

TEST REPORT

Test report no.: 1-9797/15-01-03-D

Deutsche Akkreditierungsstelle D-PL-12076-01-00

Testing laboratory

CETECOM ICT Services GmbH Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075 Internet: <u>http://www.cetecom.com</u> e-mail: <u>ict@cetecom.com</u>

Accredited Testing Laboratory: The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS) The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with the registration number: D-PL-12076-01-00

Applicant

Philips Medizin Systeme Böblingen GmbHHewlett-Packard-Strasse 271034 Böblingen / GERMANYPhone:+49 7031 463-1879Fax:+49 7031 463-2944Contact:Hansjörg Geywitze-mail:hansjoerg.geywitz@philips.com

Manufacturer

Philips Medizin Systeme Böblingen GmbH Hewlett-Packard-Strasse 2 71034 Böblingen / GERMANY

Test standard/s

47 CFR Part 95	Title 47 of the Code of Federal Regulations; Chapter I Subpart H—Wireless Medical Telemetry Service (WMTS); Part 95 - Personal radio services
RSS - 210 Issue 8	Spectrum Management and Telecommunications - Radio Standards Specification Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment

For further applied test standards please refer to section 3 of this test report.

	Test Item		
Kind of test item:	Patient Monitoring		
Model name:	Avalon CL Wide Range Pod 866487		
FCC ID:	PQC-OBRWRPBV1		PHILIPS
IC:	3549C-OBRWRPBV1	-	
Frequency:	608 MHz – 614 MHz Lowest Channel 3 (608.375 MHz) / Highest Channel 38 (613.625 MHz)		4 M F
Technology tested:	proprietary		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Antenna:	Integrated antenna		
Power supply:	3.3 V DC by Li-Ion battery		
Temperature range:	-20°C to +55°C		

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:

Marco Bertolino Lab Manager Radio Communications & EMC Test performed:

Christoph Schneider Testing Manager Radio Communications & EMC

1 Table of contents

1	Table	of contents	2
2	Gener	al information	3
	2.1 2.2	Notes and disclaimer Application details	3 3
3	Test s	andard/s	3
4	Test e	nvironment	4
5	Test it	em	4
	5.1 5.2	General description Additional information	4 4
6	Test la	boratories sub-contracted	4
7	Descri	ption of the test setup	5
	7.1 7.2 7.3	Shielded semi anechoic chamber Shielded fully anechoic chamber Conducted measurements normal and extreme conditions	6 7 8
8	Measu	rement uncertainty	9
9	Seque	nce of testing	10
	9.1 9.2 9.3	Sequence of testing radiated spurious 9 kHz to 30 MHz Sequence of testing radiated spurious 30 MHz to 1 GHz Sequence of testing radiated spurious 1 GHz to 12.75 GHz	10 11 12
10	Sum	mary of measurement results	13
11	RF r	neasurements	14
	11.1	Additional comments	14
12	Меа	surement results	15
	12.1 12.2 12.3 12.4 12.5	Radiated field strength Frequency stability Occupied bandwidth Field strength of spurious radiation Receiver spurious emissions (radiated)	15 16 18 21 29
13	Obs	ervations	32
Anr	nex A	Document history	32
Anr	nex B	Further information	32
Anr	nex C	Accreditation Certificate	33

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM ICT Services GmbH.

The testing service provided by CETECOM ICT Services GmbH has been rendered under the current "General Terms and Conditions for CETECOM ICT Services GmbH".

CETECOM ICT Services GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CETECOM ICT Services GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CETECOM ICT Services GmbH test report include or imply any product or service warranties from CETECOM ICT Services GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CETECOM ICT Services GmbH.

All rights and remedies regarding vendor's products and services for which CETECOM ICT Services GmbH has prepared this test report shall be provided by the party offering such products or services and not by CETECOM ICT Services GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-9797/15-01-03-C and dated 2016-05-02

2.2 Application details

Date of receipt of order:	2015-07-03
Date of receipt of test item:	2015-09-30
Start of test:	2015-09-30
End of test:	2015-10-08
Person(s) present during the test:	-/-

3 Test standard/s

Test standard	Date	Test standard description
47 CFR Part 95	2010-10	Title 47 of the Code of Federal Regulations; Chapter I Subpart H—Wireless Medical Telemetry Service (WMTS); Part 95 - Personal radio services
RSS - 210 Issue 8	2010-12	Spectrum Management and Telecommunications - Radio Standards Specification Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment

4 Test environment

Temperature	:	T _{nom} T _{max} T _{min}	 +22 °C during room temperature tests +55 °C during high temperature tests -20 °C during low temperature tests 		
Relative humidity content	:		55 %		
Barometric pressure	:		not relevant for this kind of testing		
Power supply	:	V _{nom} V _{max} V _{min}	 3.3 V DC by Li-lon battery 3.8 V 2.8 V 		

5 Test item

5.1 General description

Kind of test item :	Patient Monitoring
Type identification :	Avalon CL Wide Range Pod 866487
PMN :	Avalon CL Wide Range Pod
HVIN :	866487
FVIN :	866487
HMN :	n.a.
S/N serial number :	Rad. DE3100121 Cond/-
HW hardware status :	1
SW software status :	A.01.02
Frequency band :	608 MHz – 614 MHz Lowest Channel 3 (608.375 MHz) Highest Channel 38 (613.625 MHz)
Type of radio transmission : Use of frequency spectrum :	ТДМ
Type of modulation :	GFSK
Number of channels :	36
Antenna :	Integrated antenna
Power supply :	3.25 V to 3.35 V AC, 50/60 Hz
Temperature range :	-20°C to +55°C

5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report:

1-9797/15-01-01_AnnexA 1-9797/15-01-01_AnnexB 1-9797/15-01-01_AnnexD

6 Test laboratories sub-contracted

None

7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration

- k calibration / calibrated
- ne not required (k, ev, izw, zw not required)
- ev periodic self verification
- Ve long-term stability recognized
- vlkl! Attention: extended calibration interval
- NK! Attention: not calibrated

- EK limited calibration
- zw cyclical maintenance (external cyclical maintenance)
- izw internal cyclical maintenance
- g blocked for accredited testing
- *) next calibration ordered / currently in progress

7.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are confirmed with specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \mu V/m)$

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	A	Switch-Unit	3488A	HP	2719A14505	30000368	ev		
2	A	RF-Filter-section	85420E	HP	3427A00162	300002214	ne		
3	A	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	26.01.2015	26.01.2016
4	A	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw		
5	А	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw		
6	А	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw		
7	A	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	295	300003787	k	22.04.2014	22.04.2016

7.2 Shielded fully anechoic chamber

Measurement distance: horn antenna 3 meter; loop antenna 3 meter / 1 meter

FS = UR + CA + AF (FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

<u>Example calculation</u>: FS [dB μ V/m] = 40.0 [dB μ V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB μ V/m] (71.61 μ V/m)

OP = AV + D - G + CA

(OP-radiated output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain+amplifier gain; CA-loss signal path)

Example calculation:

OP [dBm] = -39.0 [dBm] + 57.0 [dB] - 12.0 [dBi] + (-36.0) [dB] = -30 [dBm] (1 μW)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	A	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	8812-3088	300001032	vIKI!	20.05.2015	20.05.2017
2	A	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev		
3	A	Switch / Control Unit	3488A	HP	*	300000199	ne		
4	А	Active Loop Antenna 10 kHz to 30 MHz	6502	EMCO/2	8905-2342	300000256	k	24.06.2015	24.06.2017
5	А	Amplifier	js42-00502650-28- 5a	Parzich GMBH	928979	300003143	ne		
6	A	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	18	300003789	ne		
7	А	MXE EMI Receiver 20 Hz to 26,5 GHz	N9038A	Agilent Technologies	MY51210197	300004405	k	06.03.2015	06.03.2016
8	А	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne		

7.3 Conducted measurements normal and extreme conditions

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

Example calculation:

OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	А	DC Power Supply 0 – 32V	1108-32	Heiden Elektronik	001802	300001383	Ve	29.01.2014	29.01.2017
2	А	Temperature Test Chamber	VT 4002	Heraeus Voetsch	521/83761	300002326	ev	03.09.2015	03.09.2017
3	A	EMI Test Receiver 9 kHz - 3 GHz incl. Preselector	ESPI3	R&S	101713	300004059	k	23.01.2015	23.01.2016
4	A	RF-Cable	ST18/SMAm/SMAm/ 48	Huber & Suhner	Batch no. 600918	400001182	ev		

8 Measurement uncertainty

Test case	Uncertainty
Maximum field strength	± 3 dB
Frequency stability	± 10 Hz
Occupied bandwidth	± 100 kHz (depends on the used RBW)
Spurious emissions radiated below 30 MHz	± 3 dB
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB

9 Sequence of testing

9.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1.5 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the premeasurement are maximized by the software by rotating the turntable from 0° to 360°. In case of the 2-axis positioner is used the elevation axis is also rotated from 0° to 360°.
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

9.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

9.3 Sequence of testing radiated spurious 1 GHz to 12.75 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

10 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	47 CFR Part 2 47 CFR Part 95 H RSS Gen Issue 4 RSS 210 Issue 8 Annexe 4	See table!	2016-05-09	-/-

Test Specification Clause	Test Case	Temperature Conditions	Power Source Voltages	с	NC	NA	NP	Remark
FCC 47 CFR § 2.1046 § 95.1111(a)(3) § 95.1115(a) RSS 210 Issue 8 A4.4	Radiated field strength	Nominal	Nominal	\boxtimes				-/-
FCC 47 CFR § 2.1055 § 95 1115(e)	Frequency stability	Nominal	Extreme	X				-/-
RSS Gen Issue 4	1 requercy stability	Extreme	Nominal	\boxtimes				,
FCC 47 CFR § 2.1049 (1) RSS Gen Issue 4	Occupied bandwidth	Nominal	Nominal	X				-/-
FCC 47 CFR § 2.1053 § 95.1115(b) RSS Gen Issue 4	Field strength of spurious radiation Transmitter unwanted emissions	Nominal	Nominal	×				-/-
FCC 47 CFR § 15.209 RSS Gen Issue 4	Receiver spurious emissions (radiated)	Nominal	Nominal					-/-

Note: C = Compliant; NC = Not compliant; NA = not applicable; NP = not performed

11 RF measurements

11.1 Additional comments

Reference documents:	Referenced Testprotocol B3-P35440-AVCL-WIDE-FCC-OBR-TP Revision A.00.00
Special test descriptions:	None
Duty cycle correction factor: (FCC 47 CFR 15.35 (c))	Maximum transmission length: 38.4 ms Duty cycle correction factor: 20*log(0.384) = -8.31 dB
Configuration descriptions:	Tested channels: CH 3 – 608.375 MHz CH 20 – 610.925 MHz CH 38 – 613.625 MHz

12 Measurement results

12.1 Radiated field strength

Measurement:

Measurement parameter		
Detector:	Quasi peak	
Sweep time:	Auto	
Resolution bandwidth:	120kHz	
Video bandwidth:	Auto	
Span:	> EBW	
Trace-Mode:	Max. hold	
Test setup	See sub clause 7.2 A	
Measurement uncertainty	See sub clause 8	

Limits:

FCC	IC		
CFR § 2.1046 CFR § 95.1115 (a) CFR § 95.1111 (a)(3)	RSS 210 - Issue 8		
Radiated field strength			
200 mV/m @ 3 m (106 dBµV/m @ 3 m)			

Result:

Frequency	Radiated field strength
608.375 MHz	85.96 dBµV/m @ 3m (19.7 mV/m; -9.3 dBm e.r.p.)
610.925 MHz	85.95 dBµV/m @ 3m (19.7 mV/m; -9.3 dBm e.r.p.)
613.625 MHz	87.00 dBµV/m @ 3m (22.4 mV/m; -8.2 dBm e.r.p.)

12.2 Frequency stability

Measurement:

Measurement parameter		
Detector:	Peak	
Sweep time:	Auto	
Resolution bandwidth:	10 Hz	
Video bandwidth:	30 Hz	
Span:	500 Hz	
Trace-Mode:	Max. hold	
Test setup	See sub clause 7.3 A	
Measurement uncertainty	See sub clause 8	

Limits:

FCC	IC	
CFR § 2.1055 CFR § 95.1115 (e)	RSS - Gen Issue 4	
Manufacturers of wireless medical telemetry devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all of the manufacturer's specified conditions.		

