

TEST REPORT

BNetzA-CAB-02/21-102 Test report no.: 1-0987/20-01-02

Testing laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075

Internet: https://www.ctcadvanced.com

e-mail: <u>mail@ctcadvanced.com</u>

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2018-03) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate starting with the registration number: D-PL-12076-01.

Applicant

Philips Medizin Systeme Böblingen GmbH

Hewlett-Packard-Strasse 2 71034 Böblingen / GERMANY Phone: +49 7031 463-2944 Contact: Hansjörg Geywitz

e-mail: hansjoerg.geywitz@philips.com

Phone: +49 7031 463-1879

Manufacturer

Philips Medizin Systeme Böblingen GmbH

Hewlett-Packard-Strasse 2 71034 Böblingen / GERMANY

Test standard/s

FCC - Title 47 CFR Part 95 FCC - Title 47 Part 95 - Personal Radio Services

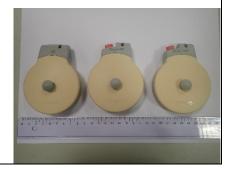
RSS - 210 Issue 10 Spectrum Management and Telecommunications Radio Standards

Specification - Licence-Exempt Radio Apparatus: Category I Equipment

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Cableless Transducer
Model name: 866075; 866076; 866077


FCC ID: PQC-OBRTBV1
IC: 3549C-OBRTBV1
Frequency: 608 MHz - 614 MHz
Technology tested: Modulated carrier
Antenna: Integrated antenna

Power supply: 3.70 V DC by Li-lon battery

Temperature range: -20°C to +55°C

Lab Manager

Radio Communications

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:	Test performed:	
p.o.		
Christoph Schneider	Marco Bertolino	

Lab Manager

Radio Communications

1 Table of contents

1	Table	of contents	2
2	Gener	al information	3
	2.1 2.2 2.3	Notes and disclaimer Application details Test laboratories sub-contracted	3
3	Test s	tandard/s, references and accreditations	4
4	Repo	rting statements of conformity – decision rule	5
5	Test e	environment	6
6	Test i	tem	6
	6.1 6.2	General description	
7	Desci	ription of the test setup	7
	7.1 7.2	Shielded semi anechoic chamberShielded fully anechoic chamber	
8	Sequ	ence of testing	10
	8.1 8.2 8.3	Sequence of testing radiated spurious 9 kHz to 30 MHzSequence of testing radiated spurious 30 MHz to 1 GHzSequence of testing radiated spurious 1 GHz to 18 GHz	11
9	Meas	urement uncertainty	13
10	Sur	nmary of measurement results	14
11	Add	ditional comments	15
12	Mea	asurement results	17
	12.1 12.2 12.3	Radiated field strengthField strength of spuriousReceiver spurious emissions	18
13	Obs	servations	30
14	Glo	ssary	31
15	Doo	cument history	32
16	Acc	creditation Certificate – D-PL-12076-01-04	32
17	Acc	creditation Certificate – D-PL-12076-01-05	33

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order: 2020-08-14
Date of receipt of test item: 2020-08-18
Start of test: 2020-08-18
End of test: 2020-08-20

Person(s) present during the test: Mr. Hansjörg Geywitz

2.3 Test laboratories sub-contracted

None

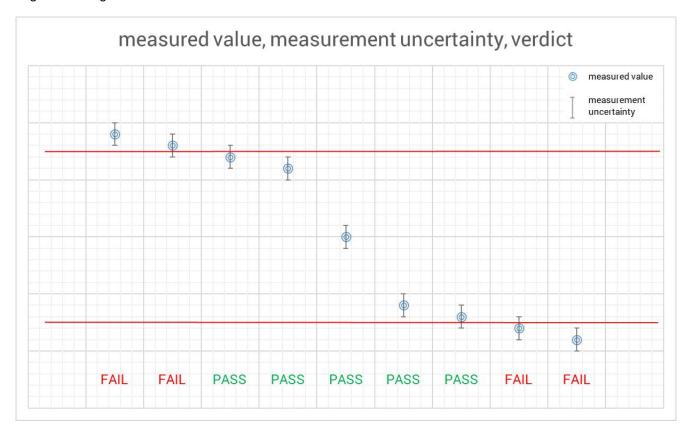
© CTC advanced GmbH Page 3 of 33

3 Test standard/s, references and accreditations

Test standard	Date	Description
FCC - Title 47 CFR Part 95	Vol5	FCC - Title 47 Part 95 - Personal Radio Services
RSS - 210 Issue 10	December 2019	Spectrum Management and Telecommunications Radio Standards Specification - Licence-Exempt Radio Apparatus: Category I Equipment
RSS - Gen Issue 5 incl. Amendment 1	March 2019	Spectrum Management and Telecommunications Radio Standards Specification - General Requirements for Compliance of Radio Apparatus

