

COMPLIANCE WORLDWIDE INC. TEST REPORT 114-21R2

In Accordance with the Requirements of FCC PART 15.247, SUBPART C Innovation, Science and Economic Development Canada RSS-247, Issue 2

> Issued to Philips Medical Systems 3000 Minuteman Drive Andover, MA 01810 978-659-2800

for the MX40 Short Range Radio

Model FCC ID: PQC-MX40SH2C4 IC: 3549B-MX40SH2C4

Report Issued on April 7, 2021 Revision R1 Issued on June 16, 2021 Revision R2 Issued on May 16, 2022

Tested by Brian F. Breault

Reviewed by

This test report shall not be reproduced, except in full, without written permission from Compliance Worldwide, Inc.

Table of Contents

1 Scope	3
2 Product Details	3
2.1 Manufacturer	3
2.2 Model Number	3
2.3 Serial Number	3
2.4 Description of EUT	3
2.5 Power Source	3
2.6 Hardware Revision	3
2.7 Software Revision	3
2.8 Firmware Revision	3
2.9 Modulation Type	3
2 10 Operating Freq	3
2 11 FMC Modifications	3
3 Product Configuration	0
3.1 Operational Characteristics & Software	o
3.2 Operating Instructions	0
3.3 ELIT Hardware	- 1
3.4 EUT Cobles/Transducers	4 1
3.4 EUT Gables/ Hallsducers.	4
3.5 Support Equipment Cables/Terreducere	5
3.6 Support Equipment Cables/ fransoucers.	5
3.7 Block Diagram.	6
4 Measurements Parameters.	6
4.1 Measurement Equipment Used to Perform Test.	. (
4.2 Software Used to Perform Test.	[
4.2 Measurement & Equipment Setup	7
4.3 Measurement Procedure	8
4.4 Measurement Uncertainty	9
5 Choice of Equipment for Test Suits	10
5.1 Choice of Model	10
5.2 Presentation	10
5.3 Choice of Operating Frequencies	10
5.4 Modes of Operation	10
6 Measurement Summary	.11
7 Measurement Data	.12
7.1 Antenna Requirement	.12
7.2 Minimum 6 dB Bandwidth	12
7.3 Bandwidth of Momentary Signals	. 14
7.4 Maximum Peak Conducted Output Power	. 16
7.5 Operation with directional antenna gains greater than 6 dBi	19
7.6 Transmitter Sourious Radiated Emissions	20
7 7 Emissions in Non-Restricted Frequency Bands	21
7.8 Harmonic Emissions in the Restricted Bands of Operation	22
7.9 Band Edge and Restricted Band Measurements	.22
7 10 Pask Power Spectral Density	28
7 11 Duty Cycle Correction Factor	20
8 Test satun Images	30
0 Test Site Description	.02 30
a real allo description. Annondix A Spurious Emissions	.59 40
Appendix R - Spullous Ellissions	.40
Appendix D - Emissions in Non-Restricted Frequency Bands	100

1. Scope

This test report certifies that the Philips Medical Systems MX40 2.4 GHz Short Range Radio, as tested, meets the FCC Part 15, Subpart C and Industry Canada RSS 247, Issue 2 requirements. The scope of this test report is limited to the test sample provided by the client, only in as much as that sample represents other production units. If any significant changes are made to the unit, the changes shall be evaluated, and a retest may be required. Revision R2 corrects the antenna gain in Section 7.5, updates the report for using pulsed emissions and duty cycle calculation in sections 7.8, and 7.11.

2. Product Details

2.1. Manufacturer:	Philips Medical Systems
2.2. Model Number:	Model 865351/MX40-2C4
2.3 Serial Number:	US156Z7318 (conducted), US156Z7319 (radiated)
2.4 Description of EUT:	Wireless ECG/SpO2 patient monitor
2.5 Power Source:	3 AA batteries
2.6 Hardware Revision:	B.01.02
2.7 Software Revision:	C.01.54
2.8 Firmware Revision:	A.06.40
2.9. Modulation Type:	DECT
2.10. Operating Freq.:	2400 MHz to 2483.5 MHz
2.11. EMC Modifications:	None

3. Product Configuration

3.1. Operational Characteristics & Software

The MX40 transmits to the Philips Clinical Network located outside the field of test. Patient information will be displayed on an IntelliVue Information Center also located outside the field of test.

3.2. Operating Instructions

The MX40 will be in normal monitoring mode transmitting patient data and waveforms to a frequency corresponding wireless access point where the patient data will be transferred through the IntelliVue Telemetry infrastructure and displayed on the IntelliVue Information Center display. Patient waveforms and data are also displayed on the MX40 display for local monitoring.

For Radiated Emissions testing, fan out the ECG leads and connect them to a termination plate. Extend the SpO2 transducer across the table opposite the ECG leads. The SpO2 transducer will be connected to an SpO2 simulator. Ensure the SpO2 function is set to continuous:

Select "**PATIENT WINDOW**" for the bed being monitored on the PIIC display. From the menu button choices across the bottom of the display, select "**Telemetry Setup**". A window will open and in the "**SpO2 Equipped Devices Only**" section, select the "**Enable SpO2**" checkbox. Below that checkbox, under "**SpO2 Mode**" click the dropdown menu and select "**Continuous**". Below that, ensure the "**Pleth**", "**Pulse**" and "**SpO2 Alarm**" boxes are also checked. For all other tests, the ECG leads will be connected to an ECG simulator.

3. Product Configuration (continued)

3.2. Operating Instructions (continued)

Channel Selection:

- Press Alt + F11 A list of menu items and a "Login to access Windows Desktop Access" window will appear. Enter the username: PhilipsBD¹ (case sensitive) and password: <<Removed>>. The Taskbar should appear at the bottom of the screen.
- 2. Click the Start button at the left side of Taskbar and select Internet Explorer from the list.
- 3. Either use the Internet Explorer dropdown or manually enter the Access Point Controller address: 172.31.225.8¹. The System Access Configuration screen should appear.
- 4. Click on the access point controller in the list on the left side of the window to expand the list and then click on the access point. The 2.4 GHz Smart Hopping AP Configuration should be available on the right side of the window.
- 5. At the bottom of the window, select the "<u>click here</u> to access advanced channel configuration options. The channel selection check boxes should appear. Click on the corresponding box to the channel you wish to select. If the channel is selected, click to deselect. Once complete, click save. The access point will reset to the selected channels.

3.3. EUT Hardware

Block Diag. #	Manufacturer	Model/Part # / Options	Serial Number/ Other	Input Voltage Range (V)	Input Freq. Range (Hz)	Description/Function
1a	Philips	865351/MX40-2C4/ C01, C03, J46, M02, S02	US156Z7318	3.7 - 4.5	DC	2.4 GHz CTS Patient Worn telemetry transceiver
1b	Philips	865351/MX40-2C4/ C01 C03 J46 M02 S02	US156Z7319	3.7 - 4.5	DC	2.4 GHz CTS Patient Worn telemetry transceiver

3.4. EUT Cables/Transducers

Diagram Block Letter	Manufacturer	Model/Part #	Length (m)	Shield Y/N	Description/Function
Α	PHILIPS	989803171871	0.9	Y	ECG 6 LEAD /SPO2 LEAD SET
В	PHILIPS	M11191A	2.5	Ν	SPO ₂ TRANSDUCER

3. Product Configuration

3.5. Support Equipment

Diagram Block #	Manufacturer	Model/Part # / Options	Input Voltage Range	Input Freq. Range (Hz)	Description/Function
2	Cisco	WS-C2960+24PC-S V02	100-240	50-60	Power Over LAN Ethernet Switch S/N FOC2137Y584
3	Philips	453564195161/ ITS3171A	100-240	50-60	Access Point Controller (2.4 GHz) S/N SG71509672
4	Philips	989803171221	48	DC	2.4 GHz CTS Access Point S/N US51736275
5	Philips	453564195161	100-240	50-60	Philips IntelliVue Information Center S/N 2UA8081BX0
6	AXM	AXM2418	12	DC	24" Monitor JTA2017010045
7	Pronk Tech	OxiTest Ox-2	1.5	DC	SpO2 simulator S/N OX5497
8	Biotek	LionHeart2	9	DC	ECG simulator S/N 158997

3.6. Support Equipment Cables / Transducers

Diagram Block #	Manufacturer	Model/Part #	Length (m)	Shield Y/N	Description/Function
D	N/A	N/A	Various	Ν	Cat 5 UTP LAN cable

