FCC 47 CFR PART 15 Subpart C

TEST REPORT

For

Mini Mouse Presenter set

Model: OPMP-2461

Trade Name: CELLINK

Issued to

CELLINK CO, LTD 4F, No.100, Sec.1, Hsin Tai Wu Rd., Hsi-Chin, Taipei, Taiwan, R.O.C.

Issued by

Compliance Certification Services Inc. No. 81-1, Lane 210, Bade Rd. 2, Luchu Hsiang, Taoyuan Hsien, (338) Taiwan, R.O.C.

TEL: 886-3-324-0332 FAX: 886-3-324-5235

Date of Issue: February 25, 2005

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document.

Date of Issue: February 25, 2005

TABLE OF CONTENTS

1. TI	EST RESULT CERTIFICATION	3
2. EU	UT DESCRIPTION	4
3. TI	EST METHODOLOGY	5
3.1	EUT CONFIGURATION	. 5
3.2	EUT EXERCISE	
3.3 3.4	GENERAL TEST PROCEDURES	
3.4	DESCRIPTION OF TEST MODES	
4. IN	STRUMENT CALIBRATION	7
5. FA	ACILITIES AND ACCREDITATIONS	8
5.1	FACILITIES	. 8
5.2	EQUIPMENT	
5.3	LABORATORY ACCREDITATIONS AND LISTING	
5.4	TABLE OF ACCREDITATIONS AND LISTINGS.	. 9
6. SI	ETUP OF EQUIPMENT UNDER TEST	10
6.1	SETUP CONFIGURATION OF EUT.	. 10
6.2	SUPPORT EQUIPMENT	. 10
7. FO	CC PART 15.249 REQUIREMENTS	11
7.1	BAND EDGES MEASUREMENT	. 11
7.2	SPURIOUS EMISSION	
7.3	POWERLINE CONDUCTED EMISSIONS	. 24
APPE	NDIX 1 PHOTOGRPHS OF TEST SETUP	25

Date of Issue: February 25, 2005

1. TEST RESULT CERTIFICATION

Applicant:

CELLINK CO, LTD

4F, No.100, Sec.1, Hsin Tai Wu Rd., Hsi-Chin,

Taipei, Taiwan, R.O.C

Equipment Under Test:

Mini Mouse Presenter set

Trade Name:

CELLINK

Model Number:

OPMP-2461

Date of Test:

February 16 ~ 20, 2005

APPLICABLE	STANDARDS
STANDARD	TEST RESULT
FCC Part 15 Subpart C	No non-compliance noted

We hereby certify that:

The above equipment was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.4 and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements emission limits of FCC Rules Part 15.107, 15.109,15.207, 15.209 and 15.249.

The test results of this report relate only to the tested sample identified in this report.

Approved by:

Harris W. Lai

Executive Vice President

Compliance Certification Services Inc.

Reviewed by:

Gavin Lim

Section Manager

Compliance Certification Services Inc.

pain. Lim

2. EUT DESCRIPTION

TOT DESCRIPTION			
Product	Mini Mouse Presenter set		
Trade Name	CELLINK		
Model Number	OPMP-2461		
Model Discrepancy	N/A		
Power Supply	Power by 2 x AAA Rechargeable Batteries (2.4V)		
Frequency Range	2402 ~ 2480 MHz		
Modulation Technique	GFSK		
Antenna Gain	-8 dBi		
Antenna Designation	Printed PCB Antenna		

Date of Issue: February 25, 2005

Remark: This submittal(s) (test report) is intended for FCC ID: <u>PQY-4710874201309</u> filing to comply with Section 15.207, 15.209, 15.249 (FCC Part 15, Subpart C Rules.)

Page 4 Rev. 00

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4 and FCC CFR 47 2.1046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055, 2.1057, 15.207, 15.209 and 15.249.

Date of Issue: February 25, 2005

3.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

3.2 EUT EXERCISE

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to its specifications, the EUT must comply with the requirements of the Section 15.107 and 15.109 under the FCC Rules Part 15 Subpart B and Section 15.207, 15.209,15.249 under the FCC Rules Part 15 Subpart C.

3.3 GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.4 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 13.1.4.1 of ANSI C63.4.

