Test Report Application for Certification On Behalf Of

PRIME ELECTRONICS & SATELLITICS INC.

EUT: Wireless LAN USB adapter

Model Number: WU210G

FCC ID: PQP-WU210G

Prepared for:

PRIME ELECTRONICS & SATELLITICS INC.

No. 69, Tung-Yuan Rd., Chung-Li Industrial Park, Chung-Li City 320, Taoyuan, Taiwan

> Report By :Global EMC Standard Tech. Corp. No.3 Pau-Tou-Tsuo Valley, Chia-Pau Tsuen, Lin Kou Hsiang, Taipei County, Taiwan, R.O.C. Tel : (02) 2603-5321 Fax : (02) 2603-5325

1.Test results given in this report only relate to the specimen(s) tested, measured.

2. This report is the property of GesTek, and shall not be reproduced, other than in full, without the written consent of GesTek.3. The report must not be used by the client to claim product certification, approval, or endorsement by any agency of the federal government.

4.All data in this report are traceable to national standard or international standard.

TABLE OF CONTENTS

DESC	RIPTION	PAGE
1.	CERTIFICATION	4
2.	GENERAL INFORMATION	5
2.1	PRODUCTION DESCRIPTION	5
2.2	OPERATIONAL DESCRIPTION	6
2.3	TEST MODES & EUT COMPONENTS DESCRIPTION	6
2.4	CONFIGURATION OF THE TESTED SYSTEM	7
2.5		
2.0 2.6.1	BLOCK DIAGRAM OF CONNECTIONS BETWEEN FUT AND SI	
2.7	EUT OPERATING CONDITIONS	
3.	CONDUCTION EMISSION DATA	11
3.1	TEST EQUIPMENTS	
3.2	BLOCK DIAGRAM OF TEST SETUP	
3.3	CONDUCTED EMISSION LIMIT	
3.4	OPERATING CONDITION OF EUT	
3.5		
3.0	CONDUCTED EMISSION DATA	
4	RADIATION FMISSION DATA	
		11
4.2	OPEN TEST SITE SETUP DIAGRAM	
4.3	RADIATED EMISSION LIMIT	
4.4	EUT CONFIGURATION	
4.5	OPERATING CONDITION OF EUT	
4.6	RADIATED EMISSION DATA	
4./		
э. - /		
5.1 5.2		
5.2 5.3	PEAK POWER OUTPUT LIMIT	
5.4	TEST RESULT	
6.	BAND EDGE	
6.1	TEST EQUIPMENT	
6.2	BLOCK DIAGRAM OF TEST SETUP	
6.3	BAND EDGE LIMIT	
6.4	EUT CONFIGURATION	
6.5	OPERATING CONDITION OF EUT	
0.0 7		
1.		
/.1 7.2		
7.3	LIMIT	
7.4	TEST RESULT	

8.	POWER DENSITY	49
8.1	TEST EQUIPMENT	49
8.2	BLOCK DIAGRAM OF TEST SETUP	49
8.3	LIMIT	49
8.4	TEST RESULT	50
9.	PHOTOGRAPHS FOR TEST	54
9.1	TEST PHOTOGRAPHS FOR CONDUCTION	
9.2	TEST PHOTOGRAPHS FOR RADIATION	55
10.	PHOTOGRAPHS FOR PRODUCT	57
11.	EMI REDUCTION METHOD DURING COMPLIANCE TESTING	62

1. CERTIFICATION

Applicant

EUT Description

Model Number

: PRIME ELECTRONICS & SATELLITICS INC.

- : Wireless LAN USB adapter
- : WU210G
- Serial Number : N/A
- Brade Name : Pesi
- FCC ID : PQP-WU210G

Tested Power Supply : 110V/60Hz

MEASUREMENT PROCEDURES USED:

CFR 47, Part 15 Radio Frequency Device Subpart C Intentional Radiators :2000

Image: ANSI C63.4Methods of Measurements of Radio-Noise Emissions from Low- Voltage
Electrical and Electronic Equipment in the range of 9kHz To 40GHz.
2001

THE MEASUREMENT SHOWN IN THE ATTACHMENT WAS MADE IN ACCORDANCE WITH THE PROCEDURES INDICATED, AND THE MAXIMUM ENERGY EMITTED BY THE EQUIPMENT WAS FOUND TO BE WITHIN THE ABOVE LIMITS APPLICABLE.

Sample Received Date Final Test Date

<u>December 21, 2003</u>
<u>December 30, 2003</u>

In order to ensure the quality and accuracy of this document, the contents have been thoroughly reviewed by the following qualified personnel from GesTek Lab.

Documented By :

oresa

Teresa Wu / adm. Dept. Technical Report Author

Tested Bv :

Kenny Cho / eng. Dept. Engineer

Administrative Reviewed By :

Joan Chein / adm. Dept. Supervisor

Technical Reviewed Bv :

Shine Chang / eng. Dept

Approved By :

Tonny Lin / General Manager

This test data shown below is traceable to National or international standard such as NIST/USA, etc. The laboratory's NVLAP accreditation in no way constitutes or implies product certification, approval, or endorsement by NVLAP or the United States government.

2. GENERAL INFORMATION

2.1 PRODUCTION DESCRIPTION

Product Name	: Wireless LAN USB adapter
Model Number	: WU210G
Serial Number	: N/A
Brade Name	: Pesi
FCC ID	: PQP-WU210G
Modulation Type	: DBPSK DQPSK CCK OFDM
Antenna Gain	: 0dBi
Antenna Type	: Printed
	Soldered on PCB
Frequencg Range	: 2412~2462 MHz
Channel Number	11 Channel
Data Rate	1.2, 5.5, 11, 6, 9, 12, 18, 24, 36, 48, 54Mbps
Channel Control	Auto
Working Voltage	: DV 5V
USB Cable	: 1.0m

Frequency of Each Channel:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	5	2432	9	2452
2	2417	6	2437	10	2457
3	2422	7	2442	11	2462
4	2427	8	2447		

Note:

- 1. This device is a 2.4GHz Wireless LAN USB adapter included 802.11b and 802.11g 2.4GH transceiver function.
- 2. Test of channel was included the lowest, middle and highest frequency in highest data rate and to perform the test, then record on this report.
- 3. These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 15 Subpart C Paragraph 15.247 for spread spectrum devices.
- 4. The device is a transceiver equipement to accordance with Part 15 regulations. The function receiving was under Declaration of Conformity and record of measurment in test report that the report number is 0312042FCC DOC.

2.2 OPERATIONAL DESCRIPTION

The Transmitter of EUT is a Wireless LAN USB adapter and powered by host equipment. This device have two antenna one is printed another is sold on PCB. The other instruction, please look at user manual.

This is Digital transmission System(DTS) and have four type of modulation DBPSK DQPSK CCK & OFDM. The data rate are 1,2,5.5,11,6,9,12,18,24,36,48.54 Mbps.

The equipment enables high-speed access without wires to network assets. This adapter uses the IEEE 802.11 & 802.11g protocol to enable wireless communications between the host computer and other computers, in the same way that the computer would use an Ethernet adapter.

2.3 TEST MODES & EUT COMPONENTS DESCRIPTION

EUT: Wireless LAN USB adapter, M/N: WU210G The EUT tested with Notebook PC. (DELL, M/N: PP05L)						
Test Mode	Mode 1	Mode 2				
RF output power	802.11b 17dBm (avg)	802.11g 12dBm (avg)				
USB Cable 1.0m						

2.3 CONFIGURATION OF THE TESTED SYSTEM

The FCC IDs/Types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards, which have grants) are:

Device	No.	Configuration			
		Manufacturer	: TOKYO		
		Model Number	: SX-M1		
Headcat & Earphone	E01 052	Serial Number	: N/A		
neausel à carphone	E01-052	Data Cable	: Non-Shielded, Undetachable, 1.8 m		
		Power Cord	: N/A		
		Purchase Date	: 2/22/1999		
		Manufacturer	: Logitech		
		Model Number	: M-U48A		
USB Mouse	M02-261	BSMI ID	: 4882A177		
		FCC ID	: JNZ211360		
		Data Cable	: Shielded, Undetachable, 1.5m		
		Manufacturer	: SONY CORPORATION		
		Model Number	: DCR-TRV230		
		Serial Number	: 380331		
Digital Video		BSMI ID	: N/A		
Camera Recorder	V01-003	AC Power Adaptor	: M/N:AC-L10A, S/N:36880927		
(Digital 8)			Input:AC IN:100-240V 50/60Hz 23W		
			Output:DC 8.4V/1.5A		
		Battery Pack(Li-ion)	: M/N:NP-FM30		
			Input :DC 7.2V/5.0Wh		
		Manufacturer	: ACEEX		
		Model Number	: 1414		
		Serial Number	: 960018043		
		BSMI ID	: N/A		
Modem	M03-010	FCC ID	: IFAXDM1414		
		Data Cable	: Type:RS232, Shielded, Detachable, 1.2m		
		Power Cord	: Non-Shielded, Detachable, 1.5m		
		Line	: Type:RJ11(4P2C), Detachable, 1.8m		
		Phone	: Type:RJ11(4P2C), Detachable, 1.8m		
		Manufacturer	: Hewlett Packard		
		Model Number	: 2225C		
		Serial Number	: 2548540426		
Printer	P01-016	BSMIID	: 3892A957		
			: BS46XU2225C		
		Data Cable	: Shielded, Detachable, 1.2m, Parallel Cable		
		Power Cord	: Non-Shielded, Detachable, 1.8m		
		Manufacturer			
Monitor					
		Data Cable	: Snielded, Undetachable, 1.8m, VGA Cable		
Wiroloss I AN Card		Manufacturer	: PRIME ELECTRONICS & SATELLITICS INC.		
WIICICSS LAW GOLU		Model Number	: CPWUA001		