3. Product Configuration (continued)

3.7. Block Diagram

4. Measurements Parameters

4.1. Measurement Equipment Used to Perform Test

Device	Manufacturer	Model No.	Serial No.	Cal Due	Interval
EMI Test Receiver, 9kHz - 7GHz ¹	Rohde & Schwarz	ESR7	101156	10/16/2022	2 Years
EMI Test Receiver, 10 Hz - 7GHz ¹	Rohde & Schwarz	ESR7	101770	7/17/2022	2 Years
Spectrum Analyzer, 2 Hz to 26.5 GHz ²	Rohde & Schwarz	FSW26	102057	9/13/2021	3 Years
Spectrum Analyzer, 9 kHz to 40 GHz ³	Rohde & Schwarz	FSV40	100899	8/12/2022	2 Years
Spectrum Analyzer 10 Hz – 40 GHz ⁴	Rohde & Schwarz	FSVR40	100909	9/18/2022	2 Years
Loop Antenna 9 kHz - 30 MHz	EMCO	6512	9309-1139	1/28/2022	3 Years
Biconilog Antenna, 30 MHz - 2 GHz	Sunol Sciences	JB1	A050913	6/5/2021	2 Years
Dbl Ridged Guide Antenna 1- 18 GHz	ETS-Lindgren	3117	00143292	3/21/2022	2 Years
Preamplifier, 1 GHz to 26.5 GHz	Hewlett Packard	8449B	3008A01323	9/11/2021	3 Years
Horn Antenna, 18 to 40 GHz	Com-Power	AH-840	101032	9/28/2021	3 Years
Power Splitter/Combiner, to 4.2 GHz	RF Bay, Inc.	4195	14110124	6/16/2021	1 Year
Power Splitter/Combiner, 1-26.5 GHz	Mini Circuits	ZC2PD- 01263-S+	961225	4/1/2022	1 Year
Digital Barometer	Control Company	4195	ID236	4/30/2021	3 Years
Digital Multimeter with Temp Probe	Fluke	187	80350579	9/18/2021	1 Year
Temperature Chamber	Associated Environmental	SD-308	10782	CNR	N/A
¹ ESR7 Eirmware revision: V3 /8	SP3 Date installed:	00/30/2020	Provious V3 48	SP2 installer	107/23/2020

¹ ESR7 Firmware revision: V3.48 SP3, Date installed: 09/30/2020
 ² FSW26 Firmware revision: V4.71 SP1, Date installed: 11/16/2020
 ³ FSV40 Firmware revision: V2.30 SP4, Date installed: 05/04/2016
 ⁴ FSVR40 Firmware revision: V2.23 SP1, Date installed: 08/19/2016

Previous V3.48 SP2, installed 07/23/2020. Previous V4.61, installed 08/11/2020. Previous V2.30 SP1, installed 10/22/2014. Previous V2.23, installed 10/22/2014.

4.2. Software Used to Perform Test

Manufacturer	Software Description	Title or Model #	Rev.	Report Sections
Compliance Worldwide	Test Report Generation Software	Test Report Generator	1.0	Not required for the equipment under test

4. Measurements Parameters 4.3. Measurement & Equipment Setup

2/4/2021, 2/5/2021, 2/12/2021, 2/18/2021, 2/19/2021, 2/23/2021, 3/11/2021, 3/17/2021, 4/6/2021
Sean Defelice
21.2
35
30 kHz to 25 GHz
3 Meters
200 Hz - 10 kHz to 150 kHz 9 kHz - 150 kHz to 30 MHz 120 kHz - 30 MHz to 1 GHz 1 MHz - Above 1 GHz
≥3 x RBW (IFBw)
Peak, QP - 10 kHz to 1 GHz Peak, Avg- Above 1 GHz Unless otherwise specified

Page 8 of 111

4. Measurements Parameters

4.4. Measurement Procedure

Testing was performed in accordance with the requirements detailed in FCC Part 15.247 and ISED RSS-247, Issue 2 using ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices and ISED RSS-GEN, Issue 5 Amendment 1 (March 2019) and Amendment 2 (February 2021).

In addition, FCC KDB 558074, D01: 15.247 Measurement Guidance v05r02, April 2, 2019 are referenced for the testing and requirements detailed in this report.

The device under test can utilize 16 channels. In accordance with ANSI C63.10, section 5.6, three channel frequencies were selected for measurement:

Channel 11 2405 MHz (Low) Channel 18 2440 MHz (Middle) Channel 26 2480 MHz (High)

During all radiated mode measurement testing, the MX40 was mounted on a polystyrene form to facilitate rotating the device through three orthogonal axes as required by ANSI C63.10-2013, section 5.10.1, for a handheld or body worn device. The three axes were defined as follows:

- X-Axis Horizontal with the top of the MX40 facing to the left. The front of MX40 was facing the antenna at 0° turntable azimuth.
- Y-Axis Vertical with the top of MX40 facing up. The front of the MX40 was facing the antenna at 0° turntable azimuth.
- Z-Axis The front of the MX40 was facing up. The bottom of the MX40 was facing the antenna at 0° turntable azimuth.

4. Measurements Parameters

4.5. Measurement Uncertainty

The following uncertainties are expressed for an expansion/coverage factor of K=2.

RF Frequency	± 1x10 ⁻⁸
Radiated Emission of Transmitter	± 4.55 dB
Radiated Emission of Receiver	± 4.55 dB
Temperature	± 0.91° C
Humidity	± 5%

5. Choice of Equipment for Test Suits

5.1 Choice of Model

This test report is based on the test sample supplied by the manufacturer and is reported by the manufacturer to be equivalent to the production units.

5.2 Presentation

This test sample was tested complete with all required ancillary equipment. Refer to Section 3 of this report for product equipment configuration.

5.3 Choice of Operating Frequencies

The Philips MX40 IntelliVue Patient Worn Monitor, as tested, utilizes 16 channels. Refer to Section 4.3, for the selected test frequencies.

5.4 Modes of Operation

The Philips MX40 IntelliVue Patient Worn Monitor has a single mode of operation which is determined by the system software.

6. Measurement Summary

Test Requirement	FCC Rule Reference	ISED Rule Reference	Test Report Section	Result
Antenna Requirement	15.203	RSS-GEN 6.8	7.1	Compliant
Minimum 6 dB Bandwidth	15.247 (a) (2)	RSS-247 5.2 (a)	7.2	Compliant
Bandwidth of Momentary Signals (99% Bandwidth)	N/A	RSS-GEN 6.7	7.3	Compliant
Maximum Peak Conducted Output Power	15.247 (b) (1)	RSS-247 5.4 (d)	7.4	Compliant
Operation with directional antenna gains greater than 6 dBi	15.247 (b) (4)	RSS-247 5.4 (d)	7.5	N/A
Spurious Radiated Emissions	15.247 (d)	RSS-GEN 6.13	7.6	Compliant
Emissions in Non-Restricted Frequency Bands	15.247 (d)	RSS-247 5.5	7.7	Compliant
Harmonic Emissions in the Restricted Bands of Operation	15.247 (d)	RSS-GEN 8.10	7.8	Compliant
Band Edge and Restricted Band Measurements	15.247 (d)	RSS-247 5.5	7.9	Compliant
Peak Power Spectral Density	15.247 (e)	RSS-247 5.2 (b)	7.10	Compliant
Duty Cycle Correction Factor	15.35(c)	RSS-GEN 8.2	7.11	Compliant

7. Measurement Data

7.1. Antenna Requirement (15.203, RSS-GEN 6.8)

- Requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section.
- Status: The MX40 utilizes internal, inaccessible antennas. The housing of the device under test is completely sealed.

7.2. Minimum 6 dB Bandwidth (15.247 (a) (2), RSS-247 5.2(a))

- Requirement: Systems using digital modulation techniques may operate in the 902 928 MHz, 2400 2483.5 MHz, and 5725 5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
- Procedure: Performed in accordance with FCC 558074 D01 DTS Measurement Guidance, v05r02, April 2, 2019, §8.2: DTS bandwidth.
- Conclusion: The device under test meets the minimum 500 kHz 6 dB bandwidth requirement.

Measurement Results - Minimum 6 dB Bandwidth						
	Channel	Frequency	-6 dB Bandwidth	Min6 dB Bandwidth		

Channel	Frequency (MHz)	-6 dB Bandwidth (kHz)	Min6 dB Bandwidth (kHz)	Result
Low	2405	1588.4	>500	Compliant
Middle	2440	1583.4	>500	Compliant
High	2480	1598.4	>500	Compliant

7.2.1. -6 dB Bandwidth, Low Channel 11

Page 12 of 111

7. Measurement Data

7.2. Minimum 6 dB Bandwidth (15.247 (a) (2), RSS-247 5.2 (a)) (continued)

7.2.2. -6 dB Bandwidth, Middle Channel 18

7.2.3. -6 dB Bandwidth, High Channel 26

Page 13 of 111

7.3. Bandwidth of Momentary Signals (RSS-GEN 6.7)

- Requirement: When an occupied bandwidth value is not specified in the applicable RSS, the transmitted signal bandwidth to be reported is to be its 99% emission bandwidth, as calculated or measured. The resolution bandwidth shall be set to as close to 1% of the selected span as is possible without being below 1%. The video bandwidth shall be set to 3 times the resolution bandwidth.
- Procedure: This test was performed utilizing the automated 99% bandwidth function of the spectrum analyzer.
- Conclusion: Compliant, for informational purposes.

