

TEST REPORT

Test report no.: 1-2842/16-01-02-A

BNetzA-CAB-02/21-102

Testing laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075

Internet: http://www.ctcadvanced.com
e-mail: mail@ctcadvanced.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with

the registration number: D-PL-12076-01-03

Applicant

Philips Medizin Systeme Böblingen GmbH

Hewlett-Packard-Strasse 2 71034 Böblingen / GERMANY

Phone: -/-

Fax: +49 7031 463-2499 Contact: Hansjörg Geywitz

e-mail: hansjoerg.geywitz@philips.com

Phone: +49 7031 463-1879

Manufacturer

Philips Medizin Systeme Böblingen GmbH

Hewlett-Packard-Strasse 2 71034 Böblingen / GERMANY

Test standard/s

47 CFR Part 15 Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency

devices

RSS - 247 Issue 1 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and

Licence - Exempt Local Area Network (LE-LAN) Devices

RSS - Gen Issue 4 Spectrum Management and Telecommunications Radio Standards Specifications -

General Requirements and Information for the Certification of Radio Apparatus

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: 2.4 GHz transceiver

Model name: IntelliVue CL SpO2 Pod 865215

FCC ID: PQC-SRRBV5
IC: 3549C-SRRBV5

Frequency: DTS band 2400.0 MHz to 2483.5 MHz

Technologytested: Short range radio
Antenna: Integrated PCB antenna
Power supply: 3.7 V DC by Li-ion battery

Temperature range: -20°C to +55°C

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:				
p.o.				
Stefan Bös Lab Manager Radio Communications & EMC				

Test	performed	:

p.o.

Marco Bertolino Lab Manager Radio Communications & EMC

Table of contents

1	Table	of contents	2
2	Gene	ral information	3
	2.1 2.2 2.3	Note's and disclaimer	3
3	Tests	standard/s and references	4
4	Test e	environment	5
5	Test i	tem	5
	5.1 5.2	General description	
6	Descr	iption of the test setup	6
	6.1 6.2 6.3	Shielded semi anechoic chamber	8
7	Sequ	ence of testing	. 10
	7.1 7.2 7.3 7.4	Sequence of testing radiated spurious 9 kHz to 30 MHz	. 11 . 12
8	Meas	urement uncertainty	. 14
9	Sumn	nary of measurement results	. 15
10	Add	litional comments	. 16
11	Me	asurement results	. 17
	11.1 11.2 11.3 11.4 11.5	Maximum output power	. 18 . 20 . 23
12	Ob	servations	. 38
Anı	nex A	Document history	. 38
Anı	nex B	Further information	. 38
Δni	nev C	Accreditation Certificate	30

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-2842/16-01-02 and dated 2017-02-23.

2.2 Application details

Date of receipt of order: 2016-11-17
Date of receipt of test item: 2017-01-30
Start of test: 2017-01-30
End of test: 2017-02-04

Person(s) present during the test: -/-

2.3 Test laboratories sub-contracted

None

3 Test standard/s and references

Test standard	Date	Description
47 CFR Part 15	-/-	Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 247 Issue 1	May 2015	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE-LAN) Devices
RSS - Gen Issue 4	November 2014	Spectrum Management and Telecommunications Radio Standards Specifications - General Requirements and Information for the Certification of Radio Apparatus

Guidance	Version	Description
DTS: KDB 558074 D01	v03r05	Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247 American national standard for methods of measurement of radio-
ANSI C63.4-2014	-/-	noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz
ANSI C63.10-2013	-/-	American national standard of procedures for compliance testing of unlicensed wireless devices

4 Test environment

		Tnom	+23 °C during room temperature tests
Temperature		Tmax	No test under extreme conditions required.
		Tmin	No test under extreme conditions required.
Relative humidity content	:		35 %
Barometric pressure : 1021 hpa		1021 hpa	
		Vnom	3.7 V DC by Li-ion battery
Power supply	:	V_{max}	No test under extreme conditions required.
		Vmin	No test under extreme conditions required.

5 Test item

5.1 General description

Kind of test item :	2.4 GHz transceiver
Type identification :	IntelliVue CL SpO2 Pod 865215
HMN :	-/-
PMN :	865215
HVIN :	865215
FVIN :	-/-
S/N serial number :	Radiated unit: DE03801654
HW hardware status :	1
SW software status :	D.00.70
Frequency band :	DTS band 2400.0 MHz to 2483.5 MHz (lowest channel 2405 MHz; highest channel 2480 MHz)
Type of radio transmission: Use of frequency spectrum:	DSSS
Type of modulation :	OQPSK
Number of channels :	16
Antenna :	Integrated PCB antenna
Power supply :	3.7 V DC by Li-ion battery
Temperature range :	-20°C to +55°C

5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report: 1-2842/16-01-01_AnnexA

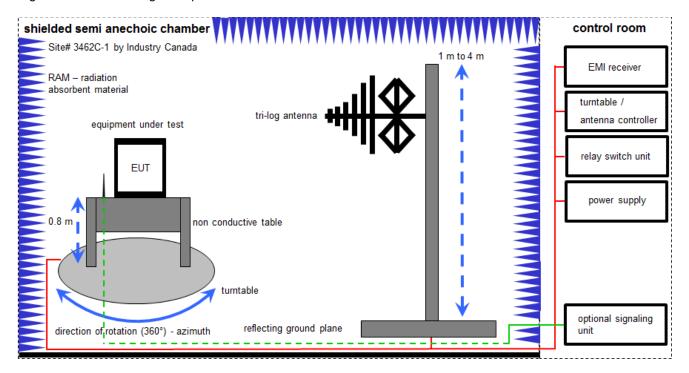
1-2842/16-01-01_AnnexB

1-2842/16-01-01_Annex D

6 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).


