

# Test Report

# Product Name : Wireless PCI Adaptor Model No.: WI224P FCC ID.: PQP-WI224P

Applicant : PRIME ELECTRONICS & SATELLITICS INC.

Address : 69, Tung-Yuan Rd., Chung-Li Industrial Park, Chung-Li City, Taoyuan, Taiwan.

| Date of Receipt | t: | Oct. 01, 2002 |
|-----------------|----|---------------|
| Date of Test    | :  | Oct. 16, 2002 |
| Report No.      | :  | 02AH016FI     |

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation. This report must not be used to claim product endorsement by NVLAP any agency of the U.S. Government

Report No. 02AH016FI



# Test Report Certification



Test Date : Oct. 16, 2002 Report No. : 02AH016FI

Accredited by NIST (NVLAP) NVLAP Lab Code: 200347-0

Product Name

Wireless PCI Adaptor

÷

:

•

Applicant

Address

Manufacturer

Model No.

FCC ID.

Rated Voltage

Test Result

Trade Name

Measurement Standard

Measurement Procedure :

فأشمدتان إلرارية

FCC Part 15 Subpart C Paragraph 15.247

PRIME ELECTRONICS & SATELLITICS INC.

PRIME ELECTRONICS & SATELLITICS INC.

Chung-Li City, Taoyuan, Taiwan.

69, Tung-Yuan Rd., Chung-Li Industrial Park,

: ANSI C63.4: 1992

Complied

WI224P

PESI

:

:

PQP-WI224P

DC3.3V (Power by PC)

The Test Results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation. This report must not be used to claim product endorsement by NVLAP any agency of the U.S. Government

| Documented By : | Caro Tsui      |
|-----------------|----------------|
|                 | (Carol Tsai)   |
| Tested By :     | (Jim Wu)       |
| Approved By :   | Alta           |
|                 | ( Kevin Wang ) |

Version:1.0

## TABLE OF CONTENTS

| De   | scription                             | Page |
|------|---------------------------------------|------|
| 1.   | GENERAL INFORMATION                   | 5    |
| 1.1. | EUT Description                       |      |
| 1.2. | Operational Description               |      |
| 1.3. | Tested System Datails                 |      |
| 1.4. | Configuration of tested System        |      |
| 1.5. | EUT Exercise Software                 |      |
| 1.6. | Test Facility                         |      |
| 2.   | Conducted Emission                    |      |
| 2.1. | Test Equipment                        |      |
| 2.2. | Test Setup                            |      |
| 2.3. | Limits                                |      |
| 2.4. | Test Procedure                        |      |
| 2.5. | Test Result of Conducted Emission     |      |
| 3.   | Peak Power Output                     | 13   |
| 3.1. | Test Equipment                        |      |
| 3.2. | Test Setup                            |      |
| 3.3. | Limits                                |      |
| 3.4. | Test Result of Peak Power Output      | 14   |
| 4.   | RF Exposure Evaluation                |      |
| 4.1. | Fries Formula                         |      |
| 4.2. | EUT Operation condition               |      |
| 4.3. | Test Result of RF Exposure Evaluation |      |
| 5.   | Radiated Emission                     | 17   |
| 5.1. | Test Equipment                        |      |
| 5.2. | Test Setup                            |      |
| 5.3. | Limits                                |      |
| 5.4. | Test Procedure                        |      |
| 5.5. | Test Result of Radiated Emission      |      |
| 6.   | Band Edge                             |      |
| 6.1. | Test Equipment                        |      |
| 6.2. | Test Setup                            |      |
| 6.3. | Limits                                |      |
| 6.4. | Test Procedure                        |      |
| 6.5. | Test Result of Band Edge              |      |
| 7.   | Occupied Bandwidth                    | 40   |
| 7.1. | Test Equipment                        |      |
| 7.2. | Test Setup                            |      |
| 7.3. | Limits                                |      |
| 7.4. | Test Result of Occupied Bandwidth     |      |
| 8.   | Power Density                         |      |

| 8.1.    | Test Equipment                           |    |
|---------|------------------------------------------|----|
| 8.2.    | Test Setup                               |    |
| 8.3.    | Limits                                   |    |
| 8.4.    | Test Result of Power Density             | 45 |
| 9.      | Processing Gain                          | 48 |
| 9.1.    | Limits                                   |    |
| 9.2.    | Test Procedure                           |    |
| 9.3.    | Test Result of Processing Gain           |    |
| EMI Red | luction Method During Compliance Testing |    |
|         |                                          |    |

Attachment 1: EUT Test Photographs

Attachment 2: EUT Detailed Photographs

#### 1. GENERAL INFORMATION

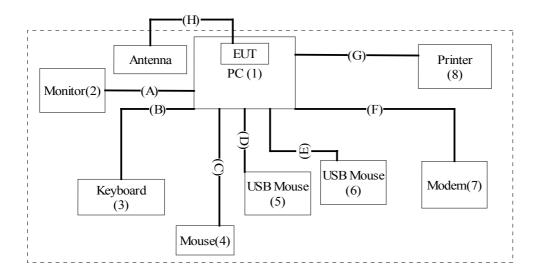
#### **1.1. EUT Description**

| Product Name   |             |               | : Wireless PCI Adaptor |                 |             |           |  |  |
|----------------|-------------|---------------|------------------------|-----------------|-------------|-----------|--|--|
| Trade Name     |             | :             | PESI                   |                 |             |           |  |  |
| FCC ID.        |             | :             | PQP-WI224P             |                 |             |           |  |  |
| Model No.      |             | :             | WI224P                 |                 |             |           |  |  |
| Frequency Ra   | nge         | :             | 2412MHz to 246         | 52MHz           |             |           |  |  |
| Channel Num    | ber         | :             | 11                     |                 |             |           |  |  |
| Type of Modu   | lation      | :             | Direct Sequence        | Spread Spectrum | n           |           |  |  |
| Antenna type   |             | :             | Connector (Reve        | erse SMA)       |             |           |  |  |
| Operator Sele  | ction of    | : By software |                        |                 |             |           |  |  |
| Operating Fre  | quency      |               |                        |                 |             |           |  |  |
| Antenna Cabl   | e           | :             | Shielded, 0.5m         |                 |             |           |  |  |
| Frequency of I | Each Channe | el:           |                        |                 |             |           |  |  |
| Channel        | Frequency   |               | Channel                | Frequency       | Channel     | Frequency |  |  |
| Channel 1:     | 2412 MHz    |               | Channel 5:             | 2432 MHz        | Channel 9:  | 2452 MHz  |  |  |
| Channel 2:     | 2417 MHz    |               | Channel 6:             | 2437 MHz        | Channel 10: | 2457 MHz  |  |  |
| Channel 3:     | 2422 MHz    |               | Channel 7:             | 2442 MHz        | Channel 11: | 2462 MHz  |  |  |
| Channel 4:     | 2427 MHz    |               | Channel 8:             | 2447 MHz        |             |           |  |  |

- 1. This device is a 2.4GHz Wireless PCI Adaptor included a 2.4GHz receiving function, a 2.4GHz transmitting function.
- 2. Regards to the frequency band operation; two rate that were included the lowest > middle and highest frequency of channel were selected to perform the test, then shown on this report.
- 3. These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 15 Subpart C Paragraph 15.247 for spread spectrum devices.
- 4. This device is a composite device in accordance with Part 15 regulations. The function receiving was measured and made a test report that the report number is 02AH016F under Declaration of Conformity.

#### **1.2.** Operational Description

- EUT is a Wireless PCI Adaptor with 11 channels. This device provided four kind of transmitting speed 1,2,5.5 and 11Mbps. The device of RF carrier is DQPSK, DB PSK and CCK.
- The device adapts direct sequence spread spectrum modulation. The Connector antenna was provides diversity function to improve the receiving function.
- This Wireless PCI Adaptor is an IEEE 802.11b Wireless LAN adapter. It allows your computer to connect to a wireless network and to share resources, such as files or printers without being bound to the network wires. Operation in 2.4GHz Direst Sequence Spread Spectrum (DSSS) radio transmission, the Wireless PCI Adaptor transfers data at speeds up to 64/128-bit Wired Equivalent Protection (WEP) algorithm is used. In addition, its standard compliance ensures that it can communicate with any 802.11b network.


### **1.3.** Tested System Datails

The types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards) are:

| Product |           | Manufacturer | Model No.  | Serial No.  | Power Cord         |
|---------|-----------|--------------|------------|-------------|--------------------|
| (1)     | PC        | IBM          | 6282-93    | 960E411     | Non-shielded, 1.8m |
| (2)     | Monitor   | SYNCO        | 15CTO      | 1910882     | Non-shielded, 1.8m |
| (3)     | Keyboard  | IBM          | KB-9930    | 0073491     |                    |
| (4)     | Mouse     | IBM          | M-SAU-IBM6 | 23-029014   |                    |
| (5)     | USB Mouse | Logitech     | M-UE55     | DVT-324     |                    |
| (6)     | USB Mouse | Logitech     | M-UE55     | LTC93813279 |                    |
| (7)     | Modem     | ACEEX        | 1414       | 980033036   | Non-shielded, 1.6m |
| (8)     | Printer   | HP           | C2642A     | MY75J1D1D0  | Non-shielded, 0.7m |

|    | Signal Cable Type | Signal Cable Description                 |
|----|-------------------|------------------------------------------|
| A. | VGA Cable         | Shielded, 1.6m, two ferrite cores bonded |
| B. | Keyboard Cable    | Shielded, 1.8m                           |
| C. | Mouse Cable       | Shielded, 1.8m                           |
| D. | USB Mouse Cable   | Shielded, 1.0m                           |
| E. | USB Mouse Cable   | Shielded, 1.0m                           |
| F. | Modem Cable       | Shielded, 1.5m                           |
| G. | Printer Cable     | Shielded, 1.2m                           |
| H. | Antenna Cable     | Shielded, 0.5m                           |

### 1.4. Configuration of tested System



#### 1.5. EUT Exercise Software

- (1) Setup the EUT and simulators as shown on 1.4
- (2) Turn on the power of all equipment.
- (3) Notebook PC reads data from disk.
- (4) Data will be transmitting through EUT.
- (5) The transmitted status will be shown on the monitor.
- (6) Repeat the above procedure 1.5.3 to 1.5.5

