

TEST REPORT

Test report no.: 1-2842/16-01-09-A

Testing laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075

Internet: http://www.ctcadvanced.com
e-mail: mail@ctcadvanced.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with

the registration number: D-PL-12076-01-01

Applicant

Philips Medizin Systeme Böblingen GmbH

Hewlett-Packard-Strasse 2 71034 Böblingen / GERMANY

Phone: -/-

Fax: +49 7031 463-2499 Contact: Hansjörg Geywitz

e-mail: <u>hansjoerg.geywitz@philips.com</u>

Phone: +49 7031 463-1879

Manufacturer

Philips Medizin Systeme Böblingen GmbH

Hewlett-Packard-Strasse 2 71034 Böblingen / GERMANY

Test standard/s

47 CFR Part 95 Personal radio services – medical device Radiocommunication service (MedRadio)

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: 2.4 GHz transceiver

Model name: IntelliVue CL NBP Pod 865216

FCC ID: PQC-CLNBPBV2

IC: -/-

Frequency: MBAN bands:

2360 MHz to 2390 MHz & 2390 MHz to 2400 MHz

Technologytested: MBAN

Antenna: Integrated chip antenna
Power supply: 3.7 V DC by Li-ion battery

Temperature range: -20°C to +55°C

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:	Test performed:
p.o.	p.o.
Stefan Bös Lab Manager Radio Communications & EMC	Marco Bertolino Lab Manager Radio Communications & EMC

Table of contents

1	Table	of contents	2								
2	Gener	al information	3								
	2.1 2.2	Notes and disclaimer									
3	Test s	tandard/s and references	3								
4	Test e	nvironment	1								
5	Test it	em	1								
	5.1 5.2	General description									
6	Descri	ption of the test setup	5								
	6.1 6.2 6.3	Shielded semi anechoic chamber	7								
7	Seque	ence of testing)								
	7.1 7.2 7.3 7.4	Sequence of testing radiated spurious 9 kHz to 30 MHz) 1								
8	Measu	rement uncertainty13	3								
9	Summ	pary of measurement results14	1								
10	Add	itional comments15	5								
11	Mea	surement results	3								
	11.1 11.2 11.3	Maximum transmit power	3								
12	Obs	ervations46	3								
Anr	nex A	Document history46	3								
Anr	nex B	Further information46	ĵ								
Anr	nex C	Accreditation Certificate 4	Accreditation Certificate 47								

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-2842/16-01-09 and dated 2017-02-23.

2.2 Application details

Date of receipt of order: 2016-11-17
Date of receipt of test item: 2017-01-30
Start of test: 2017-01-30
End of test: 2017-02-10

Person(s) present during the test: -/-

3 Test standard/s and references

Test standard	Date	Description
47 CFR Part 95	May-14-2009	Personal radio services – medical device Radiocommunication service (MedRadio)

Guidance	Version	Description
ANSI C63.4-2014	-/-	American national standard for methods of measurement of radio-noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz
KDB 550599 D01 v01	June-17-2016	Medical body area network (MBAN) measurement procedures

4 Test environment

		Tnom	+23 °C during room temperature tests
Temperature	:	T _{max}	No test under extreme conditions performed.
		Tmin	No test under extreme conditions performed.
Relative humidity content	:		55 %
Barometric pressure : 1021 hpa		1021 hpa	
		Vnom	3.7 V DC by Li-ion battery
Power supply	:	V_{max}	No test under extreme conditions performed.
		V_{min}	No test under extreme conditions performed.

5 Test item

5.1 General description

Kind of test item	:	2.4 GHz transceiver
Type identification	:	IntelliVue CL NBP Pod 865216
HMN	:	-/-
PMN	:	-/-
HVIN	:	-/-
FVIN	:	-/-
S/N serial number	:	Radiated unit: DE03801770
HW hardware status	:	1
SW software status	:	D.00.70
Frequency band	:	MBAN bands: 2360 MHz to 2390 MHz & 2390 MHz to 2400 MHz (lowest channel 2363 MHz, highest channel 2397 MHz)
Type of radio transmission Use of frequency spectrum		modulated carrier, DSSS
Type of modulation	:	OQPSK
Number of channels	:	15
Antenna	:	Integrated chip antenna
Power supply	:	3.7 V DC by Li-ion battery
Temperature range	:	-20°C to +55°C

