

TEST REPORT

Test report no.: 1-2842/16-01-13-D

BNetzA-CAB-02/21-102

Testing laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 – 10
66117 Saarbruecken / Germany
Phone: + 49 681 5 98 - 0
Fax: + 49 681 5 98 - 9075
Internet: http://www.ctcadvanced.com
e-mail: mail@ctcadvanced.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with

the registration number: D-PL-12076-01-03

Applicant

Philips Medizin Systeme Böblingen GmbH

Hewlett-Packard-Strasse 2 71034 Böblingen / GERMANY

Phone: -/-

Fax: +49 7031 463-2944 Contact: Hansjörg Geywitz

e-mail: hansjoerg.geywitz@philips.com

Phone: +49 7031 463-1879

Manufacturer

Philips Medizin Systeme Böblingen GmbH

Hewlett-Packard-Strasse 2 71034 Böblingen / GERMANY

Test standard/s

47 CFR Part 95 Personal radio services – medical device Radiocommunication service (MedRadio)

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Device for measuring respiration

Model name: IntelliVue CL Respiration Pod 865218

FCC ID: PQC-SRRBV7

MBAN bands:

Frequency: 2360 MHz to 2390 MHz & 2390 MHz to 2400 MHz

Technology tested: MBAN

Radio Communications & EMC

Antenna: Integrated chip antenna

Power supply: 3.7 V DC by Li – Ion battery

Temperature range: -20°C to +55°C

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:	Test performed:
Marco Bertolino	Mihail Dorongovskij
Lab Manager	Lab Manager

Radio Communications & EMC

Table of contents

1	Table	of contents	2
2	Gener	al information	3
	2.1	Notes and disclaimer	
	2.2	Application details	3
3	Test s	tandard/s and references	
4		nvironment	
5		em	
	5.1 5.2	General descriptionAdditional information	
6	Test la	aboratories sub-contracted	4
7	Descr	iption of the test setup	5
	7.1 7.2 7.3 7.4 7.5 7.6	Shielded semi anechoic chamber	8 9
8		ence of testing	
•	8.1	Sequence of testing radiated spurious 9 kHz to 30 MHz	
	8.2	Sequence of testing radiated spurious 9 kHz to 30 MHz	
	8.3	Sequence of testing radiated spurious 1 GHz to 18 GHz	14
	8.4	Sequence of testing radiated spurious above 18 GHz	
9	Measu	rement uncertainty	16
10	Sun	nmary of measurement results	17
11	Add	itional comments	18
12	Mea	surement results	23
	12.1	Frequency stability	23
	12.2	Emission bandwidth	29
	12.3	Maximum transmit power	
	12.4	Band edge measurement	40
	12.5	Transmitter unwanted radiation (radiated)	
	12.6	Receiver unwanted radiation (radiated)	
	12.7	Connection interrupt test (body-worn sensor)	66
13	Obs	ervations	71
Anr	nex A	Glossary	72
Anr	ex B	Document history	73
Anr	nex C	Accreditation Certificate	73

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-2842/16-01-13-C and dated 2018-05-04.

2.2 Application details

Date of receipt of order: 2016-11-17
Date of receipt of test item: 2017-01-30
Start of test: 2017-01-35
End of test: 2017-11-15

Person(s) present during the test: -/-

3 Test standard/s and references

Test standard	Date	Description
47 CFR Part 95	May-14-2009	Personal radio services – medical device Radiocommunication service (MedRadio)

Guidance	Version	Description
ANSI C63.4-2014	-/-	American national standard for methods of measurement of radio-noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz
KDB 550599 D01 v01r01	December-08- 2017	Medical body area network (MBAN) measurement procedures

4 Test environment

Temperature		T_{nom} T_{max} T_{min}	+22 °C during room temperature tests +55 °C during high temperature tests 0 °C during low temperature tests
Relative humidity content :			55 %
Barometric pressure			not relevant for this kind of testing
Power supply	:	V _{nom} V _{max} V _{min}	3.7 V DC by Li – Ion battery No tests under extreme voltage conditions required. No tests under extreme voltage conditions required.

5 Test item

5.1 General description

Kind of test item :	Device for measuring respiration
Type identification :	IntelliVue CL Respiration Pod 865218
S/N serial number :	Radiated unit: DE40301888
HW hardware status :	1
SW software status :	D.00.70
Frequency band :	MBAN bands: 2360 MHz to 2390 MHz & 2390 MHz to 2400 MHz (lowest channel 2363 MHz, highest channel 2397 MHz)
Type of radio transmission: Use of frequency spectrum:	modulated carrier, DSSS
Type of modulation :	OQPSK
Number of channels :	15
Antenna :	Integrated chip antenna
Power supply :	3.7 V DC by Li – Ion battery
Temperature range :	-20°C to +55°C

5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report: 1-2842/16-01-04_AnnexA

1-2842/16-01-04_AnnexB 1-2842/16-01-04_AnnexD

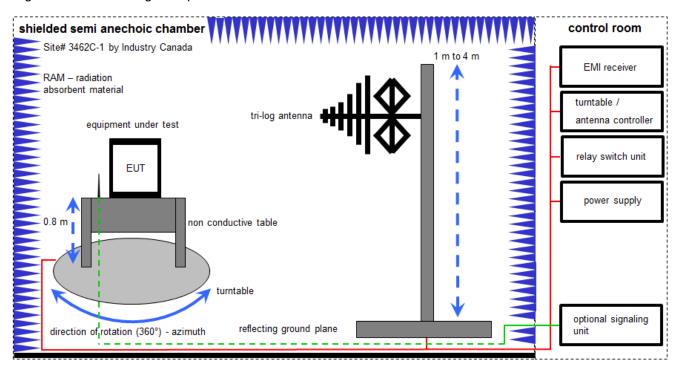
6 Test laboratories sub-contracted

None

7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).


Agenda: Kind of Calibration

k ne	calibration / calibrated not required (k, ev, izw, zw not required)	EK zw	limited calibration cyclical maintenance (external cyclical maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval	_	-
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

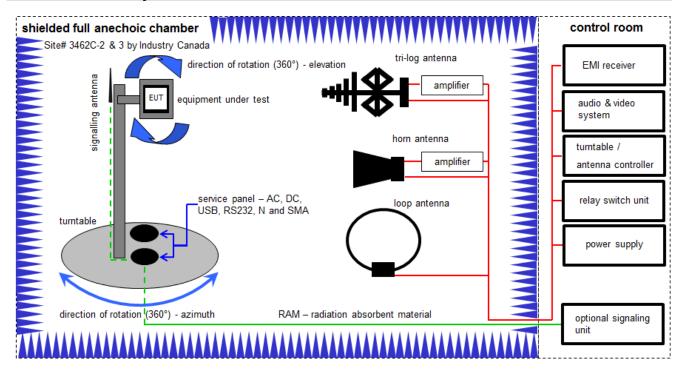
7.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are confirmed with specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)


Example calculation:

FS $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 <math>\mu V/m$)

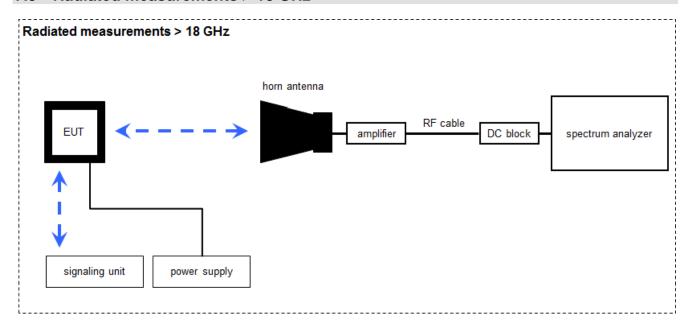
No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	Α	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	08.03.2016 01.02.2017	08.03.2017 31.01.2018
3	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
4	Α	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
5	Α	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
6	Α	TRILOG Broadband Test-Antenna 30 MHz – 3 GHz	VULB9163	Schwarzbeck	295	300003787	k	25.04.2016	25.04.2018

7.2 Shielded fully anechoic chamber

Measurement distance: tri-log antenna and horn antenna 3 meter; loop antenna 3 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)


Example calculation:

 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \mu V/m)$

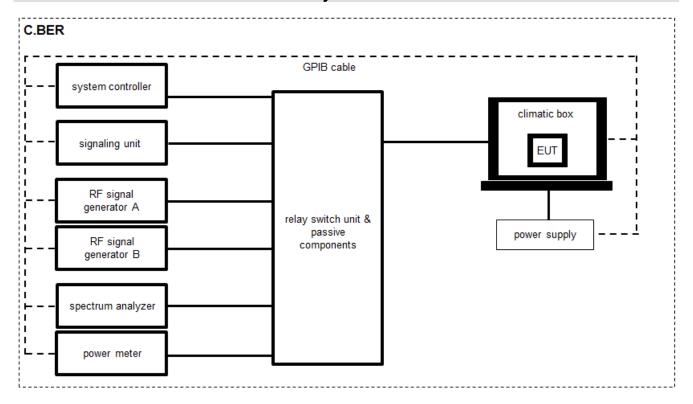
No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
		Double-Ridged						20.05.2015	20.05.2017
1	A	Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	8812-3088	300001032	vIKI!	14.02.2017	13.02.2019
2	A, B	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
3	A, B	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
4	В	Active Loop Antenna 10 kHz to 30 MHz	6502	EMCO/2	8905-2342	300000256	k	24.06.2015	24.06.2017
5	В	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	k	07.07.2017	06.07.2019
6	А	Amplifier	js42-00502650-28- 5a	Parzich GMBH	928979	300003143	ne	-/-	-/-
7	А	Band Reject filter	WRCG2400/2483- 2375/2505-50/10SS	Wainwright	11	300003351	ev	-/-	-/-
8	Α	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	18	300003789	ne	-/-	-/-
9	А	TRILOG Broadband Test-Antenna 30 MHz – 3 GHz	VULB9163	Schwarzbeck	371	300003854	vIKI!	29.10.2014	29.10.2017
10	A, B	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
11	A, B	EMI Test Receiver 9kHz-26,5GHz	ESR26	R&S	101376	300005063	vIKI!	13.09.2016	13.03.2018

7.3 Radiated measurements > 18 GHz

Measurement distance: horn antenna 50 cm

 $FS = U_R + CA + AF$

(FS-field strength; U_R-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor)


Example calculation:

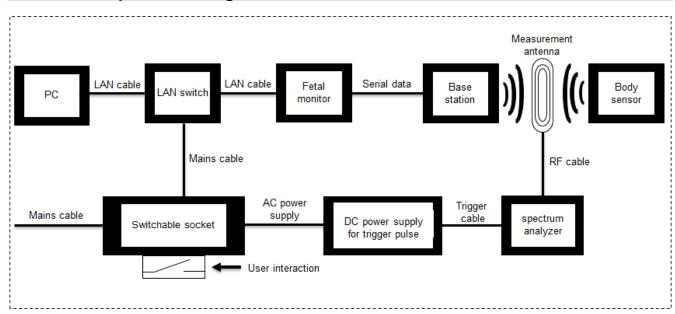
 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-60.1) [dB] + 36.74 [dB/m] = 16.64 [dB\mu V/m] (6.79 \mu V/m)$