Agenda: Kind of Calibration

k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	ZW	cyclical maintenance (external cyclical
			maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval	_	•
NK!	Attention: not calibrated	*)	next calibration ordered/currently in progress

6.1 Shielded semi anechoic chamber

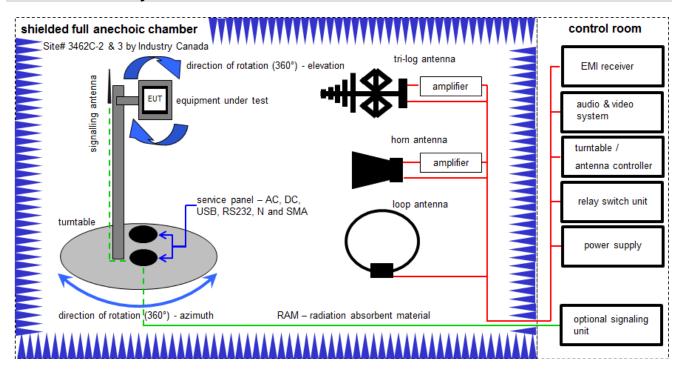
The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:


FS $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 <math>\mu V/m$)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	Α	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	08.03.2016	08.03.2017
3	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
4	Α	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
5	Α	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
6	Α	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	295	300003787	k	25.04.2016	25.04.2018

6.2 Shielded fully anechoic chamber

Measurement distance: tri-log antenna and horn antenna 3 meter; loop antenna 3 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

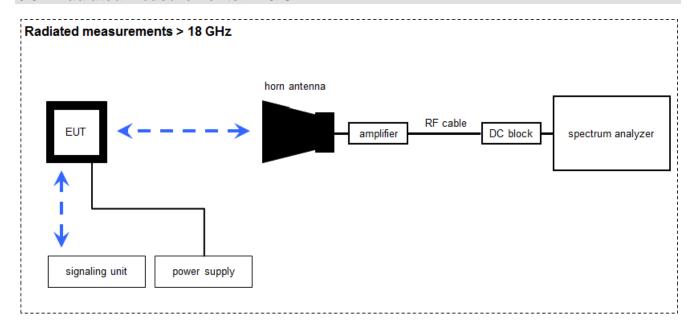
Example calculation:

FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 <math>\mu V/m$)

OP = AV + D - G + CA

(OP-radiated output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain+amplifier gain; CA-loss signal path)

Example calculation:


OP [dBm] = -65.0 [dBm] + 50 [dB] - 20 [dBi] + 5 [dB] = -30 [dBm] (1 μ W)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A, B	Double-Ridged Wav eguide Horn Antenna 1-18.0GHz	3115	EMCO	8812-3088	300001032	vIKI!	20.05.2015	20.05.2017
2	A, B, C	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
3	A, B, C	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
4	С	Active Loop Antenna 10 kHz to 30 MHz	6502	EMCO/2	8905-2342	300000256	k	24.06.2015	24.06.2017
5	Α	Band Reject filter	WRCG2400/2483- 2375/2505-50/10SS	Wainwright	11	300003351	ev	-/-	-/-
6	A, B, C	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	31.01.2017	30.01.2018
7	A, B	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22049	300004481	ev	-/-	-/-
8	A, B, C	4U RF Switch Platform	L4491A	Agilent Technologies	MY 50000037	300004509	ne	-/-	-/-

6.3 Radiated measurements > 18 GHz

Measurement distance: horn antenna 50 cm

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor)

Example calculation:

 $\overline{FS} [dB\mu V/m] = 40.0 [dB\mu V/m] + (-60.1) [dB] + 36.74 [dB/m] = 16.64 [dB\mu V/m] (6.79 \text{ }\text{μV/m})$

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Signal Analyzer 40 GHz	FSV40	R&S	101042	300004517	k	27.01.2017	26.01.2018
2	Α	Amplifier 2-40 GHz	JS32-02004000-57- 5P	MITEQ	1777200	300004541	ev	-/-	-/-
3	Α	RF-Cable	ST18/SMAm/SMAm/ 48	Huber & Suhner	Batch no. 600918	400001182	ev	-/-	-/-
4	Α	RF-Cable	ST18/SMAm/SMm/4 8	Huber & Suhner	Batch no. 127377	400001183	ev	-/-	-/-
5	Α	DC-Blocker 0.1-40 GHz	8141A	Inmet	Batch no. 127377	400001185	ev	-/-	-/-
6	Α	Std. Gain Horn Antenna 18.0 to 26.5 GHz	638	Narda	-/-	300000486	k	10.09.2015	10.09.2017

7 Sequence of testing

7.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1.5 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

- Identified emissions during the premeasurement are maximized by the software by rotating the turntable from 0° to 360°. In case of the 2-axis positioner is used the elevation axis is also rotated from 0° to 360°.
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

7.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

7.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes
 the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table
 positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

7.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

 The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

8 Measurement uncertainty

Measurement uncertainty					
Test case	Uncertainty				
Antenna gain	± 3 dB				
Spectrum bandwidth	± 21.5 kHz absolute; ± 15.0 kHz relative				
Maximum output power	± 1 dB				
Detailed conducted spurious emissions @ the band edge	± 1 dB				
Band edge compliance radiated	± 3 dB				
Spurious emissions conducted	± 3 dB				
Spurious emissions radiated below 30 MHz	± 3 dB				
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB				
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB				
Spurious emissions radiated above 12.75 GHz	± 4.5 dB				
Spurious emissions conducted below 30 MHz (AC conducted)	± 2.6 dB				

9 Summary of measurement results

\boxtimes	No deviations from the technical specifications were as certained	
	There were deviations from the technical specifications ascertained	
\boxtimes	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.	

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Part 15 RSS - 247, Issue 1	See table!	2018-03-22	Tests according customer demand.