Channel	Channel Frequency (MHz)	99% Power Bandwidth (MHz)		
Low	2405	2.896		
Middle	2440	4.760		
High	2480	2.646		

Measurement Results - 99% Bandwidth

7.3.1. 99% Bandwidth, Low Channel 11

7.3. Bandwidth of Momentary Signals (RSS-GEN 6.7)

7.3.2. 99% Bandwidth, Middle Channel 18

7.3.3. 99% Bandwidth, High Channel 26

7.4. Maximum Peak Conducted Output Power (15.247 (b) (1), RSS-247 5.4 (d))

- Requirement: The maximum peak conducted output power of the intentional radiator shall not exceed the following: For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt.
- Procedure: FCC 558074 D01 DTS Measurement Guidance, v05r02, April 2, 2019, Section 8.3.1: Maximum peak conducted output power, RBW ≥ DTS bandwidth, was referenced for the maximum peak conducted output power measurements detailed in this section of this report.
- Test Notes: The maximum peak conducted output power measurements were performed as conducted mode measurements. All insertion loss factors are included in the test measurements and factored as amplitude offset values.

EIRP Measurement Results

Frequency	Measured Peak	c Output Power	Output Power Limit	Result
(MHz)	(dBm)	(mW)	(mW)	
2405	-7.01	0.20	1000.0	Compliant
2440	-5.56	0.28	1000.0	Compliant
2480	-3.41	0.46	1000.0	Compliant

7.4. Maximum Peak Conducted Output Power (15.247 (b) (3), RSS-247 5.4 (d)) (cont.)

7.4.1. Maximum Peak Field Strength, Low Channel 11

7.4.2. Maximum Peak Field Strength, Middle Channel 18

7.4. Maximum Peak Conducted Output Power (15.247 (b) (3), RSS-247 5.4 (d)) (cont.)

Date: 18.FEB.2021 16:09:35

Page 18 of 111

7.5. Operation with directional antenna gains greater than 6 dBi (15.247 (b)(4), RSS-GEN 6.8)

Requirement: If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of FCC Part 15.247, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Systems operating in the 2400 – 2483.5 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

Conclusion: The antenna used with the DUT have a gain of 0.3 dBi (average) 1.8 dBi (peak). Therefore Part 15.247, section (b)(4)) does not apply.

7.6. Transmitter Spurious Radiated Emissions (30 kHz to 30 GHz)

Requirement: (15.209) The Emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency Range (MHz)	Distance (Meters)	Limit (dBµV/m)
0.009 to 0.490	3	128.5 to 93.8
0.490 to 1.705	3	73.8 to 63.0
1.705 to 30	3	69.5
30 to 88	3	40.0
88 to 216	3	43.5
216 to 960	3	46.0
>960	3	54.0

The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

Procedure: This test was performed in accordance with the procedure detailed in ANSI C63.10:2013, section 6.3: Radiated emissions testing—general requirements and FCC 47 CFR Part 15.209: Radiated Emission Limits; General Requirements.

Test measurements were made in accordance with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

- Test Note: The measurements were performed with the device in three orthogonal positions in accordance with ANSI C63.10-2013, sections 5.10.1. Reference section 4.3 of this report for additional information.
- Conclusion: The Emissions from the DUT did not exceed the FCC Part 15,209 field strength levels specified in the above table. Reference Appendix A for the transmitter spurious emission data.

Worst Case Measurements

Range	Frequency	Peak Field Strength	FCC 15.209 Limit	Margin	Result	Appendix A Reference
(MHz)	(MHz)	(dBµV/m)	(dBµV/m)	(dB)		
0.03 to 0.15	0.0522	76.46	113.240	-36.78	Compliant	1.2.6
0.15 to 30.0	0.50325	49.52	73.570	-24.05	Compliant	2.1.9
30 to 1000	800.01	42.91	46.000	-3.09	Compliant	3.3.6
1000 to 10000	4960.1	48.42	54.000	-5.58	Compliant	4.3.5
10000 to 18000	16748.7	53.04	54.000	-0.96	Compliant	5.1.1
18000 to 25000	39429.5	45.98	54.000	-8.02	Compliant	6.1.4

7.7. Emissions in Non-Restricted Frequency Bands (15.247(d), RSS-247 5.5)

- Requirement: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).
- Procedure: The procedure detailed in FCC 558074 D01 DTS Measurement Guidance, v05r02, April 2, 2019, Section 8.5: DTS Emissions in nonrestricted frequency bands was used to perform the following measurements.
- Test Notes: Reference Appendix B for the emissions in non-restricted frequency bands screen captures.

Range	Frequency	Peak Power	W/C In-Band	Margin	Result	Appendix B Reference
(MHz)	(MHz)	(dBm)	(dBm)	(dB)		
30 to 2400	2399.925	-53.89	-10.38	-43.51	Compliant	1.1
2483.5 to 12000	2483.875	-43.40	-7.09	-36.31	Compliant	3.2
12000 to 20000	19492.978	-71.84	-9.03	-62.81	Compliant	2.3
20000 to 25000	23246.343	-73.77	-10.38	-63.39	Compliant	1.4

Worst Case Measurements

7.8. Harmonic Emissions in the Restricted Bands of Operation (15.247 (d), RSS-GEN 8.10)

Freq. (MHz)	Field Strength (dBµV/m)	Field rength Duty BµV/m) Cycle		Limit (dBµV/m)		Margin (dBµV/m)		Antenna Polarity	Result
	Peak		Average	Peak	Average	Peak	Average	(H/V)	
4810.000	52.26	-13.01	39.25	74.00	54.00	-21.74	-14.75	V	Compliant
4880.000	53.43	-12.16	41.27	74.00	54.00	-20.57	-12.73	Н	Compliant
4960.000	53.81	-12.65	41.16	74.00	54.00	-20.19	-12.84	Н	Compliant
7320.000	50.11	-12.16	37.95	74.00	54.00	-23.89	-16.05	Н	Compliant
7440.000	51.17	-12.65	38.52	74.00	54.00	-22.83	-15.48	V	Compliant
12025.000	58.58	-13.01	45.57	74.00	54.00	-15.42	-8.43	Н	Compliant
12200.000	58.22	-12.16	46.06	74.00	54.00	-15.78	-7.94	Н	Compliant
12400.000	57.81	-12.65	45.16	74.00	54.00	-16.19	-8.84	V	Compliant
19240.000	59.48	-13.01	46.47	74.00	54.00	-14.52	-7.53	Н	Compliant
19520.000	59.30	-12.16	47.14	74.00	54.00	-14.70	-6.86	V	Compliant
19840.000	59.12	-12.65	46.47	74.00	54.00	-14.88	-7.53	V	Compliant
22320.000	61.70	-12.65	49.05	74.00	54.00	-12.30	-4.95	V	Compliant

Measurement Results – Worst Case Harmonic Emissions

Note: A Duty Cycle correction value for each fundamental frequencies tested in Section 7.11 of this report was used to determine the average value for pulsed emissions for the device.

Page 22 of 111

7.9. Band Edge and Restricted Band Measurements (15.247 (d), RSS-247 5.5)

Requirement: Lower Band Edge

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. Attenuation below the general limits specified in Section 15.209(a) is not required.

Upper Band Edge

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

Procedures: <u>Lower Band Edge</u> - ANSI C63.10:2013, section 6.10.4: Authorized-band band-edge measurements (-20 dB delta relative method).

<u>Upper Band Edge</u> – ANSI C63.10:2013, section 6.10.5: Restricted-band edge, marker delta method measurement. The EUT uppermost frequency falls within two standard bandwidths of the band edge.

Conclusion: The device under test meets the band edge requirements

7.9. Band Edge and Restricted Band Measurements (15.247 (d), RSS-247 5.5)

7.9.1. Lower Band Edge

Measurement Results

Lowest Channel (MHz)	In-E Peak Mea (d	Band asurement Bm)	Band Edge Frequency (MHz) Band Edge Measurement (dBm)		Required Offset (dB)	Actual Offset (dB)	Result	
()	Peak	Average	()	Peak	Average	()	()	
2405	-10.79		2400	-50.82		>20	40.03	Compliant

7.9.1.1. Lower Band Edge

Date: 17.MAR.2021 15:10:10

7.9. Band Edge and Restricted Band Measurements (15.247 (d), RSS-247 5.5)

7.9.2. Upper Band Edge

Measurement Results

l	Highest Channel Frequency	Max Field S (dBj	imum Strength uV/m)	Ban Field (dB	d Edge Strength sµV/m)	ige FCC ngth 15.209 m) (dBµ		M (argin (dB)	Result
	(MHz)	Peak	Average	Peak	Average	Peak	Average	Peak	Average	
ſ	2480	93.89	64.01	71.48	37.51	74	54	-2.52	-16.49	Compliant

7.9.2.1. In-Band Field Strength Measurement of the Fundamental Emission

16:59:50 04.02.2021

7.9. Band Edge and Restricted Band Measurements (15.247 (d), RSS-247 5.5)

7.9.3. Lower Restricted Band

Measurement Results

Fi	requency (MHz)	Field Strength (dBµV/m)		FCC Part 15.209 Limit (dBµV/m)		Maı (d	Result	
		Peak	Average	Peak	Average	Peak	Average	
2	2388.328	53.28	31.78	74.00	54.00	-20.72	-22.22	Compliant

7.9.3.1. Lower Restricted Band

Date: 11.MAR.2021 12:09:02

7.9. Band Edge and Restricted Band Measurements (15.247 (d), RSS-247 5.5)

7.9.4. Upper Restricted Band

Measurement Results

Frequency ¹ (MHz)	Field S (dBµ	trength V/m)	FCC Part 15.209 Limit (dBµV/m)		Margin (dB) ²		Result
	Peak	Average	Peak	Average	Peak	Average	
2483.5148	70.21	36.91	74	54	-3.79	-17.09	Compliant

7.9.4.1. Upper Restricted Band

09:55:09 05.02.2021

7.10. Peak Power Spectral Density (15.247(e), RSS-247 5.2 (b))

- Requirement: For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.
- Procedure: This measurement was performed in accordance with FCC OET 558074 D01 DTS Measurement Guidance, v05r02, dated April 9, 2019, section 8.4: Method PKPSD (peak PSD).
- Test Notes: Conducted mode measurements were taken for this section of the report.
- Conclusion: The DUT meets the Part 15.247(e) power spectral density requirement.

