

TEST REPORT

BNetzA-CAB-02/21-102 Test report no.: 1-5667_23-01-02-B

Testing laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075

Internet: https://www.ctcadvanced.com

e-mail: <u>mail@ctcadvanced.com</u>

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2018-03) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate starting with the registration number: D-PL-12076-01.

Applicant

Philips Medizin Systeme Böblingen GmbH

Hewlett-Packard-Strasse 2 71034 Böblingen / GERMANY

Phone: -/-

Contact: Hansjörg Geywitz

e-mail: hansjoerg.geywitz@philips.com

Manufacturer

Philips Medizin Systeme Böblingen GmbH

Hewlett-Packard-Strasse 2 71034 Böblingen / GERMANY

Test standard/s

FCC - Title 47 CFR Part 95 FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 95 - Personal

Radio Services

RSS - 210 Issue 10 incl. Spectrum Management and Telecommunications Radio Standards

Amendment Specification - Licence-Exempt Radio Apparatus: Category I Equipment

For further applied test standards please refer to section 3 of this test report.

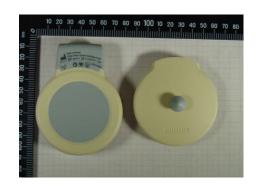
Test Item

Kind of test item: Cableless Transducer

866075 Avalon CL Toco+MP Transducer

Model name: 866076 Avalon CL US Transducer

866077 Avalon CL EGP/IUP Transducer


FCC ID: PQC-OBRTBV1
ISED certification number: 3549C-OBRTBV1
Frequency: 608 MHz to 614 MHz

Technology tested: proprietary

Antenna: Integrated antenna

Power supply: 3.5 V to 4.1 V DC, by Li-lon battery

Temperature range: -20°C to +55°C

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:

Christoph Schneider Lab Manager Radio Labs

Test performed:

Hans-Joachim Wolsdorfer Lab Manager Radio Labs

1 Table of contents

1	Table	of contents	2
2	Gener	al information	3
	2.1 2.2 2.3	Notes and disclaimer	3
3	Test s	tandard/s, references and accreditations	4
4	Repor	ting statements of conformity – decision rule	5
5	Test e	nvironment	б
6	Test it	tem	б
	6.1 6.2	General description	
7	Descr	iption of the test setup	7
	7.1 7.2	Shielded semi anechoic chamber	
8	Seque	ence of testing	11
	8.1 8.2 8.3	Sequence of testing radiated spurious 9 kHz to 30 MHz Sequence of testing radiated spurious 30 MHz to 1 GHz Sequence of testing radiated spurious 1 GHz to 7 GHz	12
9	Meas	urement uncertainty	14
10	S	ummary of measurement results	15
11	R	F measurements	16
	11.1	Additional comments	16
12	M	leasurement results	17
	12.1 12.2	Radiated field strengthField strength of spurious radiation	
13	G	lossary	33
14	ח	ocument history	34

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-5667_23-01-02 and dated 2023-06-22

2.2 Application details

Date of receipt of order: 2023-05-10
Date of receipt of test item: 2023-05-12
Start of test:* 2023-05-15
End of test:* 2023-05-17

Person(s) present during the test: -/-

2.3 Test laboratories sub-contracted

None

© CTC advanced GmbH Page 3 of 34

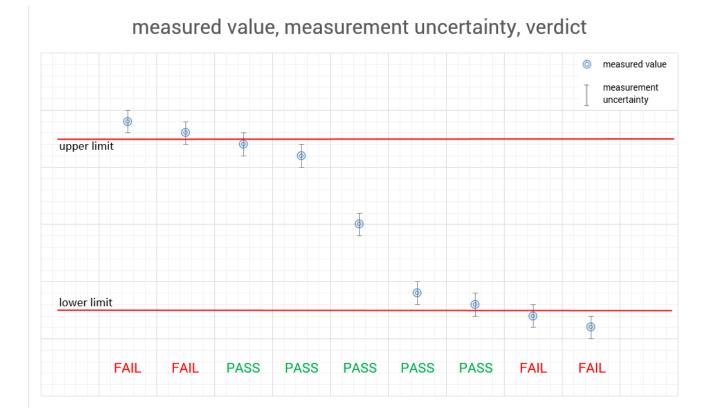
^{*}Date of each measurement, if not shown in the plot, can be requested. Dates are stored in the measurement software.