Device	No.	Configuration			
		Manufacturer	: IBM		
		Model Number	: R50		
Notebook PC		BSMI ID	: R33026		
		FCC ID	: N/A		
		Power Cord	: Non-Shielded, Detachable, 1.5m		
		Manufacturer	: DELL COMPUTER		
		Model Number	: PP05L		
Notebook PC		BSMI ID	: R33002		
		FCC ID	: N/A		
		Power Cord	: Non-Shielded, Detachable, 1.5m.		
		Manufacturer	: ASUS		
Far End Network		Model Number	: AP160R		
Server		Power Cord	: Non- Shielded, Detachable, 1.8m		
		Manufacturer	: Sun Moon Star		
		Model Number	: SMS-4		
Electronic Private		Serial Number	: 9708006		
Automatic Branch		FCC ID	: N/A		
Excnange		Data Cable to EUT	: Type:RJ11(4P2C), Detachable, 1.5m		
		Power Cord	: Non-Shielded, Detachable, 1.5m		

2.4 TEST FACILITY

Ambient conditions in the laboratory:

ITEMS	REQIORED(IEC 68-1)	ACTUAL				
TEMPERATURE (°C)	15-35	24-27				
HUMIDITY (%RH)	25-75 50-65					
BAROMETRIC PRESSURE (mbar)	860-1060	950-1000				
FCC SITE DESCRIPTION	Aug. 10, 1995 /Aug. 2	5, 1998 File on				
	FCC Engineering Labo	oratory				
	Federal Communication	on Commission				
	7435 Oakland Mills Ro	bad				
	Columbia, MD 21046	_				
	Reference 31040/SIT1	1300F2				
NVLAP LAB. CODE	200085-0					
	United Stated Departn	nent of commerce				
	National Institute of St	andards and Technology				
	National Voluntary Laboratory Accreditation Program					
	Accreditation on NVLAP effective through Sep. 30,2004					
	Measurement					
Chinese National Laboratory	Recognized by the Co	uncil of Chinese National Laboratory				
Accreditation Certificate	Accreditation and conf	irmed to meet the requirements of				
R.O.C.	ISO/IEC 17025 also ha	as been registered for fifteen items,				
(CNLA)	and meet the requirements of the Article 4 of Measures					
	Governing the Recognition both Approval of Designated					
	Laboratory for Commodities Inspection and has been					
	registered for four items within the field of Electrical					
	Testing.					
	Registration No.: 1082					
	Registration on CNLA	effective through April 30, 2006.				

2.5 TEST SETUP 2.5.1 BLOCK DIAGRAM OF CONNECTIONS BETWEEN EUT AND SIMULATORS

2.6 EUT OPERATING CONDITIONS

The EUT exercise program used during conducted testing was designed to exercise the EUT in a manner similar to a typical use. The exercise sequence is listed as below:

- 1. Setup the EUT and simulators as shown on 2.5.
- 2. Turn on the power of all equipments.
- 3. The EUT ping with the wireless lan card.
- 4. Repeat the above steps.

3. CONDUCTION EMISSION DATA

3.1 TEST EQUIPMENTS

The following test equipment are used during the conducted power line tests:

Item	Instrument	Manufacturer	Туре	Serial No.	Last Cal.
1	Test Receiver	Rohde & Schwarz	ESHS 30	828109/010	01/02/03
2	L.I.S.N.	KYORISTU	KNW-407	8-1345-10	11/20/03
3	Pulse Limiter	Rohde & Schwarz	ESH3-Z2	357.8810.52	08/07/03
4	RF CABLE	GesTek	N/A	GTK-E-A152-01	12/30/03
5	50 Ohm Terminator	GesTek	N/A	GTK-E-A124-01	10/10/03
6	Shielded Room	GesTek	N/A	B5	N/A

Note: All measurement critical items of test instrumentation were within their calibration period of 1 year.

3.2 BLOCK DIAGRAM OF TEST SETUP

Note: This is a reprehensive setup diagram for Table-top EUT.

For Floor-standing EUT, the table will be removed with all others setup condition remain the same.

3.3 CONDUCTED EMISSION LIMIT

FCC Limit

F	Maximum RF Line Voltage dB(µV)					
Frequency	Clas	ss A	Class B			
MHz	QUASI-PEAK	AVERAGE	QUASI-PEAK	AVERAGE		
0.15 to 0.50	79	66	66 to 56	56 to 46		
0.50 to 5.0	73	60	56	46		
5.0 to 30	73 60		60	50		

Remarks : In the Above Table, the tighter limit applies at the band edges.

3.4 OPERATING CONDITION OF EUT

Same as section 2.6.

3.5 EUT CONFIGURATION ON MEASUREMENT

The equipments that are listed 3.2 are installed on Conducted Power Line Test to meet the Commission requirement and operating in a manner, which tends to maximize its emission characteristics in a normal application.

The device under test, installed in a representative system as described in section 3.2, was placed on a non-conductive table whose total height equal to 80cm. Powered from one L.I.S.N. which signal output to receiver, and the other peripherals was powered from another L.I.S.N. which signal output was terminated by 50Ω .

3.6 CONDUCTED EMISSION DATA

The measurement range of conducted emission, which is from <u>0.15 MHz to 30 MHz</u>, was investigated. All readings are quasi-peak and average values with a resolution Bandwidth of 9 KHz. The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range for all the test modes. Then the worst modes were reported the following data pages.

3.7 CONDUCTED EMISSIONS MEASUREMENT RESULTS

Date of Test	December 30, 2003	Temperature	20 °C
EUT	Wireless LAN USB adapter	Humidity	60 %
Test Mode	802.11g	Display Pattern	H Pattern

	FREQUENCY		READING L	LIMIT			
NO.	MHz	LINE1 Q.P.	LINE1 Q.P. LINE1 AV. LINE2 Q.P. LINE2 AV.				AV.
1	**0.20609	50.6	38.8	48.1	37.9	63.3	53.3
2	0.30739	37.6	27.3	37.1	29.6	60.0	50.0
3	0.83242	29.8	16.1	31.7	16.8	56.0	46.0
4	2.14699	34.3	23.2	33.6	20.8	56.0	46.0
5	10.24799	37.3	31.8	36.6	31.2	60.0	50.0
6	16.27439	27.3	21.6	27.8	22.6	60.0	50.0

Remarks :

All readings are Quasi-peak and Average..
"*" means that the quasi-peak reading level is lower than the average limits; it is not necessary to measure the average level.
"*" means that this data is the worse case emission level.

4. Final measurement = (Receiver reading) + (Correction factor if available).

Line 1

4. RADIATION EMISSION DATA

4.1 TEST EQUIPMENT

The following test equipments are used during the radiated emission tests: Radiated test was performed on: Site #1 Site #2 Site #3 Site #4

Item	Instrument	Manufacturer	Туре	Serial No.	Last Cal.
1	Test Receiver	Rohde & Schwarz	ESVS30	829007/014	12/13/03
2	Spectrum Analyzer	Advantest	R3272	82420232	02/14/03
3	Spectrum Analyzer	HP	E4407B	39240339	08/16/03
4	Power Meter	Rohde & Schwarz	NRVS	100666	02/26/03
5	Power Sensor	Rohde & Schwarz	NRV-Z32	8360191058	05/19/03
6	Pre-Amplifier	HP	8447D	2944A08273	10/11/03
7	BILOG ANTENNA	SCHAFFNER	CBL6112B	2833	12/01/03
8	Horn Antenna	Electro-Metrics	EM-6961	103318	05/30/03
9	Horn Antenna	Schwarzbeck	BBHA 9120	D243	12/18/03
10	RF Cable	GesTek	N/A	GTK-E-A149-01	12/26/03
11	Open Site	GesTek	N/A	A2	12/10/03
12	Test Program Software	GesTek	N/A	GTK-E-S001-01	N/A

Note: All measurement critical items of test instrumentation were within their calibration period of 1 year.

4.2 OPEN TEST SITE SETUP DIAGRAM

Note: This is a reprehensive setup diagram for Table-top EUT. For Floor-standing EUT, the table will be removed with all others setup condition remain the same.

4.3 RADIATED EMISSION LIMIT

⊠FCC Class C Limit at 3m

Frequency	Distance	Field S	trength
MHz	Meter	μV/M	dBµV/M
30 to 88	3	100	40.0
88 to 216	3	150	43.5
216 to 960	3	200	46.0
Above 960	3	500	54.0

Note : The frequencies above 1000MHz, as measured using instrumentation with a peak detector function was corresponding to 20dB above the maximum permitted average limit.

4.4 EUT CONFIGURATION

The equipment which is listed 2.6 are installed on Radiated Emission Test to meet the Commission requirement and operating in a manner which tends to maximize its emission characteristics in a normal application.

The device under test, installed in a representative system as described in section 4.2, was placed on a non-conductive table whose total height equaled 80 cm. This table can be rotated 360 degree. The measurement antenna was mounted to a non-conductive mast capable of moving the antenna vertically. Antenna height was varied from 1 meter to 4 meters and the system under test was rotated from 0 degree through 360 degrees relative to the antenna position and polarization (Horizontal and Vertical). Also the I/O cable position was investigated to find the maximum emission condition.

4.5 OPERATING CONDITION OF EUT

Same as section 2.6.

