

TEST REPORT

Test report no.: 1-2856/16-01-05

DAkkS Deutsche Akkreditierungsstelle D-PL-12076-01-01

Testing laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075 Internet: <u>http://www.ctcadvanced.com</u> e-mail: <u>mail@ctcadvanced.com</u>

Accredited Testing Laboratory: The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS) The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with the registration number: D-PL-12076-01-01

Applicant

Philips Medizin Systeme Böblingen GmbHHewlett-Packard-Strasse 271034 Böblingen / GERMANYPhone:-/-Fax:+49 7031 463-2944Contact:Hansjörg Geywitze-mail:hansjoerg.geywitz@philips.comPhone:+49 7031 463-1879

Manufacturer

Philips Medizin Systeme Böblingen GmbH Hewlett-Packard-Strasse 2 71034 Böblingen / GERMANY

Test standard/s

47 CFR Part 15	Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 247 Issue 2	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE-LAN) Devices
RSS - Gen Issue 4	Spectrum Management and Telecommunications Radio Standards Specifications - General Requirements and Information for the Certification of Radio Apparatus
For further applied test star	ndards please refer to section 3 of this test report.

Test Item

Kind of test item:	Range Extender for OB and SRR measureme	nts via WLAN	
Model name:	Avalon CL Wide Range Pod 866487		PHILIPS
FCC ID:	PQC-SRRBV4		and a
IC:	3549C-SRRBV1		
Frequency:	DTS band 2400.0 MHz to 2483.5 MHz		
Technologytested:	Short range radio		
Antenna:	Integrated chip antenna		
Power supply:	3.7 V DC by Li-lon battery		
Temperature range:	-20°C to +55°C		

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:

Stefan Bös Lab Manager Radio Communications & EMC

Test performed:

Mihail Dorongovskij Testing Manager Radio Communications & EMC

1 Table of contents

1	Table	of contents	2
2	Gener	al information	3
	2.1 2.2 2.3	Notes and disclaimer Application details Test laboratories sub-contracted	. 3
3	Test s	tandard/s and references	4
4	Test e	nvironment	5
5	Test if	em	5
	5.1 5.2	General description Additional information	
6	Seque	ence of testing	6
	6.1 6.2 6.3 6.4	Sequence of testing radiated spurious 9 kHz to 30 MHz Sequence of testing radiated spurious 30 MHz to 1 GHz Sequence of testing radiated spurious 1 GHz to 18 GHz Sequence of testing radiated spurious above 18 GHz	. 7 . 8
7	Measu	rement uncertainty1	10
8	Descr	iption of the test setup1	11
	8.1 8.2 8.3	Shielded semi anechoic chamber	13
9	Summ	nary of measurement results1	15
10	Α	dditional comments 1	6
11	Μ	easurement results 1	17
	11.1 11.2 11.3 11.4 11.5	Maximum output power	21 24 28
12	0	bservations4	18
Anr	nex A	Glossary4	18
Anr	nex B	Document history4	19
Anr	nex C	Accreditation Certificate	19

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order:	2016-11-14
Date of receipt of test item:	2017-06-19
Start of test:	2017-06-21
End of test:	2017-07-11
Person(s) present during the test:	-/-

2.3 Test laboratories sub-contracted

None

3 Test standard/s and references

Test standard	Date	Description
47 CFR Part 15		Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 247 Issue 2	February 2017	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE- LAN) Devices
RSS - Gen Issue 4	November 2014	Spectrum Management and Telecommunications Radio Standards Specifications - General Requirements and Information for the Certification of Radio Apparatus

CTC I advanced

Guidance	Version	Description
DTS: KDB 558074 D01	V04	Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247
ANSI C63.4-2014	-/-	American national standard for methods of measurement of radio- noise emissions from low-voltage electrical and electronic
ANSI C63.10-2013	-/-	equipment in the range of 9 kHz to 40 GHz American national standard of procedures for compliance testing of unlicensed wireless devices

4 Test environment

Temperature :		Tnom Tmax Tmin	+22 °C during room temperature tests No tests under extreme conditions required. No tests under extreme conditions required.
Relative humidity content	:		56 %
Barometric pressure	:		1021 hpa
		Vnom	3.7 V DC by Li-lon battery
Power supply	:	Vmax	No tests under extreme conditions required.
		Vmin	No tests under extreme conditions required.

5 Test item

5.1 General description

Kind of test item :	Range Extender for OB and SRR measurements via WLAN
Type identification :	Avalon CL Wide Range Pod 866487
HMN :	-/-
PMN :	866487
HVIN :	866487
FVIN :	-/-
S/N serial number :	Rad. DE024V0710
HW hardware status :	1642
SW software status :	D.00.42
Frequency band :	DTS band 2400.0 MHz to 2483.5 MHz Lowest channel 11 (2405 MHz) / Highest channel 26 (2480 MHz)
Type of radio transmission : Use of frequency spectrum :	DSSS
Type of modulation :	OQPSK
Number of channels :	16
Antenna :	Integrated chip antenna
Power supply :	3.7 V DC by Li-lon battery
Temperature range :	-20°C to +55°C

5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report:

1-2856/16-01-01_AnnexA 1-9797/15-01-01_AnnexB 1-2856/16-01-01_AnnexD

6 Sequence of testing

6.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1.5 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

- Identified emissions during the premeasurement are maximized by the software by rotating the turntable from 0° to 360°. In case of the 2-axis positioner is used the elevation axis is also rotated from 0° to 360°.
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

6.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

6.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

6.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

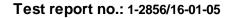
 The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

7 Measurement uncertainty

Measurement uncertainty							
Test case	Uncertainty						
Antenna gain	± 3 dB						
Spectrum bandwidth	± 21.5 kHz absolute; ± 15.0 kHz relative						
Maximum output power	± 1 dB						
Detailed conducted spurious emissions @ the band edge	± 1 dB						
Band edge compliance radiated	± 3 dB						
Spurious emissions conducted	± 3 dB						
Spurious emissions radiated below 30 MHz	± 3 dB						
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB						
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB						
Spurious emissions radiated above 12.75 GHz	± 4.5 dB						
Spurious emissions conducted below 30 MHz (AC conducted)	± 2.6 dB						

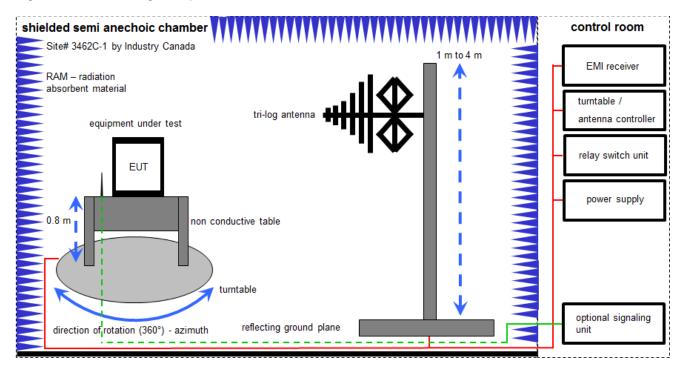
8 Description of the test setup


Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration

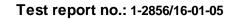
- k calibration / calibrated
- ne not required (k, ev, izw, zw not required)
- ev periodic self verification
- Ve long-term stability recognized
- vlkl! Attention: extended calibration interval
- NK! Attention: not calibrated

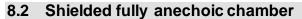

- EK limited calibration
- zw cyclical maintenance (external cyclical maintenance)
- izw internal cyclical maintenance
- g blocked for accredited testing
- *) next calibration ordered / currently in progress

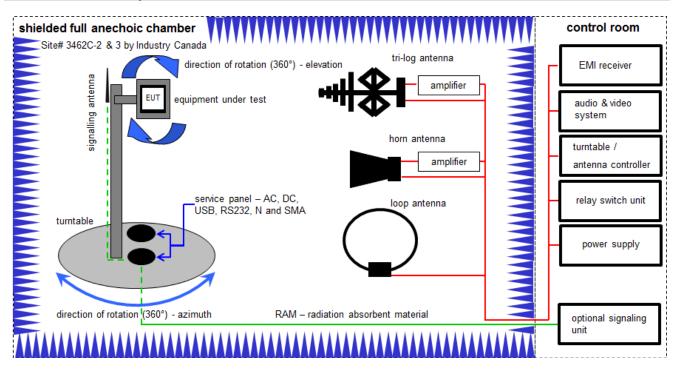
8.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter


FS = UR + CL + AF


(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)


<u>Example calculation</u>: FS [dBµV/m] = 12.35 [dBµV/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dBµV/m] (35.69 µV/m)

Equipment table:

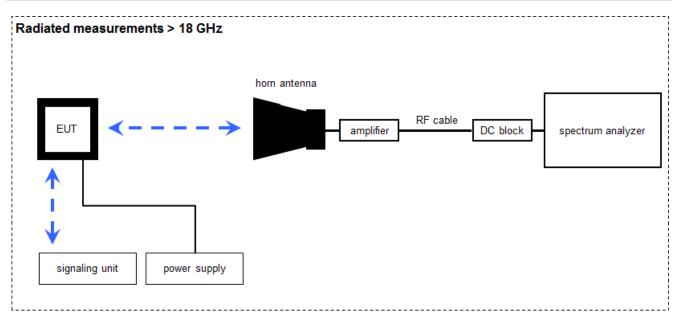
No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	A	Meßkabine 1	HF-Absorberhalle	MWB AG 300023	101042	300000551	ne	-/-	-/-
3	A	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	01.02.2017	31.01.2018
4	А	Analy zer-Reference- System (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	Ve	02.02.2016	02.02.2018
5	A	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
6	A	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
7	A	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
8	A	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	295	300003787	k	25.04.2016	25.04.2018

CTC | advanced

member of RWTÜV group

Measurement distance: tri-log antenna and horn antenna 3 meter; loop antenna 3 meter

FS = UR + CA + AF (FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)


Example calculation:

FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 <math>\mu V/m)$

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	С	Active Loop Antenna 10 kHz to 30 MHz	6502	EMCO	2210	300001015	k	20.05.2017	20.05.2019
2	А	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9709-5290	300000212	k	13.08.2015	13.08.2017
3	A	Highpass Filter	WHK1.1/15G-10SS	Wainwright	37	400000148	ne	-/-	-/-
4	A	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	18	300003789	ne	-/-	-/-
5	A	Band Reject Filter	WRCG2400/2483- 2375/2505-50/10SS	Wainwright	26	300003792	ne	-/-	-/-
6	В	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	371	300003854	v IKI!	29.10.2014	29.10.2017
7	А, В	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22051	300004483	ev	-/-	-/-
8	A, B, C	4U RF Switch Platform	L4491A	Agilent Technologies	MY 50000032	300004510	ne	-/-	-/-
9	A, B, C	Messrechner und Monitor	Intel Core i3 3220/3,3 GHz, Prozessor	Huber & Suhner	2V2403033A54 21	300004591	ne	-/-	-/-
10	A, B, C	NEXIO EMV- Software	BAT EMC V3.16.0.49	EMCO	Batch no. 14844	300004682	ne	-/-	-/-
11	A, B, C	Anechoic chamber	ESH3-Z5	TDK	893045/004	300003726	ne	-/-	-/-
12	A, B, C	EMI Test Receiver 9kHz-26,5GHz	ESR26	R&S	101376	300005063	v IKI!	13.09.2016	13.03.2018

8.3 Radiated measurements > 18 GHz

Measurement distance: horn antenna 50 cm

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor)

Example calculation:

 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-60.1) [dB] + 36.74 [dB/m] = 16.64 [dB\mu V/m] (6.79 \mu V/m)$

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	Std. Gain Horn Antenna 18.0 to 26.5 GHz	638	Narda	-/-	300000486	k	10.09.2015	10.09.2017
2	A	Signal Analyzer 40 GHz	FSV40	R&S	101042	300004517	k	27.01.2017	26.01.2018
3	A	Amplifier 2-40 GHz	JS32-02004000-57- 5P	MITEQ	1777200	300004541	ev	-/-	-/-
4	A	RF-Cable	ST18/SMAm/SMAm/ 48	Huber & Suhner	Batch no. 600918	400001182	ev	-/-	-/-
5	A	RF-Cable	ST18/SMAm/SMAm/ 48	Huber & Suhner	Batch no. 127377	400001183	ev	-/-	-/-
6	A	DC-Blocker 0.1-40 GHz	8141A	Inmet	-/-	400001185	ev	-/-	-/-

9 Summary of measurement results

No deviations from the technical specifications were ascertained
There were deviations from the technical specifications as certained
This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

CTC I advanced

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Part 15 RSS - 247, Issue 2	See table!	2017-07-18	Tests according to customer's demand

Test specification clause	Test case	Guideline	Temperature conditions	Power source voltages	Mode	с	NC	NA	NP	Remark
§15.247(b)(4) RSS - 247 / 5.4 (4)	System gain	-/-	Nominal	Nominal	OQPSK				\boxtimes	-/-
§15.247(e) RSS - 247 / 5.2 (b)	Pow er spectral density	KDB 558074 DTS clause: 10.6	Nominal	Nominal	OQPSK				\boxtimes	*1
§15.247(a)(2) RSS - 247 / 5.2 (a)	DTS bandw idth – 6 dB bandw idth	KDB 558074 DTS clause: 8.1	Nominal	Nominal	OQPSK				\boxtimes	*1
RSS Gen clause 4.6.1	Occupied bandw idth	-/-	Nominal	Nominal	OQPSK				\boxtimes	*1
§15.247(b)(3) RSS - 247 / 5.4 (4)	Maximum output pow er	KDB 558074 DTS clause: 9.1.1	Nominal	Nominal	OQPSK	\boxtimes				-/-
§15.247(d) RSS - 247 / 5.5	Detailed spurious emissions @ the band edge - conducted	-/-	Nominal	Nominal	OQPSK				\boxtimes	*1
§15.205 RSS - 247 / 5.5 RSS - Gen	Band edge compliance radiated	KDB 558074 DTS clause: 13.3.2	Nominal	Nominal	OQPSK	\boxtimes				-/-
§15.247(d) RSS - 247 / 5.5	TX spurious emissions conducted	KDB 558074 DTS clause: 11.1 & 11.2 11.3	Nominal	Nominal	OQPSK				\boxtimes	*1
§15.209(a) RSS - Gen	Spurious emissions radiated below 30 MHz	-/-	Nominal	Nominal	OQPSK	\boxtimes				-/-
15.247(d) RSS - 247 / 5.5 §15.109 RSS - Gen	Spurious emissions radiated 30 MHz to 1 GHz	-/-	Nominal	Nominal	-/-					-/-
§15.247(d) RSS - 247 / 5.5 §15.109 RSS - Gen	Spurious emissions radiated above 1 GHz	-/-	Nominal	Nominal	OQPSK					-/-
§15.107(a) §15.207	Conducted emissions below 30 MHz (AC conducted)	-/-	Nominal	Nominal	OQPSK			\boxtimes		Only battery powered

*1: For conducted results please see main report 1-5429/12-01-11-A

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

10 Additional comments

Reference documents:	Custor	mer_Questionnaii	re_1-3558_17-01_CL_Wide_Range_Pod.docx		
	Projec	t Note - SRR Du	ty Cycle Determination for FCC Approval		
	Main t	est report 1-5420	/12-01-11-A issued by Cetecom ICT Services GmbH.		
	1-9797/15-01-01_AnnexB.pdf				
Special test descriptions:	The EUT contains two radio modules (ID 248 and ID 251). The tests were performed on both modules.				
Configuration descriptions:	Used	power settings:	Channel 11: 0 dBm Channel 18: 0 dBm Channel 26: -5 dBm		
Test mode:	⊠ EUT is	Special softwars transmitting pse	re is used. eudo random data by itself		
Antennas and transmit	\boxtimes	Operating mod	e 1 (single antenna)		
operating modes:		 Equipment with Equipment with 	1 antenna, 12 diversity antennas operating in switched diversity mode		
		by which at any - Smart antenna	rmoment in time only 1 antenna is used, system with 2 or more transmit/receive chains, but mode where only 1 transmit/receive chain is used)		
		operating in a n			
		. 0	e 2 (multiple antennas, no beamforming)		
			rating in this mode contains a smart antenna system using two or more a chains simultaneously but without beamforming.		
		Operating mod	e 3 (multiple antennas, with beamforming)		
	 Operating mode 5 (multiple antennas, with beamorning) Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously with beamforming. In addition to the antenna assembly gain (G), the beamforming gain (Y) may have to be taken into account when performing the measurements. 				