3 Test standard/s, references and accreditations

Test standard	Date	Description			
FCC - Title 47 CFR Part 95		FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 95 - Personal Radio Services			
RSS - 210 Issue 10 incl. Amendment	April 2020	Spectrum Management and Telecommunications Radio Standards Specification - Licence-Exempt Radio Apparatus: Category I Equipment			
RSS - Gen Issue 5 incl. Amendment 1 & 2	February 2021	Spectrum Management and Telecommunications Radio Standards Specification - General Requirements for Compliance of Radio Apparatus			
Guidance	Version	Description			
ANSI C63.4-2014 ANSI C63.10-2013	-/-	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices			
Accreditation	Description	1			
D-PL-12076-01-04	Telecommunication and EMC Canada https://www.dakks.de/as/ast/d/D-PL-12076-01-04e.pdf Deutsche Akkreditierungsstelle D-PL-12076-01-04				
D-PL-12076-01-05		Telecommunication FCC requirements https://www.dakks.de/as/ast/d/D-PL-12076-01-05e.pdf			

ISED Testing Laboratory Recognized Listing Number: DE0001

FCC designation number: DE0002


© CTC advanced GmbH Page 4 of 34

4 Reporting statements of conformity – decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3.

The measurement uncertainty is mentioned in this test report, see chapter 9, but is not taken into account neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong."

© CTC advanced GmbH Page 5 of 34

5 Test environment

		T_{nom}	+22 °C during room temperature tests
Temperature	:	T_{max}	+55 °C all tests performed at room temperature
		T_{min}	-20 °C all tests performed at room temperature
Relative humidity content	:		55 %
Barometric pressure	:		1021 hpa
		V_{nom}	3.7 V DC, by Li-lon battery
Power supply	:	V_{max}	4.1 V
		V_{min}	3.5 V

6 Test item

6.1 General description

Kind of test item :	Cableless Transducer
	866075 Avalon CL Toco+MP Transducer
Model name :	866076 Avalon CL US Transducer
	866077 Avalon CL EGP/IUP Transducer
HMN :	-/-
PMN :	866075 / 866076 / 866077
HVIN :	866075 / 866076 / 866077
FVIN :	-/-
S/N serial number :	DE45032816 (866076); DE44921565 (866075)
Hardware status :	2304
Software status :	-/-
Firmware status :	B.01.07
Frequency band :	608 MHz to 614 MHz
Type of radio transmission:	modulated carrier
Use of frequency spectrum :	modulated carrier
Type of modulation :	GFSK
Number of channels :	36
Antenna :	Integrated antenna
Power supply :	3.5 V to 4.1 V DC, by Li-lon battery
Temperature range :	-20°C to +55°C

6.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report: 1-5667_23-01-01_AnnexA

1-5667_23-01-01_AnnexB 1-5667_23-01-01_AnnexD

© CTC advanced GmbH Page 6 of 34

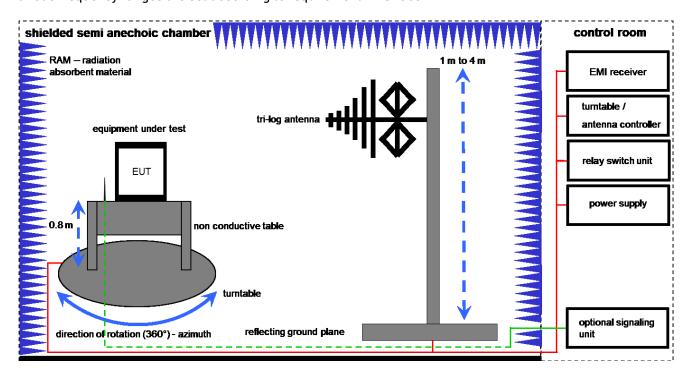
7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Each block diagram listed can contain several test setup configurations. All devices belonging to a test setup are identified with the same letter syntax. For example: Column Setup and all devices with an A.

Agenda: Kind of Calibration


k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	zw	cyclical maintenance (external cyclical
			maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlk!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

© CTC advanced GmbH Page 7 of 34

7.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

EMC32 software version: 10.59.00

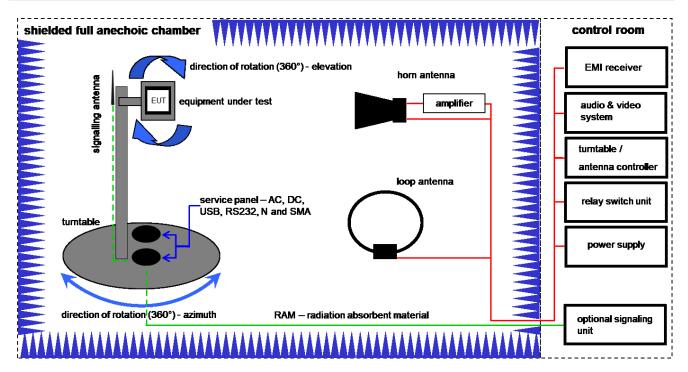
FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 <math>\mu V/m$)