4.6 RADIATED EMISSION DATA

The measurement range of radiated emission, which is from <u>30 MHz to 10 Harminics</u>, was investigated. All readings below 1GHz are quasi-peak values with a resolution bandwidth of 120 KHz. Above 1GHz are peak and avg. values with a resolution bandwidth of 1MHz. The initial step in collecting radiated emission data is a spectrum analyzer peak scans of the measurement range for all the test modes and then use test receiver for final measurement. Then the worst modes were reported the following data pages.

Date of Test	December 30, 2003	Temperature	21 deg/C				
EUT	Wireless LAN USB adapter	Humidity	60 %RH				
Working Cond.	Channel 1	Display Pattern	H Pattern				
Antenna distance	3m at Horizontal	Frequency Range	30-1000MHz				

4.7 RADIATED EMISSIONS MEASUREMENT RESULTS

No.	Frequency [MHz]	Cable Loss [dB]	Antenna Factor [dB/m]	Reading Level [dB(uV)]	Emission Level [dB(uV/m)]	Amp. Factor [dB]	Limit [dB(uV/m)]	Margin [dB]
1	359.999	4.16	15.54	12.40	32.10	0.00	46.00	-13.90
2	400.000	4.42	16.50	19.00	39.92	0.00	46.00	-6.08
3	519.998	5.15	18.03	11.80	34.98	0.00	46.00	-11.02
4	599.998	5.68	18.99	7.20	31.87	0.00	46.00	-14.13
5	639.997	5.85	19.27	8.00	33.12	0.00	46.00	-12.88
6	779.997	6.62	20.18	7.10	33.90	0.00	46.00	-12.10
7	799.997	6.71	20.29	8.10	35.10	0.00	46.00	-10.90
8	839.997	6.97	20.70	8.00	35.67	0.00	46.00	-10.33
9	959.996	7.56	21.60	3.78	32.94	0.00	46.00	-13.06

Remarks:

1. All Readings below 1GHz are Quasi-Peak.

2. Emission Level= Reading + Antenna Factor + Cable loss (Could have ±0.01 tolerance due to computer automatically round off calculation).

3. Margin Value=Emission level-Limit value.

GESTEK Lab No 3, Pau-Tou-Tsuo Valley, Chia-Pau Tsuen, Lin Kou Hsiang, Taipei County, Taiwan, R.O.C. Tel:886-2-2603-5321 Fax:886-2-2603-5325

Date of Test	December 30, 2003	Temperature	21 deg/C
EUT	Wireless LAN USB adapter	Humidity	60 %RH
Working Cond.	Channel 1	Display Pattern	H Pattern
Antenna distance	3m at Vertical	Frequency Range	30-1000MHz

No.	Frequency [MHz]	Cable Loss [dB]	Antenna Factor [dB/m]	Reading Level [dB(uV)]	Emission Level [dB(uV/m)]	Amp. Factor [dB]	Limit [dB(uV/m)]	Margin [dB]
1	160.003	2.31	11.10	27.20	40.61	0.00	43.50	-2.89
2	176.001	2.44	10.25	18.70	31.39	0.00	43.50	-12.11
З	180.059	2.47	10.03	19.90	32.40	0.00	43.50	-11.10
4	191.753	2.57	10.21	23.60	36.38	0.00	43.50	-7.12
5	200.000	2.66	10.40	19.10	32.16	0.00	43.50	-11.34
6	210.067	2.74	10.85	17.30	30.89	0.00	43.50	-12.61
7	320.000	3.79	14.57	19.30	37.66	0.00	46.00	-8.34
8	400.000	4.42	16.50	20.22	41.14	0.00	46.00	-4.86

Remarks:

1. All Readings below 1GHz are Quasi-Peak.

2. Emission Level= Reading + Antenna Factor + Cable loss (Could have ±0.01 tolerance due to computer automatically round off calculation).

3. Margin Value=Emission level-Limit value.

Date of Test	December 30, 2003	Temperature	21 deg/C
EUT	Wireless LAN USB adapter	Humidity	60 %RH
Working Cond.	Channel 6	Display Pattern	H Pattern
Antenna distance	3m at Horizontal	Frequency Range	30-1000MHz

No.	Frequency [MHz]	Cable Loss [dB]	Antenna Factor [dB/m]	Reading Level [dB(uV)]	Emission Level [dB(uV/m)]	Amp. Factor [dB]	Limit [dB(uV/m)]	Margin [dB]
1	191.753	2.57	10.21	28.35	41.13	0.00	43.50	-2.37
2	200.000	2.66	10.40	21.50	34.56	0.00	43.50	-8.94
3	240.000	2.97	12.23	22.60	37.80	0.00	46.00	-8.20
4	270.087	3.26	13.24	18.40	34.90	0.00	46.00	-11.10
5	320.000	3.79	14.57	23.00	41.36	0.00	46.00	-4.64
6	390.123	4.36	16.27	11.90	32.53	0.00	46.00	-13.47
7	400.000	4.42	16.50	19.00	39.92	0.00	46.00	-6.08
8	519.998	5.15	18.03	11.80	34.98	0.00	46.00	-11.02
9	639.997	5.85	19.27	8.00	33.12	0.00	46.00	-12.88
10	719.997	6.25	19.82	14.04	40.11	0.00	46.00	-5.89
11	758.831	6.55	20.05	10.20	36.80	0.00	46.00	-9.20
12	839.997	6.97	20.70	8.00	35.67	0.00	46.00	-10.33
13	919.997	7.42	21.40	6.36	35.18	0.00	46.00	-10.82

1. All Readings below 1GHz are Quasi-Peak.

2. Emission Level= Reading + Antenna Factor + Cable loss (Could have ±0.01 tolerance due to computer automatically round off calculation).

3. Margin Value=Emission level-Limit value.

GESTEK	Report #: 0312042
N0 3, Pau-Tou-Tsuo Valley, Chia-Pau Tsuen, Lin Kou Hsiang, Taipei County, Taiwan, R.O.C.	Tel:886-2-2603-5321 Fax:886-2-2603-5325

Date of Test	December 30, 2003	Temperature	21 deg/C
EUT	Wireless LAN USB adapter	Humidity	60 %RH
Working Cond.	Channel 6	Display Pattern	H Pattern
Antenna distance	3m at Vertical	Frequency Range	30-1000MHz

No.	Frequency [MHz]	Cable Loss [dB]	Antenna Factor [dB/m]	Reading Level [dB(uV)]	Emission Level [dB(uV/m)]	Amp. Factor [dB]	Limit [dB(uV/m)]	Margin [dB]
1	160.003	2.31	11.10	27.20	40.61	0.00	43.50	-2.89
2	176.001	2.44	10.25	18.70	31.39	0.00	43.50	-12.11
3	180.059	2.47	10.03	19.90	32.40	0.00	43.50	-11.10
4	191.753	2.57	10.21	23.60	36.38	0.00	43.50	-7.12
5	200.000	2.66	10.40	19.10	32.16	0.00	43.50	-11.34
6	210.067	2.74	10.85	17.30	30.89	0.00	43.50	-12.61
7	320.000	3.79	14.57	19.30	37.66	0.00	46.00	-8.34
8	390.124	4.36	16.27	14.05	34.68	0.00	46.00	-11.32
9	400.000	4.42	16.50	20.22	41.14	0.00	46.00	-4.86
10	425.003	4.56	16.83	14.39	35.78	0.00	46.00	-10.22
11	475.008	4.94	17.47	10.60	33.01	0.00	46.00	-12.99
12	520.000	5.15	18.03	9.23	32.41	0.00	46.00	-13.59
13	640.000	5.85	19.27	8.07	33.19	0.00	46.00	-12.81
14	720.000	6.25	19.82	14.00	40.07	0.00	46.00	-5.93
15	758.833	6.55	20.05	9.50	36.10	0.00	46.00	-9.90
16	780.000	6.62	20.18	7.10	33.90	0.00	46.00	-12.10

1. All Readings below 1GHz are Quasi-Peak.

2. Emission Level= Reading + Antenna Factor + Cable loss (Could have ±0.01 tolerance due to computer automatically round off calculation).

- 3. Margin Value=Emission level-Limit value.
- 4. The gray shadow means this data is the worse case emission level.

Date of Test	January 05, 2004	Temperature	21 deg/C
EUT	Wireless LAN USB adapter	Humidity	60 %RH
Working Cond.	Channel 11	Display Pattern	H Pattern
Antenna distance	3m at Horizontal	Frequency Range	30-1000MHz