Guidance	Version	Description
ANSI C63.4-2014 ANSI C63.26-2015	-/- -/-	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services

Accreditation	Description	
D-PL-12076-01-04	Telecommunication and EMC Canada https://www.dakks.de/as/ast/d/D-PL-12076-01-04e.pdf	DAKKS Deutsche Akkreditierungsstelle D-PL-12076-01-04
D-PL-12076-01-05	Telecommunication FCC requirements https://www.dakks.de/as/ast/d/D-PL-12076-01-05e.pdf	DAKKS Deutsche Akkreditierungsstelle D-PL-12076-01-05


© CTC advanced GmbH Page 4 of 33

4 Reporting statements of conformity – decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3.

The measurement uncertainty is mentioned in this test report, see chapter 9, but is not taken into account - neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong."

© CTC advanced GmbH Page 5 of 33

5 Test environment

Temperature	:	T_{nom} T_{max} T_{min}	+24 °C during room temperature tests No tests under extreme temperature conditions performed. No tests under extreme temperature conditions performed.
Relative humidity content :			56 %
Barometric pressure	:		1018 hpa
		V_{nom}	3.70 V DC by Li-lon battery
Power supply	:	V_{max}	No tests under extreme voltage conditions performed.
		V_{min}	No tests under extreme voltage conditions performed.

6 Test item

6.1 General description

Kind of test item :	Cableless Transducer		
Model name :	866075; 866076; 866077		
Model name .	Equipment under test: 866076		
HMN :	-/-		
PMN :	866075; 866076; 866077		
HVIN :	866075; 866076; 866077		
FVIN :	-/-		
S/N serial number :	Radiated unit: DE45006847		
Hardware status :	2040		
Software status :	-/-		
Firmware status :	B.01.07		
Frequency band :	608 MHz – 614 MHz		
r requericy barro .	Lowest Channel 3 (608.375 MHz) / Highest Channel 38 (613.625 MHz)		
Type of radio transmission:	Modulated carrier		
Use of frequency spectrum :	Wodalated carrier		
Type of modulation :	GFSK		
Number of channels :	36		
Antenna :	Integrated antenna		
Power supply :	3.70 V DC by Li-Ion battery		
Temperature range :	-20°C to +55°C		

6.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report: 1-0987/20-01-01_AnnexA

1-0987/20-01-01_AnnexB 1-0987/20-01-01_AnnexD

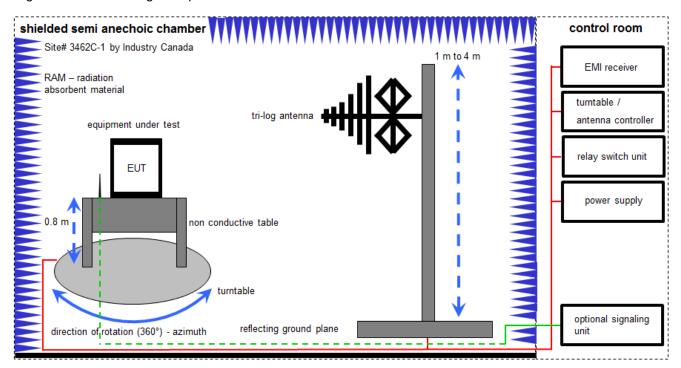
© CTC advanced GmbH Page 6 of 33

7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration


k ne	calibration / calibrated not required (k, ev, izw, zw not required)	EK zw	limited calibration cyclical maintenance (external cyclical maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

© CTC advanced GmbH Page 7 of 33

7.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

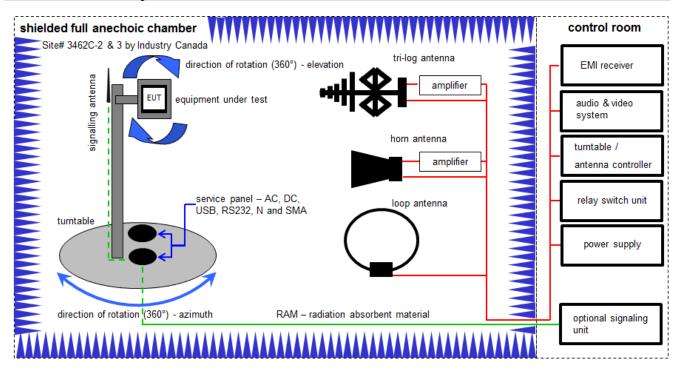
Measurement distance: tri-log antenna 10 meter; EMC32 software version: 10.30.0

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \mu V/m)$


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	Α	Meßkabine 1	HF-Absorberhalle	MWB AG 300023		300000551	ne	-/-	-/-
3	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
4	Α	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
5	Α	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
6	А	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	295	300003787	vlKI!	19.02.2019	18.02.2021
7	Α	EMI Test Receiver	ESR3	Rohde & Schwarz	102587	300005771	k	21.05.2019	20.11.2020