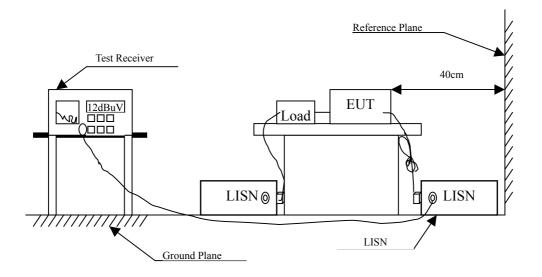
#### 1.6. Test Facility

| Items                      | Required (IEC 68-1) | Actual   |
|----------------------------|---------------------|----------|
| Temperature (°C)           | 15-35               | 20-35    |
| Humidity (%RH)             | 25-75               | 50-65    |
| Barometric pressure (mbar) | 860-1060            | 950-1000 |

Ambient conditions in the laboratory:

| Site Description: | November 3, 1998 File on                                                                                                                                              |                     |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|                   | Federal Communications Commission                                                                                                                                     |                     |
|                   | FCC Engineering Laboratory                                                                                                                                            |                     |
|                   | 7435 Oakland Mills Road                                                                                                                                               |                     |
|                   | Columbia, MD 21046                                                                                                                                                    | 1                   |
|                   | Reference 31040/SIT1300F2                                                                                                                                             | RM                  |
|                   | August 30, 2001 Accreditation on NVLAP                                                                                                                                | NVLAP Lab Code : 20 |
|                   | NVLAP Lab Code: 200347-0                                                                                                                                              |                     |
| Site Name:        | Quietek Corporation                                                                                                                                                   |                     |
| Site Address:     | No.75-1, Wang-Yeh Valley, Yung-Hsing,<br>Chiung-Lin, Hsin-Chu County,<br>Taiwan, R.O.C.<br>TEL : 886-3-592-8858 / FAX : 886-3-592-8859<br>E-Mail: service@quietek.com |                     |
|                   | E main <u>ber nee(10/quieten.com</u>                                                                                                                                  |                     |

#### 2. Conducted Emission


#### 2.1. Test Equipment

The following test equipment are used during the conducted emission test:

| Item | Instrument        | Manufacturer | Type No./Serial No | Last Cal. | Remark      |
|------|-------------------|--------------|--------------------|-----------|-------------|
| 1    | Test Receiver     | R & S        | ESCS 30/825442/17  | May, 2002 |             |
| 2    | L.I.S.N.          | R & S        | ESH3-Z5/825016/6   | May, 2002 | EUT         |
| 3    | L.I.S.N.          | Kyoritsu     | KNW-407/8-1420-3   | May, 2002 | Peripherals |
| 4    | Pulse Limiter     | R & S        | ESH3-Z2            | N/A       |             |
| 5    | No.2 Shielded Roo | m            |                    | N/A       |             |

Note: All equipment upon which need to calibrated are with calibration period of 1 year.

#### 2.2. Test Setup



#### 2.3. Limits

| FCC Part 15 Paragraph 15.207 (dBuV) |        |      |  |  |  |
|-------------------------------------|--------|------|--|--|--|
| Frequency                           | Limits |      |  |  |  |
| MHz                                 | uV     | dBuV |  |  |  |
| 0.45 - 30                           | 250    | 48.0 |  |  |  |

#### 2.4. Test Procedure

The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs.)

Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4:1992 on conducted measurement.

Conducted emissions were invested over the frequency range from 0.45MHz to 30MHz using a receiver bandwidth of 9kHz.

### QuieTer

**Test Result of Conducted Emission** 

2.5.

| Product:Test Item:Test Mode: |                     | Conducte             | PCI Adaptor<br>ed Emission<br>Operation |                           |                |
|------------------------------|---------------------|----------------------|-----------------------------------------|---------------------------|----------------|
| Frequency<br>MHz             | Cable<br>Loss<br>dB | LISN<br>Factor<br>dB | Reading<br>Level<br>dBuV                | Emission<br>Level<br>dBuV | Limits<br>dBuV |
| Line 1<br>Quasi-Peak:        |                     |                      |                                         |                           |                |
| * 0.575                      | 0.07                | 0.23                 | 39.07                                   | 39.37                     | 48.00          |
| 0.960                        | 0.10                | 0.27                 | 37.01                                   | 37.38                     | 48.00          |
| 1.725                        | 0.13                | 0.33                 | 36.59                                   | 37.05                     | 48.00          |
| 9.488                        | 0.27                | 0.49                 | 31.55                                   | 32.31                     | 48.00          |
| 13.139                       | 0.31                | 0.52                 | 30.35                                   | 31.18                     | 48.00          |
| 22.155                       | 0.37                | 0.57                 | 30.27                                   | 31.21                     | 48.00          |
|                              |                     |                      |                                         |                           |                |

#### Line 2

#### Quasi-Peak:

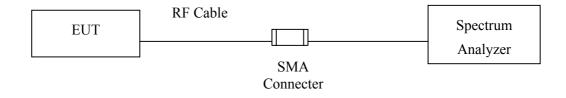
| * | 0.578  | 0.07 | 0.23 | 37.75 | 38.05 | 48.00 |
|---|--------|------|------|-------|-------|-------|
|   | 0.960  | 0.10 | 0.27 | 34.59 | 34.96 | 48.00 |
|   | 2.110  | 0.15 | 0.35 | 34.09 | 34.59 | 48.00 |
|   | 9.770  | 0.28 | 0.49 | 30.93 | 31.70 | 48.00 |
|   | 13.237 | 0.31 | 0.52 | 33.67 | 34.50 | 48.00 |
|   | 21.679 | 0.36 | 0.57 | 36.61 | 37.54 | 48.00 |

#### Remarks :

- 1. All Readings below 1GHz are Quasi-Peak value.
- 2. "\*" means that this data is the worst emission level.
- 3. Emission Level = Reading Level + LISN Factor + Cable Loss.

#### 3. Peak Power Output

#### 3.1. Test Equipment


The following test equipments are used during the radiated emission tests:

|   | Equipment         | Manufacturer | Model No./Serial No. | Last Cal. |
|---|-------------------|--------------|----------------------|-----------|
| Х | Spectrum Analyzer | Advantest    | R3272 / 72421194     | May, 2002 |

Note: 1. All equipment upon which need to calibrated are with calibration period of 1 year.2. Mark "X" test instruments are used to measure the final test results.

#### 3.2. Test Setup

#### **Conduction Power Measurement**



#### 3.3. Limits

The maximum peak power shall be less 1 Watt.

### QuieTer

### 3.4. Test Result of Peak Power Output

| Product   | : | Wireless PCI Adaptor |
|-----------|---|----------------------|
| Test Item | : | Peak Power Output    |
| Test Site | : | No.1 OATS            |
| Test Mode | : | Normal Operation     |
|           |   |                      |

#### Data Speed: 1Mbps

| Channel No. | Frequency(MHz) | Measurement | Required Limit | Result |
|-------------|----------------|-------------|----------------|--------|
| 1           | 2411.1         | 16.88dBm    | 1Watt= 30 dBm  | Pass   |
| 6           | 2435.6         | 16.31dBm    | 1Watt= 30 dBm  | Pass   |
| 11          | 2460.7         | 17.31dBm    | 1Watt= 30 dBm  | Pass   |

#### Data Speed: 11Mbps

| Channel No. | Frequency (MHz) | Measurement | Required Limit | Result |
|-------------|-----------------|-------------|----------------|--------|
| 1           | 2410.9          | 16.85dBm    | 1Watt= 30 dBm  | Pass   |
| 6           | 2436.2          | 16.32dBm    | 1Watt= 30 dBm  | Pass   |
| 11          | 2461.1          | 17.11dBm    | 1Watt= 30 dBm  | Pass   |

#### 4. **RF Exposure Evaluation**

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b) LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

| Frequency Range                                | Electric Field                                            | Magnetic Field | Power Density | Average Time |  |  |  |  |
|------------------------------------------------|-----------------------------------------------------------|----------------|---------------|--------------|--|--|--|--|
| (MHz)                                          | Strength (V/m)                                            | Strength (A/m) | $(mW/cm^2)$   | (Minutes)    |  |  |  |  |
| (A) Limits for Occupational/ Control Exposures |                                                           |                |               |              |  |  |  |  |
| 300-1500                                       |                                                           |                | F/300         | 6            |  |  |  |  |
| 1500-100,000                                   |                                                           |                | 5             | 6            |  |  |  |  |
|                                                | (B) Limits for General Population/ Uncontrolled Exposures |                |               |              |  |  |  |  |
| 300-1500                                       |                                                           |                | F/1500        | 6            |  |  |  |  |
| 1500-100,000                                   |                                                           |                | 1             | 30           |  |  |  |  |

F= Frequency in MHz

#### 4.1. Fries Formula

Fries transmission formula:  $Pd = (Pout*G)/(4*pi*r^2)$ 

Where

 $Pd = power density in mW/cm^2$ 

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

R = distance between observation point and center of the radiator in cm

Pd id the limit of MPE,  $1 \text{ mW/cm}^2$ . If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

#### 4.2. EUT Operation condition

Software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel individually.

#### 4.3. Test Result of RF Exposure Evaluation

| Product   | : | Wireless PCI Adaptor   |
|-----------|---|------------------------|
| Test Item | : | RF Exposure Evaluation |
| Test Site | : | No.1 OATS              |
| Test Mode | : | Normal Operation       |

#### 4.3.1 Antenna Gain

Antenna Gain: The maximum Gain measured in fully anechoic chamber is 1.8dBi, or 1.51 in linear Scale.

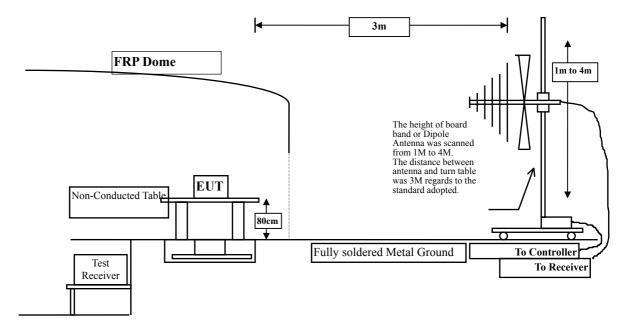
#### 4.3.2 Output Power Into Antenna & RF Exposure Evaluation Distance

| Channel     | Channel Channel Frequency (MHz) |       | Minimum Allowable |
|-------------|---------------------------------|-------|-------------------|
|             |                                 | (mw)  | Distance          |
| 1 (1Mbps)   | 2411.1                          | 48.75 | 2.42              |
| 1 (11Mbps)  | 2410.9                          | 48.42 | 2.41              |
| 6 (1Mbps)   | 2435.6                          | 42.76 | 2.27              |
| 6 (11Mbps)  | 2436.2                          | 42.85 | 2.27              |
| 11 (1Mbps)  | 2460.7                          | 53.83 | 2.55              |
| 11 (11Mbps) | 2461.1                          | 51.40 | 2.49              |

The distance r (4<sup>th</sup> column) calculated from the Fries transmission formula is far shorter than 20 cm separation requirement. So, RF exposure limit warning or SAR test are not required.