Test specification clause	Test case	Guideline	Temperature conditions	Power source voltages	Mode	С	NC	NA	NP	Remark
§15.247(b)(4) RSS - 247 / 5.4 (4)	System gain	-/-	Nominal	Nominal	TX mode				\boxtimes	-/-
§15.247(e) RSS - 247 / 5.2 (2)	Pow er spectral density	KDB 558074 DTS clause: 10.6	Nominal	Nominal	TX mode				\boxtimes	-/-
§15.247(a)(2) RSS - 247 / 5.2 (1)	DTS bandw idth – 6 dB bandw idth	KDB 558074 DTS clause: 8.1	Nominal	Nominal	TX mode				\boxtimes	-/-
RSS Gen clause 4.6.1	Occupied bandw idth	-/-	Nominal	Nominal	TX mode				\boxtimes	-/-
§15.247(b)(3) RSS - 247 / 5.4 (4)	Maximum output pow er	KDB 558074 DTS clause: 9.1.1	Nominal	Nominal	TX mode	\boxtimes				-/-
§15.247(d) RSS - 247 / 5.5	Detailed spurious emissions @ the band edge - conducted	-/-	Nominal	Nominal	TX mode				\boxtimes	-/-
§15.205 RSS - 247 / 5.5 RSS - Gen	Band edge compliance radiated	KDB 558074 DTS clause: 13.3.2	Nominal	Nominal	TX mode	\boxtimes				-/-
§15.247(d) RSS - 247 / 5.5	TX spurious emissions conducted	KDB 558074 DTS clause: 11.1 & 11.2 11.3	Nominal	Nominal	TX mode				\boxtimes	-/-
§15.209(a) RSS - Gen	Spurious emissions radiated below 30 MHz	-/-	Nominal	Nominal	TX mode	\boxtimes				-/-
15.247(d) RSS - 247 / 5.5 §15.109 RSS - Gen	Spurious emissions radiated 30 MHz to 1 GHz	-/-	Nominal	Nominal	TX mode & RX mode	\boxtimes				-/-
§15.247(d) RSS - 247 / 5.5 §15.109 RSS - Gen	Spurious emissions radiated above 1 GHz	-/-	Nominal	Nominal	TX mode & RX mode	\boxtimes				-/-
§15.107(a) §15.207	Conducted emissions below 30 MHz (AC conducted)	-/-	Nominal	Nominal	TX mode			\boxtimes		Battery powered only

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

10 Additional comments

Reference documents:	Proje	Project Note - SRR Duty Cycle Determination for FCC Approval CTC advanced report: 1-5420/12-01-11-A				
	CTC					
	Ques	tionnaire_IntelliVue CL SpO2 Pod				
Special test descriptions:	-/-					
Configuration descriptions:	-/-					
Test mode:	\boxtimes	Special software is used. EUT is transmitting pseudo random data by itself				
Antennas and transmit operating modes:	\boxtimes	Operating mode 1 (single antenna) - Equipment with 1 antenna, - Equipment with 2 diversity antennas operating in switched diversity mode by which at any moment in time only 1 antenna is used, - Smart antenna system with 2 or more transmit/receive chains, but operating in a mode where only 1 transmit/receive chain is used)				
		Operating mode 2 (multiple antennas, no beamforming) - Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously but without beamforming.				
		Operating mode 3 (multiple antennas, with beamforming) - Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously with beamforming. In addition to the antenna assembly gain (G), the beamforming gain (Y) may have to be taken into account when performing the measurements.				

11 Measurement results

11.1 Maximum output power

Description:

Measurement of the maximum output power conducted and radiated. EUT in single channel mode.

Measurement parameters					
Detector	Peak				
Sweep time	Auto				
Resolution bandwidth	3 MHz				
Video bandwidth	10 MHz				
Span	10 MHz				
Trace mode	Max hold				
Test setup	See sub clause 6.2 B (radiated)				
Measurement uncertainty	See sub clause 8				

Limits:

FCC	IC				
Maximum output power					
[Conducted: 0.125 W – antenna gain max. 6 dBi] Systems using more than 75 hopping channels: Conducted: 1.0 W – antenna gain max. 6 dBi					

Results:

		Frequency	Frequency		
	2405 MHz	2440 MHz	2480 MHz		
Maximum output power radiated [dBm]	-10.5	-10.2	-9.8		
Maximum output power radiated [dBm] Added from main report: 1-5420/12-01-11-A	2.2	3.2	-2.7		

Note: No conducted EUT provided!

11.2 Band edge compliance radiated

Description:

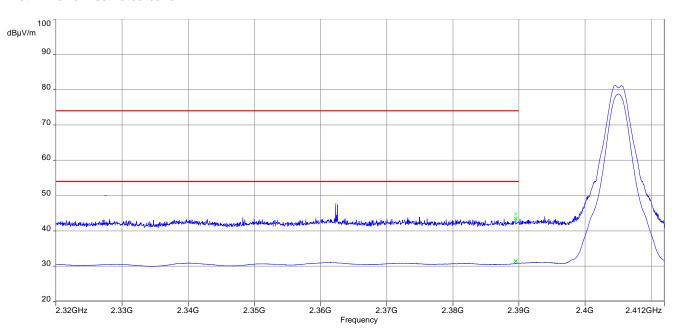
Measurement of the radiated band edge compliance. The EUT is turned in the position that results in the maximum level at the band edge. Then a sweep over the corresponding restricted band is performed. The EUT is set to single channel mode and the transmit channel is the lowest channel for the lower restricted band and the highest channel for the upper restricted band. Measurement distance is 3m.

Measurement parameters					
Detector	Peak / RMS				
Sweep time	Auto				
Resolution bandwidth	1 MHz				
Video bandwidth	3 MHz				
Span	Lower Band: 2300 – 2400 MHz Upper Band: 2480 – 2500 MHz				
Trace mode	Max hold				
Test setup	See sub clause 6.2 B				
Measurement uncertainty	See sub clause 8				

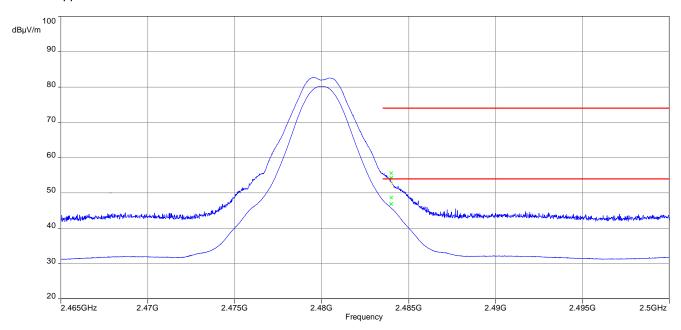
Limits:

FCC	IC					
Band edge compliance radiated						
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 5.205(c)).						
54 dBμV/m AVG 74 dBμV/m Peak						

Result:


Scenario	Band edge compliance radiated [dBµV/m]
Lower restricted band	44.8 dBμV/m @ 3 m (Peak – measured) 29.4 dBμV/m @ 3 m (Average – calculated)
Upper restricted band	55.6 dBμV/m @ 3 m (Peak – measured) 40.2 dBμV/m @ 3 m (Average – calculated)

Note: The average value is recalculated with the stated duty cycle of 17.024 % = 15.38 dB (correction factor)



Plots:

Plot 1: Lower restricted band

Plot 2: Upper restricted band

11.3 Spurious emissions radiated below 30 MHz

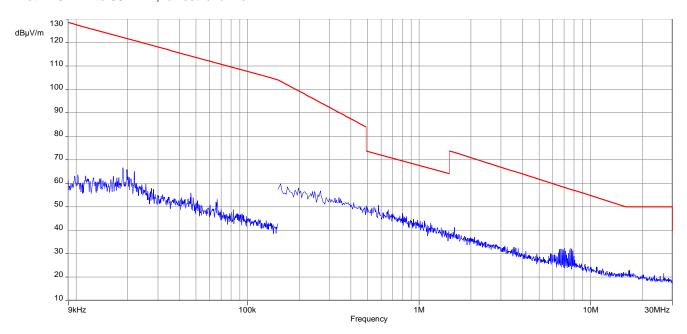
Description:

Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The measurement is performed in the mode with the highest output power. The limits are recalculated to a measurement distance of 3 m according the ANSI C63.10.

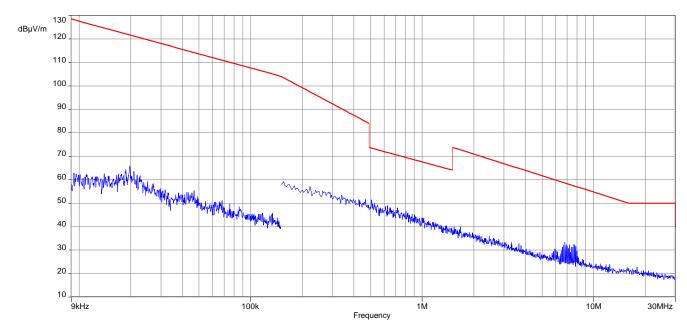
Measurement parameters					
Detector	Peak (pre-measurement) / quasi peak				
Sweep time	Auto				
Resolution bandwidth	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz				
Video bandwidth	F < 150 kHz: 1 kHz F > 150 kHz: 30 kHz				
Span	9 kHz to 30 MHz				
Trace mode	Max hold				
Test setup	See sub clause 6.2 C				
Measurement uncertainty	See sub clause 8				

Limits:

FCC			IC	
TX spurious emissions radiated below 30 MHz				
Frequency (MHz)	Field strength (dBµV/m)		Measurement distance	
0.009 – 0.490	2400/F(kHz)		300	
0.490 – 1.705	24000/F(kHz)		30	
1.705 – 30.0	30		30	

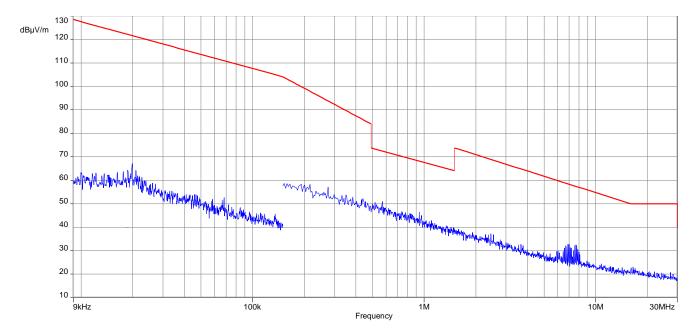

Results:

TX spurious emissions radiated below 30 MHz [dBμV/m]									
F [MHz] Detector Level [dBµV/m]									
All detecte	ed emissions are more than 20 dB below	the limit.							



Plots:

Plot 1: 9 kHz to 30 MHz, lowest channel



Plot 2: 9 kHz to 30 MHz, middle channel

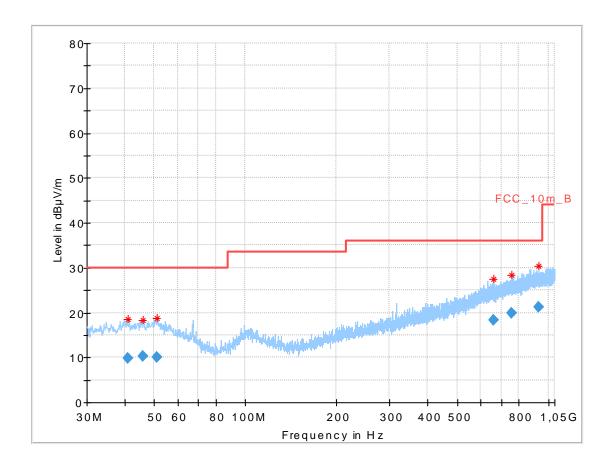
Plot 3: 9 kHz to 30 MHz, highest channel

11.4 Spurious emissions radiated 30 MHz to 1 GHz

Description:

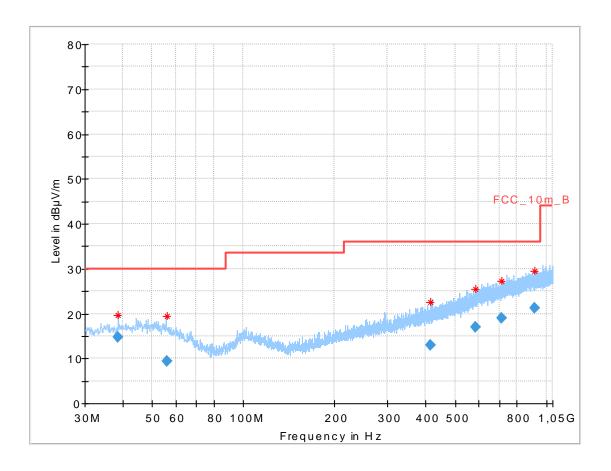
Measurement of the radiated spurious emissions in transmit mode