5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report: 1-2842/16-01-07_AnnexA

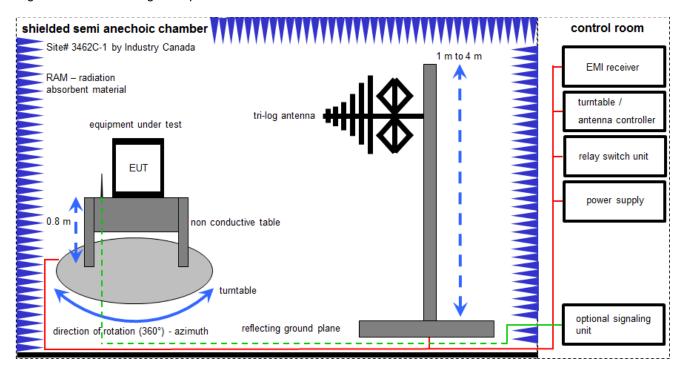
1-2842/16-01-07_AnnexB

1-2842/16-01-07_Annex D

6 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).


Agenda: Kind of Calibration

k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	ZW	cyclical maintenance (external cyclical
			maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval	•	·
NK!	Attention: not calibrated	*)	next calibration ordered/currently in progress

6.1 Shielded semi anechoic chamber

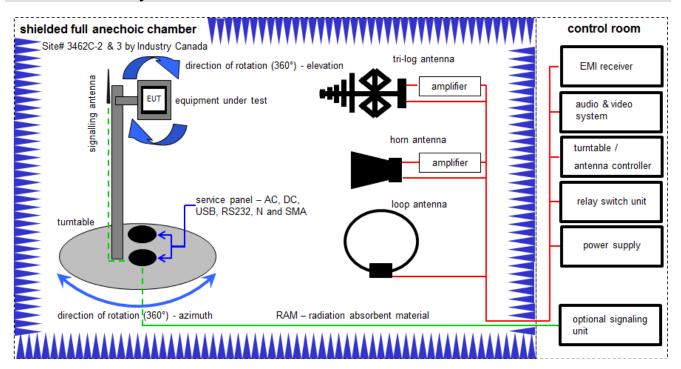
The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:


FS $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 <math>\mu V/m$)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	Α	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	08.03.2016	08.03.2017
3	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
4	Α	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
5	Α	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
6	А	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	295	300003787	k	25.04.2016	25.04.2018

6.2 Shielded fully anechoic chamber

Measurement distance: tri-log antenna and horn antenna 3 meter; loop antenna 3 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

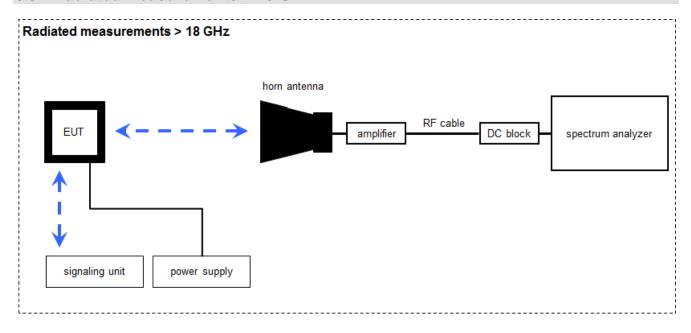
Example calculation:

FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 <math>\mu V/m$)

OP = AV + D - G + CA

(OP-radiated output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain+amplifier gain; CA-loss signal path)

Example calculation:


OP [dBm] = -65.0 [dBm] + 50 [dB] - 20 [dBi] + 5 [dB] = -30 [dBm] (1 μ W)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A, B	Double-Ridged Wav eguide Horn Antenna 1-18.0GHz	3115	EMCO	8812-3088	300001032	vIKI!	20.05.2015	20.05.2017
2	A, B, C	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
3	A, B, C	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
4	С	Active Loop Antenna 10 kHz to 30 MHz	6502	EMCO/2	8905-2342	300000256	k	24.06.2015	24.06.2017
5	A, B, C	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	31.01.2017	30.01.2018
6	A, B	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22049	300004481	ev	-/-	-/-
7	A, B, C	4U RF Switch Platform	L4491A	Agilent Technologies	MY 50000037	300004509	ne	-/-	-/-