Measurement Results - Power Spectral Density

Channel Frequency	Measured Frequency	Peak Power Spectral Density	Output Power Limit	Margin	Result
(MHz)	(MHz)	(dBm)	(dBm)	(dB)	
2405	2404.5540	-21.23	8.0	-29.2	Compliant
2440	2440.1175	-20.35	8.0	-28.4	Compliant
2480	2479.9113	-18.11	8.0	-26.1	Compliant

7.10.1. Peak Power Spectral Density, Low Channel 11

7.10. Peak Power Spectral Density (15.247(e), RSS-247 5.2 (b)) (continued)

7.10.2. Peak Power Spectral Density, Middle Channel 18

7.10.3. Peak Power Spectral Density, High Channel 26

7.11. Duty Cycle Correction Factor (FCC Part 15.35(c), RSS-GEN 8.2)

- Requirement: When the field strength or envelope power is not constant or it is in pulses, and an average detector is specified to be used, the value of field strength or power shall be determined by averaging over one complete pulse train during which the field strength or power is at its maximum value, including blanking intervals within the pulse train, provided that the pulse train does not exceed 0.1 seconds. In cases where the pulse train exceeds 0.1 seconds, the average value of field strength or output power shall be determined during a 0.1 seconds interval during which the field strength or power is at its maximum value.
- Procedure: The duty cycle correction was determined using the information provided in ANSI C63.10-2013, Section 7.5: Procedure for determining the average value of pulsed emissions. Note: This is the maximum duty cycle allowed by the operational software/firmware for the device.

Channel Frequency	Time On (Sum) T _{on}	Time per Period T _{on} + T _{off}	Duty Cycle (DC)		Maximum Peak Conducted Power	Duty Cycle Correction (10 log(DC))	Corrected Conducted Power	
(MHz)	(mS)	(mS)	Ton/(Ton + Toff)	(%)	(dBm)	dB	dBm	mW
2405	6.40	128.00	0.05000	5.0	-7.01	-13.01	-20.020	0.0100
2440	7.80	128.20	0.06084	6.1	-5.56	-12.16	-17.718	0.0169
2480	7.00	128.80	0.05435	5.4	-3.41	-12.65	-16.058	0.0248

7.11.1. Ton and Ton + Toff, Lowest Channel, 11

Att SGL TR	evel (15 00.C	8m Offset 17.87 dB dB SWT 200 ms	 RBW 1 MHz VBW 3 MHz 				
-10 dBm		MX40 23/45 RG -17	SRR @ 1Pk Clrw M6 .000 dBm		D7[1] M1[1]	D7	0.10 d 128.000 m -8.43 dBr 0.000000	
-30 dBm -40 dBm -50 dBm								
-60 dBr	Mer	of believ	here and the party of the second bulk of	والمراجعة والمحافظ المحافظ المحافظ والمحاف	- schene trades block on the	manuful in theme		
-70 dBm -80 dBm -90 dBm	-	-						
-70 dBm -80 dBm -90 dBm GF 2.44	05 GH	z		1001 pt:	5		20.0 ms/	
-70 dBm -80 dBm -90 dBm CF 2.41 Marker Type 1	D5 GH	z	Y-value	1001 pts	5	Euncti	20.0 ms/	
-70 dBm -80 dBm -90 dBm GF 2.44 4arker Type M1	D5 GH	z Trc	X-value 0.0 s	1001 pt: Y-value -8.43 dBm	5 Function	Functi	20.0 ms/	
-70 dBm -80 dBm -90 dBm GF 2.44 Marker Type M1 M2	D5 GH	z <u>Trc</u> 1 1	X-value 0.0 s 2.8 ms	1001 pts -8.43 dBm -8.43 dBm	5 Function	Functi	20.0 ms/	
-70 dBm -80 dBm -90 dBm CF 2.44 Marker Type M1 M2 M3	D5 GH	z Trc 1 1 1	X-value 0.0 s 2.8 ms 4.8 ms	1001 pts -8.43 dbm -8.43 dbm -8.43 dbm	5 Function	Functi	20.0 ms/	
-70 dBm -80 dBm -90 dBm GF 2.44 Marker Type M1 M2 M3 M4	D5 GH	Z Trc 1 1 1 1 1 1	X-value 0.0 s 2.8 ms 4.8 ms 8.0 ms	1001 pts -8.43 dbm -8.43 dbm -8.43 dbm -8.45 dbm	Function	Functi	20.0 ms/	
-70 dBm -80 dBm -90 dBm GF 2.44 Marker Type M1 M2 M3 M4 M5	D5 GH	z Trc 1 1 1 1 1 1	X-value 0.0 s 2.8 ms 4.8 ms 8.0 ms 10.0 ms	1001 pt: -8.43 dBm -8.43 dBm -8.45 dBm -8.96 dBm -8.96 dBm	5 Function	Functi	20.0 ms/	
-70 dBm -70 dBm -90 dBm -90 dBm CF 2.44 Marker Type M1 M2 M3 M4 M5 M6	D5 GH	Z Trc 1 1 1 1 1 1 1	X-value 0.0 s 2.8 ms 4.8 ms 8.0 ms 10.0 ms 10.6 ms	1001 pt: -8.43 dbm -8.43 dbm -8.45 dbm -8.45 dbm -8.96 dbm -8.43 dbm -8.30 dbm	5 Function	Functi	20.0 ms/	
-70 dBm -70 dBm -90 dBm GF 2.44 Marker Type M1 M2 M3 M4 M5 M6 D7	D5 GH Ref	Z Trc 1 1 1 1 1 1 1 1 1	X-value 0.0 s 2.8 ms 4.8 ms 8.0 ms 10.0 ms 10.6 ms 128.0 ms 128.0 ms	1001 pts -8.43 dBm -8.43 dBm -8.43 dBm -8.45 dBm -8.43 dBm -8.43 dBm -8.30 dBm 0.10 dB	5 Function	Functi	20.0 ms/	

Page 30 of 111

7.11. Duty Cycle Correction Factor (FCC Part 15.35(c), RSS-GEN 8.2) Continued

7.11.2. T_{on} and T_{on} + T_{off}, Middle Channel, 18

Date: 17.MAR.2021 15:42:06

7.11.3. T_{on} and T_{on} + T_{off} , Upper Channel, 26

Specta Ref L	rum evel (m Offset 17.87 d	8 - RBW 1 MHz				
Att		0 0	18 = SWT 200 m	s 🕳 VBW 3 MHz				
SGL TR	G: VID	MX40 /	SRR @1Pk Cirw					
	**		ART		07[1]	-	-0.72	
-10 dBm	1	MUN BY 129 14	(DEIN			† þ 7	128.200	
00 10		RG -17	000 dBm		M1[1]		-4.86 dE	
-20 gbn							0.00000	
-30 dBm	-	++++	-	-				
-40 dBm	-	++++		-				
-50 dBm	1			-				
-60 dBm								
Har when the	sheel 4	ball Well by	the shark and a shark the share a share the share	by a shall be have a shall be a s	NAME HALF HAVE A MARCH HAVE	personal blocks	Alter alknowld repair mailerance	
-70 dBm	1-							
-80 dBm								
00 000								
-90 dBm	-					_		
CF 2.48	B GHz			1001 pt:	5		20.0 ms	
Marker								
Туре	Ref	Trc	X-value	Y-value	Function	Funct	ion Result	
M1		1	0.0 s	-4.86 dBm				
M2		1	2.8 ms	-4.87 dBm			the second secon	
MЗ	-	1	6.2 ms	-4,85 dBm				
M4		1	8.4 ms	-4.90 dBm				
M5		1	11.8 ms	-4,76 dBm				
M6	641	1	13.8 ms	-4,87 dBm				
07	MIT	1	128.2 ms	-0.72 dB				
		11			Dec. du	the second se	17.03.2021	

Date: 17.MAR.2021 15:48:42

Page 31 of 111

8.1. Radiated Emissions - Front View

Page 32 of 111

8.2. Radiated Emissions – Rear View Below 30 MHz

Page 33 of 111

8.3. Radiated Emissions – Rear View 30 MHz to 1 GHz

Page 34 of 111

8.4. Microwave Emissions - Front View

Page 35 of 111

8.5. Microwave Emissions – Rear View 1GHz to 18 GHz

Page 36 of 111

8. Test Setup Images

8.6. Microwave Emissions – Rear View Above 18 GHz

Page 37 of 111

8. Test Setup Images

8.7. Microwave Emissions - Conducted Mode Measurements

Page 38 of 111

9. Test Site Description

Compliance Worldwide is located at 357 Main Street in Sandown, New Hampshire. The test sites at Compliance Worldwide are used for conducted and radiated emissions testing in accordance with the Federal Communications Commission (FCC) and Industry Canada standards. Through our American Association for Laboratory Accreditation (A2LA) ISO Guide 17025 Accreditation our test sites are designated with the FCC (designation number **US1091**), Industry Canada (file number **IC 3023A-1)** and VCCI (Member number 3168) under registration number A-0274.