Measurement parameters							
Detector	Peak (pre-measurement) / quasi peak						
Sweep time	Auto						
Resolution bandwidth	120 kHz						
Video bandwidth	3 x RBW						
Span	30 MHz to 1 GHz						
Trace mode	Max hold						
Test setup	See sub clause 6.1 A						
Measurement uncertainty	See sub clause 8						

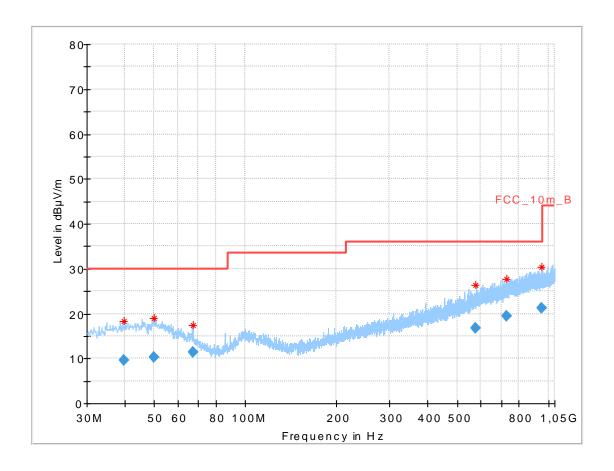

Limits:

FCC			IC					
TX spurious emissions radiated								
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).								
	§15.	209						
Frequency (MHz)	Field streng	th (dBµV/m)	Measurement distance					
30 - 88	30	.0	10					
88 – 216	33.5							
216 – 960	36	36.0 10						
Above 960	54	.0	3					

Plots: Transmit mode

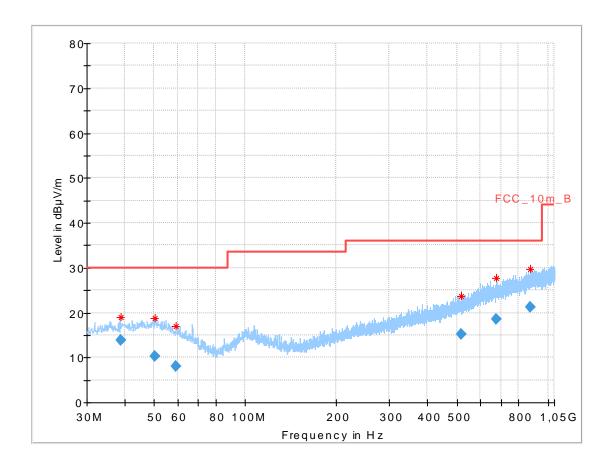

Plot 1: 30 MHz to 1 GHz, TX mode, lowest channel, vertical & horizontal polarization

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
41.086500	9.86	30.00	20.14	1000.0	120.000	101.0	V	193.0	13.3
45.880650	10.18	30.00	19.82	1000.0	120.000	101.0	٧	119.0	13.6
51.098850	10.12	30.00	19.88	1000.0	120.000	98.0	Н	171.0	13.6
660.768000	18.34	36.00	17.66	1000.0	120.000	179.0	Н	339.0	21.2
759.517950	19.82	36.00	16.18	1000.0	120.000	185.0	٧	179.0	22.7
928.630800	21.21	36.00	14.79	1000.0	120.000	185.0	٧	8.0	24.3


Plot 2: 30 MHz to 1 GHz, TX mode, middle channel, vertical & horizontal polarization

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
38.709150	14.73	30.00	15.27	1000.0	120.000	101.0	V	353.0	13.1
55.867800	9.42	30.00	20.58	1000.0	120.000	101.0	Н	58.0	12.9
415.599600	13.06	36.00	22.94	1000.0	120.000	98.0	Н	184.0	17.1
583.840500	16.88	36.00	19.12	1000.0	120.000	185.0	٧	297.0	20.3
710.343750	18.99	36.00	17.01	1000.0	120.000	101.0	Н	0.0	21.8
914.978400	21.29	36.00	14.71	1000.0	120.000	185.0	V	151.0	24.2

Plot 3: 30 MHz to 1 GHz, TX mode, highest channel, vertical & horizontal polarization



Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
39.669300	9.64	30.00	20.36	1000.0	120.000	179.0	Н	127.0	13.2
49.967550	10.17	30.00	19.83	1000.0	120.000	100.0	Н	101.0	13.7
67.065750	11.35	30.00	18.65	1000.0	120.000	101.0	V	210.0	10.3
577.224000	16.70	36.00	19.30	1000.0	120.000	179.0	Н	350.0	20.1
727.400550	19.35	36.00	16.65	1000.0	120.000	185.0	V	7.0	22.2
947.901750	21.31	36.00	14.69	1000.0	120.000	101.0	Н	264.0	24.3

Plots: Receiver mode

Plot 1: 30 MHz to 1 GHz, RX / idle – mode, vertical & horizontal polarization

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
38.718000	13.96	30.00	16.04	1000.0	120.000	185.0	٧	3.0	13.1
50.327700	10.34	30.00	19.66	1000.0	120.000	101.0	٧	183.0	13.7
59.292900	8.15	30.00	21.85	1000.0	120.000	100.0	٧	3.0	12.0
518.521800	15.13	36.00	20.87	1000.0	120.000	101.0	٧	201.0	18.9
673.819650	18.45	36.00	17.55	1000.0	120.000	185.0	Н	110.0	21.3
873.567600	21.20	36.00	14.80	1000.0	120.000	101.0	٧	279.0	23.8

11.5 Spurious emissions radiated above 1 GHz

Description:

Measurement of the radiated spurious emissions in transmit mode. The measurement is performed in the mode with the highest output power.