© CTC advanced GmbH Page 8 of 33

7.2 Shielded fully anechoic chamber

Measurement distance: tri-log antenna and horn antenna 3 meter; loop antenna 3 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \mu V/m)$

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vIKI!	13.06.2019	12.06.2021
2	A, B, C	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
3	В	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9107-3697	300001605	vlKl!	27.02.2019	26.02.2021
4	A, B, C	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
5	A, B, C	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	11.12.2019	10.12.2020
6	В	Highpass Filter	WHK1.1/15G-10SS	Wainwright	3	300003255	ev	-/-	-/-
7	В	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	19	300003790	ne	-/-	-/-
8	В	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22049	300004481	ev	-/-	-/-
9	A, B, C	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
10	A, B, C	NEXIO EMV- Software	BAT EMC V3.20.02	EMCO	-/-	300004682	ne	-/-	-/-
11	A, B, C	PC	ExOne	F+W	-/-	300004703	ne	-/-	-/-
12	В	RF-Amplifier	AMF-6F06001800- 30-10P-R	NARDA-MITEQ Inc	2011572	300005241	ev	-/-	-/-

© CTC advanced GmbH Page 9 of 33

8 Sequence of testing

8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT.
 (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

© CTC advanced GmbH Page 10 of 33

^{*)}Note: The sequence will be repeated three times with different EUT orientations.

8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 11 of 33

8.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 12 of 33

9 Measurement uncertainty

Measurement uncertainty						
Test case	Unce	rtainty				
Antenna gain	± 3	3 dB				
Power spectral density	± 1.1	15 dB				
DTS bandwidth	± 100 kHz (depend	s on the used RBW)				
Occupied bandwidth	± 100 kHz (depend	s on the used RBW)				
Maximum output power conducted	± 1.1	15 dB				
Detailed spurious emissions @ the band edge - conducted	± 1.15 dB					
Band edge compliance radiated	± 3 dB					
	> 3.6 GHz	± 1.15 dB				
Spurious emissions conducted	> 7 GHz	± 1.15 dB				
Spurious ernissions conducted	> 18 GHz	± 1.89 dB				
	≥ 40 GHz	± 3.12 dB				
Spurious emissions radiated below 30 MHz	± 3	3 dB				
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB					
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB					
Spurious emissions radiated above 12.75 GHz	± 4.5 dB					
Spurious emissions conducted below 30 MHz (AC conducted)	± 2.	6 dB				

© CTC advanced GmbH Page 13 of 33

10 Summary of measurement results

No deviations from the technical specifications were ascertained
There were deviations from the technical specifications ascertained
This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
	47 CFR Part 2			Delta tests
DE Tooting	47 CFR Part 95 H	See table!	2020-10-01	according
RF-Testing	RSS Gen Issue 5		2020-10-01	customer
	RSS 210 Issue 10			demand.

Test specification clause	Test case	Guideline	Temperature conditions	Power source voltages	Mode	С	NC	NA	NP	Remark
§95.2369 RSS-210 Issue 10 – C.3 (a)	Radiated field strength	-/-	Nominal	Nominal	Modulated carrier	\boxtimes				-/-
§95.2379 RSS-210 Issue 10 – C.3 (b) RSS-Gen	TX spurious emissions rad. below 30 MHz	-/-	Nominal	Nominal	Modulated carrier	\boxtimes				-/-
§95.2379 RSS-210 Issue 10 – C.3 (b) RSS-Gen	TX spurious emissions rad. 30 MHz to 1 GHz	-/-	Nominal	Nominal	Modulated carrier	\boxtimes				-/-
§95.2379 RSS-210 Issue 10 – C.3 (b) RSS-Gen	TX spurious emissions rad. above 1 GHz	-/-	Nominal	Nominal	Modulated carrier	\boxtimes				-/-
§95.2379 RSS-210 Issue 10 – C.3 (b) RSS-Gen	RX spurious emissions rad. 30 MHz to 1 GHz	-/-	Nominal	Nominal	RX	×				-/-
§95.2379 RSS-210 Issue 10 – C.3 (b) RSS-Gen	RX spurious emissions rad. above 1 GHz	-/-	Nominal	Nominal	RX	\boxtimes				-/-

Notes:

С	Compliant	NC	Not compliant	NA	Not applicable	NP	Not performed
---	-----------	----	---------------	----	----------------	----	---------------

© CTC advanced GmbH Page 14 of 33

11 Additional comments

Reference documents: Customer_Questionnaire_Transducer.docx

Main test report: 1-4691_12-01-07-D

Update report: 1-7339_18-01-02-B

DC_Correction.pdf

PHILIPS

Declaration of Duty Cycle Correction

The RF protocol used in the products

Avalon Cableless Toco+MP Transducer 866075

Avalon Cableless US Transducer 866076

Avalon Cableless ECG/IUP Transducer

have a maximum duty cycle of 43.2ms in a 100ms time frame.