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Amplifier 2-40 GHz	JS32-02004000-57- 5P	MITEQ	1777200	300004541	ev	-/-	-/-
2	Α	RF-Cable	ST18/SMAm/SMAm/ 48	Huber & Suhner	Batch no. 600918	400001182	ev	-/-	-/-
3	Α	RF-Cable	ST18/SMAm/SMm/4 8	Huber & Suhner	Batch no. 127377	400001183	ev	-/-	-/-
4	А	DC-Blocker 0.1-40 GHz	8141A	Inmet	Batch no. 127377	400001185	ev	-/-	-/-
5	А	Std. Gain Horn Antenna 18.0 to 26.5 GHz	638	Narda	-/-	300000486	k	10.09.2015	10.09.2017
6	Α	Signal Analyzer 40 GHz	FSV40	R&S	101042	300004517	k	21.01.2016 25.01.2017	21.01.2017 24.01.2018

7.4 Conducted measurements C.BER system

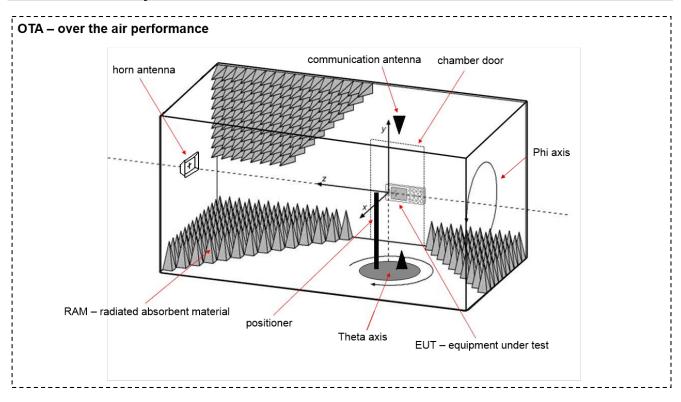
OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)


Example calculation:

OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A, B	Switch / Control Unit	3488A	HP	-/-	300001691	ne	-/-	-/-
2	A, B	Power Supply DC	NGPE 40/40	R&S	388	400000078	vIKI!	22.01.2015 31.01.2017	22.01.2017 30.01.2020
3	A, B	Signal Analyzer 20Hz-26,5GHz-150 to + 30 DBM	FSIQ26	R&S	835540/018	300002681	k	28.01.2016	28.01.2018
4	A, B	Frequency Standard (Rubidium Frequency	MFS (Rubidium)	R&S (Datum)	002	300002681	Ve	29.01.2015	29.01.2017
		Standard)						27.01.2017	26.01.2019
5	Α,	Directional Coupler	101020010	Krytar	70215	300002840	ev	-/-	-/-
6	A, B	DC-Blocker	8143	Inmet Corp.	none	300002842	ne	-/-	-/-
7	A, B	Powersplitter	6005-3	Inmet Corp.	none	300002841	ev	-/-	-/-
8	A, B	USB/GPIB interface	82357B	Agilent Technologies	MY52103346	300004390	ne	-/-	-/-
9	A, B	Messplatzrechner	Tecline	F+W	102585	300003580	ne	-/-	-/-
10	A, B	RF-Cable	ST18/SMAm/SMAm/ 72	Huber & Suhner	Batch no. 605505	400001187	ev	-/-	-/-
11	A, B	RF-Cable	Sucoflex 104	Huber & Suhner	147636/4	400001188	ev	-/-	-/-
12	A, B	RF-Cable	ST18/SMAm/SMAm/ 48	Huber & Suhner	Batch no. 699866	400001189	ev	-/-	-/-
13	A, B	RF-Cable	ST18/SMAm/SMAm/ 48	Huber & Suhner	Batch no. 14844	400001190	ev	-/-	-/-
14	В	Temperature Test Chamber	VT 4002	Heraeus Voetsch	5856604682001 0	300003019	ev	03.09.2015	03.09.2017
15	А	Signal Analyzer 30GHz	FSV30	R&S	103170	300004855	k	30.01.2017	29.01.2019


7.5 Test setup for the timing behavior

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Antenna	-/-	-/-	-/-	-/-	ne	-/-	-/-
2	Α	Switchable socket	-/-	-/-	-/-	-/-	ne	-/-	-/-
3	Α	Switch	-/-	-/-	-/-	-/-	ne	-/-	-/-
4	А	PC	Elitebock 480	hp	CNU416B860	Customer provided	ne	-/-	-/-
5	Α	Power supply	EA-PS 3032-65	Elektro Automatik	-/-	300002318	ne	-/-	-/-
6	A	Spectrum analyser	FSV30	R&S	100763	300003950	k	31.01.2017	30.01.2018

7.6 Shielded fully anechoic chamber

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Splitter	15542	Mini Circuits	15542	400000086	ev	-/-	-/-
2	Α	Splitter	42000	Anaren	4730	400000085	ev	-/-	-/-
3	Α	Switch Unit	TS-RSP	R&S	100155	300003281	ev	-/-	-/-
4	Α	CTIA-Chamber	CTIA-Chamber AMS 8500	ETS-Lindgren Finnland	-/-	300003327	ne	-/-	-/-
5	Α	CTIA-Chamber – Positioning Equipment	CTIA-Chamber – Positioning Equipment	EMCO/2	-/-	300003328	ne	-/-	-/-
6	Α	CTIA-Chamber – Software	CTIA-Chamber – Software	EMCO/2	-/-	300003328	ne	-/-	-/-
7	Α	CTIA-Chamber – Antenna	3164-04	EMCO/2	00041915	300003328	ne	-/-	-/-
8	Α	Spectrum Analyzer 9kHz – 30 GHz	FSP30	R&S	100623	300003464	vIKI!	01.02.2017	31.01.2019
9	Α	Hygro-Thermometer	5-45 C, 20-100 rF	Thies Clima	-/-	400000089	ev	-/-	-/-

8 Sequence of testing

8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all
 emissions.

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT.
 (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

^{*)}Note: The sequence will be repeated three times with different EUT orientations.

8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

8.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

8.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

9 Measurement uncertainty

Measurement uncertainty					
Test case	Uncertainty				
Frequency stability	± 100 Hz				
Emission bandwidth	± 21.5 kHz absolute; ± 15.0 kHz relative				
Maximum output power	± 1 dB				
Band edge	± 3 dB				
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB				
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB				
Spurious emissions radiated above 12.75 GHz	± 4.5 dB				
Spurious emissions conducted below 30 MHz (AC conducted)	± 2.6 dB				

10 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	47 CFR Part 2 47 CFR Part 95 H	See table	2018-05-25	-/-

Test Specification Clause	Test Case	Temperature Conditions	Power Source Voltages	С	NC	NA	NP	Remark
FCC 47 CFR § 95.2565(b)	Frequency stability	Nominal and extreme	Nominal	×				Added from report 1-2773/16-01-02
FCC 47 CFR § 95.2573€	Emission bandwidth	Nominal	Nominal	×				-/-
FCC 47 CFR § 95.2567€ and (f)	Maximum transmit power	Nominal	Nominal	×				-/-
FCC 47 CFR § 95.2579(a)(5) and (f)	Band edge measurements	Nominal	Nominal	×				-/-
FCC 47 CFR § 95.2579(a)(5) and (f)	Transmitter unwanted radiation	Nominal	Nominal	×				-/-
FCC 47 CFR § 95.2579(a)(5) and (f)	Receiver spurious emissions (radiated)	Nominal	Nominal	×				-/-
FCC 47 CFR § 15.107(a) § 15.207	Conducted emissions below 30 MHz (AC conducted)	Nominal	Nominal			×		Battery operated
550599 D01 Medical Body Area Network v01 § 95.2559 (f)	Connection interrupt test	Nominal	Nominal	×				Added from report 1-9941/15-01- 06-C

Notes:

С	Compliant	NC	Not compliant	NA	Not applicable	NP	Not performed
	•		•				

11 Additional comments

Reference documents : Questionnaire_IntelliVue CL Respiration Pod

Connection interrupt test: **1-9941/15-01-06-C** (Avalon CL fetal & maternal pod 866488)

Frequency stability: **1-2773/16-01-02**

Project Note – SRR Applicability of conducted measurements

Project Note

Subject: Applicability of conducted measurements

Referenced Product:

Single SRR: FCC ID PQC-SRRBV3

Affected Products:

Dual SRR: FCC IDs: PQC-TRNSBV1 and PQC-OBTRNSBV1

Single SRR: FCC IDs: PQC-SRRBV5, PQC-CLNBPBV2 and PQC-SRRBV7

The aforementioned "Affected Products" are identical in the design of the RF part except the antenna and its matching. Therefore, the conducted measurement results of the "Referenced Product" do also apply for the "Affected Products".

Rolf Neumann

Director Measurements & OB

25-May-2018

Note: Filed in DHF P35410, Saturn, Binder "Post Release Docs 1" in BBN R&D Vault DE-B300-006 chapter "Project Notes".

Special test descriptions:		nnels within the band 2360 MHz to 2390 MHz use power setting -6 and nnels within the band 2390 MHz to 2400 MHz use power setting -2.
Configuration descriptions:	None	
Test mode:	\boxtimes	Special software is used. EUT is transmitting pseudo random data by itself
Antennas and transmit operating modes:		Operating mode 1 (single antenna) - Equipment with 1 antenna, - Equipment with 2 diversity antennas operating in switched diversity mode by which at any moment in time only 1 antenna is used, - Smart antenna system with 2 or more transmit/receive chains, but operating in a mode where only 1 transmit/receive chain is used)
		Operating mode 2 (multiple antennas, no beamforming) - Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously but without beamforming.
		Operating mode 3 (multiple antennas, with beamforming) - Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously with beamforming. In addition to the antenna assembly gain (G), the beamforming gain (Y) may have to be taken into account when performing the measurements.

Expected results for systems test:

The timing specification of the MBAN System is as follows:

- MBAN P/C ceases any transmissions in the 2360 2390 MHz band < 60 seconds after communication with the MBAN Control Point is lost
- Body-Worn Sensor ceases any transmissions in the 2360 2390 MHz band < 6 seconds after the communication to the MBAN P/C is lost

Expected Results for Connection interrupt test (body-worn sensor) in 12.7 according to MBAN System Description (declared from manufacturer) (see Project Note)

Timeout for MBAN P/C connection interrupt: 60 seconds Timeout for Body-Worn Sensor connection interrupt: 66 seconds

System description (declared from manufacturer):

Project Note

Subject: MBAN System Description for FCC Approval

Affected Products:


Single SRR (FCC ID: PQC- SRRFMPBV1) in

Avalon CL Fetal & Maternal Pod (866488)

This Project Note is made in order to describe the behavior of an MBAN System with an MBAN Control Point, MBAN P/Cs and Body-Worn Sensors.