### QuieTer

#### 5. Radiated Emission


#### 5.1. Test Equipment

The following test equipment are used during the radiated emission test:

| Test Site |   | Equipment         | Manufacturer | Model No./Serial No. | Last Cal.  |
|-----------|---|-------------------|--------------|----------------------|------------|
| Site # 1  | Х | Test Receiver     | R & S        | ESCS 30 / 825442/14  | May, 2002  |
|           | Х | Spectrum Analyzer | Advantest    | R3261C / 71720140    | May, 2002  |
|           | Х | Pre-Amplifier     | HP           | 8447D/3307A01812     | May, 2002  |
|           | Х | Bilog Antenna     | Chase        | CBL6112B / 12452     | Sep., 2002 |
|           | Х | Horn Antenna      | EM           | EM6917 / 103325      | May, 2002  |
| Site # 2  |   | Test Receiver     | R & S        | ESCS 30 / 825442/17  | May, 2002  |
|           |   | Spectrum Analyzer | Advantest    | R3261C / 71720609    | May, 2002  |
|           |   | Pre-Amplifier     | HP           | 8447D/3307A01814     | May, 2002  |
|           |   | Bilog Antenna     | Chase        | CBL6112B / 2455      | Sep., 2002 |
|           |   | Horn Antenna      | EM           | EM6917 / 103325      | May, 2002  |

Note: 1. All equipments that need to calibrate are with calibration period of 1 year. 2. Mark "X" test instruments are used to measure the final test results.

#### 5.2. Test Setup



#### 5.3. Limits

#### General Radiated Emission Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

| FCC Part 15 Subpart C Paragraph 15.209 Limits |          |           |  |  |  |  |
|-----------------------------------------------|----------|-----------|--|--|--|--|
| Frequency<br>MHz                              | uV/m @3m | dBuV/m@3m |  |  |  |  |
| 30-88                                         | 100      | 40        |  |  |  |  |
| 88-216                                        | 150      | 43.5      |  |  |  |  |
| 216-960                                       | 200      | 46        |  |  |  |  |
| Above 960                                     | 500      | 54        |  |  |  |  |

Remarks : 1. RF Voltage  $(dBuV) = 20 \log RF$  Voltage (uV)

2. In the Above Table, the tighter limit applies at the band edges.

3. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

### 5.4. Test Procedure

The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level.

Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.4:1992 on radiated measurement.

The additional latch filter below 1GHz was used to measure the level of harmonics radiated emission during field dtrength of harmonics measurement.

The bandwidth below 1GHz setting on the field strength meter (R&S Test Receiver ESCS 30 )is 120 kHz, above 1GHz are 1 MHz.

The frequency range from 30MHz to 10th harminics is checked.

| ר<br>ד              | Product<br>Test Item<br>Test Site<br>Test Mode | : Ha<br>: No | ireless PC<br>armonic R<br>o.1 OATS<br>nannel 1 (1 | adiated Emi | ssion    |        |        |
|---------------------|------------------------------------------------|--------------|----------------------------------------------------|-------------|----------|--------|--------|
| Frequen             | cy Cable                                       | Probe        | PreAMP                                             | Reading     | Emission | Margin | Limit  |
|                     | Loss                                           | Factor       |                                                    | Level       | Level    |        |        |
| MHz                 | dB                                             | dB/m         | dB                                                 | dBuV        | dBuV/m   | dB     | dBuV/m |
| ======<br>Horizonta | ======================================         |              |                                                    |             |          |        |        |
| Peak Dete           |                                                |              |                                                    |             |          |        |        |
| 4824.20             |                                                | 33.50        | 34.68                                              | 42.56       | 45.15    | 28.85  | 74.00  |
| 7236.60             | 0 4.87                                         | 36.24        | 34.97                                              | 43.37       | 49.51    | 24.49  | 74.00  |
| 9647.80             | 00 5.61                                        | 37.43        | 35.10                                              | 44.77       | 52.70    | 21.30  | 74.00  |
| Vertical            |                                                |              |                                                    |             |          |        |        |
| Peak Detector:      |                                                |              |                                                    |             |          |        |        |
| 4824.40             | 0 3.77                                         | 33.50        | 34.68                                              | 43.42       | 46.01    | 27.99  | 74.00  |
| 7236.60             | 0 4.87                                         | 36.24        | 34.97                                              | 43.62       | 49.76    | 24.24  | 74.00  |
| 9648.40             | 00 5.61                                        | 37.43        | 35.10                                              | 43.82       | 51.75    | 22.25  | 74.00  |

#### 5.5. Test Result of Radiated Emission

#### Note:

1. All Readings below 1GHz are Quasi-Peak, above are average value.

2. Receiver setting (Peak Detector) : RBW:1MHz; VBW:1MHz; Span:100MHz °

3. Receiver setting (AVG Detector) : RBW:1MHz; VBW:30Hz; Span:100MHz •

4. Emission Level = Reading Level + Probe Factor + Cable Loss – PreAMP.

5. The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.

| Product       |       | : W                          | : Wireless PCI Adaptor |         |          |        |        |  |  |
|---------------|-------|------------------------------|------------------------|---------|----------|--------|--------|--|--|
| Test          | : На  | : Harmonic Radiated Emission |                        |         |          |        |        |  |  |
| Test          | Site  | : No                         | o.1 OATS               |         |          |        |        |  |  |
| Test          | Mode  | : Ch                         | nannel 6 (1            | Mbps)   |          |        |        |  |  |
| Frequency     | Cable | Probe                        | PreAMP                 | Reading | Emission | Margin | Limit  |  |  |
|               | Loss  | Factor                       |                        | Level   | Level    |        |        |  |  |
| MHz           | dB    | dB/m                         | dB                     | dBuV    | dBuV/m   | dB     | dBuV/m |  |  |
| Horizontal    |       |                              |                        |         |          |        |        |  |  |
| Peak Detector | :     |                              |                        |         |          |        |        |  |  |
| 4874.400      | 3.78  | 33.56                        | 34.69                  | 43.50   | 46.15    | 27.85  | 74.00  |  |  |
| 7310.700      | 4.89  | 36.31                        | 34.99                  | 44.35   | 50.55    | 23.45  | 74.00  |  |  |
| 9747.500      | 5.67  | 37.45                        | 35.10                  | 44.30   | 52.31    | 21.69  | 74.00  |  |  |
| Vertical      |       |                              |                        |         |          |        |        |  |  |
| Peak Detector | :     |                              |                        |         |          |        |        |  |  |
| 4873.600      | 3.78  | 33.56                        | 34.69                  | 42.80   | 45.45    | 28.55  | 74.00  |  |  |
| 7311.400      | 4.89  | 36.31                        | 34.99                  | 43.53   | 49.73    | 24.27  | 74.00  |  |  |
| 9747.600      | 5.67  | 37.45                        | 35.10                  | 44.87   | 52.88    | 21.12  | 74.00  |  |  |

- 1. All Readings below 1GHz are Quasi-Peak, above are average value.
- 2. Receiver setting (Peak Detector) : RBW:1MHz; VBW:1MHz; Span:100MHz •
- 3. Receiver setting (AVG Detector) : RBW:1MHz; VBW:30Hz; Span:100MHz °
- 4. Emission Level = Reading Level + Probe Factor + Cable Loss PreAMP.
- 5. The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.

| Prod                                   | uct   | : W    | ireless PC | I Adaptor   |          |        |        |
|----------------------------------------|-------|--------|------------|-------------|----------|--------|--------|
| Test                                   | Item  | : На   | armonic R  | adiated Emi | ssion    |        |        |
| Test                                   | Site  | : No   | o.1 OATS   |             |          |        |        |
| Test                                   | Mode  | : Ch   | nannel 11  | (1Mbps)     |          |        |        |
| Frequency                              | Cable | Probe  | PreAMP     | Reading     | Emission | Margin | Limit  |
|                                        | Loss  | Factor |            | Level       | Level    |        |        |
| MHz                                    | dB    | dB/m   | dB         | dBuV        | dBuV/m   | dB     | dBuV/m |
| ====================================== |       |        |            |             |          |        |        |
| Peak Detector                          | :     |        |            |             |          |        |        |
| 4924.720                               | 3.80  | 33.61  | 34.69      | 43.83       | 46.54    | 27.46  | 74.00  |
| 7385.730                               | 4.91  | 36.39  | 35.02      | 44.39       | 50.67    | 23.33  | 74.00  |
| 9847.480                               | 5.70  | 37.47  | 35.10      | 43.72       | 51.79    | 22.21  | 74.00  |
| Vertical                               |       |        |            |             |          |        |        |
| Peak Detector                          |       |        |            |             |          |        |        |
| 4924.660                               | 3.80  | 33.61  | 34.69      | 43.92       | 46.63    | 27.37  | 74.00  |
| 7385.690                               | 4.91  | 36.39  | 35.02      | 44.29       | 50.57    | 23.43  | 74.00  |
| 9847.820                               | 5.70  | 37.47  | 35.10      | 42.49       | 50.56    | 23.44  | 74.00  |

- 1. All Readings below 1GHz are Quasi-Peak, above are average value.
- 2. Receiver setting (Peak Detector) : RBW:1MHz; VBW:1MHz; Span:100MHz •
- 3. Receiver setting (AVG Detector) : RBW:1MHz; VBW:30Hz; Span:100MHz °
- 4. Emission Level = Reading Level + Probe Factor + Cable Loss PreAMP.
- 5. The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.