Therefore the duty cycle correction is 20*log(0.432) = -7.3dB

The RF protocol used in the product

Avalon CL Basestation 866074

has a maximum duty cycle of 38.4ms in a 100ms time frame.

Therefore the duty cycle correction is 20*log(0.384) = -8.3dB

Böblingen, 18-Aug-2020

Hansjörg Geywitz

Philips Medizin Systeme Böblingen GmbH
Hewlett-Packard-Strasse 2, 71034 Böblingen, Germany, Tel +49(0)7031 463-0, Fax +49(0)7031 463-2202
Geschäftsführer Dr. Dieter Hazse (Sprecher), Dr. Peter Ziese, Matthija de Groot
Registergericht Stuttgart Reg.-Nr. HRB 245187, Sitz der Gesellschaft: Böblingen, www.philips.com/healthcare

Special test descriptions: None

© CTC advanced GmbH Page 15 of 33

Configuration descriptions: Customer declaration: The report covers three kinds of transducers: 866075 Avalon CL Toco+MP Transducer 866076 Avalon CL US Transducer (EUT) 866077 Avalon CL EGP/IUP Transducer They all contain the same CPU PCA including the RF part. The only difference is the applied sensor PCA and a different housing. Test mode: No test mode available Iperf was used to ping another device with the largest support packet size \boxtimes Test mode available Special software is used. EUT is transmitting pseudo random data by itself XAntennas and transmit Operating mode 1 (single antenna) operating modes: Equipment with 1 antenna, Equipment with 2 diversity antennas operating in switched diversity mode by which at any moment in time only 1 antenna is used, Smart antenna system with 2 or more transmit/receive chains, but operating in a mode where only 1 transmit/receive chain is used) Operating mode 2 (multiple antennas, no beamforming) Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously but without beamforming. Operating mode 3 (multiple antennas, with beamforming) Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously with beamforming. In addition to the antenna assembly gain (G), the beamforming gain (Y) may have to be taken into account when performing the measurements

© CTC advanced GmbH Page 16 of 33

12 Measurement results

12.1 Radiated field strength

Measurement:

Measurement parameter								
Detector:	Quasi peak							
Sweep time:	Auto							
Resolution bandwidth:	120kHz							
Video bandwidth:	Auto							
Span:	> EBW							
Trace mode:	Max. hold							
Test setup:	See chapter 7.1 A and 7.2 C							
Measurement uncertainty:	See chapter 9							

Limits:

FCC	IC						
CFR § 95.2369	RSS 210 Issue 10 C.3 (a)						
Radiated fie	eld strength						
200 mV/m @ 3 m (106 dBμV/m @ 3 m)							

Result:

Frequency	Radiated field strength
608.375 MHz	88.7 dBµV/m @ 3m
610.925 MHz	88.1 dBμV/m @ 3m
613.625 MHz	87.6 dBµV/m @ 3m

© CTC advanced GmbH Page 17 of 33

12.2 Field strength of spurious

Measurement:

Measurement parameter							
Detector:	Peak / QP / Average						
Sweep time:	Auto						
Decelution handwidth.	f < 1 GHz : 120 kHz						
Resolution bandwidth:	f ≥ 1GHz : 1 MHz						
Video bandwidth:	f < 1 GHz : 120 kHz						
video baridwidtii.	f ≥ 1GHz : 1 MHz						
Span:	-/-						
Trace mode:	Max. hold						
Test setup:	See chapter 7.2 A & B						
Measurement uncertainty:	See chapter 9						

Limits:

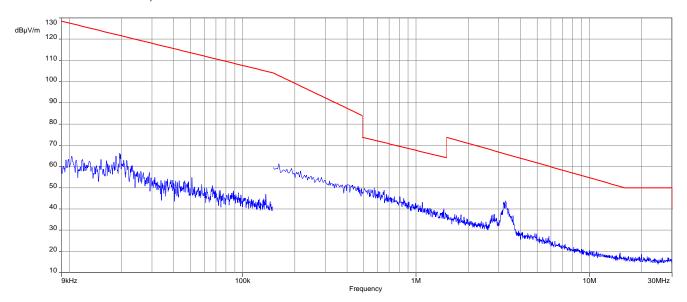
FCC	IC
47 CFR § 95.2379	RSS 210 Issue 10 C.3 (B) RSS Gen Issue 5

Out-of band emissions below 960 MHz are limited to 200 microvolts/meter, as measured at a distance of 3 meters, using measuring instrumentation with a CISPR quasi-peak detector.

Out-of-band emissions above 960 MHz are limited to 500 microvolts/meter as measured at a distance of 3 meters, using measuring equipment with an averaging detector and a 1 MHz measurement bandwidth.