© CTC advanced GmbH Page 8 of 34


Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	Α	Semi anechoic chamber	3000023	MWB AG	-/-	300000551	ne	-/-	-/-
3	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
4	Α	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
5	Α	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
6	Α	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	318	300003696	vIKI!	30.09.2021	29.09.2023
7	Α	Turntable	2089-4.0	EMCO	-/-	300004394	ne	-/-	-/-
8	Α	PC	TecLine	F+W	-/-	300004388	ne	-/-	-/-
9	Α	EMI Test Receiver	ESR3	Rohde & Schwarz	102587	300005771	k	09.12.2022	31.12.2023

© CTC advanced GmbH Page 9 of 34

7.2 Shielded fully anechoic chamber

Measurement distance: horn antenna 3 meter; loop antenna 3 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \(\mu V/m \))$

Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vIKI!	01.07.2021	31.07.2023
2	A,B	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
3	A,B	Switch / Control Unit	3488A	HP	-/-	300000199	ne	-/-	-/-
4	В	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	8812-3089	300000307	vIKI!	11.02.2022	29.02.2024
5	A,B	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	07.12.2022	31.12.2023
6	В	Highpass Filter	WHK1.1/15G-10SS	Wainwright	3	300003255	ev	-/-	-/-
7	В	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22049	300004481	ev	-/-	-/-
8	A,B	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
9	A,B	NEXIO EMV- Software	BAT EMC V2022.0.22.0	Nexio	-/-	300004682	ne	-/-	-/-

© CTC advanced GmbH Page 10 of 34

8 Sequence of testing

8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all
 emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT.
 (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

© CTC advanced GmbH Page 11 of 34

^{*)}Note: The sequence will be repeated three times with different EUT orientations.

8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 12 of 34

8.3 Sequence of testing radiated spurious 1 GHz to 7 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 13 of 34

9 Measurement uncertainty

Measurement uncertainty					
Test case	Uncertainty				
Occupied bandwidth	± used RBW				
Field strength of the fundamental	± 3 dB				
Field strength of the harmonics and spurious	± 3 dB				
Receiver spurious emissions and cabinet radiations	± 3 dB				
Conducted limits	± 2.6 dB				

© CTC advanced GmbH Page 14 of 34

10 Summary of measurement results

	o deviations from the technical specifications were ascertained			
	There were deviations from the technical specifications ascertained			
IΥI	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.			

TC Identifier	Description	Verdict	Date	Remark
	47 CFR Part 2			
RF-Testing	47 CFR Part 95 H	Doored	2023-12-14	-/-
	RSS Gen Issue 5 A2	Passed 2023-12-14		-/-
	RSS 210 Issue 10, Annex C.3			

Test Specification Clause	Test Case	Temperature Conditions	Power Source Voltages	Pass	Fail	NA	NP	Results (max.)
FCC 47 CFR § 2.1046 § 95.2369(a) RSS 210 Issue 10, Annex C.3	Radiated field strength	Nominal	Nominal	\boxtimes				complies
FCC 47 CFR § 2.1055		Nominal	Extreme				\boxtimes	
§ 95.2363 RSS Gen Issue 5 A2 6.11	Frequency stability	Extreme	Nominal				\boxtimes	-/-
FCC 47 CFR § 2.1049 (1) RSS Gen Issue 5 A2 6.7	Occupied bandwidth	Nominal	Nominal				\boxtimes	No Pass/Fail criteria
FCC 47 CFR § 2.1053 § 95.2379 (a) + (b) RSS Gen Issue 5 A2 6.13	Field strength of spurious radiation Transmitter unwanted emissions	Nominal	Nominal	\boxtimes				complies
FCC 47 CFR § 15.209 RSS Gen Issue 5 A2 7.3	Receiver spurious emissions (radiated)	Nominal	Nominal				\boxtimes	-/-

Note: NA = Not Applicable; NP = Not Performed

© CTC advanced GmbH Page 15 of 34

11 RF measurements

11.1 Additional comments

Reference documents: None

Special test descriptions: None

Configuration descriptions: power setting:

866075: +4dBm 866076: +7dBm

© CTC advanced GmbH Page 16 of 34

12 Measurement results

12.1 Radiated field strength

Measurement:

Measurement parameter					
Detector:	Quasi peak				
Sweep time:	Auto				
Resolution bandwidth:	120kHz				
Video bandwidth:	Auto				
Span:	> EBW				
Trace-Mode:	Max. hold				

Limits:

FCC	IC			
CFR § 2.1046 CFR § 95.1115 (a)	RSS 210 Issue 10, Annex C.3			
Radiated field strength				
200 mV/m @ 3 m (106 dBμV/m @ 3 m)				

Result:

866076 (power setting +7 dBm):

Frequency	Radiated field strength
608.075 MHz	93.46 dBμV/m @ 3m
613.925 MHz	91.95 dBµV/m @ 3m

866075 (power setting +4 dBm):

Frequency	Radiated field strength		
608.075 MHz	89.19 dBμV/m @ 3m		
613.925 MHz	89.72 dBμV/m @ 3m		

© CTC advanced GmbH Page 17 of 34

12.2 Field strength of spurious radiation

Measurement:

Measurement parameter					
Detector:	Peak / AVG				
Sweep time:	Auto				
Resolution bandwidth:	f < 1 GHz : 100 kHz f ≥ 1GHz : 1 MHz				
Video bandwidth:	f < 1 GHz : 100 kHz f ≥ 1GHz : 1 MHz				
Span:	-/-				
Trace-Mode:	Max. hold				

Limits:

FCC	IC
47 CFR § 2.1053 47 CFR § 95.1115 (b)	RSS Gen Issue 5 4.9

Out-of band emissions below 960 MHz are limited to 200 microvolts/meter, as measured at a distance of 3 meters, using measuring instrumentation with a CISPR quasi-peak detector.

Out-of-band emissions above 960 MHz are limited to 500 microvolts/meter as measured at a distance of 3 meters, using measuring equipment with an averaging detector and a 1 MHz measurement bandwidth.

© CTC advanced GmbH Page 18 of 34

866076 (power setting +7 dBm):

Fundamental Frequency	Spurious Frequency	Detector	Limit max. allowed [dBµV/m]	Amplitude of emission [dBµV/m]
	2422 E2MII=	Peak	-/-	56.06
608.375MHz	2433.52MHz	AVG*	54	48.76
	3650.37MHz	Peak	-/-	58.87
		AVG*	54	51.57
	4250 26MH=	Peak	-/-	56.75
	4258.36MHz	AVG*	54	49.45

^{*}Duty cycle correction according cetecom test report no 1-0988_20-01-02: -7.3dB

Fundamental Frequency	Spurious Frequency	Detector	Limit max. allowed [dBµV/m]	Amplitude of emission [dBµV/m]
	2454 2514117	Peak	-/-	56.47
_	2454.35MHz	AVG*	54	49.17
	3067.93MHz	Peak	-/-	50.52
612 62EMH-		AVG*	54	43.22
613.625MHz	3682.00MHz	Peak	-/-	57.91
		AVG*	54	50.61
	420E 0E	Peak	-/-	59.84
	4295.05	AVG*	54	52.54

^{*}Duty cycle correction according cetecom test report no 1-0988_20-01-02: -7.3dB

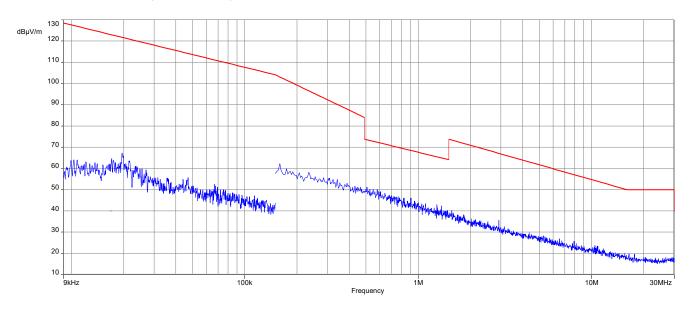
© CTC advanced GmbH Page 19 of 34

866075 (power setting +4 dBm):