An MBAN System (1) consists of:

- an MBAN Control Point which coordinates the usage of the restricted 2360 2390 MHz band
- MBAN P/Cs holding connections to Body-Worn Sensors
- Body-Worn Sensors sending data to their MBAN P/C

1 – MBAN System

The MBAN Control Point periodically sends a control message to the MBAN P/Cs which includes the following information:

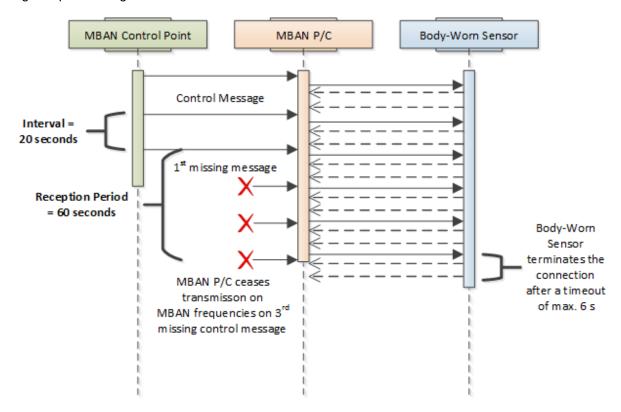
- Channel Mask: An IEEE 802.15.4 channel mask listing the permitted frequencies in the 2360 2390 MHz band.
- Reception Period: The period in which the MBAN P/C has to receive at least one control message or has to cease any transmissions in the 2360 – 2390 MHz band.

In the default configuration, the control message is sent at an interval of 20 seconds and the reception period is 60 seconds (three times of the interval).

When a MBAN P/C receives a control message from the MBAN Control Point it automatically selects a channel according to the received Channel Mask. This channel is used for connections between the MBAN P/C and Body-Worn Sensors.

Also, the MBAN P/C distributes the received Channel Mask in the unrestricted $2390-2400\,\mathrm{MHz}$ band to the Body-Worn Sensors.

The Body-Worn Sensor monitors its connection to the MBAN P/C with a maximum timeout of 6 seconds. If there is no communication within this period the connection is dropped and the Body-Worn Sensor will cease any transmissions in the 2360 – 2390 MHz band.


The message flow of the MBAN System is shown in the message sequence diagram.

The timing specification of the MBAN System is as follows:

- MBAN P/C ceases any transmissions in the 2360 2390 MHz band < 60 seconds after communication with the MBAN Control Point is lost
- Body-Worn Sensor ceases any transmissions in the 2360 2390 MHz band **< 6 seconds** after the communication to the MBAN P/C is lost

Message sequence diagram:

12 Measurement results

12.1 Frequency stability

Measurement:

Measurements in accordance with the procedure detailed in KDB 550599 D01 v01r01 (V) (A).

Measurement parameter				
Detector:	Peak			
Sweep time:	Auto			
Resolution bandwidth:	10 kHz			
Video bandwidth:	30 kHz			
Span:	5 MHz			
Trace mode:	Max. hold			
Test setup:	See sub clause 7.4 – B			
Measurement uncertainty:	See sub clause 9			

Limits:

FCC	IC			
CFR § 95.2565 (b)	-/-			
Frequency stability				
All MBAN devices must maintain a frequency stability of ±100 ppm over a temperature range of 0°C to + 55°C.				

Note: Added from test report: **1-2773/16-01-02**

Results: Channel low (2363 MHz), lower band

Temp [°C]	Time	Measured Frequency [MHz]	Deviation [ppm]	Verdict
	Startup	2363.004	1.7	Compliant
0	After 2 minutes	2363.004	1.7	Compliant
	After 5 minutes	2363.004	1.7	Compliant
	After 10 minutes	2363.004	1.7	Compliant
	Startup	2363.004	1.7	Compliant
10	After 2 minutes	2363.004	1.7	Compliant
10	After 5 minutes	2363.004	1.7	Compliant
	After 10 minutes	2363.004	1.7	Compliant
	Startup	2363.004	1.7	Compliant
20	After 2 minutes	2363.004	1.7	Compliant
20	After 5 minutes	2363.004	1.7	Compliant
	After 10 minutes	2363.004	1.7	Compliant
	Startup	2362.995	-2.1	Compliant
30	After 2 minutes	2362.995	-2.1	Compliant
30	After 5 minutes	2362.995	-2.1	Compliant
	After 10 minutes	2362.995	-2.1	Compliant
	Startup	2362.991	-3.8	Compliant
40	After 2 minutes	2362.991	-3.8	Compliant
40	After 5 minutes	2362.991	-3.8	Compliant
	After 10 minutes	2362.991	-3.8	Compliant
	Startup	2362.987	-5.5	Compliant
50	After 2 minutes	2362.987	-5.5	Compliant
50	After 5 minutes	2362.987	-5.5	Compliant
	After 10 minutes	2362.987	-5.5	Compliant
	Startup	2362.987	-5.5	Compliant
55	After 2 minutes	2362.987	-5.5	Compliant
55	After 5 minutes	2362.987	-5.5	Compliant
	After 10 minutes	2362.987	-5.5	Compliant

Results: Channel mid (2382 MHz), lower band

Temp [°C]	Time	Measured Frequency [MHz]	Deviation [ppm]	Verdict
0	Startup	2382.004	1.7	Compliant
	After 2 minutes	2382.004	1.7	Compliant
	After 5 minutes	2382.004	1.7	Compliant
	After 10 minutes	2382.004	1.7	Compliant
	Startup	2382.004	1.7	Compliant
10	After 2 minutes	2382.004	1.7	Compliant
10	After 5 minutes	2382.004	1.7	Compliant
	After 10 minutes	2382.004	1.7	Compliant
	Startup	2382.004	1.7	Compliant
20	After 2 minutes	2382.004	1.7	Compliant
20	After 5 minutes	2382.004	1.7	Compliant
	After 10 minutes	2382.004	1.7	Compliant
	Startup	2381.995	-2.1	Compliant
30	After 2 minutes	2381.995	-2.1	Compliant
30	After 5 minutes	2381.995	-2.1	Compliant
	After 10 minutes	2381.995	-2.1	Compliant
	Startup	2386.991	-3.8	Compliant
40	After 2 minutes	2386.991	-3.8	Compliant
40	After 5 minutes	2386.991	-3.8	Compliant
	After 10 minutes	2386.991	-3.8	Compliant
	Startup	2387.987	-5.5	Compliant
50	After 2 minutes	2387.987	-5.5	Compliant
50	After 5 minutes	2387.987	-5.5	Compliant
	After 10 minutes	2387.987	-5.5	Compliant
	Startup	2387.987	-5.5	Compliant
55	After 2 minutes	2387.987	-5.5	Compliant
55	After 5 minutes	2387.987	-5.5	Compliant
	After 10 minutes	2387.987	-5.5	Compliant

Results: Channel high (2387 MHz), lower band

Temp [°C]	Time	Measured Frequency [MHz]	Deviation [ppm]	Verdict
	Startup	2387.004	1.7	Compliant
0	After 2 minutes	2387.004	1.7	Compliant
	After 5 minutes	2387.004	1.7	Compliant
	After 10 minutes	2387.004	1.7	Compliant
	Startup	2387.004	1.7	Compliant
10	After 2 minutes	2387.004	1.7	Compliant
10	After 5 minutes	2387.004	1.7	Compliant
	After 10 minutes	2387.004	1.7	Compliant
	Startup	2387.004	1.7	Compliant
20	After 2 minutes	2387.004	1.7	Compliant
20	After 5 minutes	2387.004	1.7	Compliant
	After 10 minutes	2387.004	1.7	Compliant
	Startup	2386.995	-2.1	Compliant
30	After 2 minutes	2386.995	-2.1	Compliant
30	After 5 minutes	2386.995	-2.1	Compliant
	After 10 minutes	2386.995	-2.1	Compliant
	Startup	2386.997	-3.8	Compliant
40	After 2 minutes	2386.997	-3.8	Compliant
40	After 5 minutes	2386.997	-3.8	Compliant
	After 10 minutes	2386.997	-3.8	Compliant
	Startup	2386.987	-5.5	Compliant
50	After 2 minutes	2386.987	-5.5	Compliant
30	After 5 minutes	2386.987	-5.5	Compliant
	After 10 minutes	2386.987	-5.5	Compliant
	Startup	2386.987	-5.5	Compliant
55	After 2 minutes	2386.987	-5.5	Compliant
35	After 5 minutes	2386.987	-5.5	Compliant
	After 10 minutes	2386.987	-5.5	Compliant

Results: Channel low (2392 MHz), upper band

Temp [°C]	Time	Measured Frequency [MHz]	Deviation [ppm]	Verdict
0	Startup	2392.004	1.7	Compliant
	After 2 minutes	2392.004	1.7	Compliant
	After 5 minutes	2392.004	1.7	Compliant
	After 10 minutes	2392.004	1.7	Compliant
	Startup	2392.004	1.7	Compliant
10	After 2 minutes	2392.004	1.7	Compliant
10	After 5 minutes	2392.004	1.7	Compliant
	After 10 minutes	2392.004	1.7	Compliant
	Startup	2392.004	1.7	Compliant
20	After 2 minutes	2392.004	1.7	Compliant
20	After 5 minutes	2392.004	1.7	Compliant
	After 10 minutes	2392.004	1.7	Compliant
	Startup	2391.995	-2.1	Compliant
30	After 2 minutes	2391.995	-2.1	Compliant
30	After 5 minutes	2391.995	-2.1	Compliant
	After 10 minutes	2391.995	-2.1	Compliant
	Startup	2391.991	-3.8	Compliant
40	After 2 minutes	2391.991	-3.8	Compliant
40	After 5 minutes	2391.991	-3.8	Compliant
	After 10 minutes	2391.991	-3.8	Compliant
	Startup	2391.987	-5.4	Compliant
50	After 2 minutes	2391.987	-5.4	Compliant
	After 5 minutes	2391.987	-5.4	Compliant
	After 10 minutes	2391.987	-5.4	Compliant
	Startup	2391.987	-5.4	Compliant
55	After 2 minutes	2391.987	-5.4	Compliant
33	After 5 minutes	2391.987	-5.4	Compliant
	After 10 minutes	2391.987	-5.4	Compliant

Results: Channel high (2397 MHz), upper band

Temp [°C]	Time	Measured Frequency [MHz]	Deviation [ppm]	Verdict
0	Startup	2397.004	1.7	Compliant
	After 2 minutes	2397.004	1.7	Compliant
	After 5 minutes	2397.004	1.7	Compliant
	After 10 minutes	2397.004	1.7	Compliant
	Startup	2397.004	1.7	Compliant
10	After 2 minutes	2397.004	1.7	Compliant
10	After 5 minutes	2397.004	1.7	Compliant
	After 10 minutes	2397.004	1.7	Compliant
	Startup	2397.004	1.7	Compliant
20	After 2 minutes	2397.004	1.7	Compliant
20	After 5 minutes	2397.004	1.7	Compliant
	After 10 minutes	2397.004	1.7	Compliant
	Startup	2396.995	-2.1	Compliant
30	After 2 minutes	2396.995	-2.1	Compliant
30	After 5 minutes	2396.995	-2.1	Compliant
	After 10 minutes	2396.995	-2.1	Compliant
	Startup	2396.991	-3.8	Compliant
40	After 2 minutes	2396.991	-3.8	Compliant
40	After 5 minutes	2396.991	-3.8	Compliant
	After 10 minutes	2396.991	-3.8	Compliant
50	Startup	2396.987	-5.4	Compliant
	After 2 minutes	2396.987	-5.4	Compliant
	After 5 minutes	2396.987	-5.4	Compliant
	After 10 minutes	2396.987	-5.4	Compliant
55	Startup	2396.987	-5.4	Compliant
	After 2 minutes	2396.987	-5.4	Compliant
	After 5 minutes	2396.987	-5.4	Compliant
	After 10 minutes	2396.987	-5.4	Compliant

12.2 Emission bandwidth

Measurement:

Measurements were made in accordance with ANSI C63.26-2015 (5.4.3).