6.3 Radiated measurements > 18 GHz

Measurement distance: horn antenna 50 cm

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor)

Example calculation:

 $\overline{FS} [dB\mu V/m] = 40.0 [dB\mu V/m] + (-60.1) [dB] + 36.74 [dB/m] = 16.64 [dB\mu V/m] (6.79 \text{ }\text{μV/m})$

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Signal Analyzer 40 GHz	FSV40	R&S	101042	300004517	k	27.01.2017	26.01.2018
2	Α	Amplifier 2-40 GHz	J\$32-02004000-57- 5P	MITEQ	1777200	300004541	ev	-/-	-/-
3	Α	RF-Cable	ST18/SMAm/SMAm/ 48	Huber & Suhner	Batch no. 600918	400001182	ev	-/-	-/-
4	Α	RF-Cable	ST18/SMAm/SMm/4 8	Huber & Suhner	Batch no. 127377	400001183	ev	-/-	-/-
5	Α	DC-Blocker 0.1-40 GHz	8141A	Inmet	Batch no. 127377	400001185	ev	-/-	-/-
6	А	Std. Gain Horn Antenna 18.0 to 26.5 GHz	638	Narda	-/-	300000486	k	10.09.2015	10.09.2017

7 Sequence of testing

7.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1.5 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

- Identified emissions during the premeasurement are maximized by the software by rotating the turntable from 0° to 360°. In case of the 2-axis positioner is used the elevation axis is also rotated from 0° to 360°.
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

7.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

7.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna
 polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the
 premeasurement with marked maximum final results and the limit is stored.

7.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

8 Measurement uncertainty

Measurement uncertainty					
Test case	Uncertainty				
Frequency stability	± 100 Hz				
Emission bandwidth	± 21.5 kHz absolute; ± 15.0 kHz relative				
Maximum output power	± 1 dB				
Band edge	± 3 dB				
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB				
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB				
Spurious emissions radiated above 12.75 GHz	± 4.5 dB				
Spurious emissions conducted below 30 MHz (AC conducted)	± 2.6 dB				

9 Summary of measurement results

	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
×	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	47 CFR Part 2 47 CFR Part 95 H	See table	2017-09-27	Tests according customer demand!

Test Specification Clause	Test Case	Temperature Conditions	Power Source Voltages	С	NC	NA	NP	Remark
FCC 47 CFR § 95.628(f)(2)	Frequency stability	Nominal and extreme	Nominal				\boxtimes	-/-
FCC 47 CFR § 95.633(e)	Emission bandwidth	Nominal	Nominal				\boxtimes	-/-
FCC 47 CFR § 95.639(f)	Maximum transmit power	Nominal	Nominal	×				-/-
FCC 47 CFR § 95.635(d)(7)	Band edge measurements	Nominal	Nominal					-/-
FCC 47 CFR § 95.635(d)(1)(v) § 95.635(d)(3)	Transmitter unwanted radiation	Nominal	Nominal	×				-/-
FCC 47 CFR § 95.635(d)(1)(v) § 95.635(d)(3)	Receiver spurious emissions (radiated)	Nominal	Nominal	×				-/-
FCC 47 CFR § 15.107(a) § 15.207	Conducted emissions below 30 MHz (AC conducted)	Nominal	Nominal			×		Battery operated only!
550599 D01 Medical Body Area Network v01 § 95.628 (c)	Connection interrupt test	Nominal	Nominal					-/-

Note: C = Compliant; NC = Not compliant; NA = Not Applicable; NP = Not Performed

10 Additional comments

Reference documents:	CTC advanced report: 1-9941/15-01-06					
	Questionnaire_IntelliVue CL NBP Pod					
Special test descriptions:		annels within the band 2360 MHz to 2390 MHz use power setting -1 and annels within the band 2390 MHz to 2400 MHz use power setting 0.				
Configuration descriptions:	None					
Test mode:	\boxtimes	Special software is used. EUT is transmitting pseudo random data by itself				
Antennas and transmit operating modes:		Operating mode 1 (single antenna) Equipment with 1 antenna, Equipment with 2 diversity antennas operating in switched diversity mode by which at any moment in time only 1 antenna is used, Smart antenna system with 2 or more transmit/receive chains, but operating in a mode where only 1 transmit/receive chain is used)				
		Operating mode 2 (multiple antennas, no beamforming) - Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously but without beamforming.				
		Operating mode 3 (multiple antennas, with beamforming) - Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously with beamforming. In addition to the antenna assembly gain (G), the beamforming gain (Y) may have to be taker into account when performing the measurements.				