| Pro         | oduct   | : W    | ireless PC  | I Adaptor    |          |        |        |
|-------------|---------|--------|-------------|--------------|----------|--------|--------|
| Tes         | st Item | : Ha   | armonic R   | adiated Emis | ssion    |        |        |
| Tes         | st Site | : No   | o.1 OATS    |              |          |        |        |
| Tes         | st Mode | : Cł   | nannel 1 (1 | 1Mbps)       |          |        |        |
| Frequency   | cable   | Probe  | PreAMP      | Reading      | Emission | Margin | Limit  |
|             | Loss    | Factor |             | Level        | Level    |        |        |
| MHz         | dB      | dB/m   | dB          | dBuV         | dBuV/m   | dB     | dBuV/m |
| Horizontal  |         |        |             |              |          |        |        |
| Peak Detect | or:     |        |             |              |          |        |        |
| 4824.300    | 3.76    | 33.50  | 34.68       | 42.92        | 45.50    | 28.50  | 74.00  |
| 7236.300    | 4.87    | 36.24  | 34.97       | 42.95        | 49.09    | 24.91  | 74.00  |
| 9648.200    | 5.61    | 37.43  | 35.10       | 44.90        | 52.83    | 21.17  | 74.00  |
| Vertical    |         |        |             |              |          |        |        |
| Peak Detect | or:     |        |             |              |          |        |        |
| 4824.200    | 3.76    | 33.50  | 34.68       | 42.50        | 45.08    | 28.92  | 74.00  |
| 7235.900    | 4.87    | 36.24  | 34.97       | 43.50        | 49.64    | 24.36  | 74.00  |
| 9648.200    | 5.61    | 37.43  | 35.10       | 44.51        | 52.44    | 21.56  | 74.00  |

- 1. All Readings below 1GHz are Quasi-Peak, above are average value.
- 2. Receiver setting (Peak Detector) : RBW:1MHz; VBW:1MHz; Span:100MHz •
- 3. Receiver setting (AVG Detector) : RBW:1MHz; VBW:30Hz; Span:100MHz •
- 4. Emission Level = Reading Level + Probe Factor + Cable Loss PreAMP.
- 5. The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.

| Prod          | uct        | : W    | ireless PC  | I Adaptor   |          |       |         |
|---------------|------------|--------|-------------|-------------|----------|-------|---------|
| Test          | Item       | : Ha   | armonic R   | adiated Emi | ssion    |       |         |
| Test          | Site       | : No   | o.1 OATS    |             |          |       |         |
| Test          | Mode       | : Ch   | nannel 6 (1 | 1Mbps)      |          |       |         |
| Frequency     | Cable      | Probe  | PreAMP      | Reading     | Emission | Margi | n Limit |
|               | Loss       | Factor |             | Level       | Level    |       |         |
| MHz           | dB         | dB/m   | dB          | dBuV        | dBuV/m   | dB    | dBuV/m  |
| Horizontal    |            |        |             |             |          |       |         |
| Peak Detector | r:         |        |             |             |          |       |         |
| 4874.800      | 3.78       | 33.56  | 34.69       | 42.67       | 45.32    | 28.68 | 74.00   |
| 7311.400      | 4.89       | 36.31  | 34.99       | 44.78       | 50.98    | 23.02 | 74.00   |
| 9747.600      | 5.67       | 37.45  | 35.10       | 43.68       | 51.69    | 22.31 | 74.00   |
| Vertical      |            |        |             |             |          |       |         |
| Peak Detector | r <b>:</b> |        |             |             |          |       |         |
| 4874.600      | 3.78       | 33.56  | 34.69       | 42.61       | 45.26    | 28.74 | 74.00   |
| 7310.400      | 4.89       | 36.31  | 34.99       | 43.19       | 49.39    | 24.61 | 74.00   |
| 9748.500      | 5.67       | 37.45  | 35.10       | 43.26       | 51.27    | 22.73 | 74.00   |

- 1. All Readings below 1GHz are Quasi-Peak, above are average value.
- 2. Receiver setting (Peak Detector) : RBW:1MHz; VBW:1MHz; Span:100MHz •
- 3. Receiver setting (AVG Detector) : RBW:1MHz; VBW:30Hz; Span:100MHz °
- 4. Emission Level = Reading Level + Probe Factor + Cable Loss PreAMP.
- 5. The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.

| Prod          | uct   | : W    | ireless PC | I Adaptor   |          |        |        |
|---------------|-------|--------|------------|-------------|----------|--------|--------|
| Test          | Item  | : На   | armonic R  | adiated Emi | ssion    |        |        |
| Test          | Site  | : No   | o.1 OATS   |             |          |        |        |
| Test          | Mode  | : Ch   | nannel 11  | (11Mbps)    |          |        |        |
| Frequency     | Cable | Probe  | PreAMP     | Reading     | Emission | Margin | Limit  |
|               | Loss  | Factor |            | Level       | Level    |        |        |
| MHz           | dB    | dB/m   | dB         | dBuV        | dBuV/m   | dB     | dBuV/m |
|               |       |        |            |             |          |        |        |
| Peak Detector | :     |        |            |             |          |        |        |
| 4924.520      | 3.80  | 33.61  | 34.69      | 45.62       | 48.33    | 25.67  | 74.00  |
| 7385.680      | 4.91  | 36.39  | 35.02      | 43.75       | 50.03    | 23.97  | 74.00  |
| 9848.490      | 5.70  | 37.47  | 35.10      | 43.17       | 51.24    | 22.76  | 74.00  |
| Vertical      |       |        |            |             |          |        |        |
| Peak Detector | :     |        |            |             |          |        |        |
| 4923.860      | 3.80  | 33.61  | 34.69      | 44.83       | 47.54    | 26.46  | 74.00  |
| 7396.540      | 4.91  | 36.41  | 35.02      | 44.59       | 50.88    | 23.12  | 74.00  |
| 9847.460      | 5.70  | 37.47  | 35.10      | 43.38       | 51.45    | 22.55  | 74.00  |

- 1. All Readings below 1GHz are Quasi-Peak, above are average value.
- 2. Receiver setting (Peak Detector) : RBW:1MHz; VBW:1MHz; Span:100MHz •
- 3. Receiver setting (AVG Detector) : RBW:1MHz; VBW:30Hz; Span:100MHz °
- 4. Emission Level = Reading Level + Probe Factor + Cable Loss PreAMP.
- 5. The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.

|    | Produ<br>Test I<br>Test S<br>Test N | tem<br>Site | : Ge<br>: No | ireless PC<br>eneral Rad<br>0.1 OATS<br>aannel 1-11 | iated Emission | on       |        |         |
|----|-------------------------------------|-------------|--------------|-----------------------------------------------------|----------------|----------|--------|---------|
|    | Frequency                           | Cable       |              | PreAMP                                              | Reading        | Emission | Margin | n Limit |
|    |                                     | Loss        | Factor       |                                                     | Level          | Level    |        |         |
|    | MHz                                 | dB          | dB/m         | dB                                                  | dBuV           | dBuV/m   | dB     | dBuV/m  |
| Но | orizontal                           |             |              |                                                     |                |          |        |         |
|    | 52.310                              | 1.11        | 11.17        | 26.86                                               | 37.80          | 23.22    | 16.78  | 40.00   |
|    | 98.870                              | 1.30        | 17.25        | 26.88                                               | 30.20          | 21.87    | 21.63  | 43.50   |
|    | 254.070                             | 1.94        | 18.51        | 26.93                                               | 28.40          | 21.92    | 24.08  | 46.00   |
|    | 497.540                             | 2.94        | 20.73        | 26.64                                               | 36.60          | 33.63    | 12.37  | 46.00   |
| *  | 917.550                             | 4.66        | 23.96        | 25.98                                               | 34.40          | 37.04    | 8.96   | 46.00   |
|    | 963.140                             | 4.85        | 24.25        | 25.91                                               | 34.40          | 37.59    | 16.41  | 54.00   |
| Ve | rtical                              |             |              |                                                     |                |          |        |         |
|    | 35.820                              | 1.04        | 20.07        | 26.85                                               | 41.40          | 35.65    | 4.35   | 40.00   |
| *  | 51.340                              | 1.10        | 20.81        | 26.86                                               | 40.80          | 35.85    | 4.15   | 40.00   |
|    | 496.570                             | 2.93        | 20.83        | 26.64                                               | 31.60          | 28.73    | 17.27  | 46.00   |
|    | 656.620                             | 3.59        | 22.13        | 26.39                                               | 32.20          | 31.53    | 14.47  | 46.00   |
|    | 918.520                             | 4.66        | 24.06        | 25.98                                               | 35.20          | 37.95    | 8.05   | 46.00   |
|    | 962.170                             | 4.84        | 24.25        | 25.91                                               | 32.60          | 35.79    | 18.21  | 54.00   |

Note:

1. All Readings below 1GHz are Quasi-Peak, above are average value.

2. "\*", means this data is the worst emission level.

3. Emission Level = Reading Level + Probe Factor + Cable Loss - PreAMP.

|            | Produ<br>Test I<br>Test S<br>Test N | tem<br>Site | : Ge<br>: No | ireless PC<br>eneral Rad<br>0.1 OATS<br>nannel 6-11 | iated Emission | on       |        |         |
|------------|-------------------------------------|-------------|--------------|-----------------------------------------------------|----------------|----------|--------|---------|
| Fre        | equency                             | Cable       | Probe        | PreAMP                                              | Reading        | Emission | Margin | n Limit |
|            |                                     | Loss        | Factor       |                                                     | Level          | Level    |        |         |
| N          | /IHz                                | dB          | dB/m         | dB                                                  | dBuV           | dBuV/m   | dB     | dBuV/m  |
| ==<br>Hori | zontal                              |             |              |                                                     |                |          |        |         |
|            | 50.370                              | 1.10        | 12.24        | 26.86                                               | 40.00          | 26.48    | 13.52  | 40.00   |
|            | 66.860                              | 1.17        | 12.16        | 26.86                                               | 42.00          | 28.47    | 11.53  | 40.00   |
|            | 98.870                              | 1.30        | 17.25        | 26.88                                               | 32.00          | 23.67    | 19.83  | 43.50   |
| 4          | 96.570                              | 2.93        | 20.83        | 26.64                                               | 36.80          | 33.93    | 12.07  | 46.00   |
| * 9        | 17.550                              | 4.66        | 23.96        | 25.98                                               | 35.00          | 37.64    | 8.36   | 46.00   |
| 9          | 62.170                              | 4.84        | 24.25        | 25.91                                               | 35.00          | 38.19    | 15.81  | 54.00   |
| Verti      | ical                                |             |              |                                                     |                |          |        |         |
| *          | 47.460                              | 1.09        | 20.57        | 26.86                                               | 42.00          | 36.80    | 3.20   | 40.00   |
| 2          | 26.910                              | 1.82        | 20.92        | 26.92                                               | 29.20          | 25.02    | 20.98  | 46.00   |
| 4          | 95.600                              | 2.93        | 20.81        | 26.64                                               | 31.00          | 28.09    | 17.91  | 46.00   |
| 6          | 56.620                              | 3.59        | 22.13        | 26.39                                               | 33.80          | 33.13    | 12.87  | 46.00   |

Note:

918.520

963.140

1. All Readings below 1GHz are Quasi-Peak, above are average value.

2. "\*", means this data is the worst emission level.