Measurement parameter		
Detector:	Peak	
Sweep time:	Auto	
Resolution bandwidth: 30 kHz		
Video bandwidth: 100 kHz		
Span:	5 MHz	
Trace mode: Max. hold		
Test setup:	See sub clause 7.4 – A	
Measurement uncertainty:	See sub clause 9	

Limits:

FCC	IC
CFR § 95.2573 €	-/-

Emission bandwidth will be determined by measuring the width of the signal between points, one below the carrier center frequency and one above the carrier center frequency, that are 20 dB down relative to the maximum level of the modulated carrier. Compliance with the emission bandwidth limit is based on the use of measurement instrumentation employing a peak detector function with an instrument resolution bandwidth approximately equal to 1.0 percent of the emission bandwidth of the device under measurement.

For stations operating in 2360-2400 MHz, the maximum authorized emission bandwidth is 5 megahertz.

Results:

Channel	Frequency [MHz]	Emission bandwidth [kHz]
Low (lower band)	2363	2530
Mid (lower band)	2382	2600
High (lower band)	2387	2550
Low (upper band)	2392	2580
High (upper band)	2397	2610

Plots:

Plot 1: lowest channel, lower band



Plot 2: mid channel, lower band

Plot 3: highest channel, lower band

Plot 4: lowest channel, upper band

Plot 5: highest channel, upper band

12.3 Maximum transmit power

Measurement:

Measurements were made in accordance with the procedures detailed in FCC 95.2567 € and (f), 5.2.5.5 of ANSI C63.26- 2015 and FCC OET 971168 – Measurement Guidance for Certification of Licensed Digital Transmitters, Section 5.1.

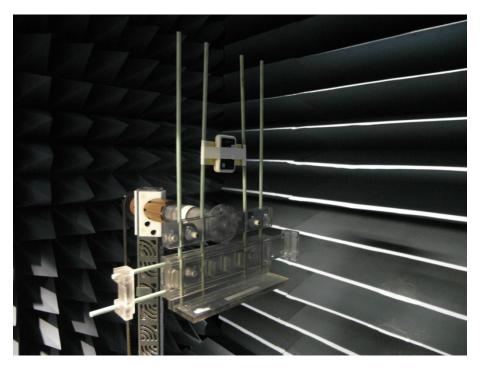
Measurement parameter			
Detector:	Peak		
Sweep time:	Auto		
Resolution bandwidth:	3 MHz		
Video bandwidth: 10 MHz			
Span: 10 MHz			
Trace mode:	Max. hold		
Test setup:	See sub clause 7.6 – A		
Measurement uncertainty: See sub clause 9			

Limits:

FCC	IC
47 CFR § 95.2567 € and (f)	-/-

95.2567€ For MedRadio transmitters operating in the 2360-2390 MHz band, the M-EIRP over the bands of operation must not exceed the lesser of zero dBm (1 mW) or 10 log (B) dBm, where B is the MedRadio 20 dB emission bandwidth in megahertz.

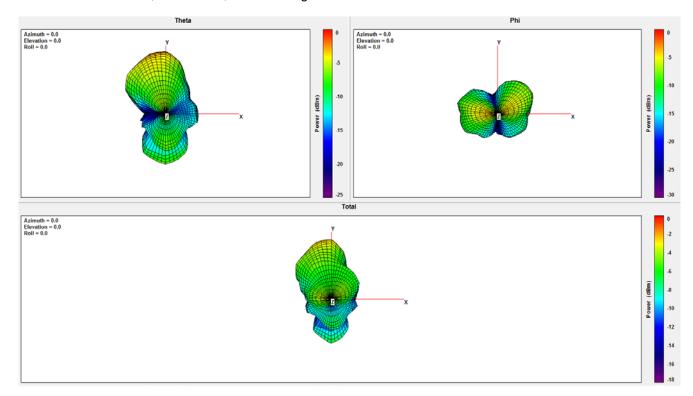
95.2567(f): For MedRadio transmitters operating in the 2390-2400 MHz band, the M-EIRP over the bands of operation must not exceed the lesser of 13 dBm (20 mW) or 16 + 10 log (B) dBm, where B is the MedRadio 20 dB emission bandwidth in megahertz.


Result:

Frequency [MHz]	EIRP measured [dBm]	Limit [dBm]
2363	-1.86	0.0
2382	-0.69	0.0
2387	-0.39	0.0
2392	2.91	13.0
2397	2.89	13.0

According to the FCC requirement:

Photo: test setup OTA (over the air performance)

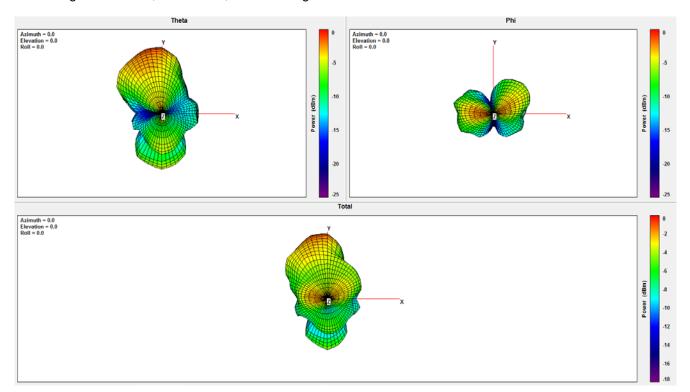


No human body phantom or an equivalent testing setup was used for the test setup.

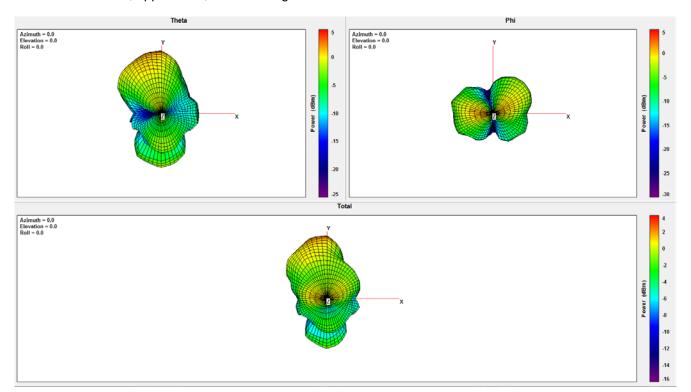
Plots: radiated

Plot 1: lowest channel, lower band, antenna diagram with maximum EIRP

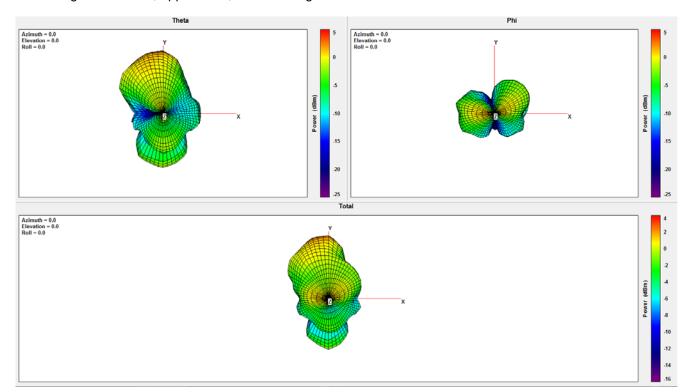
Total	Point Values	
	Ant. Port Input Pwr. (dBm)	0
	Tot. Rad. Pwr. (dBm)	-7,81959
	Peak EIRP (dBm)	-1,86025


Plot 2: mid channel, lower band, antenna diagram with maximum EIRP

Total	Point Values	
	Ant. Port Input Pwr. (dBm)	0
	Tot. Rad. Pwr. (dBm)	-6,48904
	Peak EIRP (dBm)	-0,691725


Plot 3: highest channel, lower band, antenna diagram with maximum EIRP

Total	Point Values	
	Ant. Port Input Pwr. (dBm)	0
	Tot. Rad. Pwr. (dBm)	-6,09917
	Peak EIRP (dBm)	-0,38524


Plot 4: low channel, upper band, antenna diagram with maximum EIRP

Total	Point Values	
	Ant. Port Input Pwr. (dBm)	0
	Tot. Rad. Pwr. (dBm)	-2,99988
	Peak EIRP (dBm)	2,91091

Plot 5: highest channel, upper band, antenna diagram with maximum EIRP

Total	Point Values	
	Ant. Port Input Pwr. (dBm)	0
	Tot. Rad. Pwr. (dBm)	-3,01103
	Peak EIRP (dBm)	2,89103

12.4 Band edge measurement

Measurement:

Measurements were made in accordance with 5.7 of ANSI C63.26-2015.

Measurement parameter					
Detector:	Peak				
Sweep time:	Auto				
Resolution bandwidth:	1 MHz				
Video bandwidth:	3 MHz				
Span:	2357.5 MHz – 2392.5 MHz				
Trace mode:	Max. hold				
Test setup:	See sub clause 7.4 – A				
Measurement uncertainty:	See sub clause 9				

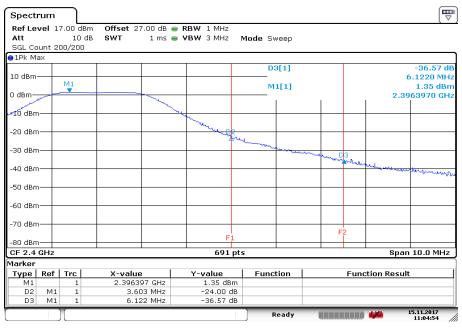
Limits:

FCC	IC			
47 CFR § 95.2579 (f)	-/-			

In the first 2.5 MHz beyond any of the frequency bands authorized for MBAN operation, the EIRP level associated with any unwanted emissions must be attenuated within a 1 MHz bandwidth by at least 20 dB relative to the maximum EIRP level within any 1 MHz of the fundamental emission (i.e., 20 dBc).