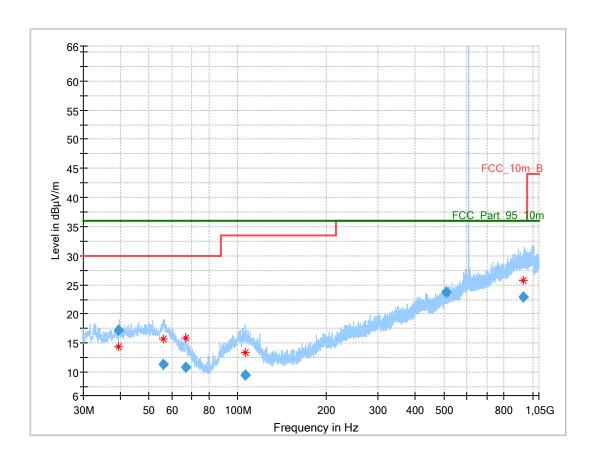
SPURIOUS EMISSIONS LEVEL (dBμV/m)*											
Lo	owest chann	el	N	liddle chann	el	Highest channel					
Frequency	Detector	Level	Frequency	Detector	Level	Frequency	Detector	Level			
	Peak	37.17		Peak	39.5		Peak	58.3			
1249.9	AVG	Peak below AV limit	1960.9	AVG	Peak below AV limit	4295.2	AVG**	51.0			
	Peak	40.6		Peak	43.0		Peak	52.0			
1952.2	AVG	Peak below AV limit	2665.9	AVG	Peak below AV limit	4909	AVG	Peak below AV limit			
	Peak	42.4		Peak	45.2		Peak	-/-			
2654.2	AVG	Peak below AV limit	3370.9	AVG	Peak below AV limit	-/-	AVG	-/-			
4050.0	Peak	57.9	4070.0	Peak	54.1	,	Peak	-/-			
4258.6	AVG**	50.6	4276.3	AVG**	46.8	-/-	AVG	-/-			
4000 =	Peak	53.2	100= 1	Peak	53.9	,	Peak	-/-			
4866.7	AVG	Peak below AV limit	4887.4	AVG	Peak below AV limit	-/-	AVG	-/-			
	Peak	52.4	- 400 -	Peak	50.0	,	Peak	-/-			
5475.4	AVG	Peak below AV limit	5498.5	AVG	Peak below AV limit	-/-	AVG	-/-			

^{*} For emissions below 1 GHz, see table below the plot


© CTC advanced GmbH Page 18 of 33

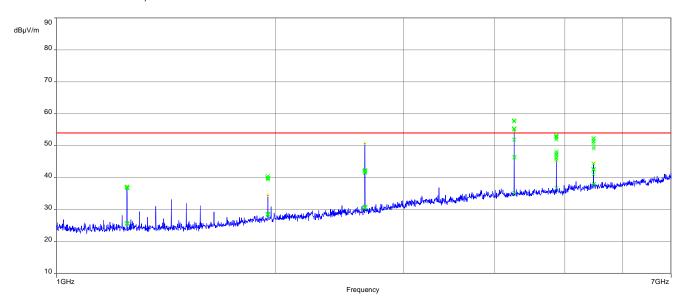
^{**}DC correction factor (-7.3 dB) - see chapter 11 additional comments

Plots:


Plot 1: 9 kHz - 30 MHz, low channel

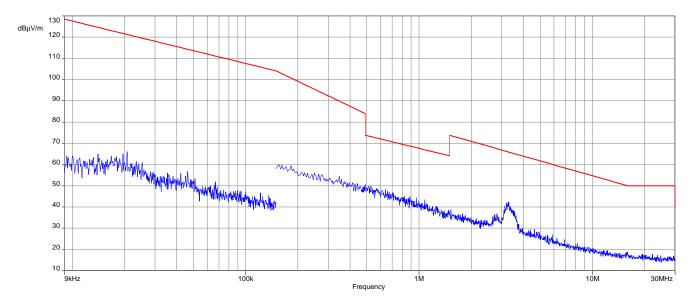
© CTC advanced GmbH Page 19 of 33

Plot 2: 30 MHz – 1 GHz, low channel

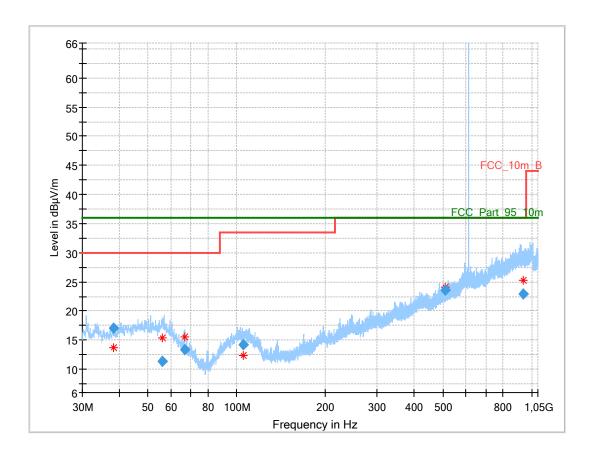


Frequency (MHz)	QuasiPea k (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
39.315	17.19	30.0	12.8	1000	120.0	107.0	٧	187	13
56.131	11.32	30.0	18.7	1000	120.0	141.0	٧	-22	15
66.777	10.89	30.0	19.1	1000	120.0	106.0	٧	247	11
105.962	9.57	33.5	23.9	1000	120.0	170.0	٧	67	12
509.994	23.82	36.0	12.2	1000	120.0	101.0	٧	22	18
608.361	82.55	36.0	-46.6	1000	120.0	121.0	Н	157	20
933.064	23.00	36.0	13.0	1000	120.0	170.0	٧	67	24