Page 5 Rev. 00

3.4 FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

Date of Issue: February 25, 2005

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 -	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.52525	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	156.7 - 156.9	3260 - 3267	23.6 - 24.0
12.29 - 12.293	162.0125 - 167.17	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	167.72 - 173.2	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	240 - 285	3600 - 4400	$\binom{2}{}$
13.36 - 13.41	322 - 335.4		

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

3.5 DESCRIPTION OF TEST MODES

The EUT has been tested under engineering test mode condition and the EUT staying in continuous transmitting mode.

Page 6 Rev. 00

² Above 38.6

4. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

Date of Issue: February 25, 2005

Page 7 Rev. 00

5. FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at
No. 81-1, Lane 210, Bade Rd. 2, Luchu Hsiang, Taoyuan Hsien, Taiwan, R.O.C.
No. 199, Chunghsen Road, Hsintien City, Taipei Hsien, Taiwan, R.O.C.
The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

Date of Issue: February 25, 2005

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.3 LABORATORY ACCREDITATIONS AND LISTING

The test facilities used to perform radiated and conducted emissions tests are accredited by National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code: 200600-0 to perform Electromagnetic Interference tests according to FCC PART 15 AND CISPR 22 requirements. No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government. In addition, the test facilities are listed with Federal Communications Commission (Registration no: 93105 and 90471).

Page 8 Rev. 00

5.4 TABLE OF ACCREDITATIONS AND LISTINGS

Country	Agency	Scope of Accreditation	Logo
USA	NVLAP*	EN 55011, EN 55014-1, AS/NZS 1044, CNS 13783-1, EN 55022, CNS 13438, EN 61000-3-2, EN 61000-3-3, ANSI C63.4, FCC OST/MP-5, AS/NZS CISPR 22, IEC 61000-4-2, IEC 61000-4-3, IEC 61000-4-4, IEC 61000-4-5, IEC 61000-4-6, IEC 61000-4-8, IEC 61000-4-11	200600-0
USA	FCC	3/10 meter Open Area Test Sites to perform FCC Part 15/18 measurements	FC 93105, 90471
Japan	VCCI	4 3/10 meter Open Area Test Sites to perform conducted/radiated measurements	VCCI R-393/1066/725/879 C-402/747/912
Norway	NEMKO	EN 50081-1/2, EN 50082-1/2, IEC 61000-6-1/2, EN 50091-2, EN 50130-4, EN 55011, EN 55013, EN 55014-1/2, EN 55015, EN 55022, EN 55024, EN 61000-3-2/3, EN 61326-1, IEC 61000-4-2/3/4/5/6/8/11, EN 60601-1-2, EN 300 328-2, EN 300 422-2, EN 301 419-1, EN 301 489-01/03/07/08/09/17, EN 301 419-2/3, EN 300 454-2, EN 301 357-2	ELA 124a ELA 124b ELA 124c
Taiwan	CNLA	EN 300 328-1/2, EN 300 220-1/2/3, EN 300 440-1/2, EN 61000-3-2, EN 61000-3-3, 47 CFR FCC Part 15 Subpart C/D/E, EN 55013, CNS 13439, EN 55014-1, CNS 13783-1, EN 55022, CNS 13438, CISPR 22, AS/NZS 3548, EN 61000-4-2/3/4/5/6/8/11, ENV 50204, IEEE Std 1528, FCC OET Bulletin, 65+Supplement C, EN50360, EN50361, EN50371, RSS102	0 3 6 3 ILAC MRA
Taiwan	BSMI	CNS 13438, CNS 13783-1, CNS 13439, CNS 14115	SL2-IS-E-0014 SL2-IN-E-0014 SL2-A1-E-0014 SL2-R1-E-0014 SL2-R2-E-0014 SL2-L1-E-0014
Canada	Industry Canada	RSS212, Issue 1	Canada IC 3991-3 IC 3991-4

^{*} No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government.