4.66 24.06 25.98

4.85 24.25 25.91

3. Emission Level = Reading Level + Probe Factor + Cable Loss – PreAMP.

36.60

32.60

39.35

35.79

6.65 46.00

18.21 54.00

|    | Produ<br>Test 1<br>Test 1<br>Test 1 | Item  | : Ge<br>: No | ireless PC<br>eneral Rad<br>0.1 OATS<br>nannel 11- | iated Emissi | on       |        |         |
|----|-------------------------------------|-------|--------------|----------------------------------------------------|--------------|----------|--------|---------|
|    | Frequency                           | Cable | Probe        | PreAMP                                             | Reading      | Emission | Margii | n Limit |
|    |                                     | Loss  | Factor       |                                                    | Level        | Level    |        |         |
|    | MHz                                 | dB    | dB/m         | dB                                                 | dBuV         | dBuV/m   | dB     | dBuV/m  |
| Но | orizontal                           |       |              |                                                    |              |          |        |         |
|    | 53.280                              | 1.11  | 11.17        | 26.86                                              | 39.80        | 25.22    | 14.78  | 40.00   |
|    | 98.870                              | 1.30  | 17.25        | 26.88                                              | 32.20        | 23.87    | 19.63  | 43.50   |
|    | 494.630                             | 2.92  | 20.81        | 26.64                                              | 35.20        | 32.29    | 13.71  | 46.00   |
|    | 811.820                             | 4.23  | 23.40        | 26.15                                              | 31.00        | 32.49    | 13.51  | 46.00   |
| *  | 917.550                             | 4.66  | 23.96        | 25.98                                              | 35.40        | 38.04    | 7.96   | 46.00   |
|    | 963.140                             | 4.85  | 24.25        | 25.91                                              | 34.40        | 37.59    | 16.41  | 54.00   |
| Ve | rtical                              |       |              |                                                    |              |          |        |         |
| *  | 44.550                              | 1.08  | 20.64        | 26.86                                              | 40.20        | 35.06    | 4.94   | 40.00   |
|    | 71.710                              | 1.19  | 21.26        | 26.87                                              | 31.00        | 26.58    | 13.42  | 40.000  |
|    | 495.600                             | 2.93  | 20.81        | 26.64                                              | 32.40        | 29.49    | 16.51  | 46.00   |
|    | 656.620                             | 3.59  | 22.13        | 26.39                                              | 32.80        | 32.13    | 13.87  | 46.00   |
|    | 918.520                             | 4.66  | 24.06        | 25.98                                              | 36.00        | 38.75    | 7.25   | 46.00   |
|    | 962.170                             | 4.84  | 24.25        | 25.91                                              | 33.40        | 36.59    | 17.41  | 54.00   |

Note:

1. All Readings below 1GHz are Quasi-Peak, above are average value.

2. "\*", means this data is the worst emission level.

3. Emission Level = Reading Level + Probe Factor + Cable Loss - PreAMP.

### QuieTer

|    | Produ<br>Test 1<br>Test 1<br>Test 1 | ltem  | : Ge<br>: No | ireless PC<br>eneral Rad<br>o.1 OATS<br>nannel 1-1 | iated Emissi | on       |        |         |
|----|-------------------------------------|-------|--------------|----------------------------------------------------|--------------|----------|--------|---------|
|    | Frequency                           | Cable | Probe        | PreAMP                                             | Reading      | Emission | Margin | n Limit |
|    |                                     | Loss  | Factor       |                                                    | Level        | Level    |        |         |
|    | MHz                                 | dB    | dB/m         | dB                                                 | dBuV         | dBuV/m   | dB     | dBuV/m  |
| Но | orizontal                           |       |              |                                                    |              |          |        |         |
|    | 53.280                              | 1.11  | 11.17        | 26.86                                              | 37.80        | 23.22    | 16.78  | 40.00   |
|    | 98.870                              | 1.30  | 17.25        | 26.88                                              | 30.60        | 22.27    | 21.23  | 43.50   |
|    | 495.600                             | 2.93  | 20.81        | 26.64                                              | 36.00        | 33.09    | 12.91  | 46.00   |
|    | 656.620                             | 3.59  | 22.13        | 26.39                                              | 31.00        | 30.33    | 15.67  | 46.00   |
| *  | 916.580                             | 4.66  | 23.95        | 25.98                                              | 34.80        | 37.43    | 8.57   | 46.00   |
|    | 962.170                             | 4.84  | 24.25        | 25.91                                              | 33.80        | 36.99    | 17.01  | 54.00   |
| Ve | rtical                              |       |              |                                                    |              |          |        |         |
| *  | 49.400                              | 1.10  | 20.64        | 26.86                                              | 42.32        | 37.20    | 2.80   | 40.00   |
|    | 71.710                              | 1.19  | 21.26        | 26.87                                              | 32.80        | 28.38    | 11.62  | 40.00   |
|    | 335.550                             | 2.27  | 18.70        | 26.89                                              | 31.80        | 25.88    | 20.12  | 46.00   |
|    | 495.600                             | 2.93  | 20.81        | 26.64                                              | 32.80        | 29.89    | 16.11  | 46.00   |
|    | 656.620                             | 3.59  | 22.13        | 26.39                                              | 33.60        | 32.93    | 13.07  | 46.00   |
|    | 917.550                             | 4.66  | 23.96        | 25.98                                              | 36.80        | 39.44    | 6.56   | 46.00   |

Note:

1. All Readings below 1GHz are Quasi-Peak, above are average value.

2. "\*", means this data is the worst emission level.

3. Emission Level = Reading Level + Probe Factor + Cable Loss.

|    | Produ<br>Test 1<br>Test 1<br>Test 1 | ltem  | : Ge<br>: No | ireless PC<br>eneral Rad<br>D.1 OATS<br>nannel 6-1 | iated Emissi | on       |       |         |
|----|-------------------------------------|-------|--------------|----------------------------------------------------|--------------|----------|-------|---------|
|    | Frequency                           | Cable | Probe        | PreAMP                                             | Reading      | Emission | Margi | n Limit |
|    |                                     | Loss  | Factor       |                                                    | Level        | Level    |       |         |
|    | MHz                                 | dB    | dB/m         | dB                                                 | dBuV         | dBuV/m   | dB    | dBuV/m  |
| He | orizontal                           |       |              |                                                    |              |          |       |         |
|    | 50.370                              | 1.10  | 12.24        | 26.86                                              | 39.60        | 26.08    | 13.92 | 40.00   |
|    | 98.870                              | 1.30  | 17.25        | 26.88                                              | 33.40        | 25.07    | 18.43 | 43.50   |
|    | 496.570                             | 2.93  | 20.83        | 26.64                                              | 36.80        | 33.93    | 12.07 | 46.00   |
|    | 656.620                             | 3.59  | 22.13        | 26.39                                              | 31.20        | 30.53    | 15.47 | 46.00   |
| *  | 918.520                             | 4.66  | 24.06        | 25.98                                              | 35.80        | 38.55    | 7.45  | 46.00   |
|    | 962.170                             | 4.84  | 24.25        | 25.91                                              | 34.60        | 37.79    | 16.21 | 54.00   |
| Ve | ertical                             |       |              |                                                    |              |          |       |         |
| *  | 50.370                              | 1.10  | 20.24        | 26.86                                              | 40.80        | 35.28    | 4.72  | 40.00   |
|    | 220.120                             | 1.80  | 20.38        | 26.92                                              | 28.60        | 23.86    | 22.14 | 46.00   |
|    | 495.600                             | 2.93  | 20.81        | 26.64                                              | 32.00        | 29.09    | 16.91 | 46.00   |
|    | 656.620                             | 3.59  | 22.13        | 26.39                                              | 33.20        | 32.53    | 13.47 | 46.00   |

Note:

918.520

1. All Readings below 1GHz are Quasi-Peak, above are average value.

2. "\*", means this data is the worst emission level.

4.66 24.06 25.98

962.170 4.84 24.25 25.91

3. Emission Level = Reading Level + Probe Factor + Cable Loss - PreAMP.

36.00

31.80

38.75 7.25 46.00

19.01 54.00

34.99

# QuieTek

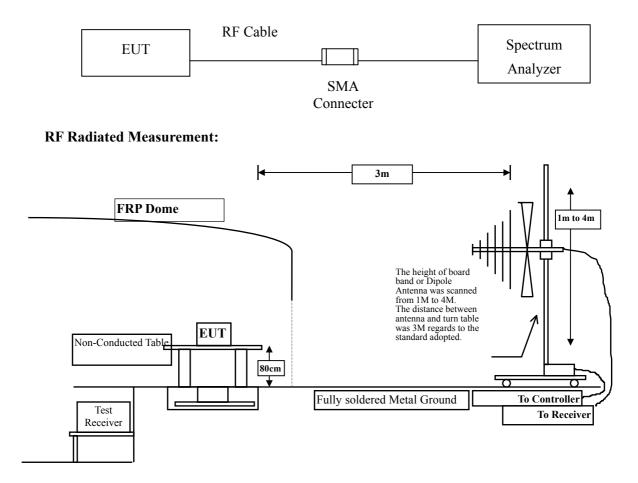
|    | Prod<br>Test<br>Test<br>Test | Item  | : Ge<br>: No | ireless PC<br>eneral Rad<br>b.1 OATS<br>nannel 11- | iated Emissi | on       |        |         |
|----|------------------------------|-------|--------------|----------------------------------------------------|--------------|----------|--------|---------|
| ]  | Frequency                    | Cable | Probe        | PreAMP                                             | Reading      | Emission | Margin | n Limit |
|    |                              | Loss  | Factor       |                                                    | Level        | Level    |        |         |
|    | MHz                          | dB    | dB/m         | dB                                                 | dBuV         | dBuV/m   | dB     | dBuV/m  |
| Ho | orizontal                    |       |              |                                                    |              |          |        |         |
|    | 53.280                       | 1.11  | 11.17        | 26.86                                              | 38.60        | 24.02    | 15.98  | 40.00   |
|    | 66.860                       | 1.17  | 12.16        | 26.86                                              | 42.80        | 29.27    | 10.73  | 40.00   |
|    | 496.570                      | 2.93  | 20.83        | 26.64                                              | 34.00        | 31.13    | 14.87  | 46.00   |
|    | 656.620                      | 3.59  | 22.13        | 26.39                                              | 31.40        | 30.73    | 15.27  | 46.00   |
| *  | 918.520                      | 4.66  | 24.06        | 25.98                                              | 33.40        | 36.15    | 9.85   | 46.00   |
|    | 963.140                      | 4.85  | 24.25        | 25.91                                              | 34.40        | 37.59    | 16.41  | 54.00   |
| Ve | rtical                       |       |              |                                                    |              |          |        |         |
|    | 37.760                       | 1.05  | 20.30        | 26.85                                              | 40.20        | 34.70    | 5.30   | 40.00   |
| *  | 54.250                       | 1.12  | 21.04        | 26.86                                              | 39.80        | 35.09    | 4.91   | 40.00   |
|    | 497.540                      | 2.94  | 20.73        | 26.64                                              | 33.20        | 30.23    | 15.77  | 46.00   |
|    | 656.620                      | 3.59  | 22.13        | 26.39                                              | 32.00        | 31.33    | 14.67  | 46.00   |
|    | 918.520                      | 4.66  | 24.06        | 25.98                                              | 35.80        | 38.55    | 7.45   | 46.00   |
|    | 962.170                      | 4.84  | 24.25        | 25.91                                              | 32.60        | 35.79    | 18.21  | 54.00   |

- 1. All Readings below 1GHz are Quasi-Peak, above are average value.
- 2. "\*", means this data is the worst emission level.
- 3. Emission Level = Reading Level + Probe Factor + Cable Loss PreAMP.