Results: low channel

Temperature	Frequency (MHz)	Emission within band
-20 °C	608.374035	Yes
-10 °C	608.373818	Yes
0°C	608.373986	Yes
10 °C	608.374308	Yes
20 °C (V nom)	608.374593	Yes
30 °C	608.374782	Yes
40 °C	608.374846	Yes
55 °C	608.374780	Yes
Voltage		
85 %	608.374355	Yes
115 %	608.374633	Yes

Results: middle channel

Temperature	Frequency (MHz)	Emission within band
-20 °C	610.924015	Yes
-10 °C	610.923813	Yes
0°C	610.923983	Yes
10 °C	610.924307	Yes
20 °C (V nom)	610.924595	Yes
30 °C	610.924821	Yes
40 °C	610.924854	Yes
55 °C	610.924800	Yes
Voltage		
85 %	610.924379	Yes
115 %	610.924700	Yes

Results: high channel

Temperature	Frequency (MHz)	Emission within band
-20 °C	613.623989	Yes
-10 °C	613.623809	Yes
0°C	613.623997	Yes
10 °C	613.624294	Yes
20 °C (V nom)	613.624601	Yes
30 °C	613.624813	Yes
40 °C	613.624849	Yes
55 °C	613.624800	Yes
Voltage		
85 %	613.624389	Yes
115 %	613.624723	Yes

12.3 Occupied bandwidth

Measurement:

Measurement parameter		
Detector:	Peak	
Sweep time:	Auto	
Resolution bandwidth:	1 % - 5 % of the occupied bandwidth	
Video bandwidth:	≥ 3x RBW	
Trace-Mode:	Max. hold	
Analyser function:	99 % power function	
Test setup	See sub clause 7.3 A	
Measurement uncertainty	See sub clause 8	

Limits:

FCC	IC					
47 CFR § 2.1049 (1) RSS - Gen Issue 4						
When an occupied bandwidth value is not specified in the applicable RSS, the transmitted signal bandwidth to be reported is to be its 99% emission bandwidth, as calculated or measured.						
Not limited						

Result:

Frequency	99% Bandwidth
608.375 MHz	29.2 kHz
610.925 MHz	29.0 kHz
613.625 MHz	29.2 kHz

Plots of the measurements

Plot 1: low channel

Date: 8.0CT.2015 07:57:21

Plot 2: middle channel

Date: 8.0CT.2015 07:58:55

Plot 3: high channel

Date: 8.0CT.2015 08:00:11

12.4 Field strength of spurious radiation

Measurement:

Measurement parameter							
Detector:	Peak						
Sweep time:	Auto						
Resolution bandwidth:	f < 1 GHz : 100 kHz f ≥ 1GHz : 1 MHz						
Video bandwidth:	f < 1 GHz : 100 kHz f ≥ 1GHz : 1 MHz						
Span:	-/-						
Trace-Mode:	Max. hold						
Test setup	See sub clause 7.2 A						
Measurement uncertainty	See sub clause 8						

Limits:

FCC	IC
47 CFR § 2.1053 47 CFR § 95.1115 (b)	RSS - Gen Issue 4

Out-of band emissions below 960 MHz are limited to 200 microvolts/meter, as measured at a distance of 3 meters, using measuring instrumentation with a CISPR quasi-peak detector. Out-of-band emissions above 960 MHz are limited to 500 microvolts/meter as measured at a distance of 3 meters, using measuring equipment with an averaging detector and a 1 MHz measurement bandwidth.

SPURIOUS EMISSIONS LEVEL										
L	owest cha	nnel	N	1iddle cha	nnel	F	Highest channel			
Frequency	Detector	Level	Frequency	Detector	Level	Frequency	Detector	Level		
1017 MU-	Peak	46.65 dBµV/m	1000 MU-	Peak	45.04 dBµV/m	1007 MU-	Peak	45.60 dBµV/m		
	AVG*	38.34 dBµV/m		AVG*	37.09 dBµV/m		AVG*	37.29 dBµV/m		
2422 MH-	Peak	54.87 dBµV/m		Peak	55.53 dBµV/m		Peak	56.01 dBµV/m		
2433 IVITZ	AVG*	46.56 dBµV/m	2444 IVI⊓Z	AVG*	47.22 dBµV/m		AVG*	47.70 dBµV/m		
2042 MH-	Peak	48.84 dBµV/m		Peak	48.53 dBµV/m		Peak	49.70 dBµV/m		
3042 MHZ	AVG*	40.53 dBµV/m	2355 MIL	AVG*	40.22 dBµV/m		AVG*	41.39 dBµV/m		
	Peak	56.74 dBµV/m	5400 MH-	Peak	57.39 dBµV/m	5500 MU-	Peak	56.37 dBµV/m		
5475 MHz	AVG*	48.43 dBµV/m	0499 M⊓Z	AVG*	49.08 dBµV/m		AVG*	48.06 dBµV/m		

* AVG values calculated using duty cycle correction factor (see 11.1)