Compliance Worldwide is also designated as a Phase 1 CAB under APEC-MRA (US0132) for Australia/New Zealand AS/NZS CISPR 22, Chinese-Taipei (Taiwan) BSMI CNS 13438 and Korea (RRA) KN 11, KN 13, KN 14-1, KN 22, KN 32, KN 61000-6-3, KN 61000-6-4.

The radiated emissions test site is a 3 and 10 meter enclosed open area test site (OATS). Personnel, support equipment and test equipment are located in the basement beneath the OATS ground plane.

The conducted emissions site is part of a 16' x 20' x 12' ferrite tile chamber and uses one of the walls for the vertical ground plane. A second conducted emissions site is also located in the basement of the OATS site with a 2.3×2.5 meter ground plane and a 2.4×2.4 meter vertical wall.

The radiated emissions test site for measurements above 1GHz is a 3 Meter open area test site (OATS) with a 3.6 by 3.6 meter anechoic absorber floor patch to achieve a quasi-free space measurement environment per ANSI C63.4/C63.10 and CISPR 16-1-4 standards.

The sites are designed to test products or systems 1.5 meters W x 1.5 meters L x 2.0 meters H, floor standing or table top.

A1. Spurious Radiated Emissions (30 kHz – 150 kHz) Test Results

A1.1. Channel 11, 2405 MHz

A1.1.1. Measurement Results: X-Axis, Parallel Antenna

PBW (CISOD) 20	0 Hz MT 100 ms	1002 0314 CBL Ch	mber Antenna (81 - 1000
Input 1 DC Att 1	0 dB Preamn OFF Step	TD Scan	inder Antenna (101 - 1000
114-21 Philips MX40 SRR Scar	n 💿 1Pk Max	10 000	
120 dBµV/m		M1[1] 0,000 s	74.55 dBµV/m 52.250 kHz
FCC Part 15,209 Below 30 MHz.L	IN		
110 dBµV/m			
100 dBµV/m			
90 dBµV/m			
80 dBµV/m	M1		
ZO dBuV/m			
60 dBµV/m-	warment warment warmen war war	Launa .	1
50 dBµV/m		and marken the	L'approver white water we
40 dBµV/m			
30 dBµV/m			Ť
Start 30.0 kHz			Stop 150.0 kHz
M		Manguring	02/19/2021

Date: 19.FEB.2021 10:27:50

A1.1.2. Measurement Results: X-Axis, Perpendicular Antenna

114-21 Philips MX40 SRR Scan	1Pk Max	TD Scall	
120 dBµV/m	N	M1[1] 0.000 s	75.33 dBµV/n 52.250 kHz
110 dBµV/m			
100 dBµV/m	-		
90 dBµV/m			
80 dBµV/m	MI		
70 dBµV/m			
60 dBµV/m	Markey Commenciation	m Mithing the start	
50 dBµV/m	-		Man Markan Am Carlow Markan
40 dBµV/m			
30 dBµV/m		-	
Start 30.0 kHz	1		Ston 150.0 kHz

Page 40 of 111

A1. Spurious Radiated Emissions (30 kHz - 150 kHz) Test Results

A1.1. Channel 11, 2405 MHz

A1.1.3. Measurement Results: X-Axis, Ground-Parallel Antenna

A1.1.4. Measurement Results: Y-Axis, Parallel Antenna

- A1. Spurious Radiated Emissions (30 kHz 150 kHz) Test Results
 - A1.1. Channel 11, 2405 MHz

A1.1.5. Measurement Results: Y-Axis, Perpendicular Antenna

A1.1.6. Measurement Results: Y-Axis, Ground-Parallel Antenna

Page 42 of 111

A1. Spurious Radiated Emissions (30 kHz - 150 kHz) Test Results

A1.1. Channel 11, 2405 MHz

A1.1.7. Measurement Results: Z-Axis, Parallel Antenna

	RBW (CISPR) 200 Hz	MT 100 ms	1002 0314 (CBL Chamber Antenna (.01 - 1000)
Input 1 DC	Att 10 dB	Preamp OFF St	ep TD Scan	SDE SHBIIDOF MITCHING (191 - 1998)
114-21 Philip	s MX40 SRR Scan 😑	Pk Max		
120 dBµV/m-	09 Below 30 MHz.LIN		M1[1] 0.000 s	74.57 dBµV/m 52.200 kHz
110 dBµV/m-				
100 dBµV/m-				
90 dBµV/m—				
80 dBµV/m—		M1		
70 dBuV/m-	Mannamana	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
60 dBµV/m-	A CONTRACTION OF A CONTRACT OF A CONTRACT. OF A CONTRACT OF A CONTRAC	when the had dependence	min	
50 dBµV/m—			and and a start of a	and the second s
40 dBµV/m—				
30 dBµV/m—				
Start 30.0 k	Hz			Stop 150.0 kHz
	π		Measuring	02/19/2021 10:43:50 AM

A1.1.8. Measurement Results: Z-Axis, Perpendicular Antenna

Receiver	MT 100 ms	1002 0314 CBI	Chamber Antenna (01 – 1000
Input 1 DC Att 10 di	Preamp OFF Step	TD Scan	Conditibol Antonnia (102 - 2000
114-21 Philips MX40 SRR Scan 🧉	1Pk Max		
120 dBµV/m-		M1[1] 0.000 s	75.24 dBµV/m 52.200 kHz
110 dBµV/m			
100 dBµV/m			
90 dBµV/m			
80 dBµV/m	MI		
70 dBuV/m-			
60 dBµV/m-	man winter war war	in all have providence	
50 dBµV/m			a manufathan manufathan
40 d8µV/m			
30 dBµV/m			
Start 30.0 kHz)	Stop 150.0 kHz
N		Measuring	02/19/2021 10:46:49 AM

Page 43 of 111

A1. Spurious Radiated Emissions (30 kHz – 150 kHz) Test Results

A1.1. Channel 1, 2405 MHz

A1.1.9. Measurement Results: Z-Axis, Ground Parallel Antenna

Receiver						
	RBW (CISPR) 200 H	z MT 100	ms	1002 0314	CBL Chamber	Antenna (,01 - 1000 /
Input 1 DC	Att 10 d	B Preamp C	FF Step TD Scar	1	2.5 4 11	
114-21 Philip	ps MX40 SRR Scan	1Pk Max				
120 dBuV/m-				M1[1]		76.05 dBµV/m
CC Part 15.2	209 Below 30 MHz.LIN			0.000 \$	1	32.200 KH2
110 dBµV/m-				-	_	
	1					
100 dBµV/m-						
90 dBµV/m—						
80 dBµV/m—		M1			-	
70 dBµV/m-	mume who we				-	
60 dBµV/m—	- And a respectively of	worked have noted	Am manning	hurse		
50 dBµV/m—	_	_	2 - 1 - 1 - 2 - 1 - 2 - 1 - 2 - 2 - 2 -		Mandallow	and the second second
40 dBµV/m—				_		
TF						
Start 30.0	kHz				_	Stop 150.0 kHz
	Л		Me	asuring 🚺	aannan 🏘	02/19/2021 12:12:56 PM

Date: 19.FEB.2021 12:12:55

Page 44 of 111

A1. Spurious Radiated Emissions (30 kHz - 150 kHz) Test Results

A1.2. Channel 18, 2440 MHz

A1.2.1. Measurement Results: X-Axis, Parallel Antenna

Date: 19.FEB.2021 11:11:42

A1.2.2. Measurement Results: X-Axis, Perpendicular Antenna

Page 45 of 111

A1. Spurious Radiated Emissions (30 kHz – 150 kHz) Test Results

A1.2. Channel 18, 2440 MHz

A1.2.3. Measurement Results: X-Axis, Ground-Parallel Antenna

A1.2.4. Measurement Results: Y-Axis, Parallel Antenna

120 dBµV/m	M1[1] 0.000 s	74.84 dBµV/n 52.200 kH
110 dBµV/m		
100 dBµV/m		
90 d8µV/m		
30 dBµV/mМ1		
70 dBµV/m		
50 dBµV/m-	Reven manufic and manufic and	
50 dBµV/m	11.24	and an and an and an and
40 d8μV/m		
30 dBuV/m-		