Measurement parameters							
Detector	Peak / RMS						
Sweep time	Auto						
Resolution bandwidth	1 MHz						
Video bandwidth	3 x RBW						
Span	1 GHz to 26 GHz						
Trace mode	Max hold						
Test setup	See sub clause 6.2 A (1 GHz - 18 GHz) See sub clause 6.3 A (18 GHz - 26 GHz)						
Measurement uncertainty	See sub clause 8						

The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation.

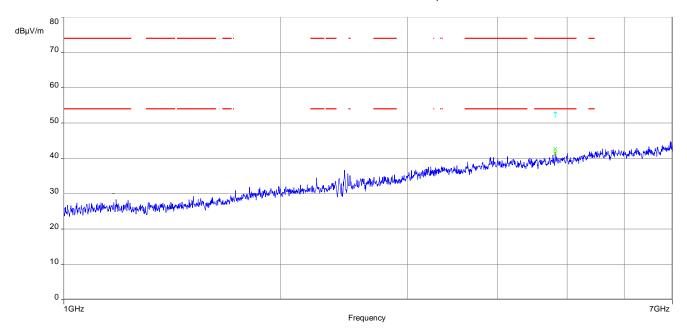
Limits:

FCC			IC						
	TX spurious emissions radiated								
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).									
	§15	.209							
Frequency (MHz)	Field streng	th (dBµV/m)	Measurement distance						
Above 960	bove 960 54.0 (Average) 3								
Above 960	74.0 (Peak)	3						

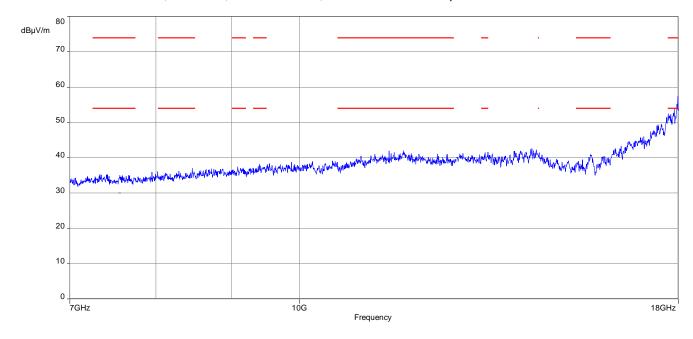
Results: Transmitter mode

TX spurious emissions radiated [dBμV/m]										
2405 MHz			2440 MHz			2480 MHz				
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]		
4810	Peak	53.1	All detected p	oeak em issioi	ns are below	All detected	peak em issio	ns are below		
4010	AVG	-/-	th	e average lim	it.	th	ne average lim	nit.		
-/-	Peak	-/-	,	Peak	-/-	1	Peak	-/-		
-/-	AVG	-/-	-/-	AVG -/-		AVG	-/-			
,	Peak	-/-	,	Peak	-/-	,	Peak	-/-		
-/-	AVG	-/-	-/-	AVG	-/-	-/-	AVG	-/-		

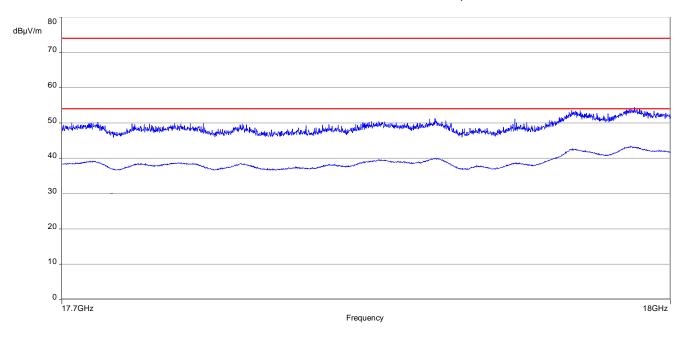
Duty cycle average 17.024 % = 15.38 dB


Results: Receiver mode

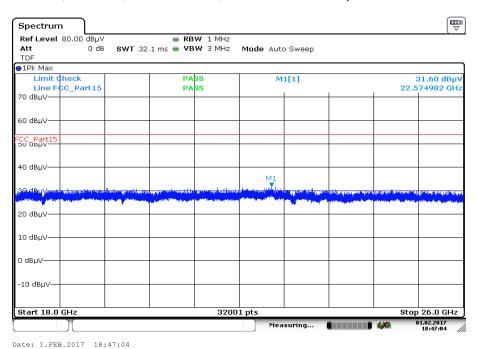
RX spurious emissions radiated [dBμV/m]								
F [MHz]	Level [dBµV/m]							
All detected peak	emissions are more than 10 dB below t	he average limit.						
/	Peak	-/-						
-/-	AVG	-/-						


Plots: Transmitter mode

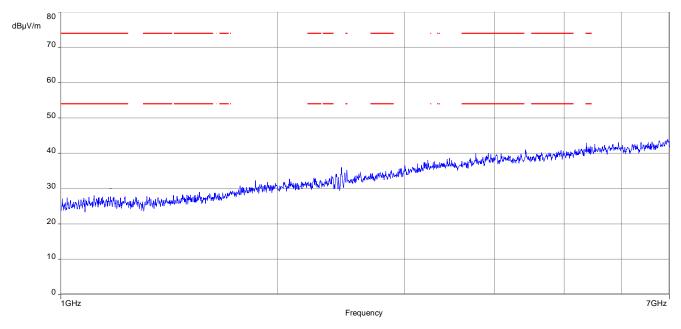
Plot 1: 1 GHz to 7 GHz, TX mode, lowest channel, vertical & horizontal polarization


The carrier signal is notched with a 2.4 GHz band rejection filter.

