

FCC ID: PQS-DWM0001

Exhibit 2e

Engineering Report on

Frequency Stability (2.1055)

Assessment of Compliance

of

Device Frequency Stability in accordance with the FCC Rules & Regulations Parts 2.1055 and 90.213

Wireless Modem DUALWAVE M

Wavenet Technologies Pty Ltd.

February 2002

APREL Project No.:WVTB-Dual Wave M-3861

51 Spectrum Way Nepean ON K2R 1E6 Tel: (613) 820-2730 Fax: (613) 820-4161 email: info@aprel.com *Consulting *Research *Certification Testing *Sar Tools and Training

Engineering Report

Subject: Assessment of

Assessment of Compliance of Device Frequency

Stability In accordance with FCC Rules &

Regulations Parts 2.1055 and 90.213

FCC ID:

PQS-DWM0001

Equipment:

Wireless Modem attachment for Palm

m125/m500/m505/PDA

Model:

DUALWAVE M

Client:

Wavenet Technologies Pty Ltd.

140 Burswood Rd

Burswood, Perth, WA 6100

AUSTRALIA

Project #:

WVTB-Dual Wave M -3861

Prepared By:

APREL Laboratories,

Regulatory Compliance Division

51 Spectrum Way Nepean, Ontario K2R 1E6

Approved by:

Jay Sarkar

Technical Director, Standards & Certification

Submitted by:

Jay Sarkar

Technical Director, Standards & Certification

Released by:

Dr. Jack J. Wojcik, P.Eng.

Date:

THE LABORATORY FOR WIRELESS

Date: Feb. 8, 2002

FCC ID: PQS-DWM0001

Applicant: Wavenet Technologies Pty Ltd.

Equipment: Wireless Modem attachment for Palm m125/m500/m505/PDA

Model: DUALWAVE M

Standard: FCC Rules and Regulations Part 2.1055 and 90.213

ENGINEERING SUMMARY

This report contains the results of the Frequency Stability measurement performed on a **Wavenet Wireless Modem attachment for Palm** m125/m500/m505/PDA **model DUALWAVE M** The measurements were carried out in accordance with the FCC Rules and Regulations Parts 2.1055 and 90.213. The product was evaluated for frequency stability when it was set at the maximum power level. **The DUALWAVE M was tested with Palm m500**.

Frequency stability was measured at the nominal frequencies of 806 MHz, 815 MHz, and 821 MHz. Frequency was measured with respect to voltage at 3.5 V, 3.8 V, and 4.1 V supply levels at 25°C. Frequency was measured with respect to Temperature at 3.8 V supply with a temperature range of -30° to $+60^{\circ}$.

(The results presented in this report relate only to the sample tested.)

Summary of the Results

Test Description	Page	Test Set-up	Results
	No.	Figure No.	Summary
Ref. Paragraph 2.1055 and 90213	8	1	Passed

INTRODUCTION

General

This report describes the results of the frequency stability measurement conducted on a Wavenet Technologies Wireless Modem attachment for Palm m125/m500/m505/PDA model DUALWAVE M.

Test Facility

The evaluation for the compliance was performed for Wavenet Technologies Pty Ltd. by APREL Laboratories at APREL's EMI facility located in Nepean, Ontario, Canada. The laboratory operates an (3m and 10m) Open Area Test Site (OATS). The measurement facility is calibrated in accordance with ANSI C63.4-1992.

A description of the measurement facility in accordance with the radiated and AC line conducted test site criteria per ANSI C63.4-1992 is on file with the Federal Communications Commission and is in compliance with the requirements of Section 2.948 of the Commissions rules and regulations. *APREL's registration number is:* 90416

APREL is accredited by Standard Council of Canada. APREL is also accredited by Industry Canada and recognised by the Federal Communications Commissions (FCC).

Standard

The evaluation and analysis were conducted in accordance with FCC Rules and Regulations Parts 2.1055 and 90.213.

Test Equipment

The test equipment used during the evaluation is listed in Table 1 with calibration due dates.

Environmental Conditions

Measurements were conducted in open area test site.

- Temperature: $25 \,^{\circ}\text{C} \pm 2$ - Relative Humidity: $30 - 50 \,^{\circ}\text{M}$ - Air Pressure: $101 \,^{\circ}\text{kPa} \pm 3$

This report was written by Jayanta (Jay) Sarkar and data by Roman Kuleba.