11 Measurement results

11.1 Maximum transmit power

Measurement:

Measurements were made in accordance with the procedures detailed in FCC 95.628 (f)(3), ANSI C63.10, Section 9.10 – Measurement of the fundamental emission using a spectrum analyzer, and FCC OET 971168 – Measurement Guidance for Certification of Licensed Digital Transmitters, Section 5.1.

Measurement parameter					
Detector:	Peak				
Sweep time:	Auto				
Resolution bandwidth:	3 MHz				
Video bandwidth:	10 MHz				
Span:	20 MHz				
Trace-Mode:	Max. hold				
Test setup	See sub clause 7.2 – B & 7.4 – A				
Measurement uncertainty	See sub clause 8				

Limits:

FCC	IC
47 CFR § 95.639 (f)(3)(4)(5)	-/-

95.639(f)(3): The antenna associated with any MedRadio transmitter must be supplied with the transmitter and shall be considered part of the transmitter subject to equipment authorization.

95.639(f)(5): MBAN transmissions in the 2360 - 2390 MHz frequency band are limited to a maximum equivalent isotropic radiated power (EIRP) that shall not exceed the lesser of 1 mW (0 dBm) or 10log (EBW) dBm, where EBW is expressed in MHz.

95.639(f)(4): MBAN transmissions in the 2390 – 2400 MHz frequency band are limited to a maximum equivalent isotropic radiated power (EIRP) that shall not exceed the lesser of 20 mW (13 dBm) or 16 + 10log (EBW) dBm, where EBW is expressed in MHz.

Result: main report 1-9941_15-01-06

Frequency [MHz]	Output power conducted [dBm]	Gain [dBi]	EIRP [dBm]	Limit [dBm]
2363	2.1	-2.3	-0.2	0.0
2382	1.1	-1.2	-0.1	0.0
2387	0.9	-1.9	-1.0	0.0
2392	4.6	-2.5	2.1	13.0
2397	4.5	-2.3	2.2	13.0

Result:

Frequency [MHz]	Output power conducted [dBm]	Gain [dBi]	EIRP [dBm]	Limit [dBm]
2363	-/-	-/-	0.0	0.0
2382	-/-	-/-	-0.1	0.0
2387	-/-	-/-	-0.1	0.0
2392	-/-	-/-	1.1	13.0
2397	-/-	-/-	1.2	13.0

11.2 Transmitter unwanted radiation (radiated)

Measurement:

Measurement parameter						
Detector:	Prescan: Peak Final: QPK below 960 MHz					
	RMS above 960 MHz					
Video bandwidth:	9 kHz – 150 kHz: 1 kHz 150 kHz – 30 MHz: 30 kHz 30 MHz – 1 GHz: 300 kHz 1 GHz – 26 GHz: 3 MHz					
Resolution bandwidth:	9 kHz – 150 kHz: 200 Hz 150 kHz – 30 MHz: 9 kHz 30 MHz – 1 GHz: 100 kHz 1 GHz – 26 GHz: 1 MHz					
Span:	See plots					
Trace mode:	Max Hold					
Test setup	See sub clause 7.1 – A & 7.2 – A & 7.3 – A					
Measurement uncertainty	See sub clause 8					

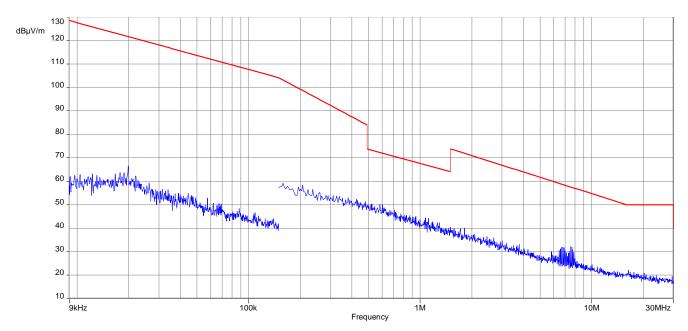
Limits:

FCC		IC					
47 CFR § 15.10 47 CFR § 95.635(d)(1)(v),			-/-				
Т	Transmitter unwanted radiation (radiated)						
Frequency (MHz)	Frequency (MHz) Field strength		Measurement distance (m)				
0.009 - 0.490	2400/F	(kHz)	300				
0.490 - 1.705	24000/F	(kHz)	30				
1.705 – 30.0	30)	30				
30 - 88	100 (40 d	BμV/m)	3				
30 - 88	31.6 (30 c	βμV/m)	10				
88 - 216	150 (43.5	dBµV/m)	3				
88 - 216	47.3 (33.5	dBμV/m)	10				
216 - 960	200 (46 d	BμV/m)	3				
216 - 960	63.1 (36 dBµV/m)		10				
above 960	500 (54 d	BμV/m)	3				

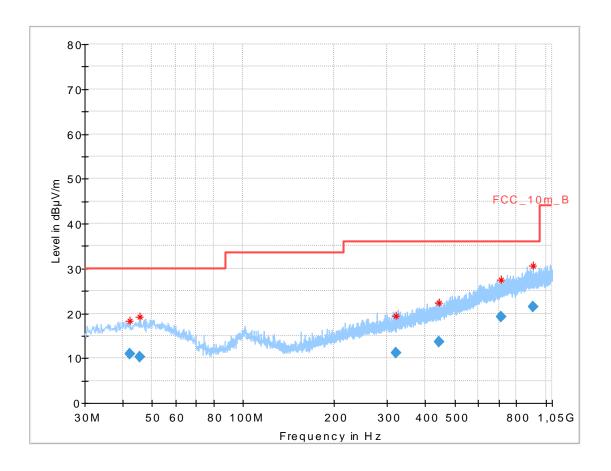
¹ Measurements in the 9 to 90 kHz, 110 to 490 kHz and above 1000 MHz ranges employ an average detector. Otherwise a quasi-peak detector is used.

Results: Transmitter mode

		Tr	ansmitter un	wanted radia	ation [dBµV/m	n]			
2363 MHz				2382 MHz		2387 MHz			
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	
	Foi	remissions be	low 1 GHz, pl	ease look at t	he table belov	w the 1 GHz p	olot.		
2507	Peak	48.2	4746	Peak	45.6	4774	Peak	45.9	
2507	QPK	-/-	4740	QPK	-/-	4774	QPK	-/-	
4726	Peak	45.3	-/-	Peak	-/-	-/-	Peak	-/-	
4720	QPK	-/-	-/-	QPK	-/-		QPK	-/-	
		Ac	lditional peak	s according to	KDB 550599	9.			
1010	Peak	28.1	1070	Peak	29.4	4000	Peak	28.5	
1046	AVG	-/-	1379	AVG	-/-	1093	AVG	-/-	
1663	Peak	30.1	1842	Peak	32.4	1471	Peak	29.4	
1003	AVG	-/-	1042	AVG	-/-		AVG	-/-	
2219	Peak	33.8	2600	Peak	37.2	1973	Peak	32.8	
2219	AVG	-/-	2000	AVG	-/-	1973	AVG	-/-	
2507	Peak	39.7	3220	Peak	42.1	2769	Peak	38.1	
2507	AVG	-/-	3220	AVG	-/-		AVG	-/-	
3484	Peak	35.7	3311	Peak	35.5	3344	Peak	43.3	
3404	AVG	-/-	3311	AVG	-/-	3344	AVG	-/-	
6490	Peak	34.4	5949	Peak	33.3	3595	Peak	35.1	
0490	AVG	-/-	3343	AVG	-/-	3333	AVG	-/-	
11517	Peak	42.0	12925	Peak	42.1	11727	Peak	42.3	
11017	AVG	-/-	12323	AVG	-/-	11121	AVG	-/-	
15700	Peak	41.7	14439	Peak	43.0	14309	Peak	43.2	
13700	AVG	-/-	14400	AVG	-/-	14309	AVG	-/-	
		For em	issions above	e 18 GHz, plea	ase look at the	plots.			
1	Peak	-/-	-/-	Peak	-/-	1	Peak	-/-	
-/-	AVG	-/-	-/-	AVG	-/-	-/-	AVG	-/-	
/	Peak	-/-	1	Peak	-/-	,	Peak	-/-	
-/-	AVG	-/-	-/-	AVG	-/-	-/-	AVG	-/-	
-/-	Peak	-/-	-/-	Peak	-/-	-/-	Peak	-/-	
-/-	AVG	-/-	-/-	AVG	-/-	-/-	AVG	-/-	