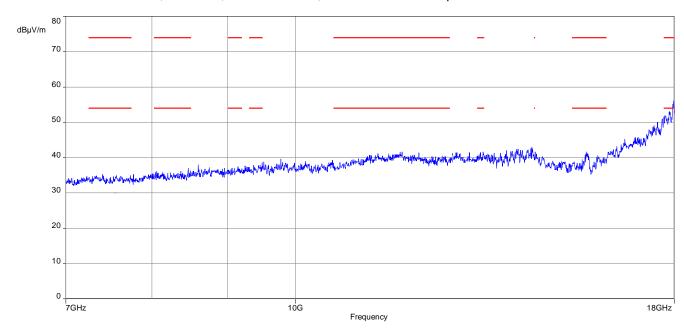
Plot 2: 7 GHz to 18 GHz, TX mode, lowest channel, vertical & horizontal polarization



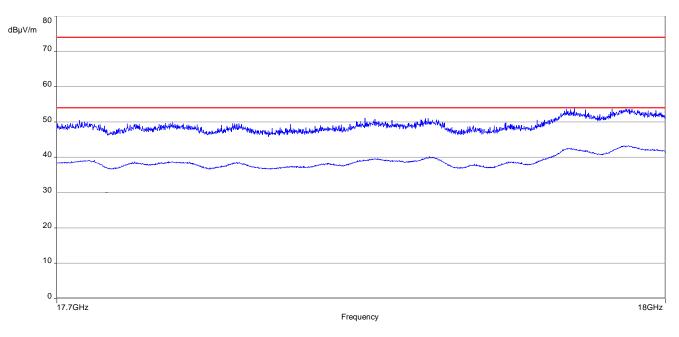
Plot 3: 17.7 GHz to 18 GHz, TX mode, lowest channel, vertical & horizontal polarization



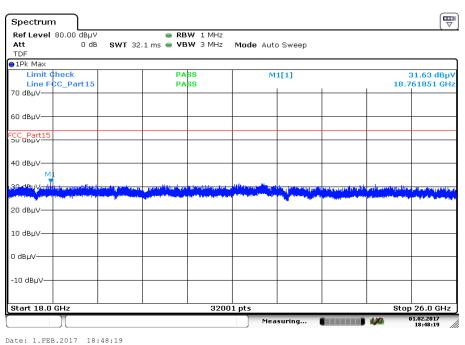
Plot 4: 18 GHz to 26 GHz, TX mode, lowest channel, vertical & horizontal polarization



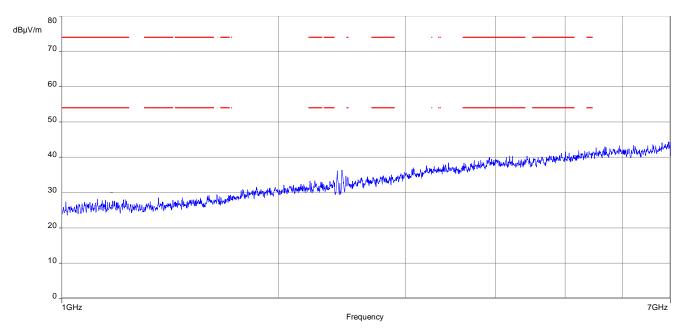
Plot 5: 1 GHz to 7 GHz, TX mode, middle channel, vertical & horizontal polarization


The carrier signal is notched with a 2.4 GHz band rejection filter.

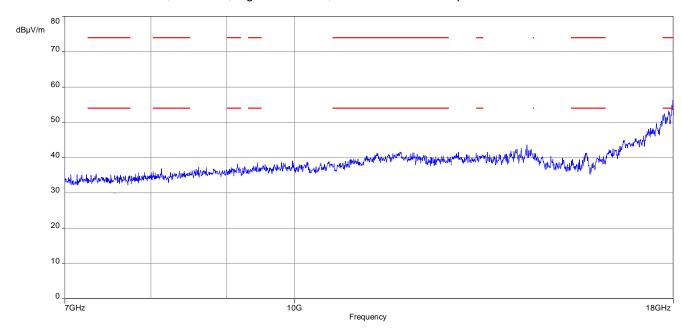
Plot 6: 7 GHz to 18 GHz, TX mode, middle channel, vertical & horizontal polarization



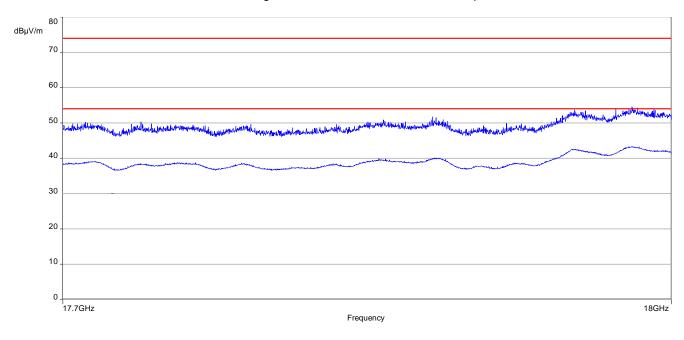
Plot 7: 17.7 GHz to 18 GHz, TX mode, middle channel, vertical & horizontal polarization



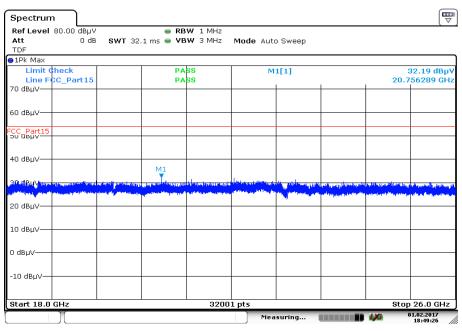
Plot 8: 18 GHz to 26 GHz, TX mode, middle channel, vertical & horizontal polarization



Plot 9: 1 GHz to 7 GHz, TX mode, highest channel, vertical & horizontal polarization

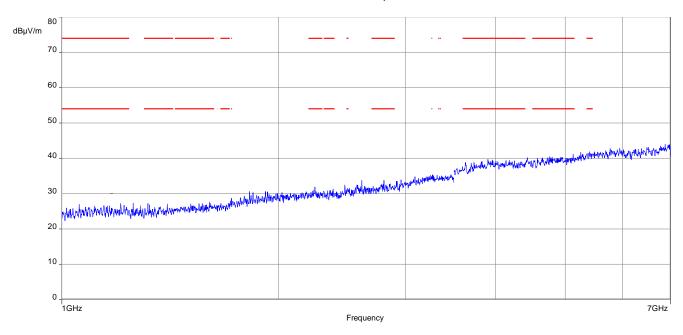

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 10: 7 GHz to 18 GHz, TX mode, highest channel, vertical & horizontal polarization