11 Measurement results

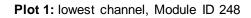
11.1 Maximum output power

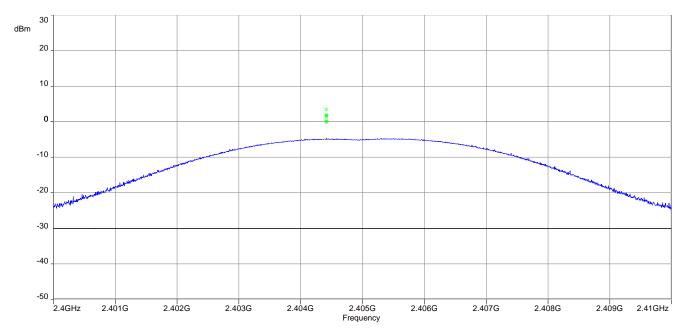
Description:

Measurement of the maximum output power conducted and radiated. EUT in single channel mode.

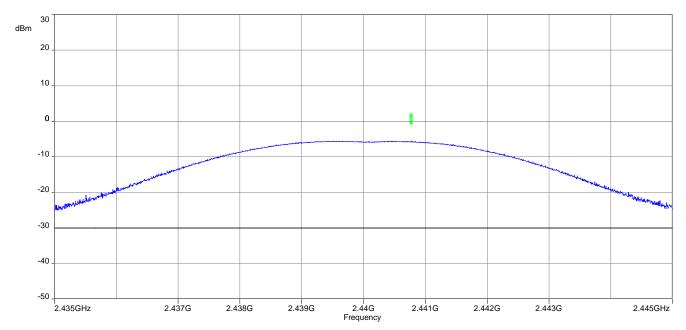
Measurement parameters					
Detector	Peak				
Sweep time	Auto				
Resolution bandwidth	3 MHz				
Video bandwidth	10 MHz				
Span	10 MHz				
Trace mode	Max hold				
Test setup	See sub clause 6.2 B				
Measurement uncertainty	See sub clause 8				

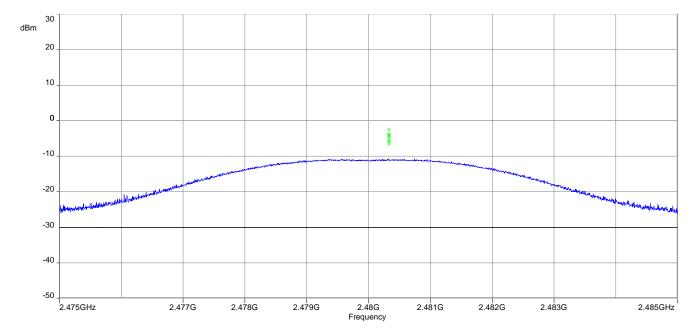
Limits:


FCC	IC			
Maximum output power				
[Conducted: 0.125 W – antenna gain max. 6 dBi] Systems using more than 75 hopping channels: Conducted: 1.0 W – antenna gain max. 6 dBi				

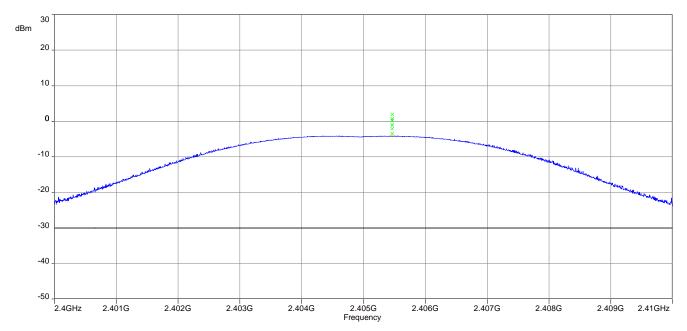

Results:

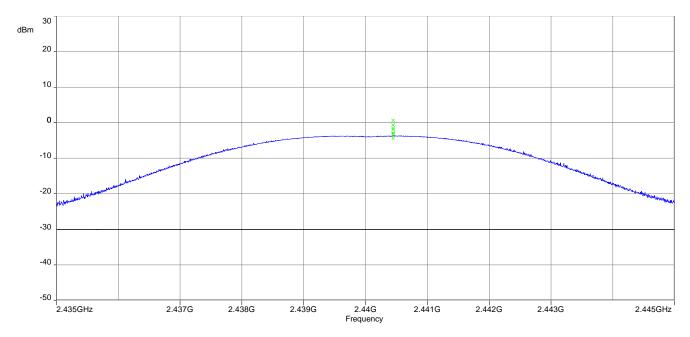
	Frequency					
	2405 MHz 2440 MHz 2480 MHz					
Maximum output power radiated (Module ID 248) [dBm]	3.4 1.9 -2.5					
Maximum output power radiated (Module ID 251) [dBm]	1.9	0.6	-6.3			
Maximum output power radiated [dBm] Added from main report: 1-5420/12-01-11-A	2.2	3.2	-2.7			


CTC I advanced


Plots:

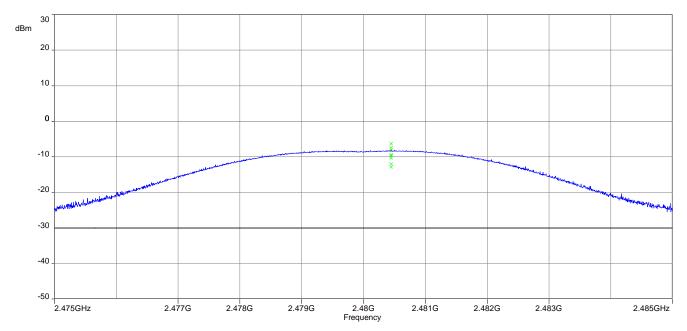
Plot 2: mid channel, Module ID 248




CTC I advanced

Plot 3: highest channel, Module ID 248

Plot 4: lowest channel, Module ID 251



Plot 5: mid channel, Module ID 251

CTC I advanced

Plot 6: highest channel, Module ID 251

11.2 Band edge compliance radiated

Description:

Measurement of the radiated band edge compliance. The EUT is turned in the position that results in the maximum level at the band edge. Then a sweep over the corresponding restricted band is performed. The EUT is set to single channel mode and the transmit frequency 2405 MHz for the lower restricted band and 2480 MHz for the upper restricted band. Measurement distance is 3m.

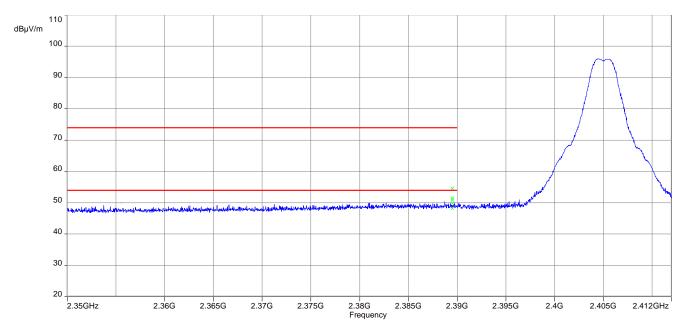
Measurement parameters					
Detector	Peak / RMS				
Sweep time	Auto				
Resolution bandwidth	1 MHz				
Video bandwidth	3 MHz				
Span	Lower Band: 2300 – 2400 MHz Upper Band: 2480 – 2500 MHz				
Trace mode	Max hold				
Test setup	See sub clause 6.2 B				
Measurement uncertainty	See sub clause 8				

Limits:

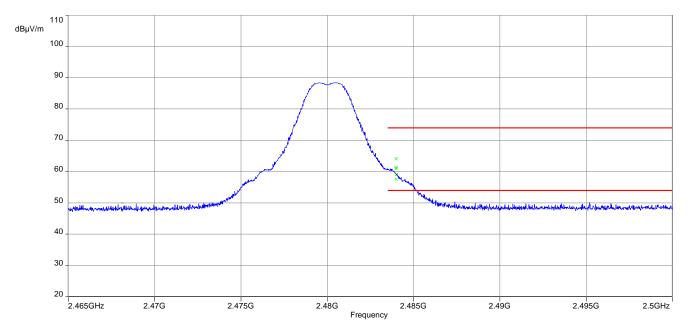
FCC	IC					
Band edge compliance radiated						
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 5.205(c)).						
54 dBµV/m AVG						

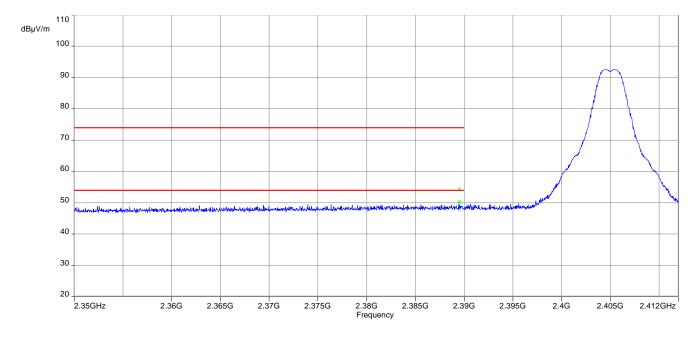
54 dBμV/m AVG 74 dBμV/m Peak

Result:

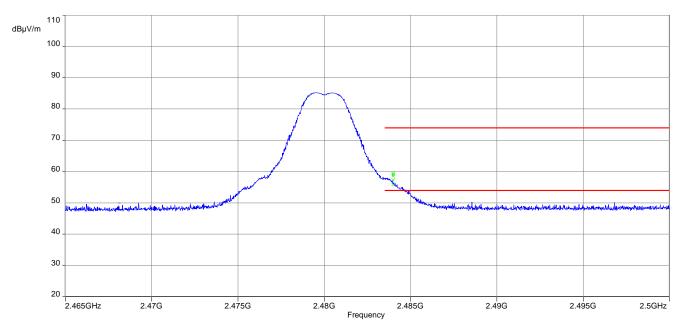

Scenario	Band edge compliance radiated [dBµV/m]		
Modulation	OQPSK		
Lower restricted band (Module ID 248)	54.6 dBµV/m @ 3 m (Peak – measured) 39.2 dBµV/m @ 3 m (Average – calculated)		
Upper restricted band (Module ID 248)	64.1 dBµV/m @ 3 m (Peak – measured) 48.7 dBµV/m @ 3 m (Average – calculated)		
Lower restricted band (Module ID 251)	54.5 dBµV/m @ 3 m (Peak – measured) 39.1 dBµV/m @ 3 m (Average – calculated)		
Upper restricted band (Module ID 251)	59.4 dBµV/m @ 3 m (Peak – measured) 43.9 dBµV/m @ 3 m (Average – calculated)		

Note: The average value is recalculated with the stated duty cycle of 17.024 % = 15.38 dB (correction factor)


CTC I advanced


Plots:

Plot 2: Upper restricted band, Module ID 248



CTC I advanced

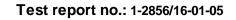
Plot 3: Lower restricted band, Module ID 251

Plot 4: Upper restricted band, Module ID 251

11.3 Spurious emissions radiated below 30 MHz

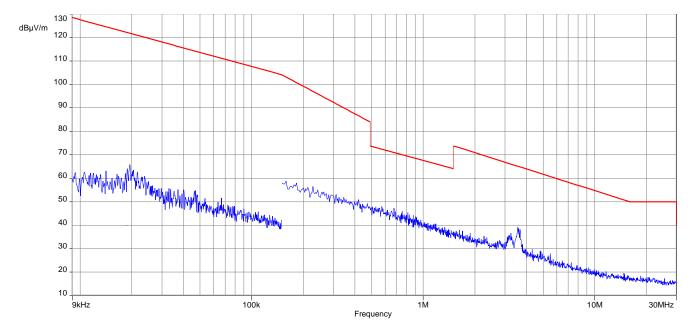
Description:

Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The EUT is set to single channel mode and the transmit frequencies are 2405 MHz, 2440 MHz and 2480 MHz. The measurement is performed in the mode with the highest output power. The limits are recalculated to a measurement distance of 3 m according the ANSI C63.10.

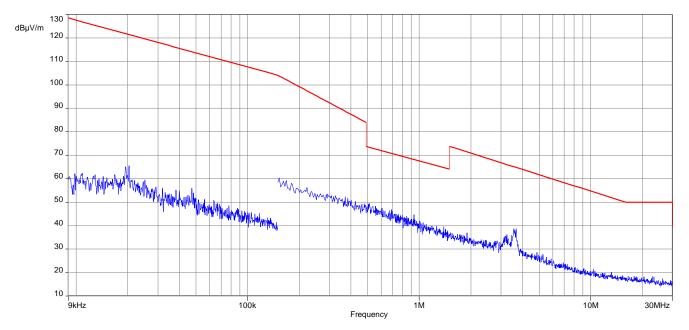

Measurement parameters					
Detector	Peak / Quasi peak				
Sweep time	Auto				
Resolution bandwidth	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz				
Video bandwidth	F < 150 kHz: 1 kHz F > 150 kHz: 30 kHz				
Span	9 kHz to 30 MHz				
Trace mode	Max hold				
Test setup	See sub clause 6.2 C				
Measurement uncertainty	See sub clause 8				

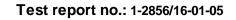
Limits:

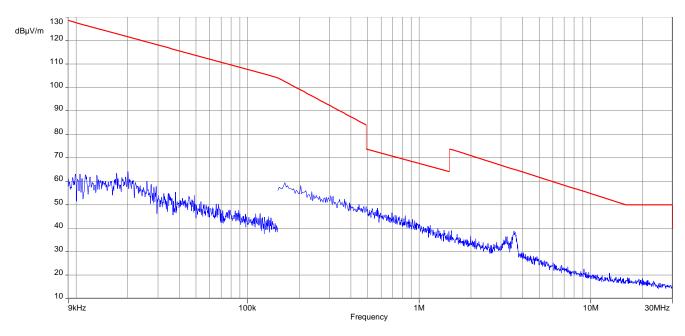
FCC			IC		
TX spurious emissions radiated below 30 MHz					
Frequency (MHz)	Field strength (dBµV/m)		Measurement distance		
0.009 - 0.490	2400/F(kHz)		300		
0.490 – 1.705	24000/F(kHz)		24000/F(kHz)		30
1.705 – 30.0	30		30		30


Results:

TX spurious emissions radiated below 30 MHz [dBµV/m]										
F [MHz] Detector Level [dBµV/m]										
All detecte	All detected emissions are more than 20 dB below the limit.									

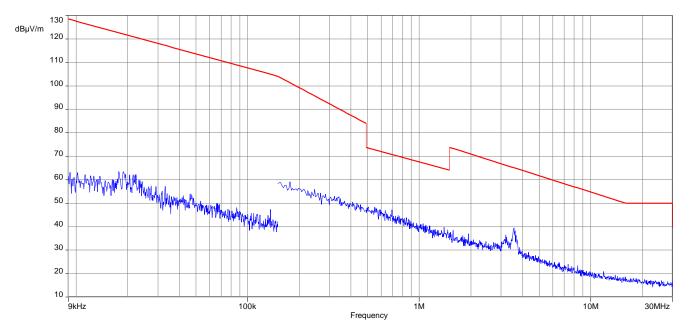


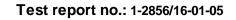

Plots:

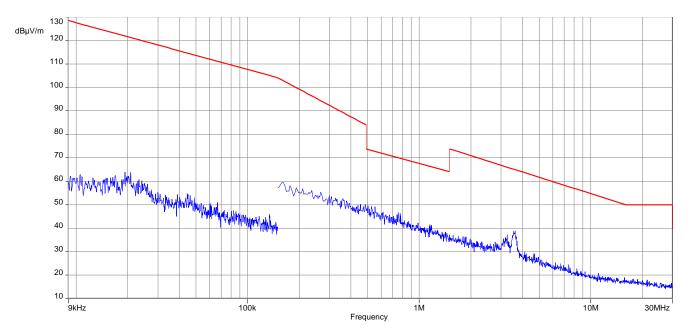


Plot 1: 9 kHz to 30 MHz, 2405 MHz, transmit mode, Module ID 248

Plot 2: 9 kHz to 30 MHz, 2440 MHz, transmit mode, Module ID 248

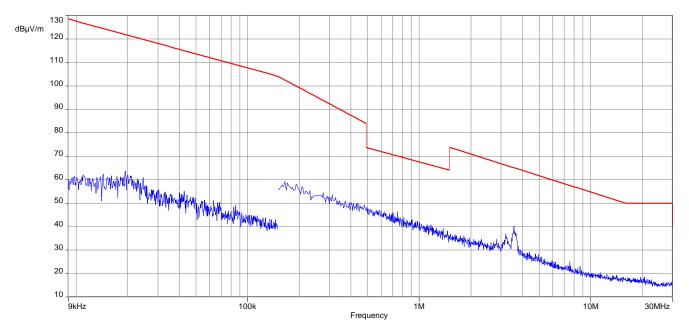





CTC I advanced

Plot 3: 9 kHz to 30 MHz, 2480 MHz, transmit mode, Module ID 248

Plot 4: 9 kHz to 30 MHz, 2405 MHz, transmit mode, Module ID 251



CTC I advanced

Plot 5: 9 kHz to 30 MHz, 2440 MHz, transmit mode, Module ID 251

Plot 6: 9 kHz to 30 MHz, 2480 MHz, transmit mode, Module ID 251

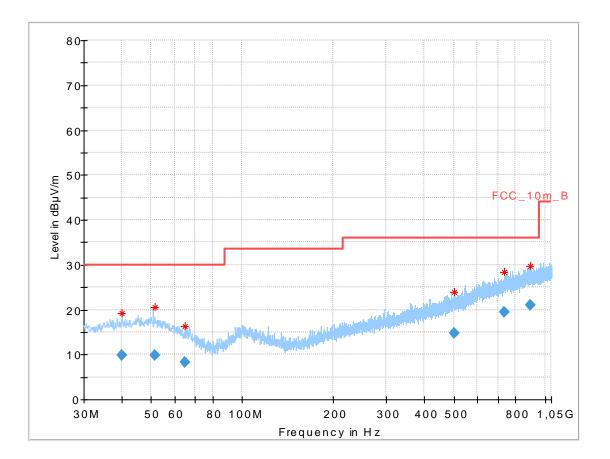
11.4 Spurious emissions radiated 30 MHz to 1 GHz

Description:

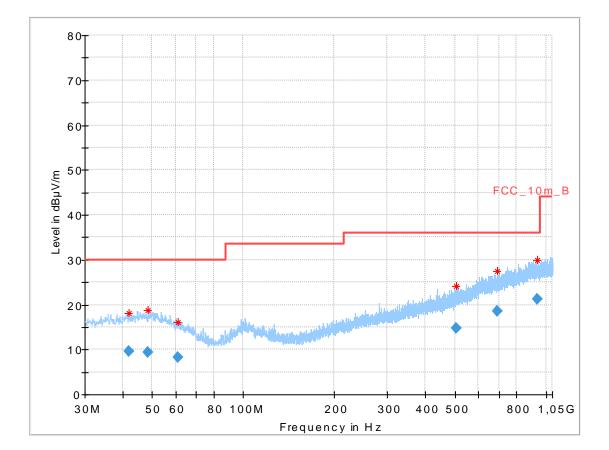
Measurement of the radiated spurious emissions in transmit mode. The EUT is set to single channel mode and the transmit frequencies are 2405 MHz, 2440 MHz and 2480 MHz. The measurement is performed in the mode with the highest output power.

Measurem	ent parameters
Detector	Peak / Quasi Peak
Sweep time	Auto
Resolution bandwidth	120 kHz
Video bandwidth	3 x RBW
Span	30 MHz to 1 GHz
Trace mode	Max hold
Measured modulation	OQPSK
Test setup	See sub clause 6.1 A
Measurement uncertainty	See sub clause 8

The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation.

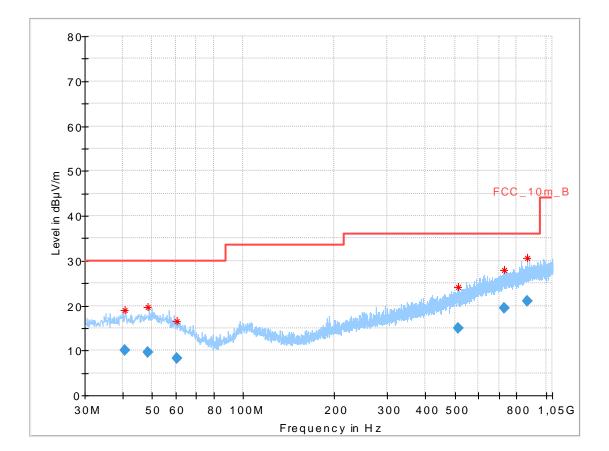

Limits:

FCC			IC						
	TX spurious em	issions radiated							
In any 100 kHz bandwidth outside the radiator is operating, the radio frequence that in the 100 kHz bandwidth within the conducted or a radiated measurement. In addition, radiated emissions which fa radiated emission limits specified in §15	y power that is produ band that contains t Attenuation below the all in the restricted b	uced by the intention he highest level of th general limits spec ands, as defined in	al radiator shall be at least 20 dB below e desired power, based on either an RF ified in Section 15.209(a) is not required.						
§15.209									
Frequency (MHz)	Field streng	th (dBµV/m)	Measurement distance						
30 - 88	30	0.0	10						
88 – 216	33	5.5	10						
216 – 960 36.0 10									
Above 960	54	.0	3						


Plots: Transmit mode, Module ID 248

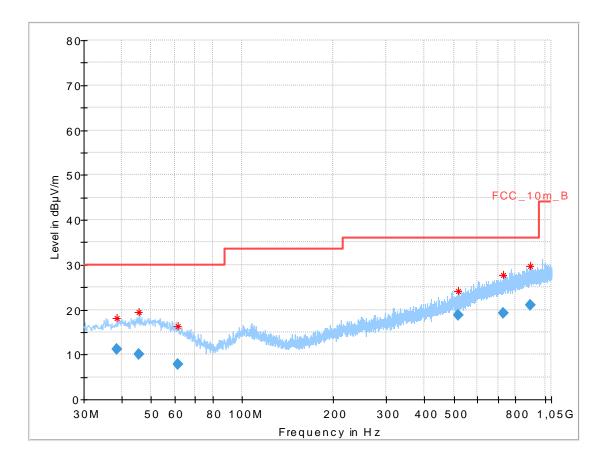
Plot 1: 30 MHz to 1 GHz, TX mode, 2405 MHz, vertical & horizontal polarization

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
40.085250	9.84	30.00	20.16	1000.0	120.000	100.0	V	183.0	13.2
51.505050	9.83	30.00	20.17	1000.0	120.000	105.0	V	329.0	13.5
64.847850	8.24	30.00	21.76	1000.0	120.000	101.0	V	7.0	10.8
501.391950	14.73	36.00	21.27	1000.0	120.000	101.0	Н	228.0	18.7
735.493950	19.42	36.00	16.58	1000.0	120.000	98.0	Н	214.0	22.4
892.081500	21.07	36.00	14.93	1000.0	120.000	100.0	Н	196.0	24.1



