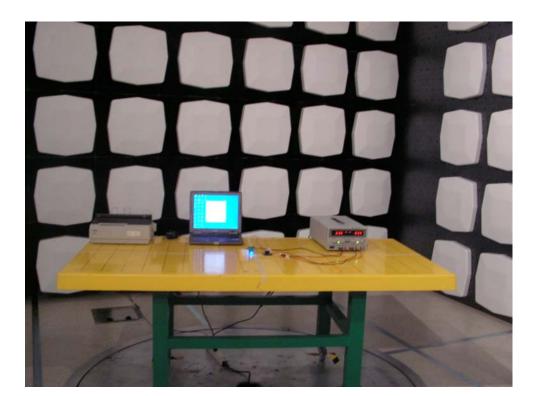
Issued on Aug. 15, 2005

			0ver	Limit	Antenna	Cable	Preamp	Read	
	Freq	Level	Limit	Line	Factor	Loss	Factor	Level	Remark
	MHz	dBuV/m	dB	dBuV/m	dB/m	dB	dB	dBuV	
1 @	4960.030	45.93	-8.07	54.00	32.97	11.92	35.14	36.18	AVERAGE
2	4960.030	62.25	-11.75	74.00	32.97	11.92	35.14	52.51	PEAK

Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m)

Corrected Reading: Probe Factor + Cable Loss + Read Level - Preamp Factor = Level


TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 52 of 59
Issued Date : Aug. 15, 2005

Issued on Aug. 15, 2005

5.8.10. Photographs of Radiated Emission Test Configuration

Tx Mode

FRONT VIEW

REAR VIEW

SPORTON International Inc.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 53 of 59 Issued Date : Aug. 15, 2005

Issued on Aug. 15, 2005

Charger Mode

FRONT VIEW

REAR VIEW

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 54 of 59

Report No.: FR551937

Issued on Aug. 15, 2005

5.9. Antenna Requirements

5.9.1. Standard Applicable

Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Section 3.10.1(4):

The limitation on type of antenna specified the requirements of 2.2 is not.(Only for DGT)

Section 15.247(b)/(c):

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

If the intentional radiator is used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

5.9.2. Antenna Connected Construction

There is no antenna connector for chip antenna.

5.9.3. Antenna Gain

All antenna gain of EUT is less than 6dBi. Therefore peak conducted power limit shall not be degraded any more. Antenna report of manufacturer will have more detail antenna gain or antenna pattern.

5.9.4. Test Criteria

All test results complied with the requirements of 15.203/15.247(b)/(c).

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 55 of 59
Issued Date : Aug. 15, 2005

Issued on Aug. 15, 2005

6. List of Measuring Equipments Used

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMC Receiver	R&S	ESCS 30	100174	9kHz – 2.75GHz	Feb. 16, 2005	Conduction (CO04-HY)
LISN	MessTec	NNB-2/16Z	2001/004	9kHz – 30MHz	Apr. 20, 2005	Conduction (CO04-HY)
LISN (Support Unit)	MessTec	NNB-2/16Z	99041	9kHz – 30MHz	May. 05, 2005	Conduction (CO04-HY)
RF Cable-CON	UTIFLEX	3102-26886-4	CB049	9kHz – 30MHz	Apr. 20, 2005	Conduction (CO04-HY)
EMI Filter	LINDGREN	LRE-2030	2651	< 450 Hz	N/A	Conduction (CO04-HY)
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	30MHz ~ 1GHz 3m	Jun. 16, 2005	Radiation (03CH03-HY)
Spectrum analyzer	R&S	FSP40	100004	9KHZ ~ 40GHz	Aug. 31, 2004	Radiation (03CH03-HY)
Amplifier	SCHAFFNER	CPA9231A	18667	9KHz ~ 2GHz	Jan. 10, 2005	Radiation (03CH03-HY)
Amplifier	Agilent	8449B	3008A02120	1GHz ~ 26.5GHz	May 31, 2005	Radiation (03CH03-HY)
Amplifier	MITEQ	AMF-6F-260400	923364	26.5GHz ~ 40GHz	Jan. 05, 2004*	Radiation (03CH03-HY)
Loop Antenna	R&S	HFH2-Z2	860004/001	9kHz ~ 30MHz	May 24, 2004*	Radiation (03CH03-HY)
Biconical Antenna	SCHWARZBECK	VHBB 9124	301	30MHz ~ 200MHz	Jul. 28, 2004	Radiation (03CH03-HY)
Log Antenna	SCHWARZBECK	VUSLP 9111	221	200MHz ~ 1GHz	Jul. 28, 2004	Radiation (03CH03-HY)
Horn Antenna	EMCO	3115	6741	1GHz ~ 18GHz	Apr. 22, 2005	Radiation (03CH03-HY)
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170154	15GHz ~ 40GHz	Jun. 09, 2004*	Radiation (03CH03-HY)
RF Cable-R03m	Jye Bao	RG142	CB021	30MHz ~ 1GHz	Feb. 22, 2005	Radiation (03CH03-HY)
RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	1GHz ~ 40GHz	Dec.01, 2004	Radiation (03CH03-HY)
Turn Table	HD	DS 420	420/650/00	0 ~ 360 degree	N/A	Radiation (03CH03-HY)
Antenna Mast	HD	MA 240	240/560/00	1 m - 4 m	N/A	Radiation (03CH03-HY)

Calibration Interval of instruments listed above is one year.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 56 of 59

Report No.: FR551937

^{*} Calibration Interval of instruments listed above is two year.