Frequency [MHz]	Cable Loss [dB]	Antenna Factor [dB/m]	Reading Level [dB(uV)]	Emission Level [dB(uV/m)]	Amp. Factor [dB]	Limit [dB(uV/m)]	Margin [dB]
320.000	3.79	14.57	23.00	41.36	0.00	46.00	-4.64
400.000	4.42	16.50	19.00	39.92	0.00	46.00	-6.08
519.998	5.15	18.03	11.80	34.98	0.00	46.00	-11.02
639.997	5.85	19.27	8.00	33.12	0.00	46.00	-12.88
719.997	6.25	19.82	14.04	40.11	0.00	46.00	-5.89
758.831	6.55	20.05	10.20	36.80	0.00	46.00	-9.20
779.997	6.62	20.18	7.10	33.90	0.00	46.00	-12.10
799.997	6.71	20.29	8.10	35.10	0.00	46.00	-10.90
959.996	7.56	21.60	3.78	32.94	0.00	46.00	-13.06
	Frequency [MHz] 320.000 400.000 519.998 639.997 719.997 758.831 779.997 799.997 959.996	Cable Loss [MHz] [dB] 320.000 3.79 400.000 4.42 519.998 5.15 639.997 5.85 719.997 6.25 758.831 6.55 779.997 6.62 799.997 6.71 959.996 7.56	Cable Antenna Loss Factor [MHz] [dB] [dB/m] 320.000 3.79 14.57 400.000 4.42 16.50 519.998 5.15 18.03 639.997 5.85 19.27 719.997 6.25 19.82 758.831 6.55 20.05 779.997 6.62 20.18 799.997 6.71 20.29 959.996 7.56 21.60	Cable [MHz] Antenna Loss [dB] Reading Level [dB/m] 320.000 3.79 14.57 23.00 320.000 3.79 14.57 23.00 400.000 4.42 16.50 19.00 519.998 5.15 18.03 11.80 639.997 5.85 19.27 8.00 719.997 6.25 19.82 14.04 758.831 6.55 20.05 10.20 779.997 6.62 20.18 7.10 959.996 7.56 21.60 3.78	Frequency [MHz]Cable LossAntenna Factor [dB]Reading Level [dB(uV)]Emission Level [dB(uV/m)]320.0003.7914.5723.0041.36400.0004.4216.5019.0039.92519.9985.1518.0311.8034.98639.9975.8519.278.0033.12719.9976.2519.8214.0440.11758.8316.5520.0510.2036.80779.9976.6220.187.1033.90959.9967.5621.603.7832.94	Cable [MHz] Antenna Loss Reading Level [dB(uV)] Emission Level [dB(uV/m)] Amp. Factor [dB] 320.000 3.79 14.57 23.00 41.36 0.00 400.000 4.42 16.50 19.00 39.92 0.00 519.998 5.15 18.03 11.80 34.98 0.00 639.997 5.85 19.27 8.00 33.12 0.00 719.997 6.25 19.82 14.04 40.11 0.00 779.997 6.62 20.18 7.10 33.90 0.00 799.997 6.71 20.29 8.10 35.10 0.00 959.996 7.56 21.60 3.78 32.94 0.00	Frequency [MHz]Cable Loss [dB]Antenna Factor [dB/m]Reading Level [dB(uV)]Emission Level [dB(uV/m)]Amp. Factor [dB]Limit [dB(uV/m)]320.0003.7914.5723.0041.360.0046.00400.0004.4216.5019.0039.920.0046.00519.9985.1518.0311.8034.980.0046.00639.9975.8519.278.0033.120.0046.00719.9976.2519.8214.0440.110.0046.00779.9976.6220.187.1033.900.0046.00799.9967.5621.603.7832.940.0046.00

1. All Readings below 1GHz are Quasi-Peak.

2. Emission Level= Reading + Antenna Factor + Cable loss (Could have ±0.01 tolerance due to computer automatically round off calculation).

3. Margin Value=Emission level-Limit value.

Date of Test	January 05, 2004	Temperature	21 deg/C
EUT	Wireless LAN USB adapter	Humidity	60 %RH
Working Cond.	Channel 11	Display Pattern	H Pattern
Antenna distance	3m at Vertical	Frequency Range	30-1000MHz

No.	Frequency [MHz]	Cable Loss [dB]	Antenna Factor [dB/m]	Reading Level [dB(uV)]	Emission Level [dB(uV/m)]	Amp. Factor [dB]	Limit [dB(uV/m)]	Margin [dB]
1	160.003	2.31	11.10	27.20	40.61	0.00	43.50	-2.89
2	167.267	2.35	10.73	14.70	27.78	0.00	43.50	-15.72
3	176.001	2.44	10.25	18.70	31.39	0.00	43.50	-12.11
4	180.059	2.47	10.03	19.90	32.40	0.00	43.50	-11.10
5	191.753	2.57	10.21	23.60	36.38	0.00	43.50	-7.12
6	240.001	2.97	12.23	15.70	30.90	0.00	46.00	-15.10
7	270.087	3.26	13.24	12.90	29.40	0.00	46.00	-16.60
8	320.000	3.79	14.57	19.30	37.66	0.00	46.00	-8.34
9	360.001	4.16	15.54	12.10	31.80	0.00	46.00	-14.20
10	400.000	4.42	16.50	20.22	41.14	0.00	46.00	-4.86

1. All Readings below 1GHz are Quasi-Peak.

2. Emission Level= Reading + Antenna Factor + Cable loss (Could have ±0.01 tolerance due to computer automatically round off calculation).

3. Margin Value=Emission level-Limit value.

Date of Test	December 26, 2003	Temperature	21 deg/C
EUT	Wireless LAN USB adapter	Humidity	60 %RH
Working Cond.	Mode 1 (802.11b)	Display Pattern	H Pattern
	Channel 1		
Antenna distance	3m at Horizontal	Frequency Range	Above 1GHz

No.	Frequency [MHz]	Reading Level [dB(uV)]	Correction Factor [dB/m]	Emission Level [dB(uV/m)]	Limit [dB(uV/m)]	Margin [dB]
1	4824.17	48.67	4.73	53.40	74.00	-20.60
2	7236.12	45.15	11.25	< 56.40	74.00	-17.60
3	9647.85	47.00	14.09	< 61.09	74.00	-12.91

Average

No.	Frequency [MHz]	Reading Level [dB(uV)]	Correction Factor [dB/m]	Emission Level [dB(uV/m)]	Limit [dB(uV/m)]	Margin [dB]
1	7236.00	34.12	11.25	< 45.37	54.00	-8.63
2	9647.97	37.18	14.09	< 51.27	54.00	-2.73

- 1. All Readings below 1GHz are Quasi-Peak and above 1GHz are peak or average.
- 2. Spectrum Analizyer Setting(Peak Detector): RBW=1MHz, VBW=1MHZ, Span=100MHz.
- 3. Spectrum Analizyer Setting(AVG Detector): RBW=1MHz, VBW=30HZ, Span=20MHz.
- 4. Emission Level= Reading + Correction Factor (Could have ±0.01 tolerance due to computer automatically round off calculation).
- 5. Correction Factor= Antenna Factor + Cable Loss Amplifier Factor
- 6. Margin Value=Emission level-Limit value.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection. If the average value is measured, peak measurement should also be supplied.

Date of Test	December 26, 2003	Temperature	21 deg/C
EUT	Wireless LAN USB adapter	Humidity	60 %RH
Warking Cond	Mode 1 (802.11b)	Display Pattern	H Pattern
working Cond.	Channel 1		
Antenna distance	3m at Vertical	Frequency Range	Above 1GHz

No.	Frequency [MHz]	Reading Level [dB(uV)]	Correction Factor [dB/m]	Emission Level [dB(uV/m)]	Limit [dB(uV/m)]	Margin [dB]
1	4824.02	49.67	4.63	54.30	74.00	-19.70
2	7235.97	46.71	13.28	< 59.99	74.00	-14.01
3	9648.10	47.33	14.51	< 61.84	74.00	-12.16

Average

No.	Frequency [MHz]	Reading Level [dB(uV)]	Correction Factor [dB/m]	Emission Level [dB(uV/m)]	Limit [dB(uV/m)]	Margin [dB]
1	4823.98	37.75	4.63	42.38	54.00	-11.62
2	7236.00	33.95	13.28	< 47.23	54.00	-6.77
3	9648.00	37.50	14.51	< 52.01	54.00	-1.99

- 1. All Readings below 1GHz are Quasi-Peak and above 1GHz are peak or average.
- 2. Spectrum Analizyer Setting(Peak Detector): RBW=1MHz, VBW=1MHZ, Span=100MHz.
- 3. Spectrum Analizyer Setting(AVG Detector): RBW=1MHz, VBW=30HZ, Span=20MHz.
- 4. Emission Level= Reading + Correction Factor (Could have ±0.01 tolerance due to computer automatically round off calculation).
- 5. Correction Factor= Antenna Factor + Cable Loss Amplifier Factor
- 6. Margin Value=Emission level-Limit value.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection. If the average value is measured, peak measurement should also be supplied.

Date of Test	December 26, 2003	Temperature	21 deg/C
EUT	Wireless LAN USB adapter	Humidity	60 %RH
Working Cond.	Mode 1 (802.11b)	Display Pattern	H Pattern
	Channel 6		
Antenna distance	3m at Horizontal	Frequency Range	Above 1GHz

No.	Frequency [MHz]	Reading Level [dB(uV)]	Correction Factor [dB/m]	Emission Level [dB(uV/m)]	Limit [dB(uV/m)]	Margin [dB]
1	4874.10	49.21	4.79	54.00	74.00	-20.00
2	7310.95	46.37	11.67	< 58.04	74.00	-15.96
3	9748.07	46.05	14.09	< 60.14	74.00	-13.86

Average

No.	Frequency [MHz]	Reading Level [dB(uV)]	Correction Factor [dB/m]	Emission Level [dB(uV/m)]	Limit [dB(uV/m)]	Margin [dB]
1	4874.05	41.83	4.79	46.62	54.00	-7.38
2	7310.85	34.56	11.67	< 46.23	54.00	-7.77
3	9748.02	35.73	14.09	< 49.82	54.00	-4.18

- 1. All Readings below 1GHz are Quasi-Peak and above 1GHz are peak or average.
- 2. Spectrum Analizyer Setting(Peak Detector): RBW=1MHz, VBW=1MHZ, Span=100MHz.
- 3. Spectrum Analizyer Setting(AVG Detector): RBW=1MHz, VBW=30HZ, Span=20MHz.
- 4. Emission Level= Reading + Correction Factor (Could have ±0.01 tolerance due to computer automatically round off calculation).
- 5. Correction Factor= Antenna Factor + Cable Loss Amplifier Factor
- 6. Margin Value=Emission level-Limit value.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection. If the average value is measured, peak measurement should also be supplied.