Results:

Channel	Band edge frequency [MHz]		Effective attenuation [dBc]	Required attenuation [dBc]
Low	2357.5 – 2360	2363	-26.5	≥ 20
Low	2400 – 2402.5	2363	-37.6	≥ 20
High	2357.5 – 2360	2397	-36.6	≥ 20
High	2400 – 2402.5	2397	-24.0	≥ 20


Plots:

Plot 1: lowest channel, lower band edge

Date: 15 NOV.2017 10:58:08

Plot 2: highest channel, upper band edge

Date: 15 NOV .2017 11:04:55

12.5 Transmitter unwanted radiation (radiated)

Measurement:

Measurement parameter							
Detector:	Prescan: Peak Final: QPK below 960 MHz RMS above 960 MHz						
Video bandwidth:	9 kHz – 150 kHz: 1 kHz 150 kHz – 30 MHz: 30 kHz 30 MHz – 1 GHz: 300 kHz 1 GHz – 26 GHz: 3 MHz						
Resolution bandwidth:	9 kHz – 150 kHz: 200 Hz 150 kHz – 30 MHz: 9 kHz 30 MHz – 1 GHz: 100 kHz 1 GHz – 26 GHz: 1 MHz						
Span:	See plots						
Trace mode:	Max Hold						
Test setup:	See sub clause 7.1 – A & 7.2 – A&B & 7.3 – A						
Measurement uncertainty:	See sub clause 9						

Limits:

FCC		IC			
47 CFR § 15.10 47 CFR §95.2579 (-/-			
т	ransmitter unwanted	radiation (rad	iated)		
Frequency (MHz)	Frequency (MHz) Field strength		Measurement distance (m)		
0.009 - 0.490	2400/F(k	(Hz)	300		
0.490 - 1.705	24000/F(kHz)	30		
1.705 – 30.0	30		30		
30 – 88	100 (40 dB	μV/m)	3		
30 – 88	31.6 (30 dE	βμV/m)	10		
88 – 216	150 (43.5 dl	BμV/m)	3		
88 – 216	47.3 (33.5 d	BμV/m)	10		
216 – 960	200 (46 dB	μV/m)	3		
216 – 960	63.1 (36 dE	BµV/m)	10		
above 960	500 (54 dB	μV/m)	3		

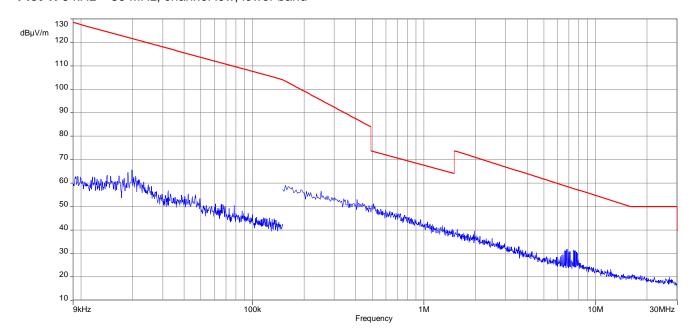
¹ Measurements in the 9 to 90 kHz, 110 to 490 kHz and above 1000 MHz ranges employ an average detector. Otherwise a quasi-peak detector is used.

According to the FCC requirement:

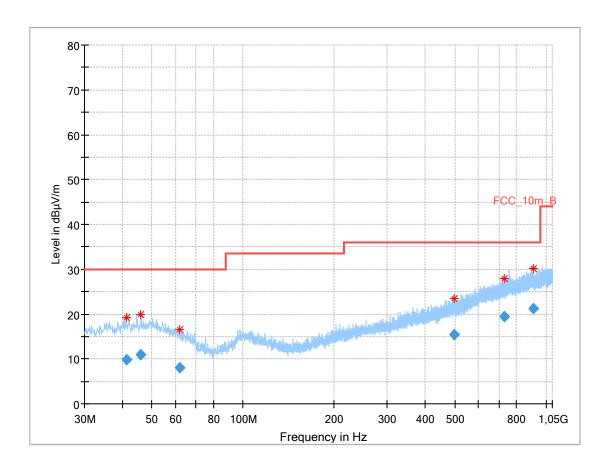
The radiated measurements were performed without a human body phantom or an equivalent testing setup (photo documentation – see external annex D).

Results: Transmitter mode

		Tı	ransmitter un	wanted radia	ation [dBµV/n	n]		
	2363 MHz		2382 MHz			2387 MHz		
F [MHz] Detector Level [dBµV/m]		F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	
	Fo	or emissions be	low 1 GHz, pl	ease look at t	he table below	v the 1 GHz p	lot.	
4707	Peak	49.1	4745	Peak	48.6	4774	Peak	50.1
4727	QPK	-/-	4745	QPK	-/-	4774	QPK	-/-
7089	Peak	-/-	7120	Peak	-/-	7160	Peak	-/-
No RB!	QPK	-/-	7120	QPK	-/-	7160	QPK	-/-
0455	Peak	-/-	9493	Peak	-/-	05.47	Peak	-/-
9455	QPK	-/-	9493	QPK	-/-	9547	QPK	-/-
		А	dditional peak	s according to	KDB 550599).		
	Peak	28.3		Peak	28.4		Peak	29.4
1076	AVG	-/-	1167	AVG	-/-	1436	AVG	-/-
4000	Peak	32.1	1842	Peak	32.4	4077	Peak	30.2
1866	AVG	-/-		AVG	-/-	1677	AVG	-/-
0404	Peak	33.9	2492	Peak	36.3	1924	Peak	32.9
2161	AVG	-/-		AVG	-/-		AVG	-/-
2502	Peak	37.0	2658	Peak	37.7	2743	Peak	38.1
2582	AVG	-/-		AVG	-/-		AVG	-/-
3346	Peak	43.0	2000	Peak	42.0	3349	Peak	35.4
3346	AVG	-/-	3223	AVG	-/-		AVG	-/-
4031	Peak	30.7	5949	Peak	33.3	5390	Peak	32.7
4031	AVG	-/-	5949	AVG	-/-	5590	AVG	-/-
11172	Peak	41.8	8586	Peak	38.3	14434	Peak	42.9
11172	AVG	-/-	0300	AVG	-/-	14454	AVG	-/-
14120	Peak	43.8	14339	Peak	43.3	16674	Peak	45.2
14120	AVG	-/-	14009	AVG	-/-	10074	AVG	-/-
		For em	nissions above	18 GHz, plea	ase look at the	plots.		
,	Peak	-/-	,	Peak	-/-	,	Peak	-/-
-/-	AVG	-/-	-/-	AVG	-/-	-/-	AVG	-/-
1	Peak	-/-	1	Peak	-/-	,	Peak	-/-
-/-	AVG	-/-	-/-	AVG	-/-	-/-	AVG	-/-
1	Peak	-/-	1	Peak	-/-	,	Peak	-/-
-/-	AVG	-/-	-/-	AVG	-/-	-/-	AVG	-/-

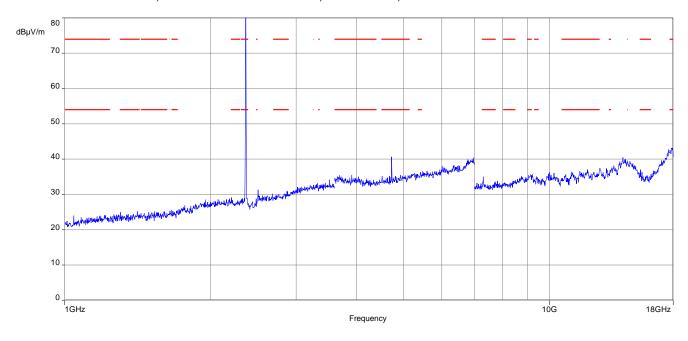

Results: Transmitter mode

		Tı	ransmitter un	wanted radia	ation [dBµV/n	n]				
	2392 MHz		-/-			2397 MHz				
F [MHz] Detector Level [dBµV/m]		F [MHz] Detector Level [dBµV/m]		F [MHz]	Detector	Level [dBµV/m]				
	Fo	or emissions be	elow 1 GHz, pl	ease look at t	he table belov	v the 1 GHz p	lot.			
4783	Peak	57.3	-/-	Peak	-/-	4794	Peak	54.9		
4/83	QPK	52.0	-/-	QPK	-/-	4794	QPK	48.8		
7175	Peak	60.2	-/-	Peak	-/-	7190	Peak	57.8		
7175	QPK	53.8	-/-	QPK	-/-	7 190	QPK	51.9		
0560	Peak	51.9	-/-	Peak	-/-	0500	Peak	52.0		
9568	QPK	45.5	-/-	QPK	-/-	9588	QPK	44.6		
	Additional peaks according to KDB 550599.									
4440	Peak	28.4	,	Peak	-/-	4000	Peak	28.0		
1143	AVG	-/-	-/-	AVG	-/-	1089	AVG	-/-		
4050	Peak	29.8	-/-	Peak	-/-	1843	Peak	32.1		
1650	AVG	-/-		AVG	-/-		AVG	-/-		
2005	Peak	38.4	-/-	Peak	-/-	2594	Peak	37.7		
2805	AVG	-/-		AVG	-/-		AVG	-/-		
2200	Peak	35.7	,	Peak	-/-	3320	Peak	42.7		
3380	AVG	-/-	-/-	AVG	-/-		AVG	-/-		
4653	Peak	31.0	-/-	Peak	-/-	4010	Peak	30.5		
4003	AVG	-/-	-/-	AVG	-/-	4010	AVG	-/-		
6005	Peak	33.3	-/-	Peak	-/-	EE02	Peak	32.5		
6225	AVG	-/-	-/-	AVG	-/-	5592	AVG	-/-		
11172	Peak	42.2	-/-	Peak	-/-	9587	Peak	39.7		
11172	AVG	-/-	-/-	AVG	-/-	9367	AVG	-/-		
14214	Peak	42.6	-/-	Peak	-/-	14218	Peak	43.0		
14214	AVG	-/-	-/-	AVG	-/-	14210	AVG	-/-		
For emissions above 18 GHz, please look at the plots.										
,	Peak	-/-	,	Peak	-/-	,	Peak	-/-		
-/-	AVG	-/-	-/-	AVG	-/-	-/-	AVG	-/-		
,	Peak	-/-	,	Peak	-/-	,	Peak	-/-		
-/-	AVG	-/-	-/-	AVG	-/-	-/-	AVG	-/-		
,	Peak	-/-	,	Peak	-/-	,	Peak	-/-		
-/-	AVG	-/-	-/-	AVG	-/-	-/-	AVG	-/-		

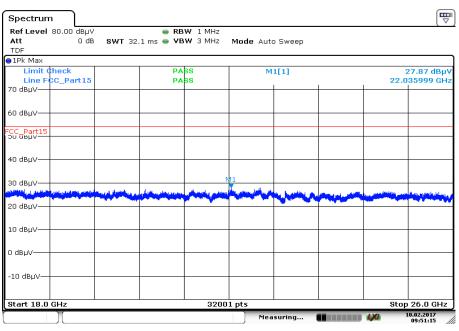

Plots:

Plot 1: 9 kHz - 30 MHz, channel low, lower band

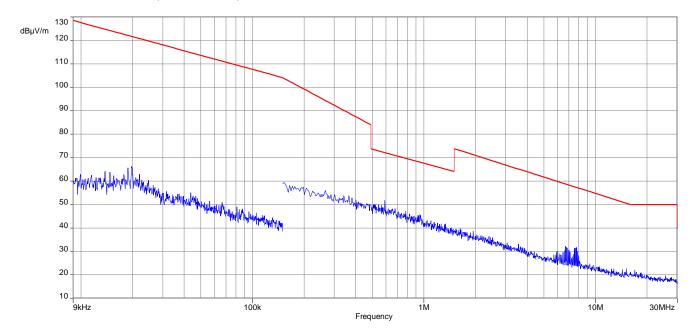
Plot 2: 30 MHz - 1 GHz, channel low, lower band