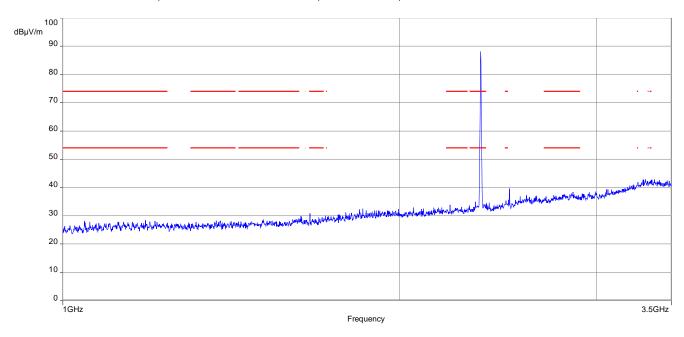

Results: Transmitter mode

		Tr	ansmitter un	wanted radia	ation [dBµV/m	n]		
2392 MHz				-/-			2397 MHz	
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]
	Foi	r emissions be	elow 1 GHz, pl	ease look at t	he table belov	w the 1 GHz p	olot.	
4784	Peak	45.9	-/-	Peak	-/-	2541	Peak	46.0
4704	QPK	-/-	-/-	QPK	-/-	2541	QPK	-/-
-/-	Peak	-/-	-/-	Peak	-/-	4794	Peak	43.6
-/-	QPK	-/-	-/-	QPK	-/-	4734	QPK	-/-
		Ac	dditional peak	s according to	KDB 550599).		
4000	Peak	29.5	,	Peak	-/-	2050	Peak	34.7
1628	AVG	-/-	-/-	AVG	-/-	2253	AVG	-/-
1001	Peak	32.7	,	Peak	-/-	0544	Peak	37.6
1931	AVG	-/-	-/-	AVG	-/-	2541	AVG	-/-
2220	Peak	34.4	,	Peak	-/-	2202	Peak	42.9
2336	AVG	-/-	-/-	AVG	-/-	3283	AVG	-/-
2204	Peak	43.5	,	Peak	-/-	2407	Peak	34.3
3364	AVG	-/-	-/-	AVG	-/-	3107	AVG	-/-
6254	Peak	33.1	-/-	Peak	-/-	3374	Peak	35.1
0254	AVG	-/-	-/-	AVG	-/-	3374	AVG	-/-
9844	Peak	39.5	-/-	Peak	-/-	9849	Peak	39.6
9044	AVG	-/-	-/-	AVG	-/-	9049	AVG	-/-
11726	Peak	42.3	-/-	Peak	-/-	11814	Peak	42.3
11720	AVG	-/-	-/-	AVG	-/-	11014	AVG	-/-
14433	Peak	44.2	-/-	Peak	-/-	15728	Peak	41.4
14433	AVG	-/-	-/-	AVG	-/-	13720	AVG	-/-
		For em	issions above	e 18 GHz, plea	se look at the	plots.		
1	Peak	-/-	-/-	Peak	-/-	-/-	Peak	-/-
-/-	AVG	-/-	-/-	AVG	-/-	-/-	AVG	-/-
-/-	Peak	-/-	-/-	Peak	-/-	/	Peak	-/-
-/-	AVG	-/-	-/-	AVG	-/-	-/-	AVG	-/-
-/-	Peak	-/-	-/-	Peak	-/-	-/-	Peak	-/-
-/-	AVG	-/-	-/-	AVG	-/-	-/-	AVG	-/-