© CTC advanced GmbH Page 20 of 33

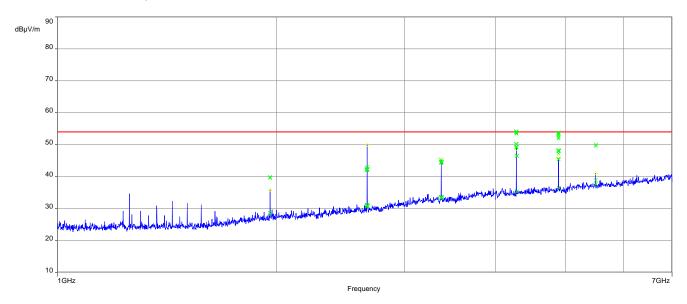

Plot 3: 1 GHz - 7GHz, low channel

© CTC advanced GmbH Page 21 of 33


Plot 4: 9 kHz - 30 MHz, mid channel

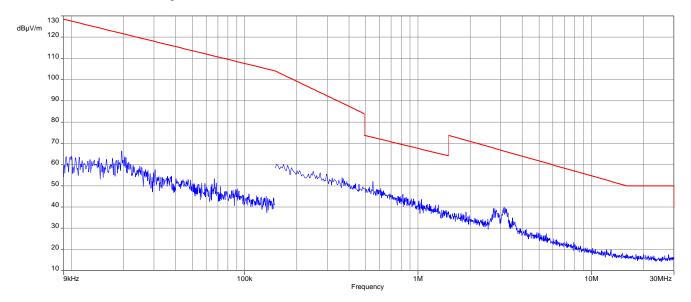
© CTC advanced GmbH Page 22 of 33

Plot 5: 30 MHz - 1 GHz, mid channel



Frequency (MHz)	QuasiPea k (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
38.362	17.07	30.0	12.9	1000	120.0	107.0	Н	-15	13
56.192	11.36	30.0	18.6	1000	120.0	170.0	٧	292	15
66.752	13.40	30.0	16.6	1000	120.0	120.0	٧	186	11
105.410	14.29	33.5	19.2	1000	120.0	158.0	٧	247	13
510.000	23.58	36.0	12.4	1000	120.0	170.0	Н	94	18
610.910	81.86	36.0	-45.9	1000	120.0	122.0	Н	157	21
933.450	22.98	36.0	13.0	1000	120.0	170.0	Н	67	24

© CTC advanced GmbH Page 23 of 33

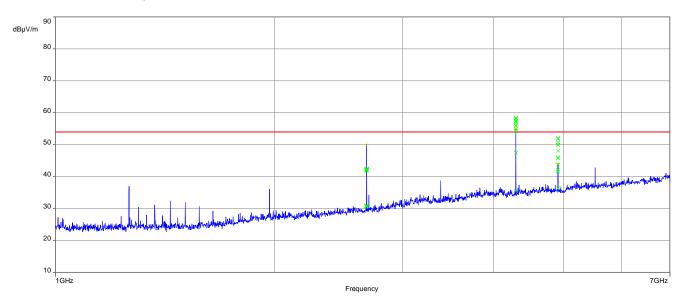

Plot 6: 1 GHz - 7GHz, mid channel

© CTC advanced GmbH Page 24 of 33

Plot 7: 9 kHz - 30 MHz, high channel

© CTC advanced GmbH Page 25 of 33

Plot 8: 30 MHz - 1 GHz, high channel



Frequency (MHz)	QuasiPea k (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
33.391	16.89	30.0	13.1	1000	120.0	143.0	٧	180	12
59.547	14.76	30.0	15.2	1000	120.0	170.0	Н	67	14
87.972	11.49	30.0	18.5	1000	120.0	170.0	٧	292	10
244.449	16.04	36.0	20.0	1000	120.0	170.0	٧	-11	13
428.325	20.22	36.0	15.8	1000	120.0	140.0	Н	247	18
613.983	81.82	36.0	-45.8	1000	120.0	124.0	Н	165	21
813.742	25.89	36.0	10.1	1000	120.0	146.0	Н	67	22