Plots of the measurements

Plot 1: 150 kHz - 30 MHz, low channel

Plot 2: 30 MHz - 1 GHz, low channel

Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
30.621045	10.21	30.00	19.79	1000.0	120.000	275.0	Н	320	13.4
39.695400	10.61	30.00	19.39	1000.0	120.000	274.0	V	-5	14.0
384.010800	25.05	36.00	10.95	1000.0	120.000	100.0	V	1	16.6
560.023800	19.62	36.00	16.38	1000.0	120.000	200.0	V	-13	19.6
872.497950	20.78	36.00	15.22	1000.0	120.000	400.0	V	185	23.8
999.275400	21.59	44.00	22.41	1000.0	120.000	349.0	V	282	24.8

Plot 3: 1 GHz - 12.75 GHz, low channel, antenna horizontal/vertical

Plot 5: 30 MHz - 1 GHz, middle channel

Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
35.024850	10.60	30.00	19.40	1000.0	120.000	101.0	Н	100	13.8
39.539250	10.54	30.00	19.46	1000.0	120.000	101.0	V	100	14.0
101.360850	8.27	33.50	25.23	1000.0	120.000	101.0	V	81	12.0
106.020750	7.72	33.50	25.78	1000.0	120.000	101.0	V	-10	11.5
383.994750	32.68	36.00	3.32	1000.0	120.000	98.0	V	190	16.6
954.872250	21.14	36.00	14.86	1000.0	120.000	170.0	Н	80	24.3

Plot 6: 1 GHz - 12.75 GHz, middle channel, antenna horizontal/vertical

Plot 8: 30 MHz - 1 GHz, high channel

Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
40.245300	10.88	30.00	19.12	1000.0	120.000	101.0	V	170	14.0
44.114850	10.31	30.00	19.69	1000.0	120.000	101.0	V	260	13.9
46.316850	9.91	30.00	20.09	1000.0	120.000	101.0	Н	190	13.5
383.982900	24.47	36.00	11.53	1000.0	120.000	98.0	V	80	16.6
830.071350	20.03	36.00	15.97	1000.0	120.000	170.0	V	171	23.2
891.933450	20.96	36.00	15.04	1000.0	120.000	170.0	V	10	24.0

Plot 9: 1 GHz - 12.75 GHz, high channel, antenna horizontal/vertical

12.5 Receiver spurious emissions (radiated)

Measurement:

Measurement parameter								
Detector:	Peak - Quasi Peak / Average							
Sweep time:	Auto							
Video bandwidth:	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz							
Resolution bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz							
Span:	9 kHz to 30 MHz							
Trace-Mode:	Max Hold							
Test setup	See sub clause 7.2 A							
Measurement uncertainty	See sub clause 8							

Limits:

FCC		IC				
SUBCLAUSE § 15.1	109	RSS-GEN Issue 4				
	Receiver Spurious Emission (radiated)					
Frequency (MHz)	Field strength (µV/m)		Measurement distance (m)			
30 - 88	100 (40 d	BµV/m)	3			
88 - 216	150 (43.5 dBµV/m)		3			
216 - 960	200 (46 dBµV/m)		3			
above 960	500 (54 d	BµV/m)	3			

Plots of the measurements

Plot 2: 30 MHz - 1 GHz

Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
32.573850	9.93	30.00	20.07	1000.0	120.000	101.0	V	170	13.6
44.057550	10.21	30.00	19.79	1000.0	120.000	101.0	V	260	13.9
98.664900	7.29	33.50	26.21	1000.0	120.000	101.0	V	170	12.0
383.995950	33.39	36.00	2.61	1000.0	120.000	98.0	V	10	16.6
573.444900	16.73	36.00	19.27	1000.0	120.000	98.0	V	10	20.0
953.834250	21.18	36.00	14.82	1000.0	120.000	170.0	V	80	24.3

Plot 3: 1 GHz - 12.75 GHz, antenna horizontal/vertical

13 Observations

No observations except those reported with the single test cases have been made.