FCC ID:

As Marketed

Model:

FCC SUBMISSION INFORMATION

Equipment (type):	Wireless Modem attachment for Palm m125/m500/m505/PDA

For: Certification

Applicant: Wavenet Technologies Pty Ltd.

140 Burswood Rd

DUALWAVE M

PQS-DWM0001

Burswood, Perth, WA 6100

AUSTRALIA

Manufacturer: Wavenet Technologies Pty Ltd.

140 Burswood Rd

Burswood, Perth, WA 6100

AUSTRALIA

Evaluated by: **APREL Laboratories**

51 Spectrum Way Nepean, Ontario Canada K2R 1E6

MANUFACTURER'S DATA

FCC ID No: PQS-DWM0001

Equipment Type: Wireless Modem attachment for Palm

m125/m500/m505/PDA

Model: DUALWAVE M

Reference: FCC Rules and Regulations Parts 2 and Part 90

Manufacturer: Wavenet Technologies Pty Ltd

Development

Stage of Unit: Production

GENERAL SPECIFICATIONS

1. Frequency Range: 806.00 to 821.00 MHz (Transmitter)

2. Measured ERP 1.622 W (32.1 dBm)

3. Emission Designators (See 47 CFR § 2.201 and §2.202): 20K0F1D

4. Antenna Impedance: 50 Ohms

Test: Frequency Stability

Ref: FCC Part 2, Paragraph 2.995, and Part 90, Paragraph 90.213

Criteria: 2.5 ppm

Description: Frequency stability is a measure of the frequency drift due to temperature and supply

voltage variations, with reference to the frequency measured at + 25°C and rated supply voltage. The RF carrier frequency shall not depart from the reference

frequency in excess of 2.5 PPM.

Set-up: See Figure 6

Conditions: See procedure

Equipment: See Table 1

Procedure: See Section 4

DEVICE FREQUENCY STABILITY

Test Data	Roger Lam	Date	25/04/01	DOC No.	
Approved	Ross Clark			File No.	

1. Standards.

FCC CFR 47 Ch 1 rules.

Part 2 Required Measurements

Frequency Stability – Procedure, Temperature variation, Voltage variation.

Part 90 Subpart Technical standards.

90.213 Frequency Tolerance

- (a) Maintain carrier frequency within 2.5ppm of assigned frequency.
- (b) Verify Maximum Power output used for measurement.

Frequency and Output power are both measured at the same time.

These are measured at 806MHz, 815MHz, 821MHz.

Frequency is measured with respect to Voltage at 3.5V, 3.8V, 4.1V supply levels at 25° C.

Frequency is measured with respect to Temperature at 3.8V supply with a Temperature range of -30°C to +60°C.

2. Cable calibration

The N type cable and Narda directional coupler used from device port to HP8920 I/P Loss was 0.8dB. for $806 \sim 821MHz$.

A calibrated HP8920A and a stable signal generator were used to measure level change from extra insertion loss of cable assembly.

3. Power and Frequency Measurements

Place: Lab at Wavenet Technology, Perth.

Date: 25/04/01

Instruments

Instrument Used	Serial Number	Calibrated on
DC Power Supply Agilent	MY40001704	Agilent 28/01/01
Universal Counter Agilent 53131A	US36134925	Agilent 28/01/01
10MHz OCXO Frequency Reference	Asset No.11112	Agilent 16/05/01
Communications analyser HP8920	3541U000513	Agilent 16/05/01
Signal Generator Marconi	119754/012	Agilent 17/05/01
Directional Coupler 0.3 ~ 1.0GHz Narda	38750	
Temperature Chamber		
Heraeus Votsch VMT 07/35 Temp. chamber	33287	19/10/98
Temperature probe Fluke80TK	AA00094448	21/02/01 (1yr)