#### 6. Band Edge

\_\_\_\_

#### 6.1. Test Equipment


The following test equipments are used during the band edge tests:

|   | Equipment         | Manufacturer | Model No./Serial No. | Last Cal.  |
|---|-------------------|--------------|----------------------|------------|
| Х | Spectrum Analyzer | Advantest    | R3272 / 72421194     | May, 2002  |
| Х | Test Receiver     | R & S        | ESCS 30 / 825442/14  | May, 2002  |
| Х | Spectrum Analyzer | Advantest    | R3261C / 71720140    | May, 2002  |
| Х | Pre-Amplifier     | HP           | 8447D/3307A01812     | May, 2002  |
| Х | Bilog Antenna     | Chase        | CBL6112B / 12452     | Sep., 2002 |
| Х | Horn Antenna      | EM           | EM6917 / 103325      | May, 2002  |

Note: 1. All equipments that need to calibrate are with calibration period of 1 year. 2. Mark "X" test instruments are used to measure the final test results.

#### 6.2. Test Setup

#### **RF Conducted Measurement:**



#### 6.3. Limits

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

#### 6.4. Test Procedure

The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level.

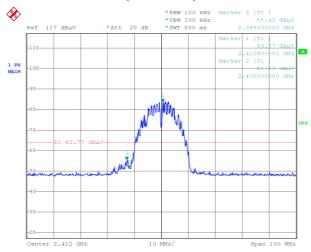
Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.4:1992 on radiated measurement.

The bandwidth below 1GHz setting on the field strength meter (R&S Test Receiver ESCS 30 )is 120 kHz, above 1GHz are 1 MHz.

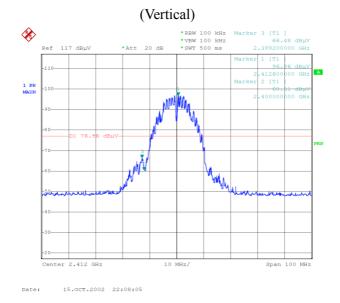
#### 6.5. Test Result of Band Edge

| Product   | : | Wireless PCI Adaptor |
|-----------|---|----------------------|
| Test Item | : | Band Edge            |
| Test Site | : | No.1 OATS            |
| Test Mode | : | Channel 1 (1Mbps)    |

Date:


15.0CT.2002 22:22:30

#### **RF Radiated Measurement:**


| Channel No.    | Frequency<br>(MHz) | Required Limit<br>(dBc) | Result |  |
|----------------|--------------------|-------------------------|--------|--|
| 1 (Horizontal) | <2400              | >20                     | Pass   |  |
| 1 (Vertical)   | <2400              | >20                     | Pass   |  |

#### Figure Channel 1:

(Horizontal)

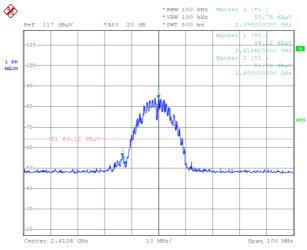


#### Figure Channel 1:



| Product   | : | Wireless PCI Adaptor |
|-----------|---|----------------------|
| Test Item | : | Band Edge            |
| Test Site | : | No.1 OATS            |
| Test Mode | : | Channel 1 (11Mbps)   |

Date:


15.0CT.2002 22:37:58

#### **RF Radiated Measurement:**

| Channel No.    | Frequency<br>(MHz) | Required Limit<br>(dBc) | Result |  |
|----------------|--------------------|-------------------------|--------|--|
| 1 (Horizontal) | <2400              | >20                     | Pass   |  |
| 1 (Vertical)   | <2400              | >20                     | Pass   |  |

#### Figure Channel 1:

#### (Horizontal)



#### Figure Channel 1:

 CVertical)

 \*FEW 100 KHz
 Marker 3 [T1]

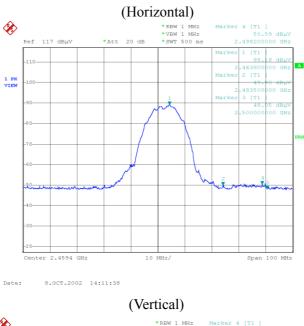
 \*VEW 100 KHz
 Marker 3 [T1]

 \*VEW 100 KHz
 C33920000 GHz

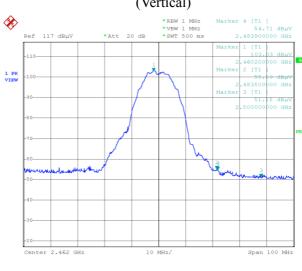
 \*Int
 Marker 1 [5, 7] dHu/

 \*Int
 Marker 2 [T1]

 100
 Marker 2 [T1]


Date: 15.0CT.2002 22:29:14

| Product   | : | Wireless PCI Adaptor |
|-----------|---|----------------------|
| Test Item | : | Band Edge            |
| Test Site | : | No.1 OATS            |
| Test Mode | : | Channel 11 (1Mbps)   |


#### **RF Radiated Measurement: (Peak Detector)**

| Channel No.    | Frequency<br>(MHz) | Reading<br>Level<br>(dBuV) | Probe<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | PreAMP<br>(dB) | Emission<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Result |
|----------------|--------------------|----------------------------|---------------------------|-----------------------|----------------|-------------------------------|-------------------|--------|
| 11(Horizontal) | 2498.2             | 60.59                      | 29.62                     | 2.52                  | 34.95          | 57.78                         | 74                | Pass   |
| 11 (Vertical)  | 2483.9             | 64.71                      | 29.60                     | 2.50                  | 34.95          | 61.86                         | 74                | Pass   |

#### Figure Channel 11:

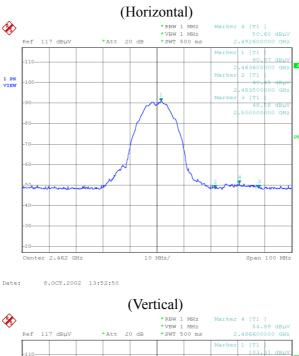


#### Figure Channel 11:

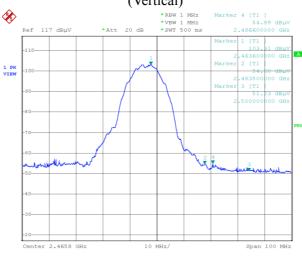


Date: 8.0CT.2002 14:03:20

Note: 1. There is an attenuator of 10dB is connected to the input of pre-amplifier, so Reading Level added 10dB.


2. The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.

| Product   | : | Wireless PCI Adaptor |
|-----------|---|----------------------|
| Test Item | : | Band Edge            |
| Test Site | : | No.1 OATS            |
| Test Mode | : | Channel 11 (11Mbps)  |


#### **RF Radiated Measurement: (Peak Detector)**

| Channel No.    | Frequency<br>(MHz) | Reading<br>Level<br>(dBuV) | Probe<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | PreAMP<br>(dB) | Emission<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Result |
|----------------|--------------------|----------------------------|---------------------------|-----------------------|----------------|-------------------------------|-------------------|--------|
| 11(Horizontal) | 2492.6             | 60.60                      | 29.62                     | 2.50                  | 34.95          | 57.77                         | 74                | Pass   |
| 11 (Vertical)  | 2486.6             | 64.89                      | 29.60                     | 2.50                  | 34.95          | 62.04                         | 74                | Pass   |

## Figure Channel 11:



#### **Figure Channel 11:**

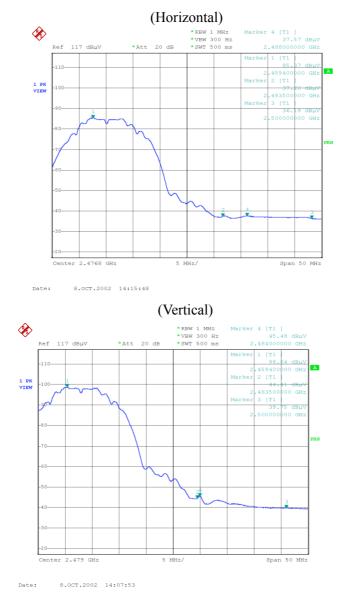


Date: 8.0CT.2002 13:48:19

Note: 1. There is an attenuator of 10dB is connected to the input of pre-amplifier, so Reading Level added 10dB.

2. The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.

# QuieTer


| Product   | : | Wireless PCI Adaptor |
|-----------|---|----------------------|
| Test Item | : | Band Edge            |
| Test Site | : | No.1 OATS            |
| Test Mode | : | Channel 11 (1Mbps)   |

## **RF Radiated Measurement: (Average Detector)**

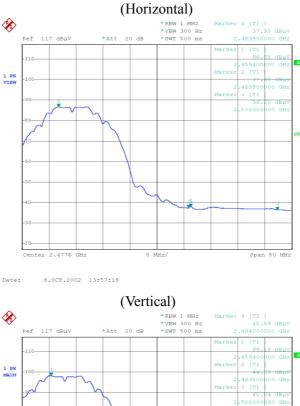
| Channel No.    | Frequency<br>(MHz) | Reading<br>Level<br>(dBuV) | Probe<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | PreAMP<br>(dB) | Emission<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Result |
|----------------|--------------------|----------------------------|---------------------------|-----------------------|----------------|-------------------------------|-------------------|--------|
| 11(Horizontal) | 2488.0             | 47.57                      | 29.60                     | 2.50                  | 34.95          | 44.72                         | 54                | Pass   |
| 11 (Vertical)  | 2484.0             | 55.48                      | 29.60                     | 2.50                  | 34.95          | 52.63                         | 54                | Pass   |

## Figure Channel 11:

Figure Channel 11:



Note: 1. There is an attenuator of 10dB is connected to the input of pre-amplifier, so Reading Level added 10dB.