Page 9 Rev. 00

Date of Issue: February 25, 2005

6. SETUP OF EQUIPMENT UNDER TEST

6.1 SETUP CONFIGURATION OF EUT

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

6.2 SUPPORT EQUIPMENT

Device Type	Brand	Model	FCC ID	Series No.	Data Cable	Power Cord
N/A	N/A	N/A	N/A	N/A	N/A	N/A

Remark:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

Page 10 Rev. 00

Date of Issue: February 25, 2005

7. FCC PART 15.249 REQUIREMENTS

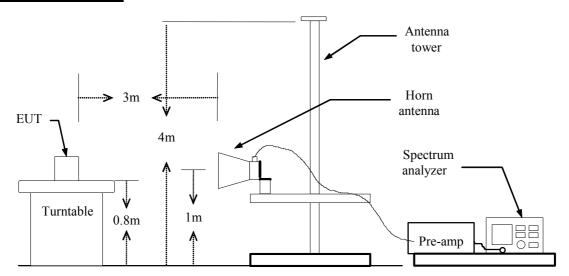
7.1 BAND EDGES MEASUREMENT

LIMIT

1. In the above emission table, the tighter limit applies at the band edges.

Frequency (Hz)	Field Strength (μV/m at 3-meter)	Field Strength (dBµV/m at 3-meter)
30-88	100	40
88-216	150	43.5
216-960	200	46
Above 960	500	54

Date of Issue: February 25, 2005


2. As shown in Section 15.35(b), for frequencies above 1000 MHz, the above field strength limits in paragraphs (a) and (b) of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For point-to-point operation under paragraph (b) of this section, the peak field strength shall not exceed 2500 millivolts/meter at 3 meters along the antenna azimuth.

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	R&S	FSP30	1093.4495.30	07/22/2005

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

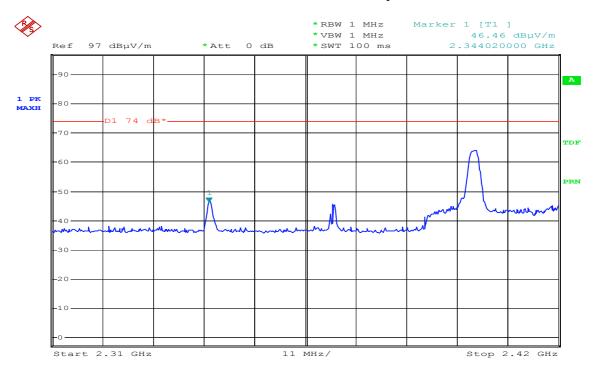
Page 11 Rev. 00

TEST PROCEDURE

- 1. The EUT is placed on a turntable, which is 0.8m above the ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.

Date of Issue: February 25, 2005

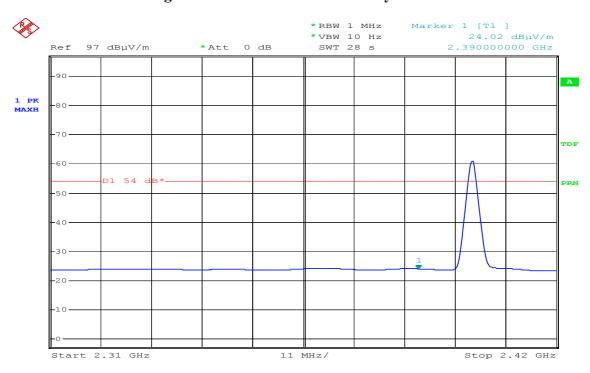
- 4. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:
 - (a) PEAK: RBW=VBW=1MHz / Sweep=AUTO
 - (b) AVERAGE: RBW=1MHz / VBW=10Hz / Sweep=AUTO
- 5. Repeat the procedures until all the PEAK and AVERAGE versus POLARIZATION are measured.


TEST RESULTS

Refer to attach spectrum analyzer data chart.

Page 12 Rev. 00

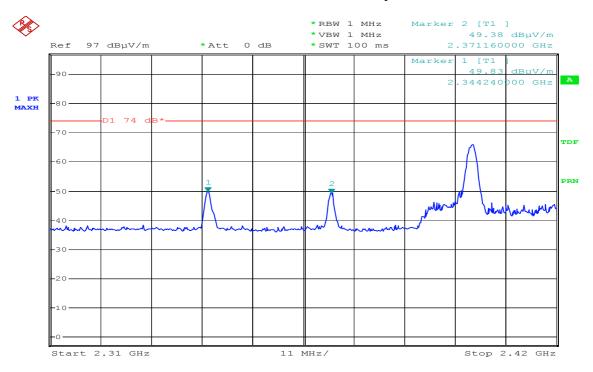
Band Edges (CH Low)