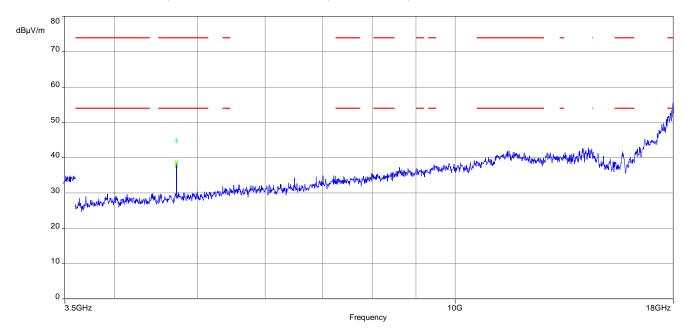

Plots:

Plot 1: 9 kHz - 30 MHz, channel low, lower band

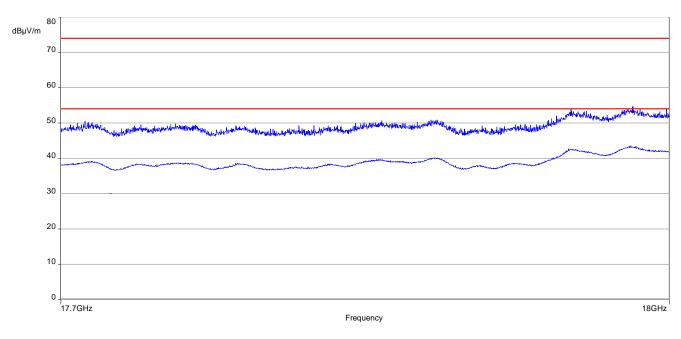
Plot 2: 30 MHz - 1 GHz, channel low, lower band



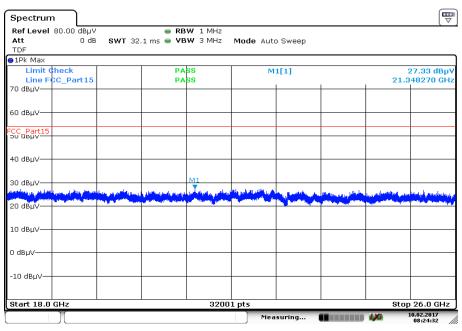
Final_Result:


Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
42.361800	10.87	30.00	19.13	1000.0	120.000	101.0	٧	250.0	13.4
45.471750	10.36	30.00	19.64	1000.0	120.000	98.0	Н	153.0	13.6
321.168600	11.21	36.00	24.79	1000.0	120.000	185.0	Н	126.0	15.1
442.703700	13.61	36.00	22.39	1000.0	120.000	185.0	٧	212.0	17.5
713.372700	19.19	36.00	16.81	1000.0	120.000	98.0	Н	297.0	21.9
907.493700	21.36	36.00	14.64	1000.0	120.000	178.0	Н	101.0	24.2

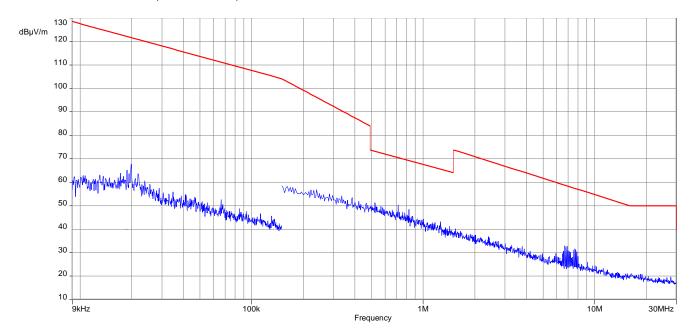
Plot 3: 1 GHz - 3.5 GHz, antenna horizontal/vertical, channel low, lower band



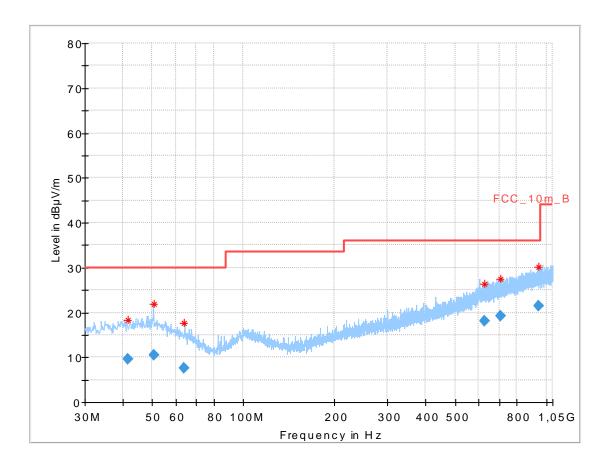
Plot 4: 3.5 GHz - 18 GHz, antenna horizontal/vertical, channel low, lower band