Date of Test	December 26, 2003	Temperature	21 deg/C
EUT	Wireless LAN USB adapter	Humidity	60 %RH
Worldon Cond	Mode 1 (802.11b)	Display Pattern	H Pattern
working Cond.	Channel 6		
Antenna distance	3m at Vertical	Frequency Range	Above 1GHz

No.	Frequency [MHz]	Reading Level [dB(uV)]	Correction Factor [dB/m]	Emission Level [dB(uV/m)]	Limit [dB(uV/m)]	Margin [dB]
1	4874.07	51.06	5.00	56.06	74.00	-17.94
2	7310.70	46.81	13.60	< 60.41	74.00	-13.59
3	9747.57	47.06	14.56	< 61.62	74.00	-12.38
4	12185.15	46.08	18.56	< 64.64	74.00	-9.36

Average

No.	Frequency [MHz]	Reading Level [dB(uV)]	Correction Factor [dB/m]	Emission Level [dB(uV/m)]	Limit [dB(uV/m)]	Margin [dB]
1	4874.02	40.76	5.00	45.76	54.00	-8.24
2	7311.07	34.70	13.60	< 48.30	54.00	-5.70
3	9747.97	37.44	14.56	< 52.00	54.00	-2.00
4	12185.15	34.13	18.56	< 52.69	54.00	-1.31

Remark

1. All Readings below 1GHz are Quasi-Peak and above 1GHz are peak or average.

2. Spectrum Analizyer Setting(Peak Detector): RBW=1MHz, VBW=1MHZ, Span=100MHz.

3. Spectrum Analizyer Setting(AVG Detector): RBW=1MHz, VBW=30HZ, Span=20MHz.

4. Emission Level= Reading + Correction Factor (Could have ±0.01 tolerance due to computer automatically round off calculation).

5. Correction Factor= Antenna Factor + Cable Loss - Amplifier Factor

6. Margin Value=Emission level-Limit value.

7. The average measurement was not performed when the peak measured data under the limit of average detection. If the average value is measured, peak measurement should also be supplied.

Date of Test	December 26, 2003	Temperature	21 deg/C
EUT	Wireless LAN USB adapter	Humidity	60 %RH
Working Cond.	Mode 1 (802.11b)	Display Pattern	H Pattern
	Channel 11		
Antenna distance	3m at Horizontal	Frequency Range	Above 1GHz

No.	Frequency [MHz]	Reading Level [dB(uV)]	Correction Factor [dB/m]	Emission Level [dB(uV/m)]	Limit [dB(uV/m)]	Margin [dB]
1	4923.80	50.37	4.85	55.22	74.00	-18.78
2	7386.02	45.91	12.09	< 58.00	74.00	-16.00
3	9848.22	46.12	14.08	< 60.20	74.00	-13.80

Average

No.	Frequency [MHz]	Reading Level [dB(uV)]	Correction Factor [dB/m]	Emission Level [dB(uV/m)]	Limit [dB(uV/m)]	Margin [dB]
1	4924.07	42.92	4.85	47.77	54.00	-6.23
2	7385.90	34.14	12.09	< 46.23	54.00	-7.77
3	9848.22	34.31	14.80	< 48.39	54.00	-5.61

- 1. All Readings below 1GHz are Quasi-Peak and above 1GHz are peak or average.
- 2. Spectrum Analizyer Setting(Peak Detector): RBW=1MHz, VBW=1MHZ, Span=100MHz.
- 3. Spectrum Analizyer Setting(AVG Detector): RBW=1MHz, VBW=30HZ, Span=20MHz.
- 4. Emission Level= Reading + Correction Factor (Could have ±0.01 tolerance due to computer automatically round off calculation).
- 5. Correction Factor= Antenna Factor + Cable Loss Amplifier Factor
- 6. Margin Value=Emission level-Limit value.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection. If the average value is measured, peak measurement should also be supplied.

Date of Test	December 26, 2003	Temperature	21 deg/C
EUT	Wireless LAN USB adapter	Humidity	60 %RH
Worldon Cond	Mode 1 (802.11b)	Display Pattern	H Pattern
working Cond.	Channel 11		
Antenna distance	3m at Vertical	Frequency Range	Above 1GHz

No.	Frequency [MHz]	Reading Level [dB(uV)]	Correction Factor [dB/m]	Emission Level [dB(uV/m)]	Limit [dB(uV/m)]	Margin [dB]
1	4923.87	51.62	5.36	56.98	74.00	-17.02
2	7386.32	46.37	13.93	< 60.30	74.00	-13.70
3	9848.07	45.91	14.61	< 60.52	74.00	-13.48

Average

No.	Frequency [MHz]	Reading Level [dB(uV)]	Correction Factor [dB/m]	Emission Level [dB(uV/m)]	Limit [dB(uV/m)]	Margin [dB]
1	4924.02	42.22	5.36	47.58	54.00	-6.42
2	7386.02	34.24	13.92	< 48.16	54.00	-5.84
3	9848.02	35.91	14.61	< 50.52	54.00	-3.48

- 1. All Readings below 1GHz are Quasi-Peak and above 1GHz are peak or average.
- 2. Spectrum Analizyer Setting(Peak Detector): RBW=1MHz, VBW=1MHZ, Span=100MHz.
- 3. Spectrum Analizyer Setting(AVG Detector): RBW=1MHz, VBW=30HZ, Span=20MHz.
- 4. Emission Level= Reading + Correction Factor (Could have ±0.01 tolerance due to computer automatically round off calculation).
- 5. Correction Factor= Antenna Factor + Cable Loss Amplifier Factor
- 6. Margin Value=Emission level-Limit value.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection. If the average value is measured, peak measurement should also be supplied.

Date of Test	December 26, 2003	Temperature	21 deg/C
EUT	Wireless LAN USB adapter	Humidity	60 %RH
Working Cond.	Mode 2 (802.11g)	Display Pattern	H Pattern
	Channel 1		
Antenna distance	3m at Horizontal	Frequency Range	Above 1GHz

No.	Frequency [MHz]	Reading Level [dB(uV)]	Correction Factor [dB/m]	Emission Level [dB(uV/m)]	Limit [dB(uV/m)]	Margin [dB]
1	4824.25	47.6	4.73	52.33	74.00	-21.67
2	7235.92	45.34	11.25	< 56.59	74.00	-17.41
3	9648.12	46.22	14.09	< 60.31	74.00	-13.69

Average

No.	Frequency [MHz]	Reading Level [dB(uV)]	Correction Factor [dB/m]	Emission Level [dB(uV/m)]	Limit [dB(uV/m)]	Margin [dB]
1	7236.12	34.04	11.25	< 45.29	54.00	-8.71
2	9648.10	36.42	14.09	< 50.51	54.00	-3.49

- 1. All Readings below 1GHz are Quasi-Peak and above 1GHz are peak or average.
- 2. Spectrum Analizyer Setting(Peak Detector): RBW=1MHz, VBW=1MHZ, Span=100MHz.
- 3. Spectrum Analizyer Setting(AVG Detector): RBW=1MHz, VBW=30HZ, Span=20MHz.
- 4. Emission Level= Reading + Correction Factor (Could have ±0.01 tolerance due to computer automatically round off calculation).
- 5. Correction Factor= Antenna Factor + Cable Loss Amplifier Factor
- 6. Margin Value=Emission level-Limit value.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection. If the average value is measured, peak measurement should also be supplied.

Date of Test	December 26, 2003	Temperature	21 deg/C
EUT	Wireless LAN USB adapter	Humidity	60 %RH
Worldon Cond	Mode 2 (802.11g)	Display Pattern	H Pattern
working Cond.	Channel 1		
Antenna distance	3m at Vertical	Frequency Range	Above 1GHz

No.	Frequency [MHz]	Reading Level [dB(uV)]	Correction Factor [dB/m]	Emission Level [dB(uV/m)]	Limit [dB(uV/m)]	Margin [dB]
1	4823.62	47.78	4.63	52.41	74.00	-21.59
2	7236.02	45.31	13.28	< 58.59	74.00	-15.41
3	9648.15	46.82	14.51	< 61.33	74.00	-12.67

Average

No.	Frequency [MHz]	Reading Level [dB(uV)]	Correction Factor [dB/m]	Emission Level [dB(uV/m)]	Limit [dB(uV/m)]	Margin [dB]
1	7236.00	33.98	13.28	< 47.26	54.00	-6.74
2	9647.95	38.46	14.51	< 52.97	54.00	-1.03

- 1. All Readings below 1GHz are Quasi-Peak and above 1GHz are peak or average.
- 2. Spectrum Analizyer Setting(Peak Detector): RBW=1MHz, VBW=1MHZ, Span=100MHz.
- 3. Spectrum Analizyer Setting(AVG Detector): RBW=1MHz, VBW=30HZ, Span=20MHz.
- 4. Emission Level= Reading + Correction Factor (Could have ±0.01 tolerance due to computer automatically round off calculation).
- 5. Correction Factor= Antenna Factor + Cable Loss Amplifier Factor
- 6. Margin Value=Emission level-Limit value.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection. If the average value is measured, peak measurement should also be supplied.