Page 46 of 111

A1. Spurious Radiated Emissions (30 kHz – 150 kHz) Test Results

A1.2. Channel 18, 2440 MHz

A1.2.5. Measurement Results: Y-Axis, Perpendicular Antenna

A1.2.6. Measurement Results: Y-Axis, Ground-Parallel Antenna

Page 47 of 111

A1. Spurious Radiated Emissions (30 kHz - 150 kHz) Test Results

A1.2. Channel 18, 2440 MHz

A1.2.7. Measurement Results: Z-Axis, Parallel Antenna

Receiver			and a start of the	A
	RBW (CISPR) 200 H	Iz MT 100 ms	1002 0314 CBL Cha	amber Antenna (.01 - 1000
114-21 Philin	Att 10 (Is MX40 SPR Scan	1Pk Max	TD Scan	
	S MITTO STATE ODDAT		M1[1]	75.11 dBuV/m
120 dBµV/m-		-	0.000 s	52.200 kHz
FCC Part 15.2	09 Below 30 MHz.LIN	1		
110 dBµV/m-		-		
100 dBµV/m-				
90 dBµV/m—		_		
80 dBµV/m—		MI		
70 dBµV/m-	MAN MANNA			
60 dBµV/m—	and the second	mary human many	annon man	
50 dBµV/m—		_	and a start and a start	monthe manual manual
40 dBµV/m				
30 dBµV/m—				
Start 30.0 k	Hz			Stop 150.0 kHz
	1		Measuring	02/19/2021

Date: 19.FEB.2021 10:54:32

A1.2.8. Measurement Results: Z-Axis, Perpendicular Antenna

Page 48 of 111

A1. Spurious Radiated Emissions (30 kHz – 150 kHz) Test Results

A1.2. Channel 18, 2440 MHz

A1.2.9. Measurement Results: Z-Axis, Ground Parallel Antenna

Receiver				
Input 1 DC	RBW (CISPR) 200 Hz Att 10 dB	MT 100 ms Preamp OFF Step	1002 0314 CBL TD Scan	Chamber Antenna (.01 - 1000)
114-21 Philip	ps MX40 SRR Scan 🏮	IPk Max	and the second se	
120 dBµV/m- FCC Part 15,2	209 Below 30 MHz,LIN		M1[1] 0.000 s	76.43 dBµ∀/m 52.200 kHz
110 dBµV/m-				
100 dBµV/m-				
90 dBµV/m—				
80 dBµV/m—		M1		1
70 dBµV/m—	MM- Miranshan			
60 dBµV/m—		my m war him when	- unit markening	
50 dBµV/m—				an opposite and the second of the second
40 dBµV/m—				
30 dBµV/m—		-		1
Start 30.0	kHz			Stop 150.0 kHz
	X		Measuring	02/19/2021 12:07:03 PM

Date: 19,FEB.2021 12:07:02

A1. Spurious Radiated Emissions (30 kHz - 150 kHz) Test Results

A1.3. Channel 26, 2480 MHz

A1.3.1. Measurement Results: X-Axis, Parallel Antenna

Receiver	4				<u>لم</u>
	RBW (CISPR) 200	Hz MT 10) ms	1002 0314 CBL	. Chamber Antenna (.01 - 1000
114-21 Philip	Att 10 Is MX40 SRR Scan	a 1Pk Max	OFF Step ID	Scan	
120 dBµV/m-				M1[1]	74.84 dBµV/m 52.200 kHz
CC Part 15,2	09 Below 30 MHz,L <u>1</u>	V	1 I		
110 dBµV/m-					
100 dBµV/m–			<u> </u>		
90 dBµV/m—		-			
80 dBµV/m—		MI	-		
70 dBµV/m-	months as				
60 dBµV/m-	- W- VLV	which my my	Amount of the		
			1	many which approved the	man and a second
50 dBµV/m—					
40 dBµV/m—		-		+	
30 dBµV/m—			-		
Start 30.0 k	Hz				Stop 150.0 kHz
1.00	M.			Measuring	02/19/2021

A1.3.2. Measurement Results: X-Axis, Perpendicular Antenna

RBW (CISPR) 200	Hz MT 100 ms	1002 0314 CBL Ch	amber Antenna (.01 - 1000
Input 1 DC Att 10 14-21 Philips MX40 SRR Scan	OFF Step OFF Step OFF Step	TD Scan	
120 dBµV/m- CC Part 15,209 Below 30 MHz.LIN		M1[1] 0.000 s	75.21 dBµV/m 52.200 kH
110 dBµV/m			
100 dBµV/m			
90 dBµV/m			
30 dBµV/m	MI		
10 dBµV/m			
50 dBµV/m-	mon hours and hours	mand want hat man	
50 dBµV/m			a suspersioner approximation
40 dBµV/m			
30 dBµV/m			
Start 30.0 kHz			Stop 150.0 kHz

A1. Spurious Radiated Emissions (30 kHz – 150 kHz) Test Results

A1.3. Channel 26, 2480 MHz

A1.3.3. Measurement Results: X-Axis, Ground-Parallel Antenna

A1.3.4. Measurement Results: Y-Axis, Parallel Antenna

Innut 1 DC	RBW (CISPR) 200 Hz	MT 100 ms	1002 0314 CBL Ch	amber Antenna (.01 - 1000
114-21 Philip:	s MX40 SRR Scan @1	Pk Max	ap ib scan	
120 dBµV/m-	9 Below 30 MHz.LIN		M1[1] 0.000 s	74.57 dBµV/m 52.200 kHz
110 dBµV/m—				
100 dBµV/m—				
90 dBµV/m		-		
80 dBµV/m		M1		
70 dBµV/m-	mulane			
60 dBµV/m-	an a shorted short	www.mannowwww.	MARKA AND	+ +
50 dBµV/m				Manager warmen warmen
40 dBµV/m				
30 dBµV/m—				71
Start 30.0 k	Hz	4. A.		Stop 150.0 kHz
	1(Measuring	02/19/2021 11:29:19 AM

Page 51 of 111

A1. Spurious Radiated Emissions (30 kHz – 150 kHz) Test Results

A1.3. Channel 26, 2480 MHz

A1.3.5. Measurement Results: Y-Axis, Perpendicular Antenna

receiver	DDW (CICDD) 000 1	MT 100 mg		1000 0014 001	
Input 1 DC	Att 10 dl	Preamp OFF	Step TD Scan	1002 0314 CBL (znamber Antenna (Jot - 1000
114-21 Philip	s MX40 SRR Scan 🧯	1Pk Max		1	
120 dBpV/m-	19 Below 30 MHz LIN		M. 0.	1[1] 000 s	75.44 dBµV/m 52.200 kHa
110 dBµV/m—					
100 dBµV/m-			_		
90 dBµV/m—					
80 dBµV/m—		MI		-	
70 dBuV/m-	manun 1	-	-	-	
60 dBµV/m—		man manuficture	methonenter	handmin	
50 dBµV/m—		-			June of the stand of the free of the
40 dBµV/m—					
30 dBµV/m-					
Start 30.0 k	Hz				Stop 150.0 kHz
1.1.1	N		Measu	uring VIIIII	02/19/2021 11:26:20 AM

A1.3.6. Measurement Results: Y-Axis, Ground-Parallel Antenna

A1. Spurious Radiated Emissions (30 kHz – 150 kHz) Test Results

A1.3. Channel 26, 2480 MHz

A1.3.7. Measurement Results: Z-Axis, Parallel Antenna

Receiver							
Input 1 DC	RBW (CISPR) 200 Hz MT 100 ms 1002 0314 CBL Chamber Antenna (.01 - 100 Att 10 dB Preamp OFF Step TD Scan						
114-21 Philips	MX40 SRR Sc	an 💿 1Pk Max					
120 dBµV/m-		(18)		M1[1] 0.000 s	- T	74.77 dBµV/m 52.200 kHz	
FUG Part 13-209	BEIDW 30 MH	JLIN	1				
110 dBµV/m			1				
100 dBµV/m	-		-		4 4 4 5 5 6		
90 dBµV/m	-		-				
80 dBµV/m		M1	-				
ZQ dBµV/m-	Minhan	ML.					
60 dBµV/m		have been preserved the second second	manna	WA-			
		3		- manterstall we	man hunder hunder	Carlos Carlos	
50 dBµV/m	-	-	-			A TO WANTY TO WHAT	
40 dBµV/m	_		-				
30 dBµV/m	_	_					
Start 30.0 kH	z			4 4		Stop 150.0 kHz	
)				Measuring	Concerned 446	02/19/2021 11:32:42 AM	

A1.3.8. Measurement Results: Z-Axis, Perpendicular Antenna

Page 53 of 111

A1. Spurious Radiated Emissions (30 kHz – 150 kHz) Test Results

A1.3. Channel 26, 2480 MHz

A1.3.9. Measurement Results: Z-Axis, Ground Parallel Antenna

Receiver							
	RBW (CISPR) 200	Hz MT 100 ms	1002 0314 C	BL Chamber Antenna (.01 - 1000			
Input 1 DC	Att 10	dB Preamp OFF Step	TD Scan				
114-21 Philip	s MX40 SRR: Scan	1Pk Max					
120 dBµV/m			M1[1] 0.000 s	76.35 dBµV/m 52.200 kHz			
FCC Part 15.20	09 Below 30 MHz.LIN						
110 dBµV/m-							
100 dBµV/m-							
90 dBµV/m—	-						
80 dBµV/m—		Mi					
C9 dBUV/m-	metroport						
60 dBµV/m—	is maked	www. www. www.	alaman dinan				
50 dBµV/m—		_		mand when and a second when the second			
40 dBµV/m—							
30 dBµV/m-							
Start 30.0 k	Hz			Stop 150.0 kHz			
	Y		Measuring	02/19/2021			