Plot 2: 30 MHz to 1 GHz, TX mode, 2440 MHz, vertical & horizontal polarization

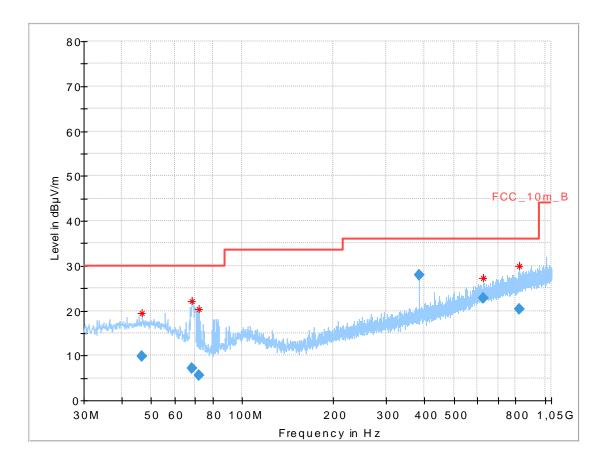
Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
41.959800	9.52	30.00	20.48	1000.0	120.000	98.0	V	170.0	13.4
48.621000	9.46	30.00	20.54	1000.0	120.000	98.0	V	240.0	13.7
60.813600	8.29	30.00	21.71	1000.0	120.000	101.0	V	301.0	11.7
507.018900	14.79	36.00	21.21	1000.0	120.000	101.0	н	146.0	18.8
692.593800	18.51	36.00	17.49	1000.0	120.000	98.0	н	195.0	21.5
933.176700	21.14	36.00	14.86	1000.0	120.000	100.0	Н	152.0	24.3


Plot 3: 30 MHz to 1 GHz, TX mode, 2480 MHz, vertical & horizontal polarization

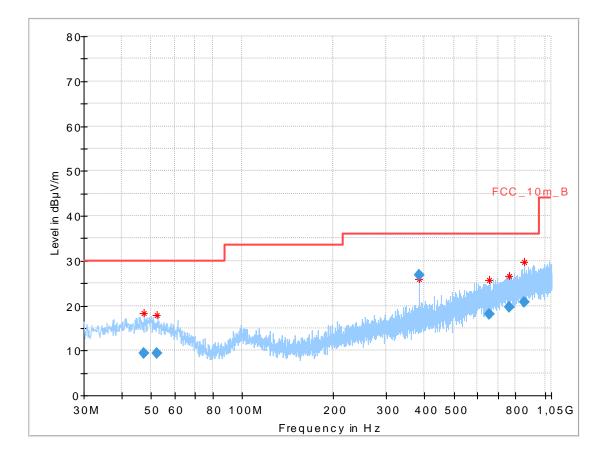
Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
40.796250	10.04	30.00	19.96	1000.0	120.000	100.0	V	133.0	13.3
48.589350	9.53	30.00	20.47	1000.0	120.000	101.0	н	291.0	13.7
60.551250	8.31	30.00	21.69	1000.0	120.000	101.0	V	101.0	11.7
513.697050	15.02	36.00	20.98	1000.0	120.000	185.0	V	317.0	18.9
726.641250	19.35	36.00	16.65	1000.0	120.000	179.0	V	166.0	22.2
865.984800	21.10	36.00	14.90	1000.0	120.000	185.0	Н	333.0	23.7

Plots: Receiver mode, Module ID 248

Plot 1: 30 MHz to 1 GHz, RX / idle - mode, vertical & horizontal polarization

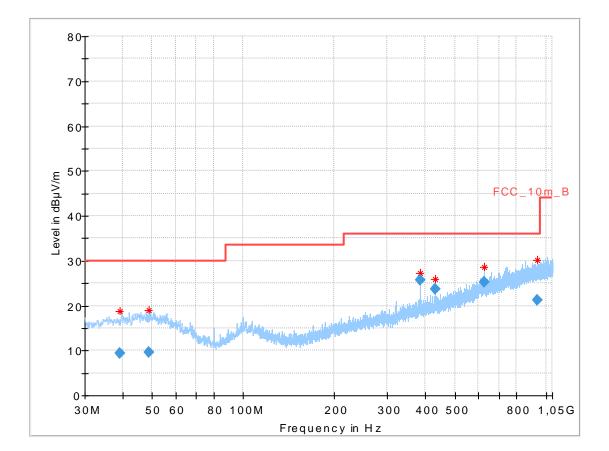


Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
38.667450	11.27	30.00	18.73	1000.0	120.000	101.0	V	256.0	13.1
45.570300	9.99	30.00	20.01	1000.0	120.000	98.0	н	59.0	13.6
61.543800	7.93	30.00	22.07	1000.0	120.000	101.0	н	48.0	11.5
515.366850	18.69	36.00	17.31	1000.0	120.000	98.0	V	316.0	18.9
726.205200	19.11	36.00	16.89	1000.0	120.000	101.0	V	159.0	22.2
896.060400	21.09	36.00	14.91	1000.0	120.000	98.0	V	249.0	24.1


Plots: Transmit mode, Module ID 251

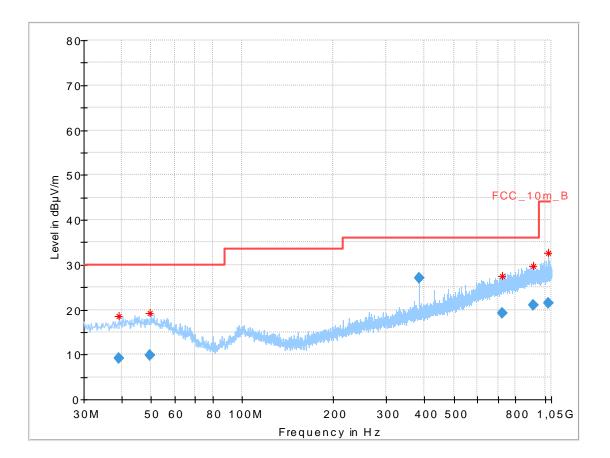
Plot 1: 30 MHz to 1 GHz, TX mode, 2405 MHz, vertical & horizontal polarization

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
46.597350	9.75	30.00	20.25	1000.0	120.000	170.0	Н	10.0	13.7
68.105550	7.09	30.00	22.91	1000.0	120.000	100.0	V	190.0	10.1
71.913300	5.50	30.00	24.50	1000.0	120.000	101.0	V	10.0	9.4
384.000150	27.98	36.00	8.02	1000.0	120.000	98.0	V	-8.0	16.6
624.041400	22.69	36.00	13.31	1000.0	120.000	101.0	Н	262.0	20.9
824.987400	20.25	36.00	15.75	1000.0	120.000	170.0	Н	260.0	23.1



Plot 2: 30 MHz to 1 GHz, TX mode, 2440 MHz, vertical & horizontal polarization

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
47.348250	9.44	30.00	20.56	1000.0	120.000	100.0	V	180.0	13.7
52.207950	9.43	30.00	20.57	1000.0	120.000	101.0	V	270.0	13.4
384.010050	26.85	36.00	9.15	1000.0	120.000	98.0	V	270.0	16.6
656.136900	18.11	36.00	17.89	1000.0	120.000	98.0	н	180.0	21.2
762.711900	19.66	36.00	16.34	1000.0	120.000	98.0	V	270.0	22.7
857.381400	20.78	36.00	15.22	1000.0	120.000	178.0	Н	90.0	23.6


Plot 3: 30 MHz to 1 GHz, TX mode, 2480 MHz, vertical & horizontal polarization

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
39.302250	9.34	30.00	20.66	1000.0	120.000	185.0	V	352.0	13.1
48.703500	9.62	30.00	20.38	1000.0	120.000	101.0	V	85.0	13.7
384.024750	25.70	36.00	10.30	1000.0	120.000	98.0	V	296.0	16.6
432.029550	23.58	36.00	12.42	1000.0	120.000	98.0	V	48.0	17.4
624.013350	25.34	36.00	10.66	1000.0	120.000	101.0	н	137.0	20.9
933.947850	21.14	36.00	14.86	1000.0	120.000	98.0	V	232.0	24.3

Plots: Receiver mode, Module ID 251

Plot 1: 30 MHz to 1 GHz, RX / idle - mode, vertical & horizontal polarization

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
39.064650	9.06	30.00	20.94	1000.0	120.000	101.0	н	165.0	13.1
49.437150	9.84	30.00	20.16	1000.0	120.000	101.0	н	343.0	13.7
383.983500	27.01	36.00	8.99	1000.0	120.000	98.0	V	343.0	16.6
721.650900	19.16	36.00	16.84	1000.0	120.000	98.0	н	20.0	22.1
917.884050	21.02	36.00	14.98	1000.0	120.000	185.0	Н	0.0	24.2
1028.790150	21.46	44.00	22.54	1000.0	120.000	98.0	Н	236.0	25.4

11.5 Spurious emissions radiated above 1 GHz

Description:

Measurement of the radiated spurious emissions in transmit mode. The EUT is set to single channel mode and the transmit frequencies are 2405 MHz, 2440 MHz and 2480 MHz. The measurement is performed in the mode with the highest output power.