Table 1

4. Procedure

Digital Multimeter Agilent 34461A

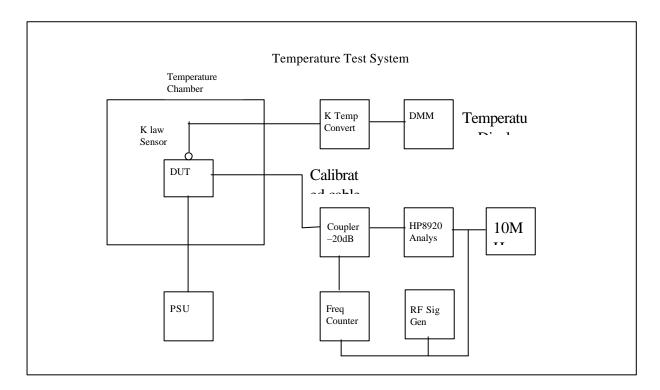
The Wavenet Dualwave M was placed in the Temperature chamber and connected to the instruments outside. Refer to fig 1. for details of test system.

US36134925

The probe temperature was used to set the chamber exactly.

The tests were done once the chamber had stabilised as seen by the Temperature probe. This was 5minutes for the higher temperatures above 0°C and 8 minutes for below 0°C.

16/05/01


The Device was continuously transmitting with a 2 sec TX ON and 8 sec TX OFFcycle.

Modulation was set at RDLAP Symbol Sync (4.8kHz sine wave). (F8 – 6 setting)

The frequency was changed for each 3 frequencies and measurements done for Power and Frequency.

FIGURE 1

Test Set-up

5. Results 806MHz Nominal Frequency (3.8V)

PROBE TEMP	Freq Dev Hz	Freq Dev PPM	O/P Power
-30	-455	-0.56	32.00
-25	30	-0.56	32.00
-20	91	0.04	32.10
-15	-18	0.11	32.10
-10	-97	-0.02	32.10
-5	-187	-0.12	32.10
0	-176	-0.23	32.20
5	-171	-0.22	32.20
10	-171	-0.21	32.20
15	-228	-0.21	32.20
20	-296	-0.28	32.20
25	-443	-0.28	32.20
30	-451	-0.37	32.20
35	-525	-0.55	32.10
40	-539	-0.56	32.10
45	-553	-0.67	32.10
50	-571	-0.69	32.00
55	-566	-0.71	32.00
60	-551	-0.70	32.00

815MHz Nominal Frequency

-25	8	0.01	32.1
-20	73	0.09	32.1
-15	-6	-0.01	32.1
-10	-115	-0.14	32.2
-5	-180	-0.22	32.2
0	-188	-0.23	32.2
5	-175	-0.21	32.2
10	-180	-0.22	32.2
15	-222	-0.27	32.2
20	-317	-0.39	32.2
25	-487	-0.60	32.2
30	-461	-0.57	32.2
35	-527	-0.65	32.2
40	-547	-0.67	32.1
45	-559	-0.69	32.1
50	-587	-0.72	32.1
55	-572	-0.70	32.1
60	-569	-0.70	32.2

821MHz Nominal Frequency

PROBE TEMP	Freq Dev Hz	Freq Dev PPM	O/P Power
-30	-660	-0.80	32.10
-25	4	0.00	32.10
-20	65	0.08	32.10
-15	12	0.01	32.20
-10	-144	-0.18	32.20
-5	-166	-0.20	32.20
0	-184	-0.22	32.20
5	-168	-0.20	32.20
10	-183	-0.22	32.20
15	-214	-0.26	32.20
20	-330	-0.40	32.20
25	-510	-0.62	32.20
30	-472	-0.57	32.20
35	-536	-0.65	32.20
40	-554	-0.67	32.10
45	-566	-0.69	32.10
50	-593	-0.72	32.10
55	-571	-0.70	32.10
60	-565	-0.69	32.00

Output power given in dBm, conducted measurement.

Frequency deviation at Power Variation

Supply Voltage [V]	Temp [°C]	Frequency [MHz]	Frequency Deviation [Hz]	Frequency Deviation [PPM]
3.5	25	806.0	-560	-0.69
3.8	25	806.0	-524	-0.65
4.1	25	806.0	-455	-0.56
3.5	25	815.0	566	0.69
3.8	25	815.0	-527	-0.65
4.1	25	815.0	-502	0.62
3.5	25	821.0	-570	-0.69
3.8	25	821.0	-521	-0.63
4.1	25	821.0	-517	-0.63

Palm and Wavenet DUALWAVE M Wireless Modem tested for Frequency Stability at Power Variation