Date: 19.FBB.2021 11:44:18

A2. Spurious Radiated Emissions (150 kHz - 30 MHz) Test Results

A2.1. Channel 11, 2405 MHz

A2.1.1. Measurement Results: X-Axis, Parallel Antenna

A2.1.2. Measurement Results: X-Axis, Perpendicular Antenna

Page 55 of 111

A2. Spurious Radiated Emissions (150 kHz - 30 MHz) Test Results

A2.1. Channel 1, 2405 MHz

A2.1.3. Measurement Results: X-Axis, Ground-Parallel Antenna

A2.1.4. Measurement Results: Y-Axis, Parallel Antenna

Page 56 of 111

A2. Spurious Radiated Emissions (150 kHz - 30 MHz) Test Results

A2.1. Channel 11, 2405 MHz

A2.1.5. Measurement Results: Y-Axis, Perpendicular Antenna

A2.1.6. Measurement Results: Y-Axis, Ground-Parallel Antenna

Page 57 of 111

A2. Spurious Radiated Emissions (150 kHz - 30 MHz) Test Results

A2.1. Channel 11, 2405 MHz

A2.1.7. Measurement Results: Z-Axis, Parallel Antenna

A2.1.8. Measurement Results: Z-Axis, Perpendicular Antenna

Page 58 of 111

A2. Spurious Radiated Emissions (150 kHz - 30 MHz) Test Results

A2.1. Channel 11, 2405 MHz

A2.1.9. Measurement Results: Z-Axis, Ground Parallel Antenna

Date: 12.FEB.2021 15:04:47

A2. Spurious Radiated Emissions (150 kHz - 30 MHz) Test Results

A2.2. Channel 18, 2440 MHz

A2.2.1. Measurement Results: X-Axis, Parallel Antenna

A2.2.2. Measurement Results: X-Axis, Perpendicular Antenna

A2. Spurious Radiated Emissions (150 kHz - 30 MHz) Test Results

A2.2. Channel 18, 2440 MHz

A2.2.3. Measurement Results: X-Axis, Ground-Parallel Antenna

A2.2.4. Measurement Results: Y-Axis, Parallel Antenna

Page 61 of 111

A2. Spurious Radiated Emissions (150 kHz - 30 MHz) Test Results

A2.2. Channel 18, 2440 MHz

A2.2.5. Measurement Results: Y-Axis, Perpendicular Antenna

A2.2.6. Measurement Results: Y-Axis, Ground-Parallel Antenna

Page 62 of 111

A2. Spurious Radiated Emissions (150 kHz - 30 MHz) Test Results

A2.2. Channel 18, 2440 MHz

A2.2.7. Measurement Results: Z-Axis, Parallel Antenna

A2.2.8. Measurement Results: Z-Axis, Perpendicular Antenna

A2. Spurious Radiated Emissions (150 kHz – 30 MHz) Test Results

A2.2. Channel 18, 2440 MHz

A2.2.9. Measurement Results: Z-Axis, Ground Parallel Antenna

Date: 12.FEB.2021 15:25:56

Page 64 of 111

A2. Spurious Radiated Emissions (150 kHz - 30 MHz) Test Results

A2.3. Channel 26, 2480 MHz

A2.3.1. Measurement Results: X-Axis, Parallel Antenna

A2.3.2. Measurement Results: X-Axis, Perpendicular Antenna

A2. Spurious Radiated Emissions (150 kHz - 30 MHz) Test Results

A2.3. Channel 26, 2480 MHz

A2.3.4. Measurement Results: Y-Axis, Parallel Antenna

Page 66 of 111

A2. Spurious Radiated Emissions (150 kHz - 30 MHz) Test Results

A2.3. Channel 26, 2480 MHz

A2.3.5. Measurement Results: Y-Axis, Perpendicular Antenna

A2.3.6. Measurement Results: Y-Axis, Ground-Parallel Antenna

Page 67 of 111

A2. Spurious Radiated Emissions (150 kHz - 30 MHz) Test Results

A2.3. Channel 26, 2480 MHz

A2.3.7. Measurement Results: Z-Axis, Parallel Antenna

A2.3.8. Measurement Results: Z-Axis, Perpendicular Antenna

Page 68 of 111

A2. Spurious Radiated Emissions (150 kHz – 30 MHz) Test Results

A2.3. Channel 26, 2480 MHz

A2.3.9. Measurement Results: Z-Axis, Ground Parallel Antenna

Date: 12.FEB.2021 16:21:24

A3. Spurious Radiated Emissions (30 MHz – 1 GHz) Test Results

A3.1. Channel 11, 2405 MHz

A3.1.1. Measurement Results: X-Axis, Horizontal Antenna

A3.1.2. Measurement Results: X-Axis, Vertical Antenna

Page 70 of 111

A3. Spurious Radiated Emissions (30 MHz – 1 GHz) Test Results

A3.1. Channel 11, 2405 MHz

A3.1.3. Measurement Results: Y-Axis, Horizontal Antenna

A3.1.4. Measurement Results: Y-Axis, Vertical Antenna

A3. Spurious Radiated Emissions (30 MHz – 1 GHz) Test Results

A3.1. Channel 11, 2405 MHz

A3.1.5. Measurement Results: Z-Axis, Horizontal Antenna

A3.1.6. Measurement Results: Z-Axis, Vertical Antenna

Page 72 of 111

A3. Spurious Radiated Emissions (30 MHz - 1 GHz) Test Results

A3.2. Channel 18, 2440 MHz

A3.2.1. Measurement Results: X-Axis, Horizontal Antenna

A3.2.2. Measurement Results: X-Axis, Vertical Antenna

A3. Spurious Radiated Emissions (30 MHz - 1 GHz) Test Results

A3.2. Channel 18, 2440 MHz

A3.2.3. Measurement Results: Y-Axis, Horizontal Antenna

A3.2.4. Measurement Results: Y-Axis, Vertical Antenna

Page 74 of 111

A3. Spurious Radiated Emissions (30 MHz - 1 GHz) Test Results

A3.2. Channel 18, 2440 MHz

A3.2.5. Measurement Results: Z-Axis, Horizontal Antenna

A3.2.6. Measurement Results: Z-Axis, Vertical Antenna

Page 75 of 111

A3. Spurious Radiated Emissions (30 MHz – 1 GHz) Test Results

A3.3. Channel 26, 2480 MHz

A3.3.1. Measurement Results: X-Axis, Horizontal Antenna

A3.3.2. Measurement Results: X-Axis, Vertical Antenna

Page 76 of 111

A3. Spurious Radiated Emissions (30 MHz – 1 GHz) Test Results

A3.3. Channel 26, 2480 MHz

A3.3.3. Measurement Results: Y-Axis, Horizontal Antenna

A3.3.4. Measurement Results: Y-Axis, Vertical Antenna

Page 77 of 111

A3. Spurious Radiated Emissions (30 MHz - 1 GHz) Test Results

A3.3. Channel 26, 2480 MHz

A3.3.5. Measurement Results: Z-Axis, Horizontal Antenna

A3.3.6. Measurement Results: Z-Axis, Vertical Antenna

Page 78 of 111

A4. Spurious Radiated Emissions (1 GHz – 10 GHz) Test Results

A4.1. Channel 11, 2405 MHz

A4.1.1. Measurement Results: X-Axis, Horizontal Antenna

A4.1.2. Measurement Results: X-Axis, Vertical Antenna

Page 79 of 111

A4. Spurious Radiated Emissions (1 GHz – 10 GHz) Test Results

A4.1. Channel 11, 2405 MHz

A4.1.3. Measurement Results: Y-Axis, Horizontal Antenna

A4.1.4. Measurement Results: Y-Axis, Vertical Antenna

A4. Spurious Radiated Emissions (1 GHz – 10 GHz) Test Results

A4.1. Channel 11, 2405 MHz

A4.1.5. Measurement Results: Z-Axis, Horizontal Antenna

A4.1.6. Measurement Results: Z-Axis, Vertical Antenna

A4. Spurious Radiated Emissions (1 GHz - 10 GHz) Test Results

A4.2. Channel 18, 2440 MHz

A4.2.1. Measurement Results: X-Axis, Horizontal Antenna

A4.2.2. Measurement Results: X-Axis, Vertical Antenna

A4. Spurious Radiated Emissions (1 GHz - 10 GHz) Test Results

A4.2. Channel 18, 2440 MHz

A4.2.3. Measurement Results: Y-Axis, Horizontal Antenna

A4.2.4. Measurement Results: Y-Axis, Vertical Antenna

A4. Spurious Radiated Emissions (1 GHz - 10 GHz) Test Results

A4.2. Channel 18, 2440 MHz

A4.2.5. Measurement Results: Z-Axis, Horizontal Antenna

A4.2.6. Measurement Results: Z-Axis, Vertical Antenna

A4. Spurious Radiated Emissions (1 GHz - 10 GHz) Test Results

A4.3. Channel 26, 2480 MHz