Measurement parameters		
Detector	Peak / RMS	
Sweep time	Auto	
Resolution bandwidth	1 MHz	
Video bandwidth	3 x RBW	
Span	1 GHz to 26 GHz	
Trace mode	Max hold	
Measured modulation	OQPSK	
Test setup	See sub clause 6.2 A (1 GHz - 18 GHz) See sub clause 6.3 A (18 GHz - 26 GHz)	
Measurement uncertainty	See sub clause 8	

The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation.

Limits:

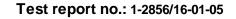
FCC			IC		
	TX spurious emissions radiated				
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).					
Frequency (MHz)	Field streng	th (dBµV/m)	Measurement distance		
Above 960 54.0 (A		verage)	3		
Above 960	74.0 (Peak)	3		

Results: Transmitter mode, Module ID 248

TX spurious emissions radiated [dBµV/m]								
2405 MHz			2440 MHz			2480 MHz		
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]
4811	Peak	57.1	4881	Peak	51.2	4960	Peak	52.4
4011	AVG	51.0		AVG	45.1		AVG	46.1
	Peak			Peak			Peak	
	AVG			AVG			AVG	
	Peak			Peak			Peak	
	AVG			AVG			AVG	

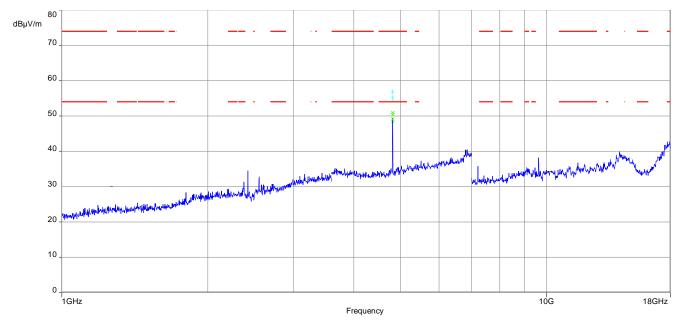
Results: Transmitter mode, Module ID 251

TX spurious emissions radiated [dBµV/m]									
	2405 MHz			2440 MHz			2480 MHz		
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	
4811	Peak	50.9	4880	Peak	50.7	4960	Peak	49.9	
4011	AVG	43.4		AVG	41.9		AVG	43.2	
	Peak		7321	Peak	49.1		Peak		
	AVG		7321	AVG	40.3		AVG		
	Peak			Peak			Peak		
	AVG			AVG			AVG		

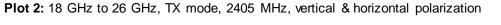

Results: Receiver mode, Module ID 248

RX spurious emissions radiated [dBµV/m]			
F [MHz]	Detector	Level [dBµV/m]	
4956	Peak	50.5	
4950	AVG	44.3	

Results: Receiver mode, Module ID 251

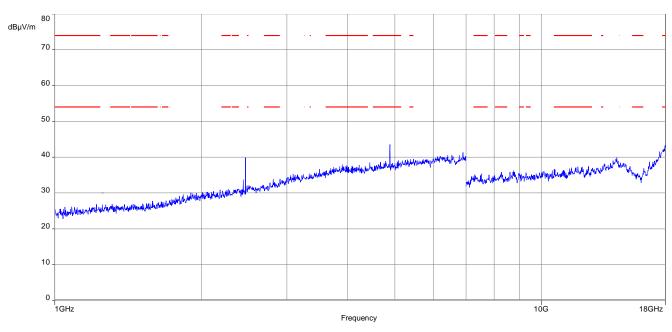

RX spurious emissions radiated [dBµV/m]			
F [MHz] Detector Level [dBµV/m]			
4956	Peak	49.7	
4950	AVG	42.2	

Note: The limit was recalculated with 20 dB / decade (Part 15.31) for all radiated spurious emissions 30 MHz to 1 GHz from 3 meter limit to a 10 meter distance. (40dB/decade for emissions < 30MHz)

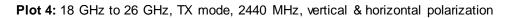


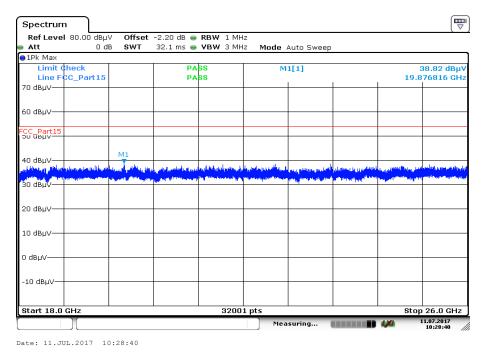

Plots: Transmitter mode, Module ID 248

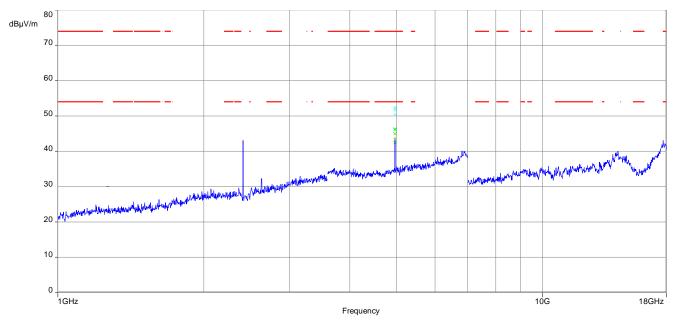
Plot 1: 1 GHz to 18 GHz, TX mode, 2405 MHz, vertical & horizontal polarization



The carrier signal is notched with a 2.4 GHz band rejection filter.

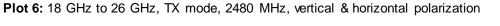

Date: 11.JUL.2017 10:27:01

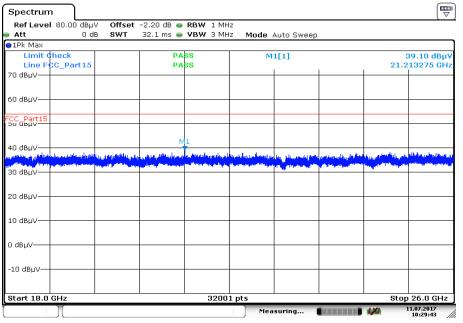



CTC | advanced

Plot 3: 1 GHz to 18 GHz, TX mode, 2440 MHz, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.

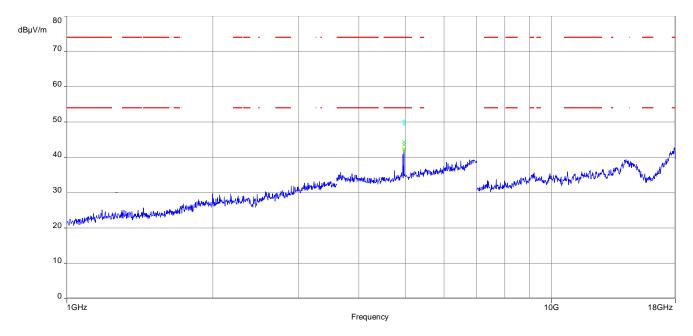


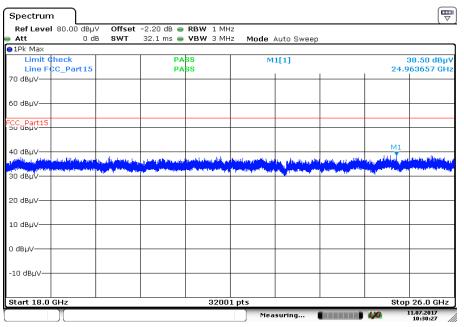


CTC | advanced

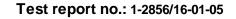

Plot 5: 1 GHz to 18 GHz, TX mode, 2480 MHz, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.