© CTC advanced GmbH Page 26 of 33

Plot 9: 1 GHz - 7GHz, mid channel

© CTC advanced GmbH Page 27 of 33

12.3 Receiver spurious emissions

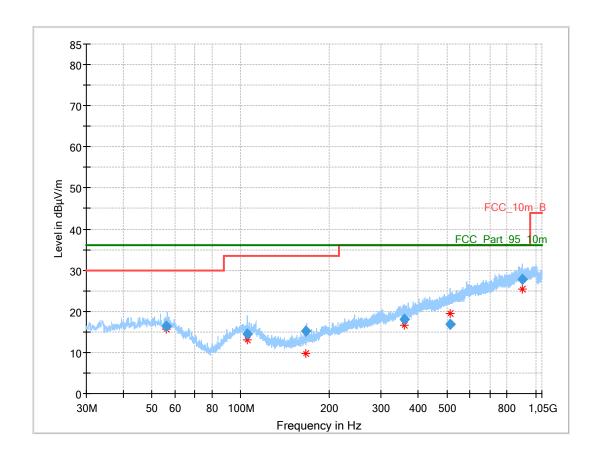
Measurement:

Measurement parameter				
Detector:	Peak / Average			
Sweep time:	Auto			
Video bandwidth:	f < 1 GHz : 120 kHz			
video bandwidth.	f ≥ 1GHz : 1 MHz			
Resolution bandwidth:	f < 1 GHz : 120 kHz			
Resolution bandwidth.	f ≥ 1GHz : 1 MHz			
Span:	-/-			
Trace mode:	Max. hold			
Test setup:	See chapter 7.2 A & B			
Measurement uncertainty:	See chapter 9			

Limits:

FCC	FCC		IC		
-/-	-/-		RSS 210 Issue 10 C.3 (B) RSS Gen Issue 5		
	Receiver Spurious I		ed)		
Frequency (MHz)	Field streng	gth (μV/m)	Measurement distance (m)		
30 - 88	100 (40 dBμV/m)		3		
88 - 216	150 (43.5 dBμV/m)		3		
216 - 960	200 (46 dBμV/m)		3		
above 960	500 (54 d	BμV/m)	3		

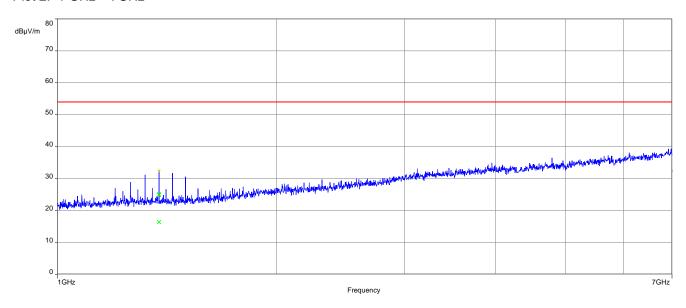
	SPURIOUS EMISSIONS LEVEL (dBµV/m)*							
Lowest channel			Middle channel			Highest channel		
Frequency	Frequency Detector Level Frequency Detector Level Fr			Frequency	Detector	Level		
All detected peak emissions are below the average limit.								
,	-/-	-/-	,	-/-	-/-	,	-/-	-/-
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-


^{*} For emissions below 1 GHz, see table below the plot

© CTC advanced GmbH Page 28 of 33

Plots:

Plot 1: 30 MHz - 1 GHz



Frequency (MHz)	QuasiPea k (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
56.006	16.27	30.0	13.7	1000	120.0	163.0	٧	78	15
105.588	14.42	33.5	19.1	1000	120.0	170.0	Н	14	13
166.980	15.20	33.5	18.3	1000	120.0	102.0	٧	247	10
357.993	18.04	36.0	18.0	1000	120.0	170.0	Н	11	16
512.268	16.91	36.0	19.1	1000	120.0	170.0	٧	67	19
904.763	27.75	36.0	8.3	1000	120.0	170.0	Н	247	24

© CTC advanced GmbH Page 29 of 33

Plot 2: 1 GHz - 7GHz

13 Observations

No observations except those reported with the single test cases have been made.

© CTC advanced GmbH Page 30 of 33

14 Glossary

EUT	Equipment under test
DUT	Device under test
UUT	Unit under test
GUE	GNSS User Equipment
ETSI	European Telecommunications Standards Institute
EN	European Standard
FCC	Federal Communications Commission
FCC ID	Company Identifier at FCC
IC	Industry Canada
PMN	Product marketing name
HMN	Host marketing name
HVIN	Hardware version identification number
FVIN	Firmware version identification number
EMC	Electromagnetic Compatibility
HW	Hardware
SW	Software
Inv. No.	Inventory number
S/N or SN	Serial number
С	Compliant
NC	Not compliant
NA	Not applicable
NP	Not performed
PP	Positive peak
QP	Quasi peak
AVG	Average
ОС	Operating channel
OCW	Operating channel bandwidth
OBW	Occupied bandwidth
ООВ	Out of band
DFS	Dynamic frequency selection
CAC	Channel availability check
OP	Occupancy period
NOP	Non occupancy period
DC	Duty cycle
PER	Packet error rate
CW	Clean wave
MC	Modulated carrier
WLAN	Wireless local area network
RLAN	Radio local area network
DSSS	Dynamic sequence spread spectrum
OFDM	Orthogonal frequency division multiplexing
FHSS	Frequency hopping spread spectrum
GNSS	Global Navigation Satellite System
C/N₀	Carrier to noise-density ratio, expressed in dB-Hz