Date of Test	December 26, 2003	Temperature	21 deg/C
EUT	Wireless LAN USB adapter	Humidity	60 %RH
Working Cond.	Mode 2 (802.11g)	Display Pattern	H Pattern
	Channel 6		
Antenna distance	3m at Horizontal	Frequency Range	Above 1GHz

No.	Frequency [MHz]	Reading Level [dB(uV)]	Correction Factor [dB/m]	Emission Level [dB(uV/m)]	Limit [dB(uV/m)]	Margin [dB]
1	4874.40	49.16	4.79	53.95	74.00	-20.05
2	7311.40	46.85	11.67	< 58.52	74.00	-15.48
3	9747.82	45.27	14.09	< 59.36	74.00	-14.64

Average

No.	Frequency [MHz]	Reading Level [dB(uV)]	Correction Factor [dB/m]	Emission Level [dB(uV/m)]	Limit [dB(uV/m)]	Margin [dB]
1	7310.92	34.63	11.67	< 46.30	54.00	-7.70
2	9747.92	35.40	14.09	< 49.49	54.00	-4.51

- 1. All Readings below 1GHz are Quasi-Peak and above 1GHz are peak or average.
- 2. Spectrum Analizyer Setting(Peak Detector): RBW=1MHz, VBW=1MHZ, Span=100MHz.
- 3. Spectrum Analizyer Setting(AVG Detector): RBW=1MHz, VBW=30HZ, Span=20MHz.
- 4. Emission Level= Reading + Correction Factor (Could have ±0.01 tolerance due to computer automatically round off calculation).
- 5. Correction Factor= Antenna Factor + Cable Loss Amplifier Factor
- 6. Margin Value=Emission level-Limit value.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection. If the average value is measured, peak measurement should also be supplied.

Date of Test	December 26, 2003	Temperature	21 deg/C
EUT	Wireless LAN USB adapter	Humidity	60 %RH
Working Cond	Mode 2 (802.11g)	Display Pattern	H Pattern
working Cond.	Channel 6		
Antenna distance	3m at Vertical	Frequency Range	Above 1GHz

No.	Frequency [MHz]	Reading Level [dB(uV)]	Correction Factor [dB/m]	Emission Level [dB(uV/m)]	Limit [dB(uV/m)]	Margin [dB]
1	4873.77	47.65	5.00	52.65	74.00	-21.35
2	7311.02	46.18	13.60	< 59.78	74.00	-14.22
3	9747.87	46.78	14.56	< 61.34	74.00	-12.66

Average

No.	Frequency [MHz]	Reading Level [dB(uV)]	Correction Factor [dB/m]	Emission Level [dB(uV/m)]	Limit [dB(uV/m)]	Margin [dB]
1	7310.97	34.66	13.60	< 48.26	54.00	-5.74
2	9747.97	37.10	14.56	< 51.66	54.00	-2.34

- 1. All Readings below 1GHz are Quasi-Peak and above 1GHz are peak or average.
- 2. Spectrum Analizyer Setting(Peak Detector): RBW=1MHz, VBW=1MHZ, Span=100MHz.
- 3. Spectrum Analizyer Setting(AVG Detector): RBW=1MHz, VBW=30HZ, Span=20MHz.
- 4. Emission Level= Reading + Correction Factor (Could have ±0.01 tolerance due to computer automatically round off calculation).
- 5. Correction Factor= Antenna Factor + Cable Loss Amplifier Factor
- 6. Margin Value=Emission level-Limit value.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection. If the average value is measured, peak measurement should also be supplied.

Date of Test	December 26, 2003	Temperature	21 deg/C
EUT	Wireless LAN USB adapter	Humidity	60 %RH
Working Cond.	Mode 2 (802.11g)	Display Pattern	H Pattern
	Channel 11		
Antenna distance	3m at Horizontal	Frequency Range	Above 1GHz

No.	Frequency [MHz]	Reading Level [dB(uV)]	Correction Factor [dB/m]	Emission Level [dB(uV/m)]	Limit [dB(uV/m)]	Margin [dB]
1	4924.22	48.50	4.85	53.35	74.00	-20.65
2	7386.00	45.20	12.09	< 57.29	74.00	-16.71
3	9848.25	45.84	14.08	< 59.92	74.00	-14.08

Average

No.	Frequency [MHz]	Reading Level [dB(uV)]	Correction Factor [dB/m]	Emission Level [dB(uV/m)]	Limit [dB(uV/m)]	Margin [dB]
1	7385.90	34.12	12.09	< 46.21	54.00	-7.79
2	9848.25	34.60	14.08	< 48.68	54.00	-5.32

- 1. All Readings below 1GHz are Quasi-Peak and above 1GHz are peak or average.
- 2. Spectrum Analizyer Setting(Peak Detector): RBW=1MHz, VBW=1MHZ, Span=100MHz.
- 3. Spectrum Analizyer Setting(AVG Detector): RBW=1MHz, VBW=30HZ, Span=20MHz.
- 4. Emission Level= Reading + Correction Factor (Could have ±0.01 tolerance due to computer automatically round off calculation).
- 5. Correction Factor= Antenna Factor + Cable Loss Amplifier Factor
- 6. Margin Value=Emission level-Limit value.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection. If the average value is measured, peak measurement should also be supplied.

Date of Test	December 26, 2003	Temperature	21 deg/C
EUT	Wireless LAN USB adapter	Humidity	60 %RH
Worldon Cond	Mode 2 (802.11g) Display Pattern		H Pattern
working Cond.	Channel 11		
Antenna distance	3m at Vertical	Frequency Range	Above 1GHz

No.	Frequency [MHz]	Reading Level [dB(uV)]	Correction Factor [dB/m]	Emission Level [dB(uV/m)]	Limit [dB(uV/m)]	Margin [dB]
1	4924.25	48.73	5.36	54.09	74.00	-19.91
2	7386.12	45.46	13.92	< 59.38	74.00	-14.62
3	9848.22	45.77	14.61	< 60.38	74.00	-13.62

Average

No.	Frequency [MHz]	Reading Level [dB(uV)]	Correction Factor [dB/m]	Emission Level [dB(uV/m)]	Limit [dB(uV/m)]	Margin [dB]
1	4924.02	37.61	5.36	42.97	54.00	-11.03
2	7386.00	34.18	13.92	< 48.10	54.00	-5.90
3	9848.07	35.89	14.61	< 50.50	54.00	-3.50

- 1. All Readings below 1GHz are Quasi-Peak and above 1GHz are peak or average.
- 2. Spectrum Analizyer Setting(Peak Detector): RBW=1MHz, VBW=1MHZ, Span=100MHz.
- 3. Spectrum Analizyer Setting(AVG Detector): RBW=1MHz, VBW=30HZ, Span=20MHz.
- 4. Emission Level= Reading + Correction Factor (Could have ±0.01 tolerance due to computer automatically round off calculation).
- 5. Correction Factor= Antenna Factor + Cable Loss Amplifier Factor
- 6. Margin Value=Emission level-Limit value.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection. If the average value is measured, peak measurement should also be supplied.

5. PEAK POWER OUTPUT

5.1 TEST EQUIPMENT

The following test equipments are used during the Conduct tests:

ltem	Instrument	Manufacturer	Туре	Serial No.	Last Cal.
1	Spectrum Analyzer	Advantest	R3272	82420232	02/14/03
	Spectrum Analyzer	HP	E4407B	39240339	08/16/03
2	Power Meter	Rohde & Schwarz	NRVS	100666	02/26/03
3	Peak Power Sensor	Rohde & Schwarz	NRV-Z32	8360191058	05/19/03

Note: All measurement critical items of test instrumentation were within their calibration period of 1 year.

5.2 BLOCK DIAGRAM OF TEST SETUP

5.3 PEAK POWER OUTPUT LIMIT

The maximum peak power shall be less 1 Watt.

5.4 TEST RESULT

Date of Test	December 22, 2003	
EUT	Wireless LAN USB adapter	
Test Mode	Mode 1 (802.11b)	

Channel No.	Frequency(MHz)	Measurement (dBm)	Required Limit	Result
1	2412	20.34	1W(30dBm)	Pass
6	2437	20.52	1W(30dBm)	Pass
11	2462	20.88	1W(30dBm)	Pass

Date of Test	December 22, 2003
EUT	Wireless LAN USB adapter
Test Mode	Mode 2 (802.11g)

Channel No.	Frequency(MHz)	Measurement (dBm)	Required Limit	Result
1	2412	18.95	1W(30dBm)	Pass
6	2437	19.06	1W(30dBm)	Pass
11	2462	19.36	1W(30dBm)	Pass

6. BAND EDGE

6.1 TEST EQUIPMENT

The following test equipments are used during the radiated emission tests: Radiated test was performed on: Site #1 Site #2 Site #3 Site #4

ltem	Instrument	Manufacturer	Туре	Serial No.	Last Cal.
1	Test Receiver	Rohde & Schwarz	ESVS30	829007/014	12/13/03
2	Spectrum Analyzer	Advantest	R3272	82420232	02/14/03
3	Spectrum Analyzer	HP	E4407B	39240339	08/16/03
4	Power Meter	Rohde & Schwarz	NRVS	100666	02/26/03
5	Power Sensor	Rohde & Schwarz	NRV-Z32	8360191058	05/19/03
6	Pre-Amplifier	HP	8447D	2944A08273	10/11/03
7	Horn Antenna	Electro-Metrics	EM-6961	103318	05/30/03
8	Horn Antenna	Schwarzbeck	BBHA 9120	D243	12/18/03
9	RF Cable	GesTek	N/A	GTK-E-A149-01	12/26/03
10	Open Site	GesTek	N/A	A2	12/10/03
11	Test Program Software	GesTek	N/A	GTK-E-S001-01	N/A

Note: All measurement critical items of test instrumentation were within their calibration period of 1 year.