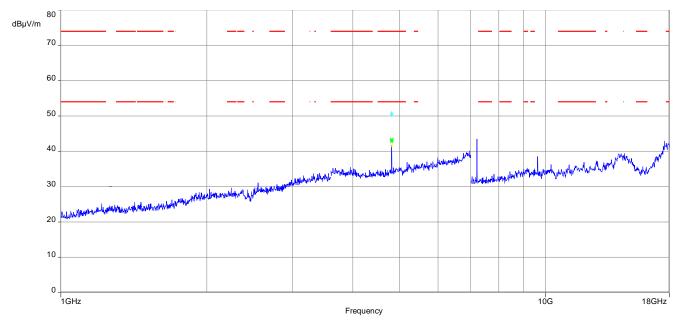

Date: 11.JUL.2017 10:29:44



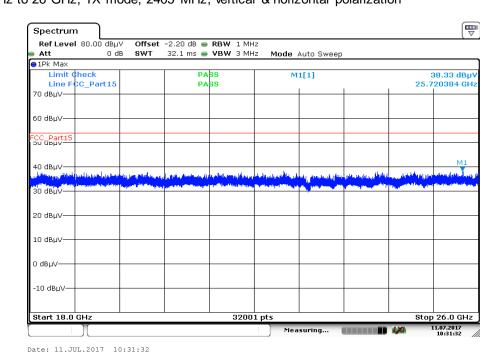
Plots: Receiver mode, Module ID 248


Plot 1: 1 GHz to 18 GHz, RX / idle - mode, vertical & horizontal polarization

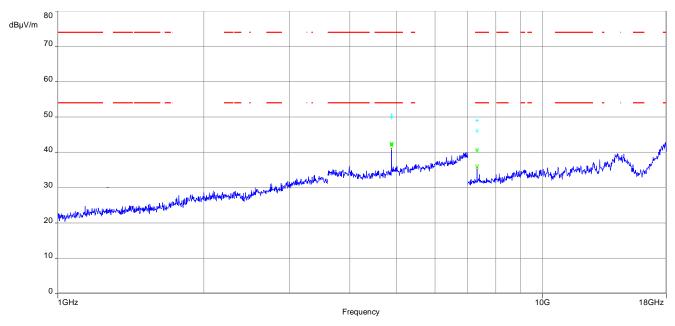
Plot 2: 18 GHz to 26 GHz, RX / idle - mode, vertical & horizontal polarization



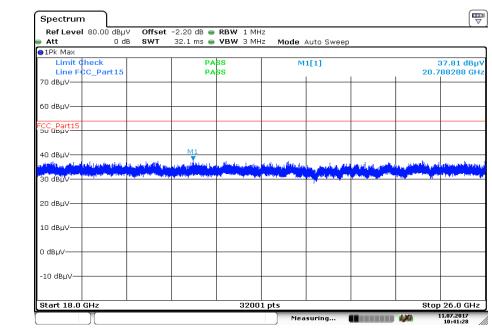
Date: 11.JUL.2017 10:30:27



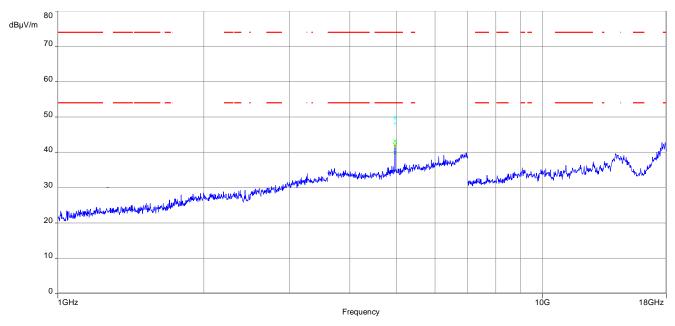
Plots: Transmitter mode, Module ID 251


Plot 1: 1 GHz to 18 GHz, TX mode, 2405 MHz, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.

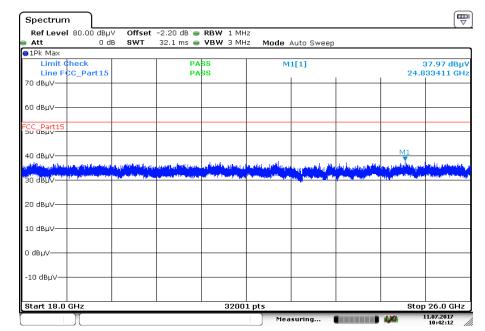

Plot 2: 18 GHz to 26 GHz, TX mode, 2405 MHz, vertical & horizontal polarization

CTC | advanced

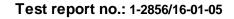

Plot 3: 1 GHz to 18 GHz, TX mode, 2440 MHz, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 4: 18 GHz to 26 GHz, TX mode, 2440 MHz, vertical & horizontal polarization

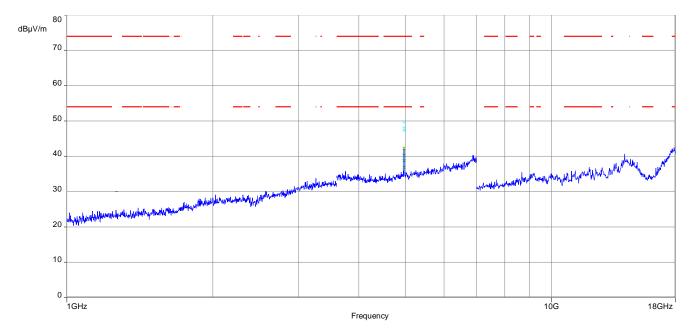

Date: 11.JUL.2017 10:41:29

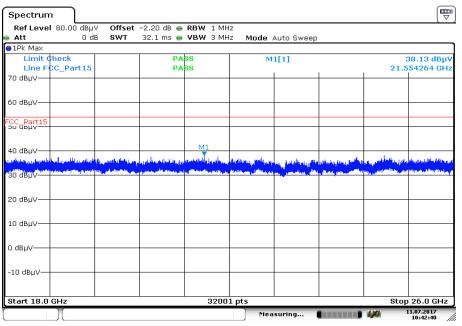
CTC | advanced


Plot 5: 1 GHz to 18 GHz, TX mode, 2480 MHz, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 6: 18 GHz to 26 GHz, TX mode, 2480 MHz, vertical & horizontal polarization


Date: 11.JUL.2017 10:42:12



Plots: Receiver mode, Module ID 251

Plot 1: 1 GHz to 18 GHz, RX / idle - mode, vertical & horizontal polarization

Plot 2: 18 GHz to 26 GHz, RX / idle - mode, vertical & horizontal polarization

Date: 11.JUL.2017 10:42:40

12 **Observations**

No observations except those reported with the single test cases have been made.

Annex A Glossary

EUT	Equipment under test
	Device under test
UUT	Unit under test
ETSI	European Telecommunications Standard Institute
EN	European Standard
FCC	Federal Communication Commission
FCC ID	Company Identifier at FCC
IC	Industry Canada
PMN	Product marketing name
HMN	Host marketing name
HVIN	Hardware version identification number
FVIN	Firmware version identification number
EMC	Electromagnetic Compatibility
HW	Hardware
SW	Software
Inv. No.	Inventory number
S/N or SN	Serial number
C	Compliant
NC	Not compliant
NA	Not applicable
NP	Not performed
PP	Positive peak
QP	Quasi peak
AVG	Average
OC	Operating channel
OCW	Operating channel bandwidth
OBW	Occupied bandwidth
OOB	Out of band
DFS	Dynamic frequency selection
CAC	Channel availability check
	Occupancy period
	Non occupancy period
	Duty cycle
	Packet error rate
	Clean wave
	Modulated carrier
	Wireless local area network
	Radio local area network
DSSS	Dynamic sequence spread spectrum
	Orthogonal frequency division multiplexing
FHSS	Frequency hopping spread spectrum

Annex B Document history

Version	Applied changes	Date of release
-/-	Initial release	2017-07-18

Annex C Accreditation Certificate

firstpage	lastpage
<image/> <image/> <image/> <image/> <section-header><text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text></section-header>	<section-header><section-header><section-header><text><text><text><text><text><text><text></text></text></text></text></text></text></text></section-header></section-header></section-header>
Frankfurt, 25.11.2016 Im Addrag Dipl-reg. gebr Rait Egner Abteilungsleiter	

Note: The current certificate including annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

http://www.dakks.de/as/ast/d/D-PL-12076-01-01.pdf

http://www.dakks.de/as/ast/d/D-PL-12076-01-02.pdf