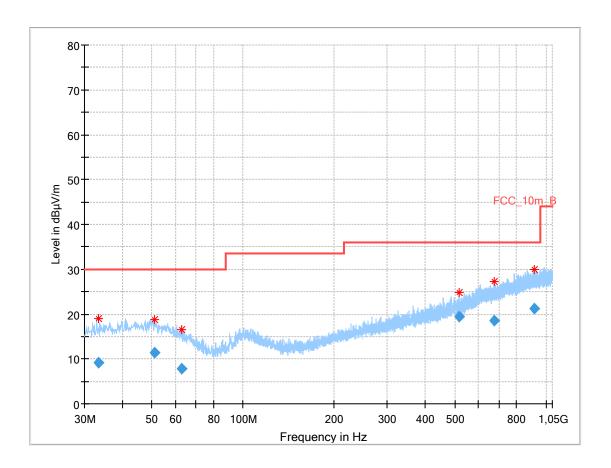
Final_Result:


	Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
Ī	41.166600	9.88	30.00	20.12	1000.0	120.000	179.0	Н	276.0	13.3
Ī	46.027200	10.91	30.00	19.09	1000.0	120.000	101.0	٧	297.0	13.7
Ī	61.881600	8.10	30.00	21.90	1000.0	120.000	101.0	Н	221.0	11.4
Ī	499.497300	15.34	36.00	20.66	1000.0	120.000	98.0	٧	91.0	18.7
Ī	726.734400	19.45	36.00	16.55	1000.0	120.000	178.0	٧	353.0	22.2
Ī	910.486650	21.29	36.00	14.71	1000.0	120.000	98.0	H	119.0	24.2

Plot 3: 1 GHz – 18 GHz, antenna horizontal/vertical, channel low, lower band

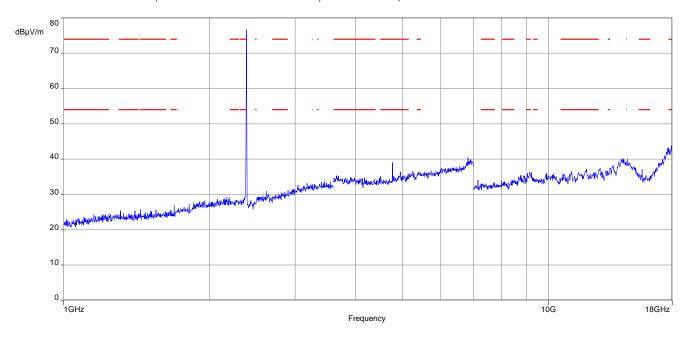


Plot 4: 18 GHz – 26 GHz, antenna horizontal/vertical, channel low, lower band

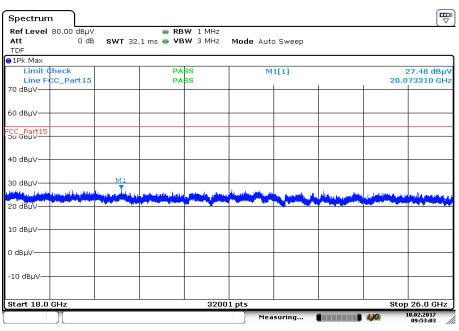


Plot 5: 9 kHz - 30 MHz, channel mid, lower band

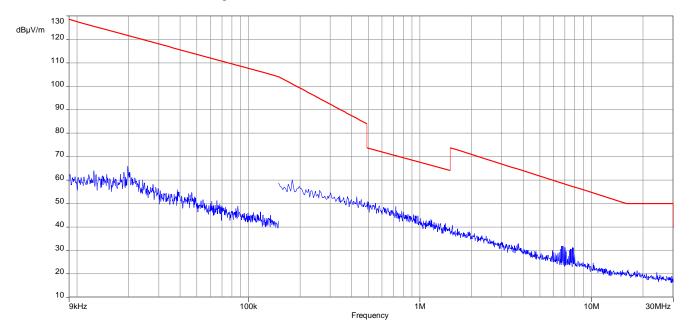
Plot 6: 30 MHz - 1 GHz, channel mid, lower band



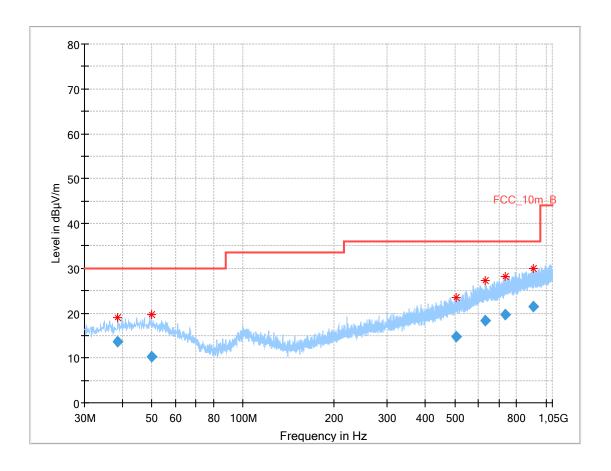
Final_Result:


Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
33.273900	9.09	30.00	20.91	1000.0	120.000	101.0	٧	267.0	12.4
51.008700	11.38	30.00	18.62	1000.0	120.000	179.0	٧	324.0	13.6
62.570250	7.91	30.00	22.09	1000.0	120.000	101.0	٧	214.0	11.3
515.400900	19.55	36.00	16.45	1000.0	120.000	185.0	Н	0.0	18.9
675.207000	18.55	36.00	17.45	1000.0	120.000	179.0	٧	174.0	21.3
912.881250	21.29	36.00	14.71	1000.0	120.000	101.0	٧	11.0	24.2

Plot 7: 1 GHz – 18 GHz, antenna horizontal/vertical, channel mid, lower band

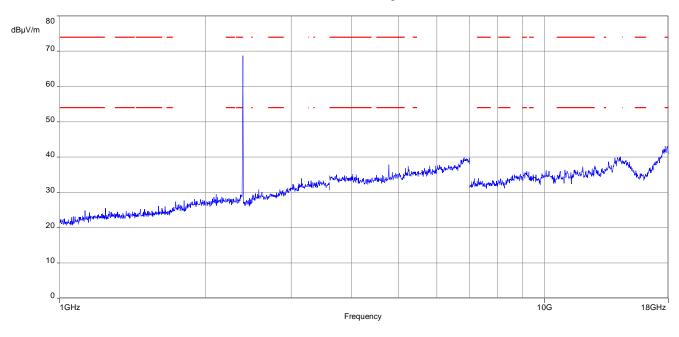


Plot 8: 18 GHz - 26 GHz, antenna horizontal/vertical, channel mid, lower band

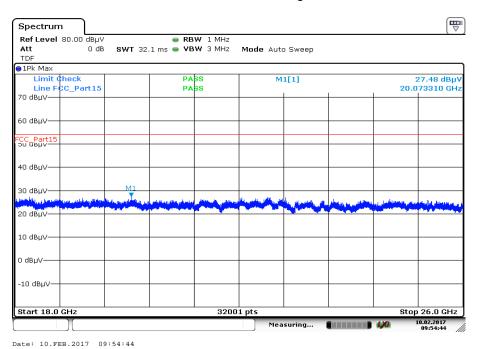


Plot 9: 9 kHz - 30 MHz, channel high, lower band

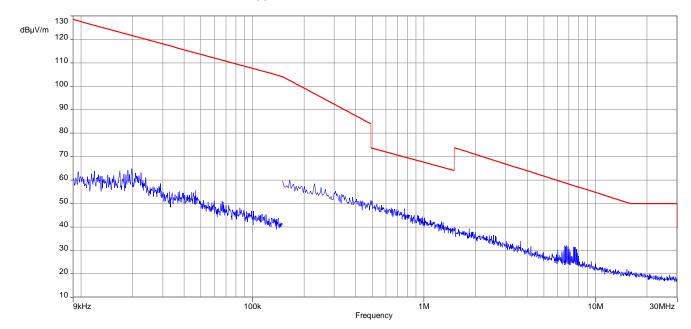
Plot 10: 30 MHz – 1 GHz, channel high, lower band



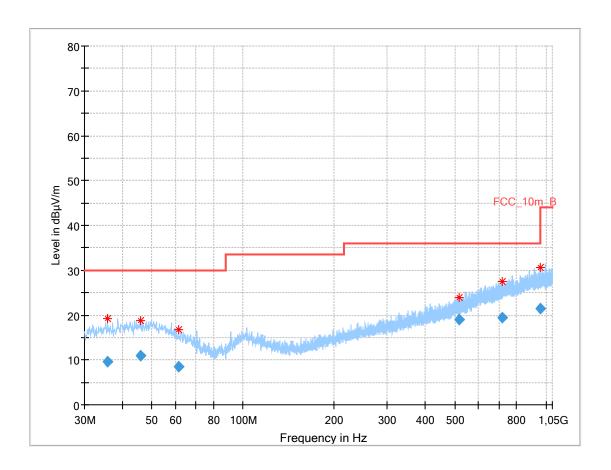
Final_Result


Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
38.704350	13.63	30.00	16.37	1000.0	120.000	185.0	V	6.0	13.1
49.835400	10.23	30.00	19.77	1000.0	120.000	101.0	Н	300.0	13.7
504.728250	14.83	36.00	21.17	1000.0	120.000	178.0	Н	115.0	18.8
632.390550	18.25	36.00	17.75	1000.0	120.000	98.0	٧	25.0	21.0
731.640600	19.57	36.00	16.43	1000.0	120.000	100.0	Н	25.0	22.3
908.074500	21.35	36.00	14.65	1000.0	120.000	178.0	Н	238.0	24.2

Plot 11: 1 GHz – 18 GHz, antenna horizontal/vertical, channel high, lower band

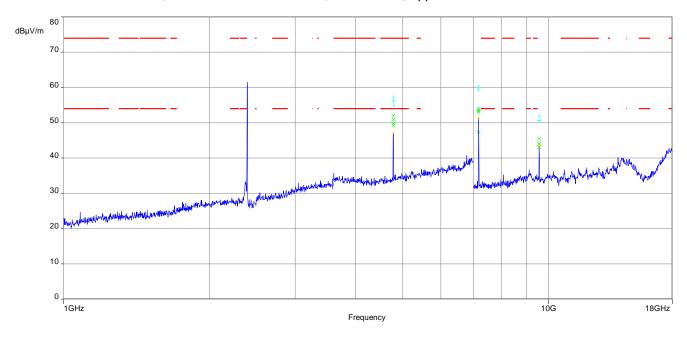


Plot 12: 18 GHz – 26 GHz, antenna horizontal/vertical, channel high, lower band

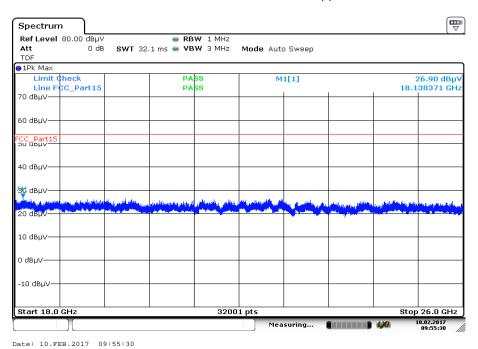


Plot 13: 9 kHz - 30 MHz, channel low, upper band

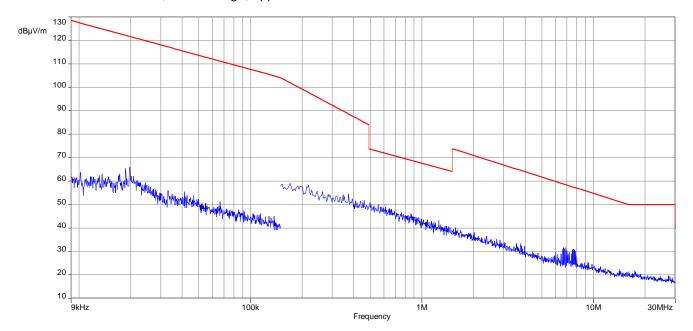
Plot 14: 30 MHz - 1 GHz, channel low, upper band