Detector mode: Peak Polarity: Vertical

Date: 17.FEB.2005 06:29:19

Detector mode: Average

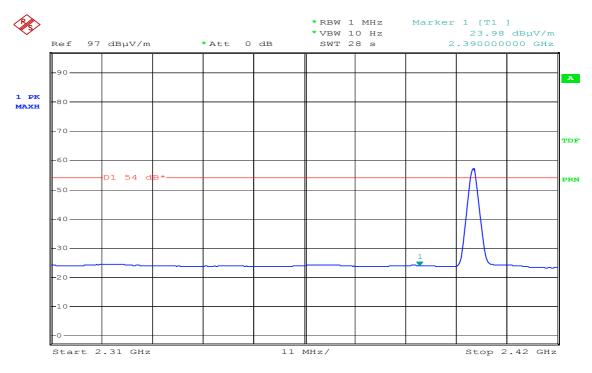
Polarity: Vertical



Date: 17.FEB.2005 06:32:31

Page 13 Rev. 00

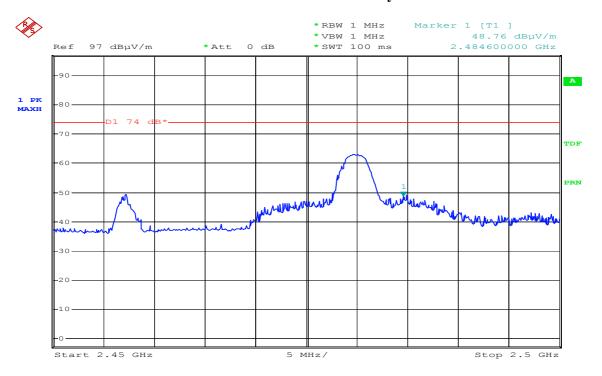
Detector mode: Peak


Polarity: Horizontal

Date: 17.FEB.2005 06:36:21

Detector mode: Average

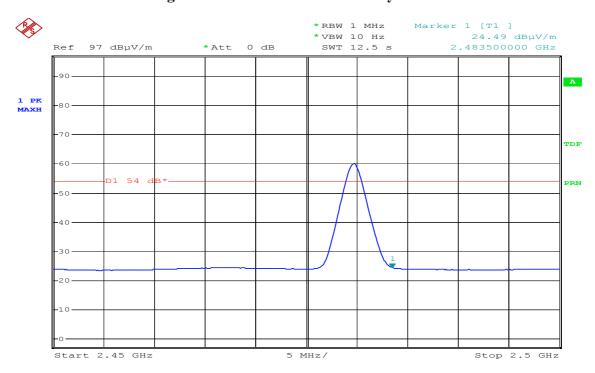
Polarity: Horizontal



Date: 17.FEB.2005 06:38:05

Page 14 Rev. 00

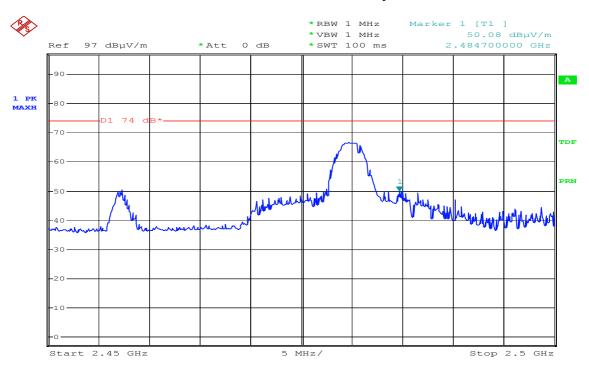
Band Edges (CH High)