Annex A Document history

Version	Applied changes	Date of release
	Initial release	2015-10-09
А	Editorial changes	2015-11-04
В	PMN changed	2016-02-18
С	e.r.p. power values added	2016-05-02
D	limit in 12.1 corrected	2016-05-09

Annex B Further information

<u>Glossary</u>

AVG	-	Average
DUT	-	Device under test
EMC	-	Electromagnetic Compatibility
EN	-	European Standard
EUT	-	Equipment under test
ETSI	-	European Telecommunications Standard Institute
FCC	-	Federal Communication Commission
FCC ID	-	Company Identifier at FCC
HW	-	Hardware
IC	-	Industry Canada
Inv. No.	-	Inventory number
N/A	-	Not applicable
PP	-	Positive peak
QP	-	Quasi peak
S/N	-	Serial number
SW	-	Software
PMN		Product marketing name
HMN		Host marketing name
HVIN		Hardware version identification number
FVIN		Firmware version identification number

Annex C Accreditation Certificate

Front side of certificate Back side of certificate **DAkkS** Deutsche Akkreditierung Deutsche Akkreditierungsstelle GmbH Deutsche Akkreditierungsstelle GmbH Beliehene gemäß § 8 Absatz 1 AkkStelleG i.V.m. § 1 Absatz 1 AkkStelleGBV Unterzeichnerin der Multilateralen Abkommen von EA, ILAC und IAF zur gegenseitigen Anerkennung Standort Frankfurt am Main Gartenstra3e 6 60594 Frankfurt am Main Standort Braunschweig Bundesallee 100 38116 Braunschweig Standort Berlin Spittelmarkt 10 10117 Berlin 行家 Akkreditierung Die Deutsche Akkreditierungsstelle GmbH bestätigt hiermit, dass das Prüflaboratorium CETECOM ICT Services GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken die Kompetenz nach DIN EN ISO/IEC 17025:2005 besitzt, Prüfungen in folgenden Bereichen durchzuführen: Drahtgebundene Kommunikation einschließlich xDSL VolP und DECT Akustik Akustik Funk einschließlich WLAN Short Range Devices (SRD) RFID WIMax und Richtfunk Mobilfunk (SMV JOES, Over the Air (OTA) Performance) Elektromagnetische Vertraglichkeit (EMV) einschließlich Automotive Produktsicherheit SAR und Hearing Aid Compatibility (HAC) Umweltsimulation Smart Card Terminals Bluetooth Wi-Fi-Services Die auszugsweise Veröffentlichung der Aktreditierungsurkunde besamf der vor-herigen schriftlichem Zusämmung der Deutsche Aktreditierungsstelle GmbH (BAMKS). Aungenammen davon ist alle sepanale Weiszverzneitung des Deutkattes durch die umseting genennes Kanformilälsbewertungssielle in uwerd arbetter Form. Es darf nicht der Anschein erweckt werden, dass sich die Akkred Tierung auch auf Bereiche erstreck, die über den durch die DAAkS bestätigten Akkreditierungsbernich in nausgehen. Die Akkreditierung orfolgte gemölt des Grecters über die Akkreditierungstalls (Akkstellac) vom 31 Juli 2005 (IRGR. 1.5.7673) sowie der Veronfrung (IGI) Nr. 765/2008 das Europätischen Palaments und das Rits vom N. Juli 2008 über die Verschriftung füh die Akkon (Lieung und Marktbarevehung im Zuammenhang mit der Vernanklung vom Produktien (Abl. L.218 vom 9. Juli 2008; S. 30). Die DAkk Sit Uterschrechner der Verlaufklaus der Statemann auf agenate Bagen Areite einung der Europen nic operatien für Ausrechtlatien (Ed., eise Heinzahlen auf Akkon (Lieung der Areite einung der Europen nic operatien für Ausrechtlatien (Ed., eise Heinzahlen auf Akkon (Lieung der Areite einung der ein einzumfahl beharbert Auszeit der Katzlahn (Ed.). Die Unterzeichner elleser Abkommen erkennen ihre Akkon (Lieungen gegenschigt an. Die Aldereditierungsurkunde gilt ner in Verbindung mit dem Bescheid vom 07.03.2014 mit der Aldereditierungsnummer D-PI-12076-01 und ist gältig 17.01.2018. Sie besteht aus diesem Deckblart, der Rückseite des Deckblarts und der fulgenden Anlage mit Ingesamt 77 Seiten. Der aktue in Stand der Vitigliedschaft kann folgen den Webseiten ertnommen werden: FA: www.european.actual tation.org ILAC: www.eika.org ILAC: www.eika.org Registrierungsnummer der Urkunde: D-PL-12076-01-00 Frankfurt am Main, 07.03.2014 Sieta ili vasita satidar fiktoreke

Note:

The current certificate including annex is may be received from CETECOM ICT Services on request.