Issued on Aug. 15, 2005

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Power meter	R&S	NRVS	100444	DC ~ 40GHz	Jul. 06, 2005	Conducted (TH01-HY)
Power sensor	R&S	NRV-Z55	100049	DC ~ 40GHz	Jul. 06, 2005	Conducted (TH01-HY)
Power Sensor	R&S	NRV-Z32	100057	30MHz ~ 6GHz	Apr. 28, 2005	Conducted (TH01-HY)
AC power source	HPC	HPA-500W	HPA-9100024	AC 0 ~ 300V	Apr. 21, 2005	Conducted (TH01-HY)
DC power source	G.W.	GPC-6030D	C671845	DC 1V ~ 60V	Nov. 28, 2004	Conducted (TH01-HY)
Temp. and Humidity Chamber	KSON	THS-C3L	612	N/A	Oct. 01, 2004	Conducted (TH01-HY)
RF CABLE-1m	Jye Bao	RG142	CB034-1m	20MHz ~ 7GHz	Jan. 01, 2005	Conducted (TH01-HY)
RF CABLE-2m	Jye Bao	RG142	CB035-2m	20MHz ~ 1GHz	Jan. 01, 2005	Conducted (TH01-HY)
Oscilloscope	Tektronix	TDS1012	CO38515	100MHz / 1GS/s	Apr. 15, 2005	Conducted (TH01-HY)
Signal Generator	R&S	SMR40	100116	10MHz ~ 40GHz	Dec. 31, 2004	Conducted (TH01-HY)
Data Generator	Tektronix	DG2030	063-2920-50	0.1Hz~400MHz	Jun. 02, 2005	Conducted (TH01-HY)

Calibration Interval of instruments listed above is one year.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 57 of 59

Report No.: FR551937

Issued on Aug. 15, 2005

Report No.: FR551937

7. Company Profile

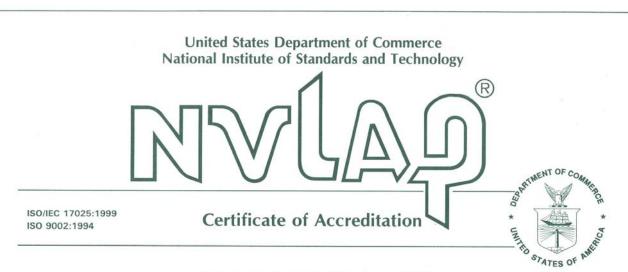
SPORTON Lab. was established in 1986 with one shielded room: the first private EMI test facility, offering local manufacturers an alternative EMI test familial apart from ERSO. In 1988, one 3M and 10M/3M open area test site were setup and also obtained official accreditation from FCC, VCCI and NEMKO. In 1993, a Safety laboratory was founded and obtained accreditation from UL of USA, CSA of Canada and TUV (Rhineland & PS) of Germany. In 1995, one EMC lab, including EMI and EMS test facilities was setup. In 1997, SPORTON Group has provided financial expense to relocate the headquarter to Orient Scientific Park in Taipei Hsien to offer more comprehensive, more qualified and better service to local suppliers and manufactures. In 1999, Safety Group and Component Group were setup. In 2001, SPORTON has established 3M/10M chamber in Hwa Ya Technology Park.

7.1. Certificate of Accreditation

Taiwan	BSMI, CNLA, DGT
USA	FCC, NVLAP, UL
EU	Nemko, TUV
Japan	VCCI
Canada	Industry Canada

7.2. Test Location

SHIJR	ADD:	6FI., No. 106, Sec. 1, Shintai 5th Rd., Shijr City, Taipei, Taiwan 221, R.O.C.
	TEL:	02-2696-2468
	FAX:	02-2696-2255
HWA YA	ADD:	No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.
	TEL:	03-327-3456
	FAX:	03-318-0055
LINKOU	ADD:	No. 30-2, Dingfu Tsuen, Linkou Shiang, Taipei, Taiwan 244, R.O.C
	TEL:	02-2601-1640
	FAX:	02-2601-1695
DUNGHU	ADD:	No. 3, Lane 238, Kangle St., Neihu Chiu, Taipei, Taiwan 114, R.O.C.
DUNGHU	ADD: TEL:	No. 3, Lane 238, Kangle St., Neihu Chiu, Taipei, Taiwan 114, R.O.C. 02-2631-4739
DUNGHU		
DUNGHU JUNGHE	TEL:	02-2631-4739
	TEL: FAX:	02-2631-4739 02-2631-9740
	TEL: FAX: ADD:	02-2631-4739 02-2631-9740 7FI., No. 758, Jungjeng Rd., Junghe City, Taipei, Taiwan 235, R.O.C.
	TEL: FAX: ADD: TEL:	02-2631-4739 02-2631-9740 7FI., No. 758, Jungjeng Rd., Junghe City, Taipei, Taiwan 235, R.O.C. 02-8227-2020
JUNGHE	TEL: FAX: ADD: TEL: FAX:	02-2631-4739 02-2631-9740 7FI., No. 758, Jungjeng Rd., Junghe City, Taipei, Taiwan 235, R.O.C. 02-8227-2020 02-8227-2626


SPORTON International Inc.

Page No. : 58 of 59 TEL: 886-2-2696-2468 Issued Date : Aug. 15, 2005 FAX: 886-2-2696-2255

Issued on Aug. 15, 2005

8. Certificate of NVLAP Accreditation

SPORTON INTERNATIONAL, INC.

TAIPEI HSIEN 221 TAIWAN

is recognized by the National Voluntary Laboratory Accreditation Program for satisfactory compliance with criteria set forth in NIST Handbook 150:2001, all requirements of ISO/IEC 17025:1999, and relevant requirements of ISO 9002:1994. Accreditation is awarded for specific services, listed on the Scope of Accreditation, for:

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

December 31, 2005

Effective through

For the National Institute of Standards and Technology

NVLAP Lab Code: 200079-0

Report No.: FR551937

NVLAP-01C (06-01)

SPORTON International Inc.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 59 of 59