2. The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.

| Product   | : | Wireless PCI Adaptor |
|-----------|---|----------------------|
| Test Item | : | Band Edge            |
| Test Site | : | No.1 OATS            |
| Test Mode | : | Channel 11 (11Mbps)  |


#### **RF Radiated Measurement: (Average Detector)**

| Channel No.    | Frequency<br>(MHz) | Reading<br>Level<br>(dBuV) | Probe<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | PreAMP<br>(dB) | Emission<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Result |
|----------------|--------------------|----------------------------|---------------------------|-----------------------|----------------|-------------------------------|-------------------|--------|
| 11(Horizontal) | 2483.9             | 47.90                      | 29.6                      | 2.50                  | 34.95          | 45.05                         | 54                | Pass   |
| 11(Vertical)   | 2484.0             | 55.59                      | 29.6                      | 2.50                  | 34.95          | 52.74                         | 54                | Pass   |

## Figure Channel 11:



# Figure Channel 11:

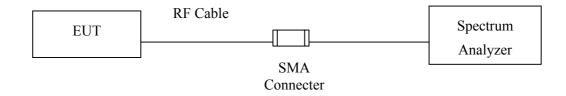


Date: 8.0CT.2002 13:44:47

Note: 1. There is an attenuator of 10dB is connected to the input of pre-amplifier, so Reading Level added 10dB.

2. The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.

# 7. Occupied Bandwidth


# 7.1. Test Equipment

The following test equipments are used during the radiated emission tests:

|   | Equipment         | Manufacturer | Model No./Serial No. | Last Cal. |  |
|---|-------------------|--------------|----------------------|-----------|--|
| Х | Spectrum Analyzer | Advantest    | R3272 / 72421194     | May, 2002 |  |

Note: 1. All equipment upon which need to calibrated are with calibration period of 1 year.2. Mark "X" test instruments are used to measure the final test results.

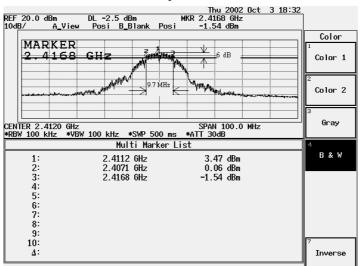
# 7.2. Test Setup



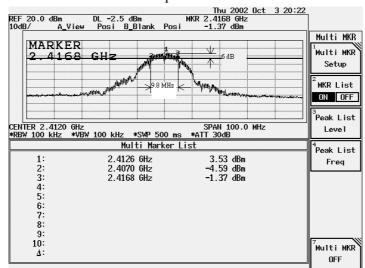
# 7.3. Limits

The minimum bandwidth shall be at least 500kHz.

# QuieTer


# 7.4. Test Result of Occupied Bandwidth

| Product   | : | Wireless PCI Adaptor |
|-----------|---|----------------------|
| Test Item | : | Occupied Bandwidth   |
| Test Site | : | No.1 OATS            |
| Test Mode | : | Channel 1            |

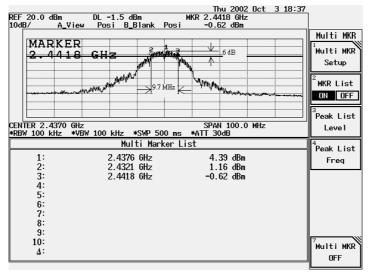

| Channel No. | Frequency | Measurement Level | Required Limit | Result |
|-------------|-----------|-------------------|----------------|--------|
| Channel No. | (MHz)     | (kHz)             | (kHz)          | Result |
| 1 (1Mbps)   | 2411.2    | 9700              | >500           | Pass   |
| 1 (11Mbps)  | 2412.6    | 9800              | >500           | Pass   |

#### Figure Channel 1:

1Mbps



#### Figure Channel 1:




| Product   | : | Wireless PCI Adaptor |
|-----------|---|----------------------|
| Test Item | : | Occupied Bandwidth   |
| Test Site | : | No.1 OATS            |
| Test Mode | : | Channel 6            |

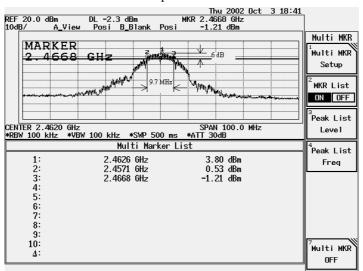
| Channel No. | Frequency | Measurement Level | ent Level Required Limit |        |  |
|-------------|-----------|-------------------|--------------------------|--------|--|
| Channel No. | (MHz)     | (kHz)             | (kHz)                    | Result |  |
| 6 (1Mbps)   | 2437.6    | 9700              | >500                     | Pass   |  |
| 6 (11Mbps)  | 2437.6    | 9800              | >500                     | Pass   |  |

## Figure Channel 6:

1Mbps



#### Figure Channel 6:


|                      | •                       |                          |                                       |
|----------------------|-------------------------|--------------------------|---------------------------------------|
|                      |                         | Thu 2002 Oct 3           | 20:19                                 |
| F20.0 dBm<br>∖dB/ AV |                         | MKR 2.4418 GHz           |                                       |
| ab/ A_V              | iew Posi B_Blank Pos    | i -0.55 dBm              | MULT: MKD                             |
| MARKE                |                         |                          | Multi MKR                             |
| 9 444                |                         | €6 dB                    | Multi MKR                             |
|                      | o une                   | M                        | Setup                                 |
|                      |                         |                          | · · · · · · · · · · · · · · · · · · · |
|                      | 9.8 MHz                 | No the second            | MKR List                              |
|                      | worth of the had        | - Mary Mary Mary Carrows | ON OFF                                |
|                      |                         |                          |                                       |
|                      |                         |                          | Peak List                             |
| TER 2.4370 (         | нz                      | SPAN 100.0 MHz           | Level                                 |
| 3W 100 kHz 🔅         | *VBW 100 kHz *SWP 500 m |                          | Level                                 |
|                      | Multi Marker            | List                     | Peak List                             |
| 1:                   | 2.4376 GHz              | 4.41 dBm                 |                                       |
| 2:                   | 2.4320 GHz              | -3.73 dBm                | Freq                                  |
| 2:<br>3:             | 2.4418 GHz              | -0.55 dBm                |                                       |
| 4:                   |                         |                          |                                       |
| 5:                   |                         |                          |                                       |
| 6:                   |                         |                          |                                       |
| 7:                   |                         |                          |                                       |
| 8:                   |                         |                          |                                       |
| 9:                   |                         |                          | 7                                     |
| 10:<br>4:            |                         |                          | Multi MKR                             |
| Δ.                   |                         |                          | OFF                                   |
|                      |                         |                          |                                       |

| Product   | : | Wireless PCI Adaptor |
|-----------|---|----------------------|
| Test Item | : | Occupied Bandwidth   |
| Test Site | : | No.1 OATS            |
| Test Mode | : | Channel 11           |

| Channel No. | Frequency | Measurement Level | Required Limit | Result |
|-------------|-----------|-------------------|----------------|--------|
| Channel No. | (MHz)     | (kHz)             | (kHz)          | Kesuit |
| 11 (1Mbps)  | 2462.6    | 9700              | >500           | Pass   |
| 11 (11Mbps) | 2462.6    | 9800              | >500           | Pass   |

## Figure Channel 11:

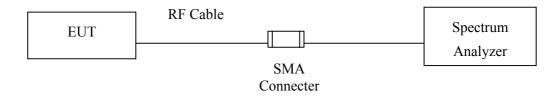
1Mbps



### Figure Channel 11:

| BW 100 kHz *VBW 100 kHz *SWP 500 ms *ATT 30dB<br>Multi Marker List<br>1: 2.4626 6Hz 3.75 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Setup     MKR Lis     ON OF     Peak Lis |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| NTER 2.4620 GHz         SPAN 100.0 MHz           BW 100 KHz         *VBW 100 KHz           SPAN 100.0 MHz         BW 100 KHz           WIti Marker List         1:           1:         2.4626 GHz           3.75 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Hz                                       |
| Mite         Mite         Mite           NTER 2.4620 GHz         SPAN 100.0 MHz           BW 100 KHz         *VBW 100 KHz           WILti Marker List           1:         2.4626 GHz           3.75 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Hz ON OF<br>Beak Line                    |
| NTER 2.4620 GHz<br>BW 100 kHz *VBW 100 kHz *SWP 500 ms *ATT 30dB<br>Multi Marker List<br>1: 2.4626 GHz 3.75 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hz ON OF                                 |
| BW 100 kHz *VBW 100 kHz *SWP 500 ms *ATT 30dB<br>Multi Marker List<br>1: 2.4626 6Hz 3.75 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hz Level                                 |
| Number Name         Number Name | Level                                    |
| BW 100 kHz *VBW 100 kHz *SWP 500 ms *ATT 30dB<br>Multi Marker List<br>1: 2.4626 6Hz 3.75 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Level                                    |
| Multi Marker List           1:         2.4626 GHz         3.75 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Peak Li                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Freq                                     |
| 2: 2.4570 GHz -4.03 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                          |
| 3: 2.4668 GHz -1.16 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                          |
| 4:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |
| 5:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |
| 6:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |
| 7:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                          |
| 8:<br>9:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          |

# 8. **Power Density**


## 8.1. Test Equipment

The following test equipments are used during the radiated emission tests:

|   | Equipment         | Manufacturer | Model No./Serial No. | Last Cal. |
|---|-------------------|--------------|----------------------|-----------|
| Х | Spectrum Analyzer | Advantest    | R3272 / 72421194     | May, 2002 |

Note: 1. All equipment upon which need to calibrated are with calibration period of 1 year.2. Mark "X" test instruments are used to measure the final test results.