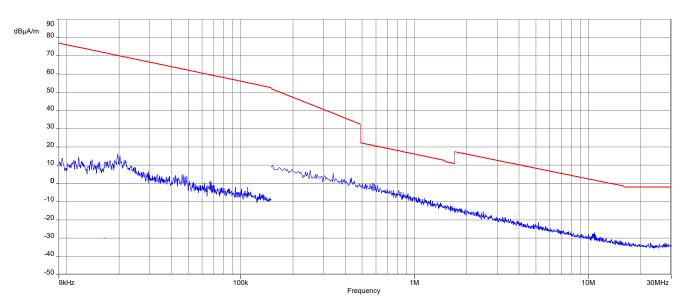
Fundamental Frequency	Spurious Frequency	Detector	Limit max. allowed [dBµV/m]	Amplitude of emission [dBµV/m]
	2433.28MHz	Peak	-/-	55.56
600 0751411-	2433.28WHZ	AVG*	54	48.26
	3650.50MHz	Peak	-/-	54.89
608.375MHz		AVG*	54	47.59
	4258.30MHz	Peak	-/-	59.38
		AVG*	54	52.08

^{*}Duty cycle correction according cetecom test report no 1-0988_20-01-02: -7.3dB

Fundamental Frequency	Spurious Frequency	Detector	Limit max. allowed [dBµV/m]	Amplitude of emission [dBµV/m]
	2454 5614117	Peak	-/-	55.58
	2454.56MHz	AVG*	54	48.28
613.625MHz	3681.66MHz	Peak	-/-	54.90
013.023WHZ		AVG*	54	47.60
	4204 00MHz	Peak	-/-	60.24
	4294.90MHz	AVG*	54	52.94

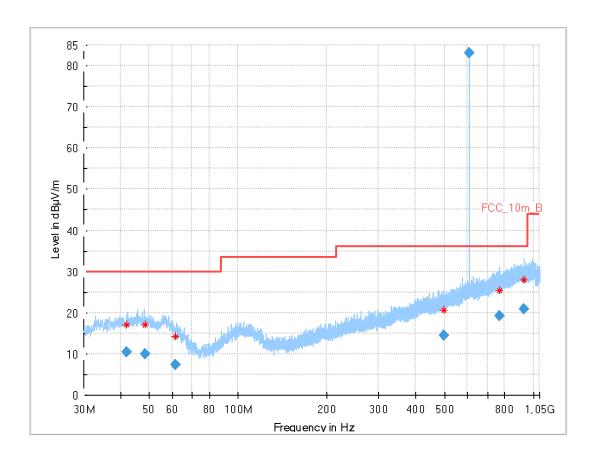

^{*}Duty cycle correction according cetecom test report no 1-0988_20-01-02: -7.3dB