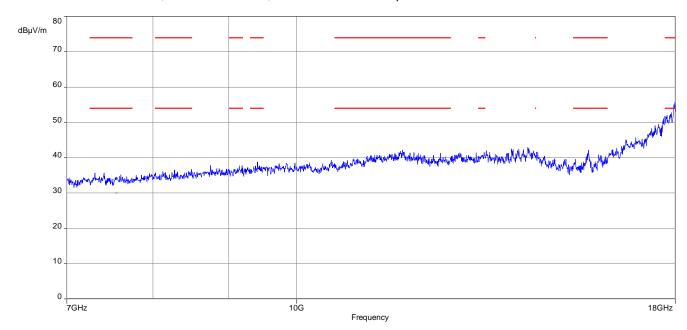


Plot 11: 17.7 GHz to 18 GHz, TX mode, highest channel, vertical & horizontal polarization

Plot 12: 18 GHz to 26 GHz, TX mode, highest channel, vertical & horizontal polarization

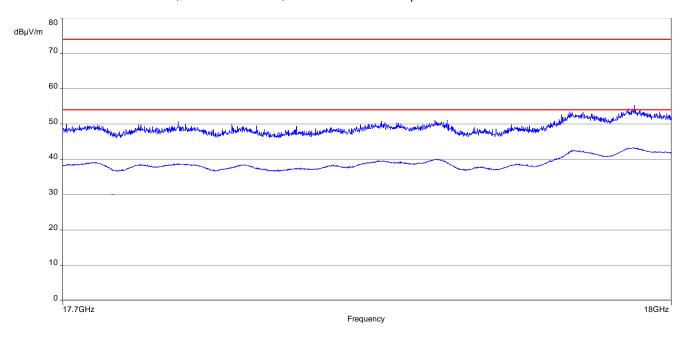


Date: 1.FEB.2017 18:49:26

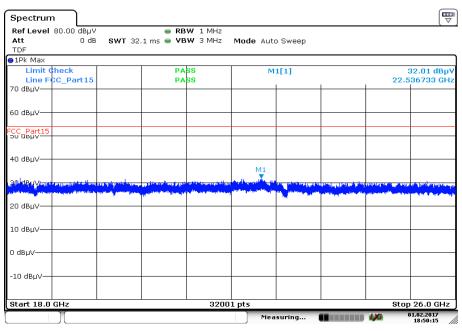


Plots: Receiver mode

Plot 1: 1 GHz to 7 GHz, RX / idle - mode, vertical & horizontal polarization



Plot 2: 7 GHz to 18 GHz, RX / idle - mode, vertical & horizontal polarization



Plot 3: 17.7 GHz to 18 GHz, RX / idle - mode, vertical & horizontal polarization

Plot 4: 18 GHz to 26 GHz, RX / idle - mode, vertical & horizontal polarization

Date: 1.FEB.2017 18:50:15

12 Observations

No observations except those reported with the single test cases have been made.

Annex A Document history

Version	Applied changes	Date of release
	Initial release	2017-02-23
А	Editorial changes, Reference in 11.1 changed	2018-03-22

Annex B Further information

Glossary

AVG - Average

DUT - Device under test

EMC - Electromagnetic Compatibility

EN - European Standard
EUT - Equipment under test

ETSI - European Telecommunications Standard Institute

FCC - Federal Communication Commission

FCC ID - Company Identifier at FCC

HW - Hardware

IC - Industry Canada
Inv. No. - Inventory number
N/A - Not applicable
PP - Positive peak
QP - Quasi peak
S/N - Serial number
SW - Software

PMN - Product marketing name HMN - Host marketing name

HVIN - Hardware version identification number FVIN - Firmware version identification number

OBW Occupied Bandwidth OC Operating Channel

OCW Operating Channel Bandwidth

OOB Out Of Band

Annex C Accreditation Certificate

first page	last page
DAKKS Deutsche Akkrditierungsstelle Deutsche Akkreditierungsstelle GmbH	Deutsche Akkreditierungsstelle GmbH
Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation	Office Berlin Office Frankfurt am Main Office Braunschweig Spittelmarkt 10 Europa-Allee 52 Bundesallee 100 10117 Berlin 60327 Frankfurt am Main 38116 Braunschweig
The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkhelmer Straße 6-10, 66117 Saarbrücken is competent under the terms of DIN EN ISO/IEC 17025:2005 to carry out tests in the following fields:	
Telecommunication	
	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkrediterungsstelle GmbH (DAkS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overleaf. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAkS. The accreditation was granted pursuant to the Act on the Accreditation Body (AkkStelleG) of 31 July 2009 (Federal Law Gazette I p. 2625) and the Regulation (EC) No 765/2009 of the European Parliament and of the Council of 9 July 2008 string out the requirements for accreditation and market surveillance relating
The accreditation certificate shall only apply in connection with the notice of accreditation of 02.06.2017 with the accreditation number O-Pt-12076-01 and is valid until 21.04.2021. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 43 pages.	the Counte of 3 July 2000 setting out one requirements or or accessation and makes 30 remaints: each getting to the marketing of products (Official Journal of the European Union L 218 of 9 July 2008, p. 30). DARKS is a signatory to the Multilateral Agreements for Nutual Recognition of the European co-operation for Accreditation (EA), International Lacorditation formul (FA) and International Laboratory Accreditation Cooperation (ILAC). The signatories to these agreements recognise each other's accreditations.
Registration number of the certificate: D-PL-12076-01-03	The up-to-date state of membership can be retrieved from the following websites: EA: www.uropean-accreditation.org ILAC: www.lac.org IAF: www.lac.fu
Frankfurt, 92.06.3017 Disable LTPO Trans Server Held of Consider	
Sea make excellent.	

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

http://www.dakks.de/as/ast/d/D-PL-12076-01-03.pdf