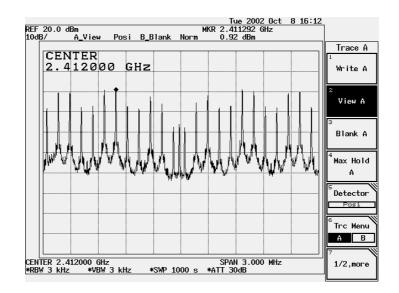
# 8.2. Test Setup



# 8.3. Limits

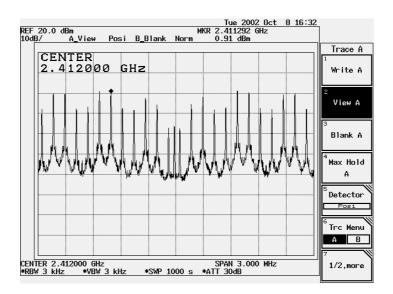
The transmitted power density averaged over any 1 second interval shall not be greater +8dBm in any 3kHz bandwidth.

# QuieTer


# 8.4. Test Result of Power Density

| Product   | : | Wireless PCI Adaptor |
|-----------|---|----------------------|
| Test Item | : | Power Density        |
| Test Site | : | No.1 OATS            |
| Test Mode | : | Channel 1            |

| Channel No. | Frequency<br>(MHz) | Measurement Level (dBm) | Required Limit<br>(dBm) | Result |
|-------------|--------------------|-------------------------|-------------------------|--------|
| 1 (1Mbps)   | 2412.0             | 0.92                    | < 8dBm                  | Pass   |
| 1 (11Mbps)  | 2412.0             | 0.91                    | < 8dBm                  | Pass   |


Figure Channel 1:





#### Figure Channel 1:

11Mbps



| Product   | : | Wireless PCI Adaptor |
|-----------|---|----------------------|
| Test Item | : | Power Density        |
| Test Site | : | No.1 OATS            |
| Test Mode | : | Channel 6            |

| Channel No. | Frequency | Measurement Level | Required Limit | Result |
|-------------|-----------|-------------------|----------------|--------|
| Channel No. | (MHz)     | (dBm)             | (dBm)          | Kesuit |
| 6 (1Mbps)   | 2437.0    | 3.03              | < 8dBm         | Pass   |
| 6 (11Mbps)  | 2437.0    | 0.34              | < 8dBm         | Pass   |

#### Figure Channel 6:



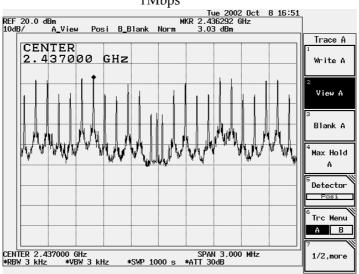
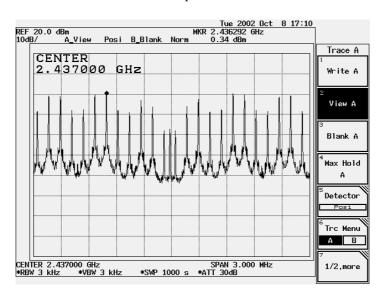
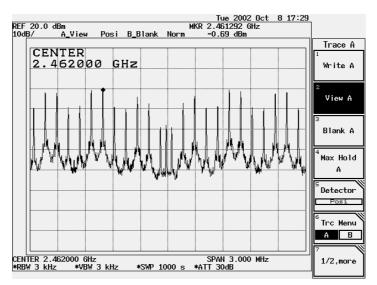
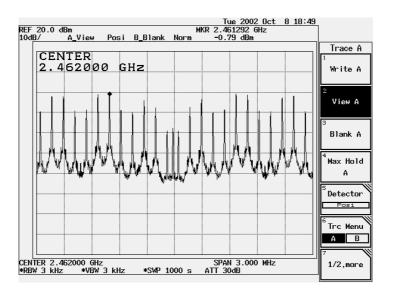




Figure Channel 6:




# QuieTer

| Product   | : | Wireless PCI Adaptor |
|-----------|---|----------------------|
| Test Item | : | Power Density        |
| Test Site | : | No.1 OATS            |
| Test Mode | : | Channel 11           |
|           |   |                      |


| Channel No. | Frequency | Measurement Level | Required Limit | Result |
|-------------|-----------|-------------------|----------------|--------|
| Channel No. | (MHz)     | (dBm)             | (dBm)          | Kesuit |
| 11 (1Mbps)  | 2462.0    | -0.69             | < 8dBm         | Pass   |
| 11 (11Mbps) | 2462.0    | -0.79             | < 8dBm         | Pass   |

#### Figure Channel 11:

1Mbps



#### Figure Channel 11:



# 9. Processing Gain

# 9.1. Limits

The processing gain shall be at least 10 dB.

# 9.2. Test Procedure

The processing gain of this spread spectrum was measured the CW jamming method. The Section9.1 illustrates the measurement setup. The output power of the spread spectrum transmitter is fixed and the output power of jammed is adjustable. The frequency of iammer was stopped through the pass band of nominal channel in 50kHz steps. In each frequency step of the jammed, the output power of rammed is adjusted to cause the Bit Error Rate (BER) to be 1.0\*10e-6. The power levels are recorded to calculate the J/S as shown in Table 1.

Calculation of Processing Gain:

The processing gain was determined by measuring the jamming margin of the EUT and using the following formula:

Gp = (S/N)o + Mj + Lsys

Where (S/N)o is the required signal to noise ratio at the receiver output

Mj is the jammer to signal ratio (J/S)

Lsys is the system loss

The (S/N)o is calculated from:

Pe = 1/2exp(-1/2(S/N)o); Pe = probability of error (BER)

For the Pe(BER) = 1.0\*10e-6, the required (S/N)o is 16.4dB

From Measurement, the minimum J/S(Mj) is  $\geq 8.4$ dB

We assume the system loss is 2dB.

Therefore the processing gain is calculated below:

Gp = (S/N)o + Mj + Lsys = 16.4 + (-8.4) + 2 = 10 (dB)

# 9.3. Test Result of Processing Gain

As EUT power is loss than 20dBm, processing gain is not applicable.

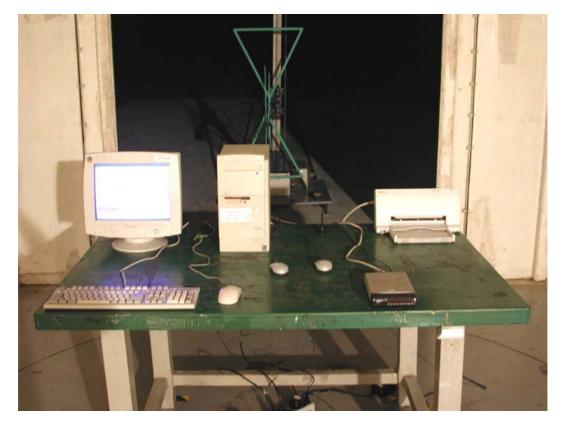
# **10.** EMI Reduction Method During Compliance Testing

No modification was made during testing.

Attachment 1: EUT Test Photographs



# **Attachment 1: EUT Test Setup Photographs**


Front View of Conducted Test



Back View of Conducted Test

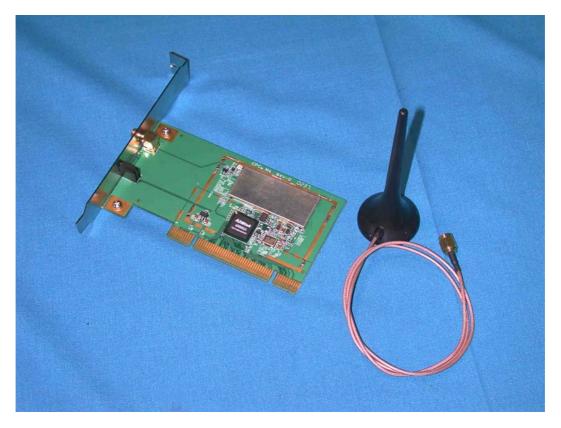


# Front View of Radiated Test

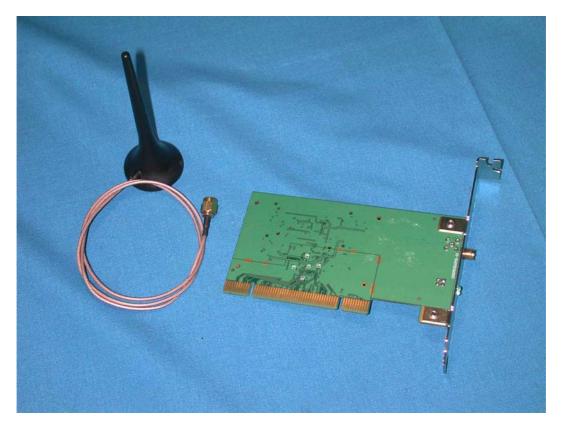


Back View of Radiated Test




# Front View of Radiated Test (Horn)

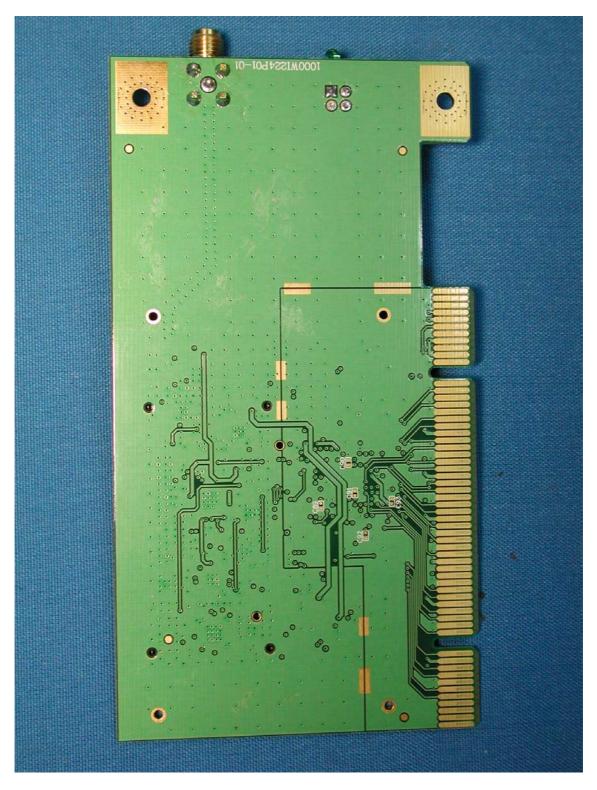



Attachment 2: EUT Detailed Photographs



# Attachment 2 : EUT Detailed Photographs (1) EUT Photo




(2) EUT Photo



# (3) EUT Photo



(4) EUT Photo