Detector mode: Peak Polarity: Vertical

Date: 17.FEB.2005 06:46:51

Detector mode: Average

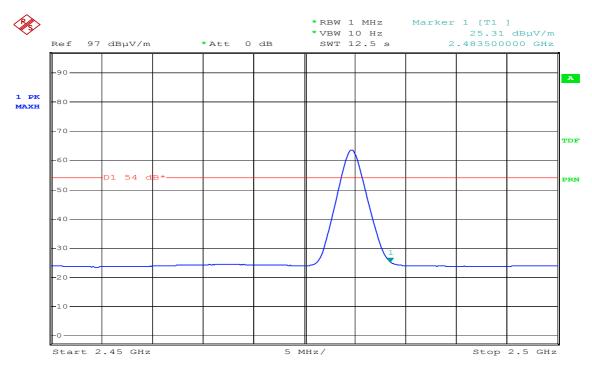
Polarity: Vertical



Date: 17.FEB.2005 06:48:12

Page 15 Rev. 00

Detector mode: Peak


Polarity: Horizontal

Date: 17.FEB.2005 06:42:03

Detector mode: Average

Polarity: Horizontal

Date: 17.FEB.2005 06:43:22

Page 16 Rev. 00

7.2 SPURIOUS EMISSION

LIMIT

1. In the section 15.249(a):

Except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental Frequency	Field Strength of Fundamental Field Strength (mV/m)	Field Strength of Harmonics (μV/m)
902-928 MHz	50	500
2400 - 2483.5 MHz	50	500
5725 - 5875 MHz	50	500
24.0 - 24.25 GHz	250	2500

Date of Issue: February 25, 2005

1. Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

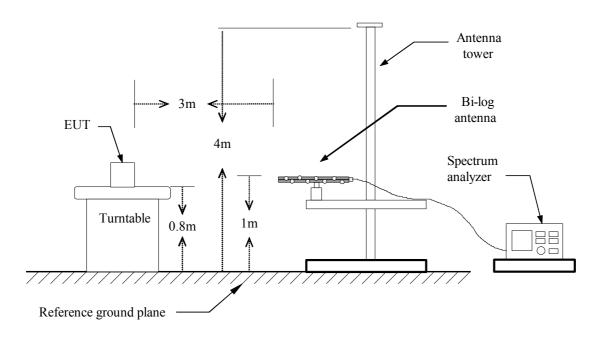
Frequency (MHz)	Field Strength (μV/m)	Measurement Distance (m)
30-88	100*	3
88-216	150*	3
216-960	200*	3
Above 960	500	3

Remark: Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

2. In the above emission table, the tighter limit applies at the band edges.

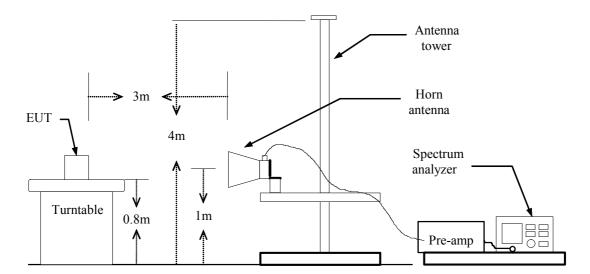
Frequency (Hz)	Field Strength (μV/m at 3-meter)	Field Strength (dBµV/m at 3-meter)
30-88	100	40
88-216	150	43.5
216-960	200	46
Above 960	500	54

Page 17 Rev. 00


MEASUREMENT EQUIPMENT USED

Open Area Test Site # 3								
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due				
EMI Test Receiver	R&S	ESVS20	838804/004	01/08/2006				
Spectrum Analyzer	R&S	FSP30	100112	09/23/2005				
Spectrum Analyzer	Agilent	E4446A	MY43360131	01/10/2006				
Pre-Amplifier	MITEC	AFS42-00102650	924206	N.C.R.				
Pre-Amplifier	MITEC	AMF-6F-260400	945377	N.C.R.				
Bilog Antenna	SCHWAZBECK	VULB9163	145	07/05/2005				
Horn Antenna	EMCO	3115	00022250	03/15/2005				
Horn Antenna	EMCO	3116	2487	12/08/2005				
Turn Table	EMCO	2081-1.21	9709-1885	N.C.R				
Antenna Tower	EMCO	2075-2	9707-2060	N.C.R				
Controller	EMCO	2090	9709-1256	N.C.R				
RF Switch	ANRITSU	MP59B	M53867	N.C.R				
Site NSA	C&C	N/A	N/A	09/06/2005				

Remark: Each piece of equipment is scheduled for calibration once a year.