6.2 BLOCK DIAGRAM OF TEST SETUP

RF Radiated Measurement:

6.3 BAND EDGE LIMIT

In any 100KHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100KHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209 (a) (see Section 15.205(c)).

6.4 EUT CONFIGURATION

The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level.

Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.4:2000 on radiated measurement.

The bandwidth below 1GHz setting on the field strength meter is 120KHz, above 1GHz are 1MHz.

6.5 OPERATING CONDITION OF EUT

Same as section 2.6.

6.6 TEST RELULT

Date of Test	December 26, 2003		
EUT	Wireless LAN USB adapter		
Working Cond.	Mode 1 (802.11b)		

Channel No.	Frequency(MHz)	Required Limit(dBc)	Result
1(Horizontal)	< 2400	>20	Pass
1(Vertical)	< 2400	>20	Pass

Horizontal

No.	Frequency [MHz]	Reading Level [dB(uV)]	Correction Factor [dB/m]	Emission Level [dB(uV/m)]	Limit [dB(uV/m)]	Margin [dB]
1	2396.00	58.50	0.27	58.77	0.00	58.77
2	2400.50	55.63	0.27	55.90	0.00	55.90
3	2411.75	98.75	0.26	99.01	0.00	99.01

Vertical

No.	Frequency [MHz]	Reading Level [dB(uV)]	Correction Factor [dB/m]	Emission Level [dB(uV/m)]	Limit [dB(uV/m)]	Margin [dB]
1	2396.00	67.83	-4.57	63.26	0.00	63.26
2	2400.12	66.07	-4.57	61.50	0.00	61.50
3	2411.75	105.25	-4.58	100.67	0.00	100.67

Note: RBW=100kHz, VBW=100kHz

Date of Test	December 26, 2003	
EUT	Wireless LAN USB adapter	
Working Cond.	Mode 2 (802.11g)	

Channel No.	Frequency(MHz)	Required Limit(dBc)	Result
1(Horizontal)	< 2400	>20	Pass
1(Vertical)	< 2400	>20	Pass

Horizontal

No.	Frequency [MHz]	Reading Level [dB(uV)]	Correction Factor [dB/m]	Emission Level [dB(uV/m)]	Limit [dB(uV/m)]	Margin [dB]
1	2400.12	66.23	0.27	66.50	0.00	66.50
2	2400.50	62.40	0.27	62.67	0.00	62.67
3	2417.00	96.12	0.26	96.38	0.00	96.38

Vertical

No.	Frequency [MHz]	Reading Level [dB(uV)]	Correction Factor [dB/m]	Emission Level [dB(uV/m)]	Limit [dB(uV/m)]	Margin [dB]
1	2399.37	72.07	-4.57	67.50	0.00	67.50
2	2400.12	73.17	-4.57	68.60	0.00	68.60
3	2413.25	102.33	-4.58	97.75	0.00	97.75

Note:RBW=100kHz, VBW=100kHz

Accredited Lab. Of BSMI, DNV, NEMKO, NVLAP. Listed Lab. of AUSTEL, Commerce, FCC, VCCI.

Date of Test	December 26, 2003	Temperature	21 deg/C
EUT	Wireless LAN USB adapter	Humidity	60 %RH
Working Cond.	Mode 1 (802.11b)	Data Rate	11Mbps
	Channel 11		
Antenna distance	3m at Horizontal	Frequency Range	Above 1GHz

No.	Frequency [MHz]	Reading Level [dB(uV)]	Correction Factor [dB/m]	Emission Level [dB(uV/m)]	Limit [dB(uV/m)]	Result
1	2463.25	107.04	0.21	107.25	74.00	N/A
2	2483.50	57.84	0.19	58.03	74.00	PASS
3	2488.50	58.85	0.19	59.04	74.00	PASS
4	2500.00	56.98	0.18	57.16	74.00	PASS

Average

No.	Frequency	Reading Level	Correction	Emission Level	Limit	Result
	[MHz]	[dB(uV)]	Factor [dB/m]	[dB(uV/m)]	[dB(uV/m)]	nooun
1	2463.25	99.14	0.21	99.35	54.00	N/A
2	2483.50	42.57	0.19	42.76	54.00	PASS
З	2484.50	41.82	0.19	42.01	54.00	PASS
4	2500.00	41.67	0.18	41.85	54.00	PASS

Remark:

1. All Readings below 1GHz are Quasi-Peak and above 1GHz are peak or average.

2. Spectrum Analizyer Setting(Peak Detector): RBW=1MHz, VBW=1MHZ.

3. Spectrum Analizyer Setting(AVG Detector): RBW=1MHz, VBW=30HZ.

4. Emission Level= Reading + Correction Factor (Could have ±0.01 tolerance due to computer automatically round off calculation).

5. Correction Factor= Antenna Factor + Cable Loss - Amplifier Factor

6. Margin Value=Emission level-Limit value.

7. The average measurement was not performed when the peak measured data under the limit of average detection. If the average value is measured, peak measurement should also be supplied.

Accredited Lab. Of BSMI, DNV, NEMKO, NVLAP. Listed Lab. of AUSTEL, Commerce, FCC, VCCI.

Date of Test	December 26, 2003	Temperature	21 deg/C
EUT	Wireless LAN USB adapter	Humidity	60 %RH
Working Cond.	Mode 1 (802.11b)	Data Rate	11Mbps
	Channel 11		
Antenna distance	3m at Vertical	Frequency Range	Above 1GHz

No.	Frequency [MHz]	Reading Level [dB(uV)]	Correction Factor [dB/m]	Emission Level [dB(uV/m)]	Limit [dB(uV/m)]	Result
1	2463.50	112.80	-4.59	108.21	74.00	N/A
2	2483.50	60.09	-4.60	55.49	74.00	PASS
3	2487.75	60.24	-4.60	55.64	74.00	PASS
4	2500.00	59.91	-4.60	55.31	74.00	PASS

Average

Na	Frequency	Reading Level	Correction	Emission Level	Limit	Pocult
NO.	[MHz]	[dB(uV)]	Factor [dB/m]	[dB(uV/m)]	[dB(uV/m)]	Result
1	2462.75	105.01	-4.59	100.42	54.00	N/A
2	2483.50	50.34	-4.60	45.74	54.00	PASS
З	2489.00	46.69	-4.60	45.09	54.00	PASS
4	2500.00	49.47	-4.60	44.87	54.00	PASS

Remark:

1. All Readings below 1GHz are Quasi-Peak and above 1GHz are peak or average.

2. Spectrum Änalizyer Setting(Peak Detector): RBW=1MHz, VBW=1MHZ.

3. Spectrum Analizyer Setting(AVG Detector): RBW=1MHz, VBW=30HZ.

Emission Level= Reading + Correction Factor (Could have ±0.01 tolerance due to computer automatically round off calculation).

5. Correction Factor= Antenna Factor + Cable Loss - Amplifier Factor

6. Margin Value=Emission level-Limit value.

7. The average measurement was not performed when the peak measured data under the limit of average detection. If the average value is measured, peak measurement should also be supplied.

Date of Test	December 26, 2003	Temperature	21 deg/C
EUT	Wireless LAN USB adapter	Humidity	60 %RH
Working Cond.	Mode 2 (802.11g)	Data Rate	54Mbps
	Channel 11		
Antenna distance	3m at Horizontal	Frequency Range	Above 1GHz

No.	Frequency [MHz]	Reading Level [dB(uV)]	Correction Factor [dB/m]	Emission Level [dB(uV/m)]	Limit [dB(uV/m)]	Result
1	2463.75	106.40	0.21	106.61	74.00	N/A
2	2483.50	66.08	0.19	66.27	74.00	PASS
3	2484.75	68.20	0.19	68.39	74.00	PASS
4	2500.00	53.28	0.18	53.46	74.00	PASS

Average

No	Frequency	Reading Level	Correction	Emission Level	Limit	Posult
NO.	[MHz]	[dB(uV)]	Factor [dB/m]	[dB(uV/m)]	[dB(uV/m)]	Result
1	2468.50	95.59	0.21	95.80	54.00	N/A
2	2483.50	50.41	0.19	50.60	54.00	PASS
3	2483.75	49.50	0.19	46.69	54.00	PASS
4	2500.00	42.93	0.18	43.11	54.00	PASS

Remark:

1. All Readings below 1GHz are Quasi-Peak and above 1GHz are peak or average.

2. Spectrum Analizyer Setting(Peak Detector): RBW=1MHz, VBW=1MHZ.

3. Spectrum Analizyer Setting(AVG Detector): RBW=1MHz, VBW=30HZ.

4. Emission Level= Reading + Correction Factor (Could have ±0.01 tolerance due to computer automatically round off calculation).

5. Correction Factor= Antenna Factor + Cable Loss - Amplifier Factor

6. Margin Value=Emission level-Limit value.

7. The average measurement was not performed when the peak measured data under the limit of average detection. If the average value is measured, peak measurement should also be supplied.