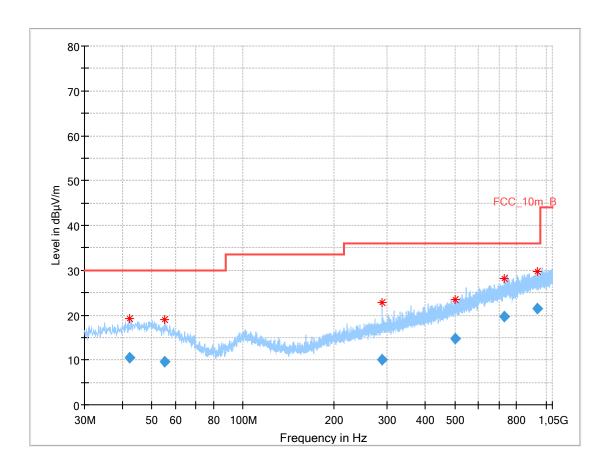
Final_Result:


	Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
Ī	35.610600	9.72	30.00	20.28	1000.0	120.000	185.0	٧	221.0	12.7
Ī	46.051200	11.06	30.00	18.94	1000.0	120.000	101.0	٧	299.0	13.7
Ī	61.575600	8.58	30.00	21.42	1000.0	120.000	181.0	٧	0.0	11.5
Ī	515.425200	18.94	36.00	17.06	1000.0	120.000	185.0	٧	60.0	18.9
	718.444800	19.37	36.00	16.63	1000.0	120.000	181.0	٧	221.0	22.0
Ī	956.676750	21.38	36.00	14.62	1000.0	120.000	98.0	٧	228.0	24.4

Plot 15: 1 GHz – 18 GHz, antenna horizontal/vertical, channel low, upper band

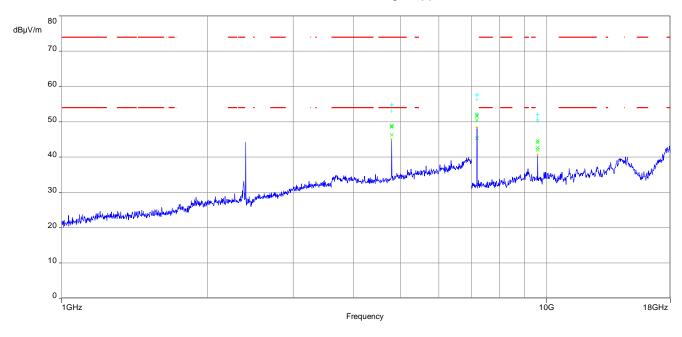


Plot 16: 18 GHz – 26 GHz, antenna horizontal/vertical, channel low, upper band



Plot 17: 9 kHz - 30 MHz, channel high, upper band

Plot 18: 30 MHz – 1 GHz, channel high, upper band



Final_Result:

	Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
Ī	42.415500	10.44	30.00	19.56	1000.0	120.000	185.0	٧	40.0	13.4
	55.308750	9.65	30.00	20.35	1000.0	120.000	185.0	٧	331.0	13.0
	287.513700	10.02	36.00	25.98	1000.0	120.000	178.0	Н	28.0	14.2
	503.578950	14.77	36.00	21.23	1000.0	120.000	185.0	٧	292.0	18.8
Ī	730.777650	19.63	36.00	16.37	1000.0	120.000	179.0	٧	68.0	22.3
	938.266800	21.40	36.00	14.60	1000.0	120.000	101.0	٧	132.0	24.3

Plot 19: 1 GHz – 18 GHz, antenna horizontal/vertical, channel high, upper band

Plot 20: 18 GHz – 26 GHz, antenna horizontal/vertical, channel high, upper band

12.6 Receiver unwanted radiation (radiated)

Measurement:

Measureme	Measurement parameter					
Detector:	Prescan: Final:	Peak QPK below 960 MHz RMS above 960 MHz				
Video bandwidth:	9 kHz – 150 kHz: 150 kHz – 30 MHz: 30 MHz – 1 GHz: 1 GHz – 26 GHz:	1 kHz 30 kHz 300 kHz 3 MHz				
Resolution bandwidth:	9 kHz – 150 kHz: 150 kHz – 30 MHz: 30 MHz – 1 GHz: 1 GHz – 26 GHz:	200 Hz 9 kHz 100 kHz 1 MHz				
Span:	See plots					
Trace mode:	Max Hold					
Test setup:	See sub clause 7.1 – A & 7.2 – A & 7.3 – A					
Measurement uncertainty:	See sub clause 9					

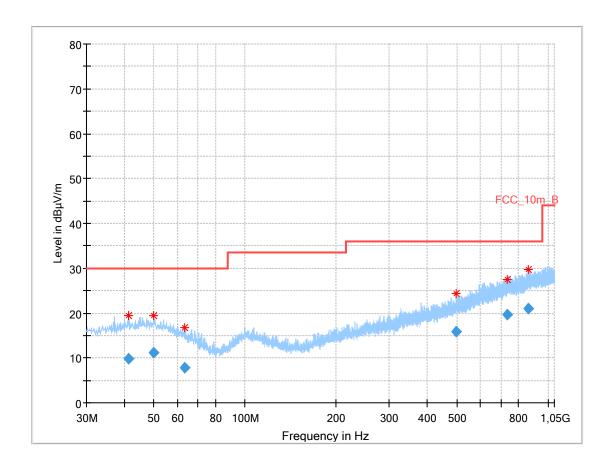
Limits:

FCC		IC		
47 CFR § 15.10	9	-/-		
	Receiver unwanted	radiation (radiate	ed)	
Frequency (MHz)	Field streng	th (μV/m) ¹	Measurement distance (m)	
30 – 88	100 (40 d	BμV/m)	3	
30 – 88	31.6 (30 c	lΒμV/m)	10	
88 – 216	150 (43.5	dBµV/m)	3	
88 – 216	47.3 (33.5	dBµV/m)	10	
216 – 960	200 (46 d	BμV/m)	3	
216 – 960	63.1 (36 c	IBμV/m)	10	
above 960	500 (54 d	BμV/m)	3	

¹ Measurements in the 9 to 90 kHz, 110 to 490 kHz and above 1000 MHz ranges employ an average detector. Otherwise a quasi-peak detector is used.

According to the FCC requirement:

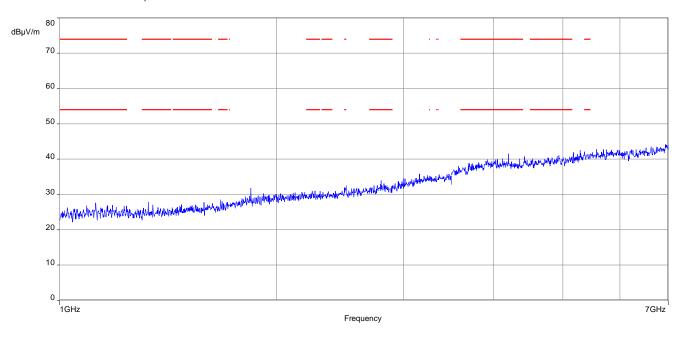
The radiated measurements were performed without a human body phantom or an equivalent testing setup (photo documentation – see external annex D).


Results: Receiver mode

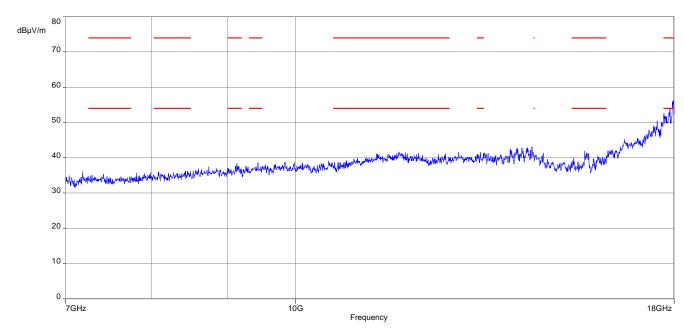
Receiver unwanted radiation [dBµV/m]							
F [MHz]	Detector	Level [dBµV/m]					
For emissions	For emissions below 1 GHz, please look at the table below the 1 GHz plot.						
	No emissions detected above 1 GHz.						
-/-	Peak	-/-					
- /-	AVG	-/-					
1	Peak	-/-					
-/-	AVG	-/-					
1	Peak	-/-					
-/-	AVG	-/-					

Plot:

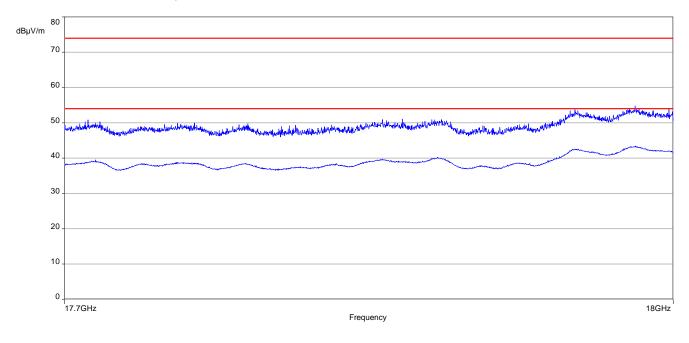
Plot 1: 30 MHz – 1 GHz



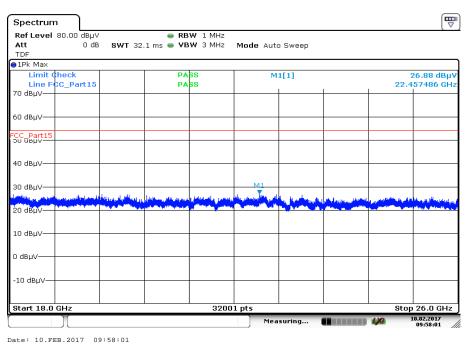
Final_Result


	Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
Ī	41.451150	9.74	30.00	20.26	1000.0	120.000	101.0	Н	40.0	13.3
	49.948050	11.27	30.00	18.73	1000.0	120.000	98.0	٧	238.0	13.7
Ī	63.054900	7.92	30.00	22.08	1000.0	120.000	101.0	٧	238.0	11.2
	497.670000	15.86	36.00	20.14	1000.0	120.000	101.0	Η	264.0	18.7
Ī	731.648550	19.56	36.00	16.44	1000.0	120.000	185.0	٧	226.0	22.3
	864.300900	21.08	36.00	14.92	1000.0	120.000	185.0	٧	155.0	23.7

Plot 2: 1 GHz – 7 GHz, antenna horizontal/vertical



Plot 3: 7 GHz – 18 GHz, antenna horizontal/vertical



Plot 4: 17.7 GHz - 18 GHz, antenna horizontal/vertical

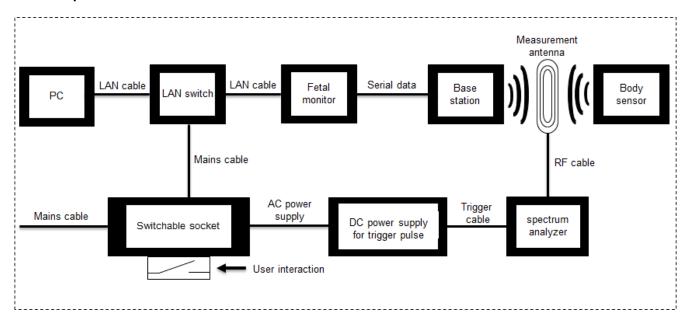
Plot 5: 18 GHz – 26 GHz, antenna horizontal/vertical

12.7 Connection interrupt test (body-worn sensor)

Measurement:

- (a) Establish a LAN connection between the MBAN P/C device and the simulated control point.
- (b) Establish connection between the MBAN P/C and the body-worn sensor device under test (DUT).
- € Configure the control message to enable operation in the 2360-2390 MHz band.
- (d) Verify that transmissions between DUT and its associated MBAN P/C are consistent with the control message configuration.