© CTC advanced GmbH Page 20 of 34



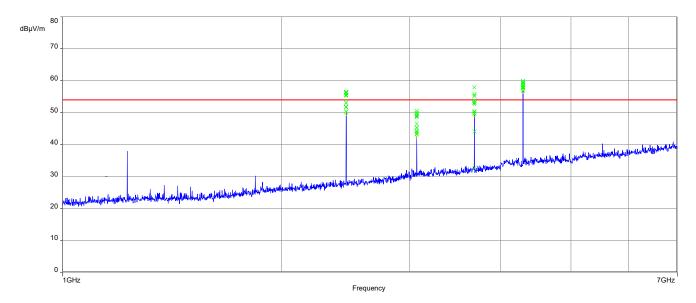
Plots of the measurements 866076

Plot 1: 9 kHz - 30 MHz, low channel, FCC


Plot 2: 9 kHz - 30 MHz, low channel, IC

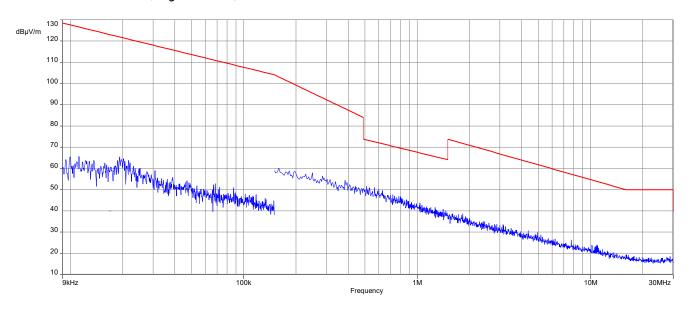
© CTC advanced GmbH Page 21 of 34

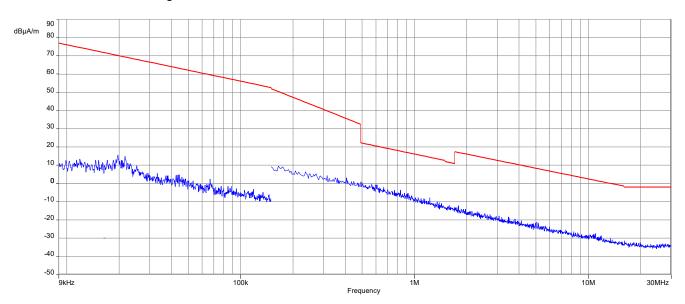
Plot 3: 30 MHz - 1 GHz, low channel


Final_Result

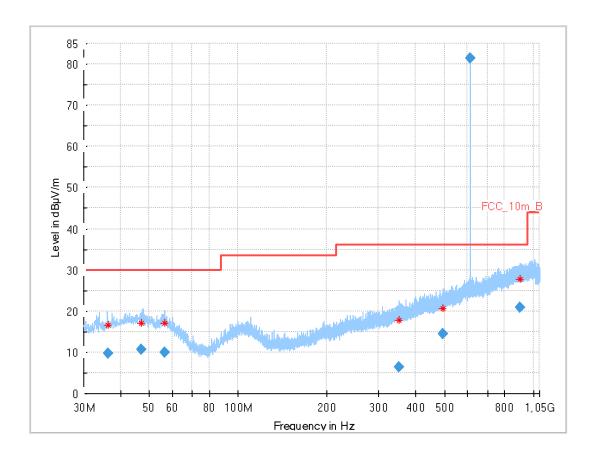
Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
41.974	10.41	30.0	19.6	1000	120.0	124.0	н	191	16
48.391	10.08	30.0	19.9	1000	120.0	111.0	V	103	16
61.168	7.47	30.0	22.5	1000	120.0	169.0	٧	225	13
499.356	14.38	36.0	21.6	1000	120.0	157.0	Н	-45	20
769.760	19.31	36.0	16.7	1000	120.0	165.0	٧	0	24
926.490	20.97	36.0	15.0	1000	120.0	150.0	Н	135	26

© CTC advanced GmbH Page 22 of 34


Plot 4: 1 GHz - 7 GHz, low channel, antenna horizontal/vertical

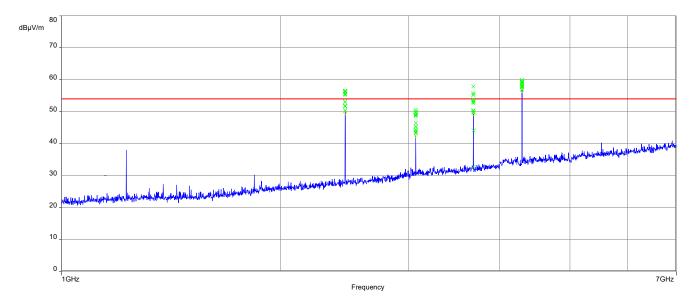

© CTC advanced GmbH Page 23 of 34

Plot 1: 9 kHz - 30 MHz, high channel, FCC


Plot 2: 9 kHz - 30 MHz, high channel, IC

© CTC advanced GmbH Page 24 of 34

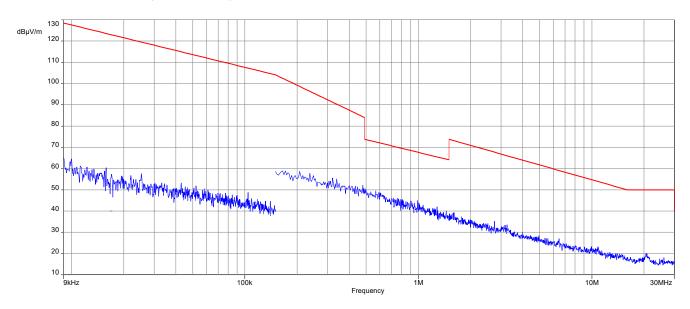
Plot 3: 30 MHz - 1 GHz, high channel


Final_Result

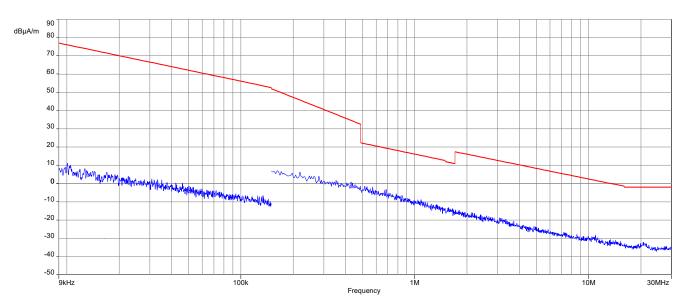
Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
` ,				, ,	` '	` '		,	· · · /
36.383	9.68	30.0	20.3	1000	120.0	104.0	V	40	15
46.996	10.61	30.0	19.4	1000	120.0	236.0	Н	-45	16
56.569	9.89	30.0	20.1	1000	120.0	286.0	Н	286	16
349.757	6.35	36.0	29.7	1000	120.0	400.0	Н	45	17
494.973	14.55	36.0	21.5	1000	120.0	400.0	٧	180	20
905.018	20.98	36.0	15.0	1000	120.0	106.0	Н	225	26