© CTC advanced GmbH Page 31 of 33

15 Document history

Version	Applied changes	Date of release
-/-	Initial release	2020-10-01

16 Accreditation Certificate - D-PL-12076-01-04

first page	last page
Deutsche Akkreditierungsstelle Deutsche Akkreditierungsstelle GmbH Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signstory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken Is competent under the terms of DIN EN ISO/IEC 17025:2018 to carry out tests in the following fields: Telecommunication (TC) and Electromagnetic Compatibility (EMC) for Canadian Standards	Deutsche Akkreditierungsstelle GmbH Office Berlin Spittelmarkt 10 Europe-Allee 52 Bundesallee 100 10117 Berlin 60927 Frankfurt am Main 38116 Braunschweig
The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation number D-Pt-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 07 pages. Registration number of the certificate: D-Pt-12076-01-04 Frankfurt am Main, 09.06.2020 by order (pd. ing. tiffs.rifel tigner Head of Division The certificate tagether with its annex reflects the status at the time of the date of issue. The current status of the scope of scoreficiation can be found in the distalous of accreditate bodies of Devisiohe Abstractionungstatic Gmbst. Natus //www.doblsts.do/en/content/foccredited-bodies-doblss Insurance and the distalous of accreditate bodies and Devisiohe Abstractionungstatic Gmbst.	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkreditkerungsstelle GmbH (DAkS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overleaf. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAMS. The accreditation was granted pursuant to the Act on the Accreditation Body (AkStelleG) of 31 July 2008 (Federal aux Gazette J. 2625) and the Regulation (EQN Po. 752.008 of the European Parlament and of the Council of 9 July 2008 setting out the requirements for accreditation and market surveillance relating to the marketing of products (Diffical Journal of the European Lincol. 128 of 9 July 2008, p. 30). DAMS is a signatory to the Multilateral Agreements for Mutual Recognition of the European co-operation for Accreditation (EA). International Accreditation Formul (RA) and International Laboratory Accreditation Cooperation (ILIAC). The signatories to these agreements recognise each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EA: www.uropean-accreditation.org ILAC: www.lac.org IAF: www.lac.org

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-04e.pdf

© CTC advanced GmbH Page 32 of 33

17 Accreditation Certificate – D-PL-12076-01-05

first page	last page
Deutsche Akkreditierungsstelle GmbH Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken is competent under the terms of DIN EN ISO/IEC 17025:2018 to carry out tests in the following fields: Telecommunication (FCC Requirements)	Deutsche Akkreditierungsstelle GmbH Office Berlin Spittelmarkt 10 Europa-Allee S2 60327 Frankfurt am Main Bundesallee 100 38116 Braunschweig Bundesallee 100 38116 Braunschweig
The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation number D-VL-12076-01.1t comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 05 pages. Registration number of the certificate: D-PL-12076-01-05 Frankfurt am Main, 09.06.2020 by origin Disk-Ing. (Physical Engels of University of Disk-Ing. (Physical Engels of Enge	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkreditierungsstelle GmbH (DA&S). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overleaf. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DA&LS. The accreditation was granted pursuant to the Act on the Accreditation Body (Ak&StelleG) of 31.July 2009 (Federal Law Gazatet p. 2623) and the Regulation (EC) No 765/2009 of the European Parlament and of the Council of 3 July 2008 Festing out the requirements for accreditation and market surveillance relating to the marketing of products (Official Journal of the European Union 1.218 of 3 July 2008, p. 30). PA&S is a ligatory to the Molitotarion accreditation for some parlament and accreditation of the European Union 1.218 of 3 July 2008, p. 30). PA&S is a ligatory to the Molitotarion accreditation accreditation and parket surveillance relating to the marketing of products (Official Journal of the European Union 1.218 of 3 July 2009, p. 30). PA&S is a ligatory to the Molitotarion accreditation accreditation and parket surveillance relating to the European Union 1.218 of 3 July 2009, p. 30). PA&S is a ligatory to the Molitotarion accreditation accreditation accreditation of the European Union 1.218 of 3 July 2009, p. 30). PA&S is a ligatory to the Molitotarion accreditation accreditation of the European Union 2.218 of 3 July 2009, p. 30). PA&S is a ligatory to the Molitotarion accreditation accredita

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-05e.pdf

© CTC advanced GmbH Page 33 of 33