€ Interrupt the RF and verify that the DUT ceases transmission in the 2360–2390 MHz band with a latency period not exceeding the maximum control message periodicity as specified in the operational description of the device. Additionally, if the DUT operating frequency is now moved to 2390–2400 MHz band verify the channel transition time (latency) is less than the maximum control message periodicity as specified in the operational description of the device.


Measurement parameter				
Detector:	Peak			
Resolution bandwidth:	1 MHz			
Video bandwidth:	3 MHz			
Span:	See plots (both MBAN bands)			
Trace mode:	Max Hold			
Test setup:	See sub clause 7.5 – A			

Note: Added from test report:

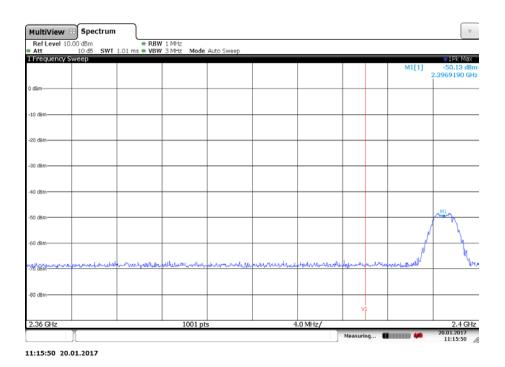
1-9941/15-01-06-C (Avalon CL fetal and maternal pod 866488) – see customer declaration.

Test setup:

Test description (KDB 550599 D01 v01r01):

- 2018. Switchable socket with manual interaction to switch off the DC power supply and the LAN switch
- 2. DC power supply for a low ramp trigger pulse to trigger the spectrum analyzer
- 3. LAN switch to release the connection between PC (Server) and monitor (Main station)
- 4. Monitor, base station and body sensor complete test setup in normal use constellation
- 5. Measurement antenna and spectrum analyzer to perform the test

Test execution:

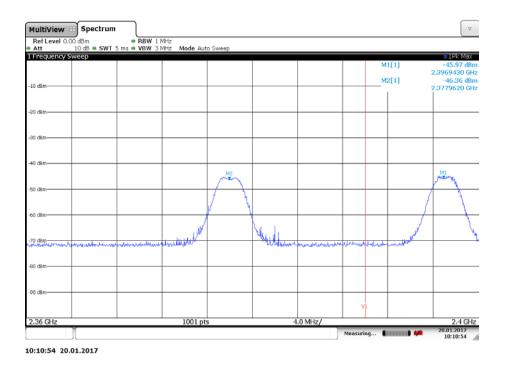

- 2018. Establishing a normal system connection
- 2. Manual interaction to switch off the DC power supply and the LAN switch
- 3. Spectrum analyzer start of the measurement and connection lost between PC and monitor
- 4. Monitor deactivate the base station RF connection
- 5. Base station deactivate the body sensor
- 6. End of test

Step 1 (KDB 550599 D01 v01r01):

- (a) Establish a LAN connection between the MBAN P/C device and the simulated control point.
- (b) Establish connection between the MBAN P/C and the body-worn sensor device under test (DUT).

Plot 1:

The plot shows the communication of the control message between the MBAN P/C and the body-worn sensor in the 2390-2400 MHz band (Marker 1 @ 2397 MHz). The V1 frequency line marks the end of lower and the start of the upper MBAN band.

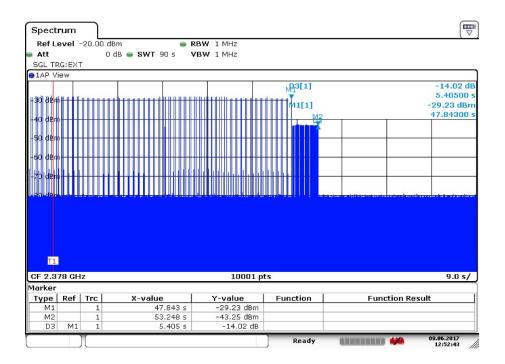


Step 2 (KDB 550599 D01 v01r01):

€ Configure the control message to enable operation in the 2360-2390 MHz band.

(d) Verify that transmissions between DUT and its associated MBAN P/C are consistent with the control message configuration.

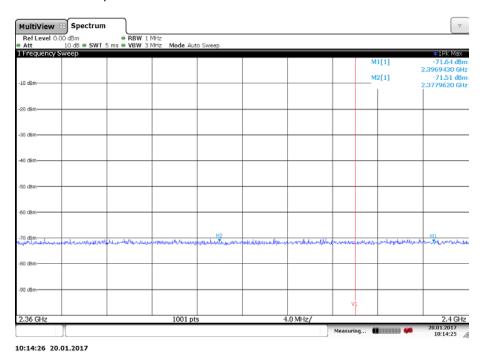
Plot 2:


The 2360-2390 MHz band (Marker 2 @ 2378 MHz) was enabled for the body-worn sensor communication and the sensor transmits on the channel defined by the MBAN P/C. The control message of the MBAN P/C is transmitted in the 2390-2400 MHz band (Marker 1 @ 2397 MHz). The V1 frequency line marks the end of lower and the start of the upper MBAN band.

Step 3 (KDB 550599 D01 v01r01):

€ Interrupt the RF and verify that the DUT ceases transmission in the 2360–2390 MHz band with a latency period not exceeding the maximum control message periodicity as specified in the operational description of the device. Additionally, if the DUT operating frequency is now moved to 2390–2400 MHz band verify the channel transition time (latency) is less than the maximum control message periodicity as specified in the operational description of the device.

Plot 3:



The communication between the MBAN P/C and the simulated control point was interrupted via LAN disconnection. MBAN P/C and body-worn sensor stop the communication within the MBAN frequency bands.

The plot shows the communication between the MBAN P/C and the body-worn sensor in the 2360-2390 MHz band. The red trigger line (T1) indicates the interrupt between the MBAN P/C and the simulated control point within the communication timeline. The base station stops communication within 47.8 seconds (Marker 1) and the body-worn sensor runs another 5.4 seconds and finished the communication within 53.2 seconds. (Marker 2 and delta marker 3).

Plot 4: Spectrum after marker 2 plot 3

MBAN P/C and body-worn sensor stop the communication within the MBAN frequency bands. The V1 frequency line marks the end of lower and the start of the upper MBAN band.

13 Observations

No observations except those reported with the single test cases have been made.

Annex A Glossary

EUT	Equipment under test					
DUT	Device under test					
UUT	Unit under test					
GUE	GNSS User Equipment					
ETSI	European Telecommunications Standards Institute					
EN	European Standard					
FCC	Federal Communications Commission					
FCC ID	Company Identifier at FCC					
IC	Industry Canada					
PMN	Product marketing name					
HMN	Host marketing name					
HVIN	Hardware version identification number					
FVIN	Firmware version identification number					
EMC	Electromagnetic Compatibility					
HW	Hardware					
SW	Software					
Inv. No.	Inventory number					
S/N or SN	Serial number					
C	Compliant					
NC	Not compliant					
NA	Not applicable					
NP	Not performed					
PP	Positive peak					
QP	Quasi peak					
AVG	Average					
ОС	Operating channel					
ocw	Operating channel bandwidth					
OBW	Occupied bandwidth					
ООВ	Out of band					
DFS	Dynamic frequency selection					
CAC	Channel availability check					
OP	Occupancy period					
NOP	Non occupancy period					
DC	Duty cycle					
PER	Packet error rate					
CM	Clean wave					
MC	Modulated carrier					
WLAN	Wireless local area network					
RLAN	Radio local area network					
DSSS	Dynamic sequence spread spectrum					
OFDM	Orthogonal frequency division multiplexing					
FHSS	Frequency hopping spread spectrum					
GNSS	Global Navigation Satellite System					
C/N ₀	Carrier to noise-density ratio, expressed in dB-Hz					

Annex B Document history

Version	Applied changes	Date of release
-/-	Initial release	2017-11-23
А	Editorial change	2017-11-27
В	Editorial change	2018-02-28
С	FC ID corrected	2018-05-04
D	Editorial change	2018-05-25

Annex C Accreditation Certificate

first page	last page
Deutsche Akkreditierungsstelle GmbH Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkKStelleGBV Signatury to the Multiblaseral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken Is competent under the terms of DIN EN ISO/IEC 17025:2005 to carry out tests in the following fields: Telecommunication	Deutsche Akkreditierungsstelle GmbH Office Berlin Spittelmankt 10 Europa Allee 52 Bundesallee 100 38116 Braunschweig Bundesallee 100 38116 Braunschweig The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkreditierungsstelle GmbH (DAkkS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overleat. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAkkS.
The accreditation certificate shall only apply in connection with the notice of accreditation of 02.06.2017 with the accreditation number D-PL-12076-01 and is valid until 21.03-2021. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 43 pages. Registration number of the certificate: D-PL-12076-01-03	The accreditation was granted pursuant to the Act on the Accreditation Body (A&SclelleG) of 31 July 2009 (Federal auX acasetle p. 2.625) and the Regulation (EQ No 765/2008) of the European Parliament and of the Council of 9 July 2008 setting out the requirements for accreditation and market surveillance relating to the marketing of products (Official Journal of the European Lindon 1.23 def 9 July 2008, p. 30], DAMS is a signatory to the Multilateral Agreements for Mutual Recognition of the European co-operation for Accreditation (EA), international Accreditation Formul (AF) and International Laboratory Accreditation Cooperation (IJAL). The signatories to these agreements recognise each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EA: www.uropean-accreditation.org IIAC: www.llac.org IAF: www.llac.org
Frankfurt, 02.06.2017 Displace (TH) But Selforer Health of Division Sea none method:	

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

http://www.dakks.de/as/ast/d/D-PL-12076-01-03.pdf