© CTC advanced GmbH Page 25 of 34

Plot 4: 1 GHz - 7 GHz, high channel, antenna horizontal/vertical

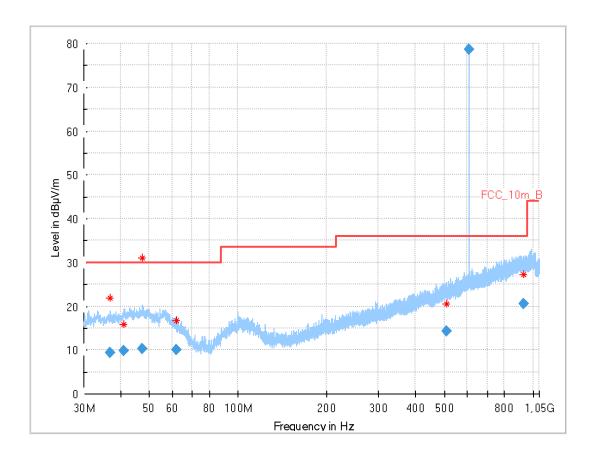


© CTC advanced GmbH Page 26 of 34



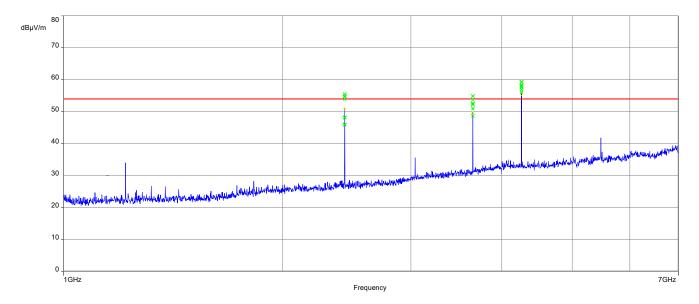
Plots of the measurements 866075

Plot 1: 9 kHz - 30 MHz, low channel, FCC


Plot 2: 9 kHz - 30 MHz, low channel, IC

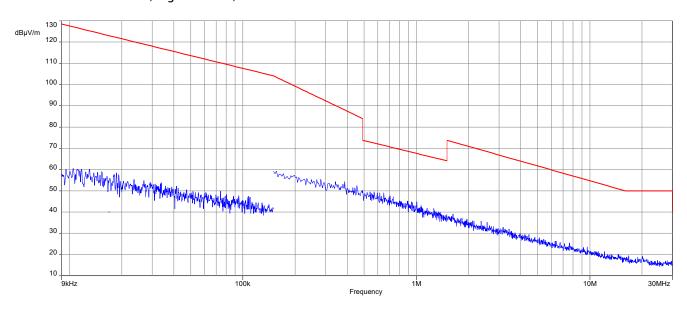
© CTC advanced GmbH Page 27 of 34

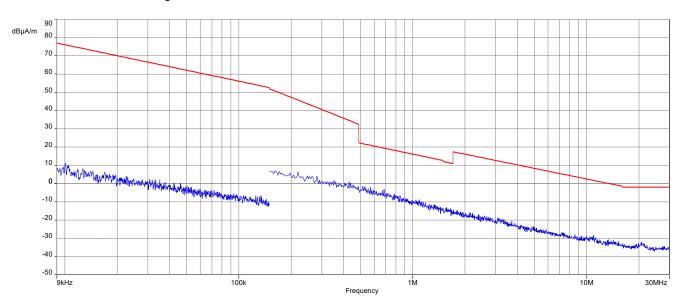
Plot 3: 30 MHz - 1 GHz, low channel



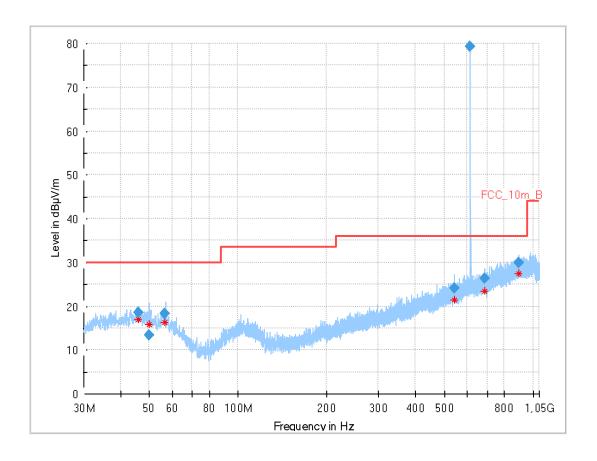
Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
36.804	9.35	30.0	20.7	1000	120.0	364.0	Н	225	15
40.920	9.74	30.0	20.3	1000	120.0	151.0	Н	135	15
47.210	10.39	30.0	19.6	1000	120.0	369.0	٧	19	16
62.000	10.11	30.0	19.9	1000	120.0	268.0	٧	90	13
510.983	14.21	36.0	21.8	1000	120.0	200.0	Н	-45	20
928.088	20.50	36.0	15.5	1000	120.0	328.0	V	45	26

© CTC advanced GmbH Page 28 of 34


Plot 4: 1 GHz - 7 GHz, low channel, antenna horizontal/vertical

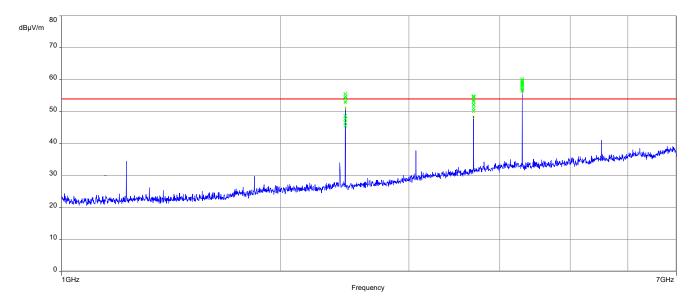

© CTC advanced GmbH Page 29 of 34

Plot 1: 9 kHz - 30 MHz, high channel, FCC


Plot 2: 9 kHz - 30 MHz, high channel, IC

© CTC advanced GmbH Page 30 of 34

Plot 3: 30 MHz - 1 GHz, high channel


Final Result

Frequency (MHz)	QuasiPea k (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
46.010	18.53	30.0	11.5	1000	120.0	101.0	٧	108	16
50.142	13.43	30.0	16.6	1000	120.0	190.0	٧	101	16
56.400	18.36	30.0	11.6	1000	120.0	195.0	Н	248	16
541.191	24.15	36.0	11.9	1000	120.0	195.0	V	81	20
685.208	26.26	36.0	9.7	1000	120.0	173.0	Н	142	22
897.334	29.86	36.0	6.1	1000	120.0	195.0	٧	-37	25

© CTC advanced GmbH Page 31 of 34

Plot 4: 1 GHz - 7 GHz, high channel, antenna horizontal/vertical