A4.3.1. Measurement Results: X-Axis, Horizontal Antenna

A4.3.2. Measurement Results: X-Axis, Vertical Antenna

A4. Spurious Radiated Emissions (1 GHz - 10 GHz) Test Results

A4.3. Channel 26, 2480 MHz

A4.3.3. Measurement Results: Y-Axis, Horizontal Antenna

A4.3.4. Measurement Results: Y-Axis, Vertical Antenna

Page 86 of 111

A4. Spurious Radiated Emissions (1 GHz - 10 GHz) Test Results

A4.3. Channel 26, 2480 MHz

A4.3.5. Measurement Results: Z-Axis, Horizontal Antenna

A4.3.6. Measurement Results: Z-Axis, Vertical Antenna

Page 87 of 111

A5. Spurious Radiated Emissions (10 GHz – 18 GHz) Test Results

A5.1. Channel 11, 2405 MHz

A5.1.1. Measurement Results: X-Axis, Horizontal Antenna

A5.1.2. Measurement Results: X-Axis, Vertical Antenna

A5. Spurious Radiated Emissions (10 GHz – 18 GHz) Test Results

A5.1. Channel 11, 2405 MHz

A5.1.3. Measurement Results: Y-Axis, Horizontal Antenna

A5.1.4. Measurement Results: Y-Axis, Vertical Antenna

A5. Spurious Radiated Emissions (10 GHz – 18 GHz) Test Results

A5.1. Channel 11, 2405 MHz

A5.1.5. Measurement Results: Z-Axis, Horizontal Antenna

A5.1.6. Measurement Results: Z-Axis, Vertical Antenna

A5. Spurious Radiated Emissions (10 GHz – 18 GHz) Test Results

A5.2. Channel 18, 2440 MHz

A5.2.1. Measurement Results: X-Axis, Horizontal Antenna

A5.2.2. Measurement Results: X-Axis, Vertical Antenna

A5. Spurious Radiated Emissions (10 GHz – 18 GHz) Test Results

A5.2. Channel 18, 2440 MHz

A5.2.3. Measurement Results: Y-Axis, Horizontal Antenna

A5.2.4. Measurement Results: Y-Axis, Vertical Antenna

Page 92 of 111

A5. Spurious Radiated Emissions (10 GHz – 18 GHz) Test Results

A5.2. Channel 18, 2440 MHz

A5.2.5. Measurement Results: Z-Axis, Horizontal Antenna

A5.2.6. Measurement Results: Z-Axis, Vertical Antenna

A5. Spurious Radiated Emissions (10 GHz – 18 GHz) Test Results

A5.3. Channel 26, 2480 MHz

A5.3.1. Measurement Results: X-Axis, Horizontal Antenna

A5.3.2. Measurement Results: X-Axis, Vertical Antenna

A5. Spurious Radiated Emissions (10 GHz – 18 GHz) Test Results

A5.3. Channel 26, 2480 MHz

A5.3.3. Measurement Results: Y-Axis, Horizontal Antenna

A5.3.4. Measurement Results: Y-Axis, Vertical Antenna

A5. Spurious Radiated Emissions (10 GHz – 18 GHz) Test Results

A5.3. Channel 26, 2480 MHz

A5.3.5. Measurement Results: Z-Axis, Horizontal Antenna

A5.3.6. Measurement Results: Z-Axis, Vertical Antenna

A6. Spurious Radiated Emissions (18 GHz - 25 (40) GHz) Test Results

A6.1. Channel 11, 2405 MHz

A6.1.1. Measurement Results: X-Axis, Horizontal Antenna

A6.1.2. Measurement Results: X-Axis, Vertical Antenna

A6. Spurious Radiated Emissions (18 GHz - 25 (40) GHz) Test Results

A6.1. Channel 11, 2405 MHz

A6.1.3. Measurement Results: Y-Axis, Horizontal Antenna

A6.1.4. Measurement Results: Y-Axis, Vertical Antenna

Page 98 of 111

A6. Spurious Radiated Emissions (18 GHz - 25 (40) GHz) Test Results

A6.1. Channel 11, 2405 MHz

A6.1.5. Measurement Results: Z-Axis, Horizontal Antenna

A6.1.6. Measurement Results: Z-Axis, Vertical Antenna

A6. Spurious Radiated Emissions (18 GHz - 25 (40) GHz) Test Results

A6.2. Channel 18, 2440 MHz

A6.2.1. Measurement Results: X-Axis, Horizontal Antenna

A6.2.2. Measurement Results: X-Axis, Vertical Antenna

Page 100 of 111

A6. Spurious Radiated Emissions (18 GHz - 25 (40) GHz) Test Results

A6.2. Channel 18, 2440 MHz

A6.2.3. Measurement Results: Y-Axis, Horizontal Antenna

A6.2.4. Measurement Results: Y-Axis, Vertical Antenna

Page 101 of 111

A6. Spurious Radiated Emissions (18 GHz - 25 (40) GHz) Test Results

A6.2. Channel 18, 2440 MHz

A6.2.5. Measurement Results: Z-Axis, Horizontal Antenna

A6.2.6. Measurement Results: Z-Axis, Vertical Antenna

Page 102 of 111

A6. Spurious Radiated Emissions (18 GHz - 25 (40) GHz) Test Results

A6.3. Channel 26, 2480 MHz

A6.3.1. Measurement Results: X-Axis, Horizontal Antenna

A6.3.2. Measurement Results: X-Axis, Vertical Antenna

Page 103 of 111

A6. Spurious Radiated Emissions (18 GHz - 25 (40) GHz) Test Results

A6.3. Channel 26, 2480 MHz

A6.3.3. Measurement Results: Y-Axis, Horizontal Antenna

A6.3.4. Measurement Results: Y-Axis, Vertical Antenna

A6. Spurious Radiated Emissions (18 GHz - 25 (40) GHz) Test Results

A6.3. Channel 26, 2480 MHz

A6.3.5. Measurement Results: Z-Axis, Horizontal Antenna

A6.3.6. Measurement Results: Z-Axis, Vertical Antenna

Page 105 of 111

Appendix B - Emissions in Non-Restricted Frequency Bands (15.247(d), RSS-247 5.5) B1. Channel 11, 2405 MHz

B1.2. Spurious Conducted Emissions (2.4835 GHz - 12 GHz)

Page 106 of 111

Appendix B - Emissions in Non-Restricted Frequency Bands (15.247(d), RSS-247 5.5) B1. Channel 11, 2405 MHz

B1.3. Spurious Conducted Emissions (10 GHz – 20 GHz)

B1.4. Spurious Conducted Emissions (20 GHz - 25 GHz)

Page 107 of 111

Appendix B - Emissions in Non-Restricted Frequency Bands (15.247(d), RSS-247 5.5) B2. Channel 18, 2440 MHz

B2.2. Spurious Conducted Emissions (2.4835 GHz - 12 GHz)

Page 108 of 111

-50 dBm -60 dBm

-70 dBm

-90 dBm -100 dBm

M1

Stop 20.0 GHz

05.04.2021

Appendix B - Emissions in Non-Restricted Frequency Bands (15.247(d), RSS-247 5.5) B2. Channel 18, 2440 MHz

B2.3. Spurious Conducted Emissions (12 GHz – 20 GHz) Spectrum - RBW 100 kHz Ref Level -10.00 dBm 0 dB SWT 161 ms - VBW 300 kHz Mode Sweep Att TDF 114-21 Philips MX40 SRR 👩 1Pk View -71.84 dBn 19.4929780 GH M1[1] -20 dBm -30 dBm-D1 -29.03 -40 dBm

Start 12.0 GHz 160001 pts Marker Type Ref Trc M1 1 X-value 19.492978 GHz -71.84 dBm Function **Function Result** Measuring... Date: 6.APR.2021 09:30:36

B2.4. Spurious Conducted Emissions (20 GHz - 25 GHz)

Date: 6.APR.2021 09:32:54

Page 109 of 111

Compliance Worldwide, Inc. - 357 Main Street - Sandown, NH 03873 (603) 887 3903 Fax (603) 887 6445 www.complianceworldwide.com

Appendix B - Emissions in Non-Restricted Frequency Bands (15.247(d), RSS-247 5.5) B3. Channel 26, 2480 MHz

B3.1. Spurious Conducted Emissions (30 MHz – 2.4 GHz)

B3.2. Spurious Conducted Emissions (2.4835 GHz - 12 GHz)

Page 110 of 111

Compliance Worldwide, Inc. - 357 Main Street - Sandown, NH 03873 (603) 887 3903 Fax (603) 887 6445 www.complianceworldwide.com

Appendix B - Emissions in Non-Restricted Frequency Bands (15.247(d), RSS-247 5.5) B3. Channel 26, 2480 MHz

B3.3. Spurious Conducted Emissions (12 GHz – 20 GHz)

B3.4. Spurious Conducted Emissions (20 GHz - 25 GHz)

Compliance Worldwide, Inc. - 357 Main Street - Sandown, NH 03873 (603) 887 3903 Fax (603) 887 6445 www.complianceworldwide.com