Test Configuration

Below 1 GHz

Page 18 Rev. 00

Above 1 GHz

TEST PROCEDURE

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Set the spectrum analyzer in the following setting as:

Below 1GHz:

Above 1GHz:

- (a) PEAK: RBW=VBW=1MHz / Sweep=AUTO
- (b) AVERAGE: RBW=1MHz / VBW=10Hz / Sweep=AUTO
- 7. Repeat above procedures until the measurements for all frequencies are complete.

Page 19 Rev. 00

TEST RESULTS

Below 1 GHz

Operation Mode: Mode 1 **Test Date:** February 20, 2005

Date of Issue: February 25, 2005

Temperature:20°CTested by:Max YaoHumidity:55% RHPolarity:Ver. / Hor.

Freq. (MHz)	Ant.Pol. H/V	Detector Mode (PK/QP)	Reading (dBuV)	Factor (dB)	Actual FS (dBuV/m)	Limit 3m (dBuV/m)	Safe Margin (dB)
53.23	V	Peak	16.8	14.5	31.3	40.0	-8.7
150.09	V	Peak	8.6	15.4	24.0	43.5	-19.5
200.19	V	Peak	7.4	13.5	20.9	43.5	-22.6
249.59	V	Peak	6.6	15.8	22.4	46.0	-23.6
500.11	V	Peak	1.0	20.7	21.7	46.0	-24.3
736.84	V	Peak	1.6	24.9	26.5	46.0	-19.5
53.11	Н	Peak	10.8	14.5	25.3	40.0	-14.7
150.27	Н	Peak	3.8	15.4	19.2	43.5	-24.3
199.59	Н	Peak	3.2	13.5	16.7	43.5	-26.8
275.83	Н	Peak	0.4	16.1	16.5	46.0	-29.5
499.83	Н	Peak	0.8	20.7	21.5	46.0	-24.5
734.90	Н	Peak	1.4	24.9	26.3	46.0	-19.7

Remark:

- 1. Measuring frequencies from 30 MHz to the 1GHz.
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using Peak detector mode.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. The IF bandwidth of SPA between 30MHz to 1GHz was 100kHz.

Page 20 Rev. 00

Above 1 GHz

Operation Mode: Tx / CH Low **Test Date:** February 16, 2005

Date of Issue: February 25, 2005

Temperature:21°CTested by:Tom JenHumidity:55% RHPolarity:Ver. / Hor.

E	Am4 Dol	Peak	AV	Ant. / CL	Actu	al Fs	Peak	AV	Manain	
Freq. (MHz)	Ant. Pol H/V	Reading (dBuV)	Reading (dBuV)	CF (dB)	Peak (dBuV/m)	AV (dBuV/m)	Limit (dBuV/m)	Limit (dBuV/m)		Remark
2402.00	V	64.13		-2.94	61.19		114.00	94.00	-32.81	Peak
2345.14	V	50.79		-3.05	47.74		74.00	54.00	-6.26	Peak
2371.74	V	51.56		-3.01	48.55		74.00	54.00	-5.45	Peak
4803.00	V	54.23	50.48	2.47	56.70	52.95	74.00	54.00	-1.05	AVG
7205.00	V	46.39	40.73	8.41	54.80	49.14	74.00	54.00	-4.86	AVG
9600.00	V	41.73	34.03	14.11	55.84	48.14	74.00	54.00	-5.86	AVG
2402.00	Н	66.97		-2.94	64.03		114.00	94.00	-29.97	Peak
2344.80	Н	54.50		-3.05	51.45		74.00	54.00	-2.55	Peak
2371.80	Н	54.35		-3.01	51.34		74.00	54.00	-2.66	Peak
4803.00	Н	53.79	49.87	2.47	56.26	52.34	74.00	54.00	-1.66	AVG
7205.00	Н	44.53	37.75	8.41	52.94	46.16	74.00	54.00	-7.84	AVG
N/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:
 - a. Peak Setting 1GHz to 10th harmonics of fundamental, RBW = 1MHz, VBW = 1MHz, Sweep time = Auto.
 - b. AV Setting 1GH z to 10th harmonics of fundamental, RBW = 1MHz, VBW = 10Hz, Sweep time = Auto.