Date of Test	December 26, 2003	Temperature	21 deg/C
EUT	Wireless LAN USB adapter	Humidity	60 %RH
Working Cond.	Mode 2 (802.11g)	Data Rate	54Mbps
	Channel 11		
Antenna distance	3m at Vertical	Frequency Range	Above 1GHz

No.	Frequency [MHz]	Reading Level [dB(uV)]	Correction Factor [dB/m]	Emission Level [dB(uV/m)]	Limit [dB(uV/m)]	Result
1	2463.75	111.78	-4.59	107.19	74.00	N/A
2	2483.50	72.34	-4.60	67.74	74.00	PASS
3	2484.75	71.39	-4.60	66.79	74.00	PASS
4	2500.00	59.64	-4.60	55.04	74.00	PASS

Average

No	Frequency	Reading Level	Correction	Emission Level	Limit	Result
	[MHz]	[dB(uV)]	Factor [dB/m]	[dB(uV/m)]	[dB(uV/m)]	Result
1	2465.50	101.94	-4.59	97.35	54.00	N/A
2	2483.50	56.34	-4.60	51.74	54.00	PASS
3	2483.75	55.74	-4.60	51.14	54.00	PASS
4	2500.00	50.34	-4.60	45.74	54.00	PASS

Remark:

1. All Readings below 1GHz are Quasi-Peak and above 1GHz are peak or average.

2. Spectrum Änalizyer Setting(Peak Detector): RBW=1MHz, VBW=1MHZ.

3. Spectrum Analizyer Setting(AVG Detector): RBW=1MHz, VBW=30HZ.

4. Emission Level= Reading + Correction Factor (Could have ±0.01 tolerance due to computer automatically round off calculation).

5. Correction Factor= Antenna Factor + Cable Loss - Amplifier Factor

6. Margin Value=Emission level-Limit value.

7. The average measurement was not performed when the peak measured data under the limit of average detection. If the average value is measured, peak measurement should also be supplied.

Accredited Lab. Of BSMI, DNV, NEMKO, NVLAP. Listed Lab. of AUSTEL, Commerce, FCC, VCCI.

7. OCCUPIED BANDWIDTH

7.1 TEST EQUIPMENT

The following test equipments are used during the radiated emission tests:

Item	Instrument	Manufacturer	Туре	Serial No.	Last Cal.
2	Spectrum Analyzer	Advantest	R3272	82420232	02/14/03
3	Spectrum Analyzer	HP	E4407B	39240339	08/16/03

Note: All measurement critical items of test instrumentation were within their calibration period of 1 year.

7.2 BLOCK DIAGRAM OF TEST SETUP

7.3 LIMIT

The minimum 6dB bandwidth shall be at least 500KHz.

7.4 TEST RESULT

Date of Test	December 22, 2003	
EUT	Wireless LAN USB adapter	
Working Cond.	Mode 1 (802.11b)	

Channel No.	Frequency	Measurement Level	Required limit	Result
	(MHz)	(MHz)	(KHz)	
1	2412	12.15	>500	Pass
6	2437	12.15	>500	Pass
11	2462	12.18	>500	Pass

Figure Channel 1:

<u>Мол 2003 Dec 22 17:18</u> REF 127.0 dBµV Adduct Deci: D. Dienk, News, 0.72 dD					
	IEW POSI B_B	ilank Norm	0.72 dB		Config
MARKE 2.418	R Ø 5 GHzŵ	A A A A A A A A A A A A A A A A A A A			¹ Format
	manuna /			<u></u>	FD
					2 Date/Time
					³ Color
CENTER 2.41200 *RBW 100 kHz *	GHz *VBW 100 kHz *	SWP 500 ms	SPAN 50.00 MH *ATT 30dB	z	Pattern
	Mult	ti Marker Lis	st		4
1:	2.41175	GHz	5.91 dB		Revision
2:	2.40590	GHZ	-0.54 dB		
4:	2.41005	UHZ	0.72 UD		
5:					
6:					6 D. C 14
8:					Config
9:					
10: 					7 2/2,more

Mon 2003 Dec 22 17:21 MKR 2.44310 GHz REF 127.0 dBµV A_View 10dB/ Posi B_Blank Norm -0.79 dB Color MARKER 2.44310 GHz Color 1 in WORC: Color 2 Gray CENTER 2.43700 GHz SPAN 50.00 MHz *RBW 100 kHz *VBW 100 kHz *SWP 500 ms *ATT 30dB Multi Marker List B & W 2.43675 GHz 1: 5.97 dB 2: 2.43095 GHz -0.48 dB 3: 2.44310 GHz -0.79 dB 4: 5: 6: 7: 8: 9: 10: Δ: Inverse

Figure Channel 6:

Figure Channel 11:

		Mon 2003 Dec 22 1	7:23
REF 127.0 dBµV		MKR 2.45595 GHz	
10dB/ <u>A_Vie</u>	W Posi B_Blank	Norm -U.23 dB	
			Multi MKR
MARKER		the second	──── ∭ Multi MKR
Z. 4559	э чнг	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Satum
	home for	Lange and the second	Setup
		└─── ``````````````````````````````````	2
			MKR LIST
AP () 1	İİ.		ON OFF
	ļ		
			—— Peak List
CENTER 2.46200 G	Hz	SPAN 50.00 MHz	Level
*RBW 100 kHz *V	<u>BW 100 kHz *SWP 50</u>	10 ms *ATT 30dB	
	<u> </u>	ker List	
1:	2.46175 GHz	6.26 dB	Erod
2:	2.45595 GHz	-0.23 dB	печ
3:	2.46875 GHz	-0.98 dB	
4:			
5:			
6:			
7:			
8:			
9:			
10:			
Δ:			
L			

Date of Test	December 22, 2003	
EUT	Wireless LAN USB adapter	
Working Cond.	Mode 2 (802.11g)	

Channel No. Frequency		Measurement Level	Required limit	Result
	(MHz)	(MHz)	(KHz)	
1	2412	16.15	>500	Pass
6	2437	16.45	>500	Pass
11	2462	16.45	>500	Pass

Figure Channel 1:

		Fi	ri 2003 Dec 26 21:5	5
REF 0.0 dB	m	MKR 2.4	2005 GHz	
10d <u>B/</u>	A_View Posi B_B1	<u>ank Norm 0.3</u>	2 dB	
				📗 Multi MKR
MAR	KER			
2 4	2005 CH2 \$			Multi MKR
	2000 0116			Setup
	and budewater and march		Martin Starter and and and and and and and and and and	
and the second				2
[[[MKR List
				ON OFF
			·	
	••••••••••••••••••••••••••••••••••••••			Book Lict
	1200 CU-			Feak List
LENIER 2.4 *DBW 100 レ	1200 0HZ H-7 - ¥URW 100 kH-7 - ¥S	3241 140 500 mc #4TT 3	N 50.00 MHZ NAB	Level
*KD# 100 K	12 **0# 100 KHZ *3		000	
	Multi	Marker List		- Peak List
1:	2,40700 6	iHz 6.	16 dB	Enca
2:	2 40390 6	Hz –0	N3 dB	ггед
2.	2 42005 6	лг 0. Ж-т 0	32 dB	
J.	2.42003 0	112 0.	32 00	
4. F.				
5.				
6:				
7:				
8:				
9:				
10:				7
Δ:				MUITIMKR
				OFF

Figure Channel 6:

Figure Channel 11:

		Mon 2003 Dec 22 17:37	<u> </u>
REF_127.0 dB _µ V		MKR 2.42880 GHz	
10dB/ A_Max	Posi B_Blank	Norm 0.20 dB	- <u> </u>
			Color
MARKER			1
2.42880	2 GHZ	and more thank the second second second second second second second second second second second second second s	Color 1
		han a start a start a start a start a start a start a start a start a start a start a start a start a start a st	2
and the second s	olivium de construction de la co	The Star Marken August and Star Star Star Star Star Star Star Star	
			Lolor Z
			3
CENTER 2 43700 GH	`` <u>`</u>	SDAN 50 00 MH-	Gray
*RBW 100 kHz *VB	⊻ ₩ 100 kHz *SWP !	500 ms *ATT 30dB	
Multi Marker List			
	2 44200 011		B & W
	2.44200 GHZ	6.15 dB	
2:	2.42880 GHZ	0.20 dB	
3	2.44525 GHz	-0.48 dB	
4:			
5:			
6:			
7:			
8:			
9:			
10:			7
Δ:			Inverse
			-1

8. POWER DENSITY

8.1 TEST EQUIPMENT

The following test equipments are used during the radiated emission tests:

Item	Instrument	Manufacturer	Туре	Serial No.	Last Cal.
1	Spectrum Analyzer	Advantest	R3272	82420232	02/14/03
2	Spectrum Analyzer	HP	E4407B	39240339	08/16/03

Note: All measurement critical items of test instrumentation were within their calibration period of 1 year.

8.2 BLOCK DIAGRAM OF TEST SETUP

8.3 LIMIT

The transmitted power density averaged over any 1 second interval shall not be greater +8dBm in any 3KHz bandwidth.

8.4 TEST RESULT

Date of Test	December 22, 2003	
EUT	Wireless LAN USB adapter	
Working Cond.	Mode 1 (802.11b)	

Channel No.	Frequency	Measurement Level	Required limit	Result
	(MHz)	(dBm)	(dBm)	
1	2411.99	-5.91	<8dBm	Pass
6	2437.00	-5.57	<8dBm	Pass
11	2461.99	-5.35	<8dBm	Pass

Figure Channel 1:

Figure Channel 6:

Figure Channel 11:

Date of Test	December 22, 2003	
EUT	Wireless LAN USB adapter	
Working Cond.	Mode 2 (802.11g)	

Channel No.	Frequency	Measurement Level	Required limit	Result
	(MHz)	(dBm)	(dBm)	
1	2412.13	-21.84	<8dBm	Pass
6	2437.13	-21.84	<8dBm	Pass
11	2462.13	-21.50	<8dBm	Pass

Figure Channel 1:

Figure Channel 6:

Figure Channel 11:

11. EMI REDUCTION METHOD DURING COMPLIANCE TESTING

No modification was made during testing.

Appendix A Circuit (Block) Diagram

(Shall be added by Applicant)

Appendix B

User Manual

(Shall be added by Applicant)