© CTC advanced GmbH Page 32 of 34

13 Glossary

EUT	Equipment under test					
DUT	Device under test					
UUT	Unit under test					
GUE	GNSS User Equipment					
ETSI	European Telecommunications Standards Institute					
EN	European Standard					
FCC	Federal Communications Commission					
FCC ID	Company Identifier at FCC					
IC	Industry Canada					
PMN	Product marketing name					
HMN	Host marketing name					
HVIN	Hardware version identification number					
FVIN	Firmware version identification number					
EMC	Electromagnetic Compatibility					
HW	Hardware					
SW	Software					
Inv. No.	Inventory number					
S/N or SN	Serial number					
С	Compliant					
NC	Not compliant					
NA	Not applicable					
NP	Not performed					
PP	Positive peak					
QP	Quasi peak					
AVG	Average					
OC	Operating channel					
OCW	Operating channel bandwidth					
OBW	Occupied bandwidth					
ООВ	Out of band					
DFS	Dynamic frequency selection					
CAC	Channel availability check					
OP	Occupancy period					
NOP	Non occupancy period					
DC	Duty cycle					
PER	Packet error rate					
CW	Clean wave					
MC	Modulated carrier					
WLAN	Wireless local area network					
RLAN	Radio local area network					
DSSS	Dynamic sequence spread spectrum					
OFDM	Orthogonal frequency division multiplexing					
FHSS	Frequency hopping spread spectrum					
GNSS	Global Navigation Satellite System					
C/N ₀	Carrier to noise-density ratio, expressed in dB-Hz					

© CTC advanced GmbH Page 33 of 34

14 Document history

Version	Applied changes	Date of release	
-/-	Initial release	2023-06-22	
Α	Editorial Changes	2023-06-22	
В	update reference standards in test summary table on page 15	2023-12-14	

© CTC advanced GmbH Page 34 of 34