Page 21 Rev. 00

Operation Mode: Tx / CH Mid **Test Date:** February 16, 2005

Temperature:21°CTested by:Tom JenHumidity:55% RHPolarity:Ver. / Hor.

Freq.	Ant. Pol	Peak	AV	Ant. / CL			Peak	AV	Margin	D
(MHz)	H/V	Reading (dBuV)	Reading (dBuV)	CF (dB)	Peak (dBuV/m)	AV (dBuV/m)	Limit (dBuV/m)	Limit (dBuV/m)	(JD)	Remark
2441.00	V	67.63		-2.94	64.69		114.00	94.00	-29.31	Peak
2327.70	V	50.60		-3.08	47.52		74.00	54.00	-6.48	Peak
4882.00	V	52.70	49.41	2.71	55.41	52.12	74.00	54.00	-1.88	AVG
7323.00	V	43.86	37.28	8.67	52.53	45.95	74.00	54.00	-8.05	AVG
N/A										
2441.00	Н	71.56		-2.94	68.62		114.00	94.00	-25.38	Peak
4882.00	Н	49.50	45.30	2.71	52.21	48.01	74.00	54.00	-5.99	AVG
N/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:
 - a. Peak Setting 1GHz to 10th harmonics of fundamental, RBW = 1MHz, VBW = 1MHz, Sweep time = Auto.
 - b. AV Setting 1GH z to 10th harmonics of fundamental, RBW = 1MHz, VBW = 10Hz, Sweep time = Auto.

Page 22 Rev. 00

Operation Mode: Tx / CH High **Test Date:** February 16, 2005

Temperature:21°CTested by:Tom JenHumidity:55% RHPolarity:Ver. / Hor.

Freq.	Ant. Pol	Peak	AV	Ant. / CL	Actu	al Fs	Peak	AV	Margin	
(MHz)	H/V	Reading (dBuV)	Reading (dBuV)	CF (dB)	Peak (dBuV/m)	AV (dBuV/m)	Limit (dBuV/m)	Limit (dBuV/m)	(JD)	Remark
2480.00	V	64.30		-2.94	61.36		114.00	94.00	-32.64	Peak
2458.42	V	56.60	30.60	-2.28	54.32	28.32	74.00	54.00	-25.68	AVG
4960.00	V	52.81	48.60	2.95	55.76	51.55	74.00	54.00	-2.45	AVG
7440.00	V	47.62	42.75	8.93	56.55	51.68	74.00	54.00	-2.32	AVG
9918.00	V	33.78	28.00	14.80	48.58		74.00	54.00	-5.42	Peak
N/A										
2480.00	Н	69.10		-2.94	66.16		114.00	94.00	-27.84	Peak
2458.42	Н	58.90	30.70	-2.28	56.62	28.42	74.00	54.00	-25.58	AVG
4960.00	Н	48.17	44.56	2.95	51.12		74.00	54.00	-2.88	Peak
7440.00	Н	42.28	33.26	8.93	51.21		74.00	54.00	-2.79	Peak
N/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:
 - a. Peak Setting 1GHz to 10th harmonics of fundamental, RBW = 1MHz, VBW = 1MHz, Sweep time = Auto.
 - b. AV Setting 1GH z to 10th harmonics of fundamental, RBW = 1MHz, VBW = 10Hz, Sweep time = Auto.

Page 23 Rev. 00

7.3 POWERLINE CONDUCTED EMISSIONS

LIMIT

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

Date of Issue: February 25, 2005

Frequency Range (MHz)	Limits (dBµV)				
Frequency Range (MIIIZ)	Quasi-peak	Average			
0.15 to 0.50	66 to 56	56 to 46			
0.50 to 5	56	46			
5 to 30	60	50			

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI TEST RECEIVER 9kHz-30MHz	ROHDE & SCHWARZ	ESHS30	828144/003	09/24/2005
TWO-LINE V-NETWORK 9kHz-30MHz	SCHAFFNER	NNB41	03/10013	06/11/2005
LISN 10kHz-100MHz	EMCO	3825/2	9106-1809	02/05/2006

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

TEST PROCEDURE

Not Applicable

TEST RESULTS

Not Applicable

Page 24 Rev. 00