Plot 5: 17.7 GHz - 18 GHz, antenna horizontal/vertical, channel low, lower band

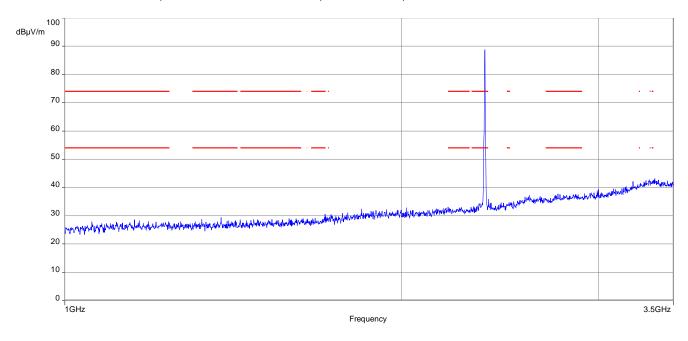

Plot 6: 18 GHz - 26 GHz, antenna horizontal/vertical, channel low, lower band

Date: 10.FEB.2017 08:24:32

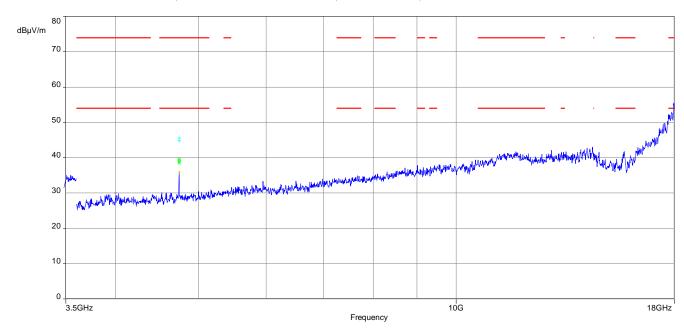


Plot 7: 9 kHz - 30 MHz, channel mid, lower band

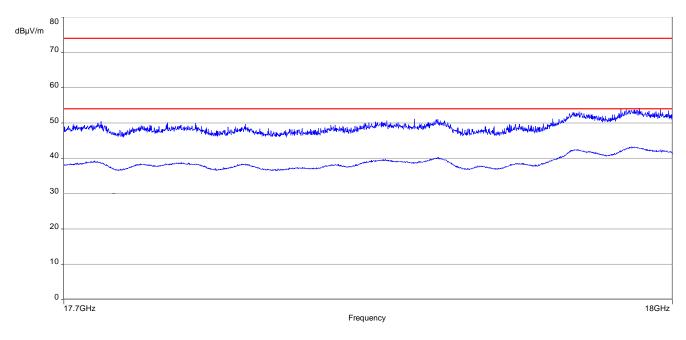
Plot 8: 30 MHz – 1 GHz, channel mid, lower band



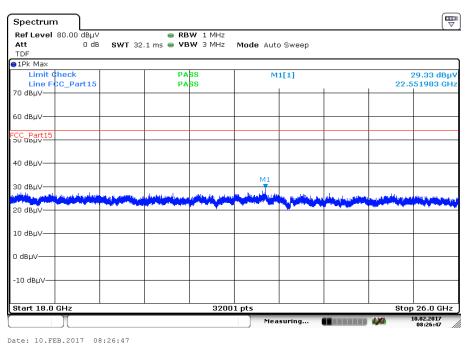
Final_Result:


Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
41.667450	9.63	30.00	20.37	1000.0	120.000	100.0	Н	182.0	13.4
50.781000	10.50	30.00	19.50	1000.0	120.000	185.0	V	267.0	13.6
63.529050	7.67	30.00	22.33	1000.0	120.000	185.0	V	290.0	11.1
623.781300	18.12	36.00	17.88	1000.0	120.000	185.0	V	48.0	20.9
708.280950	19.12	36.00	16.88	1000.0	120.000	185.0	Н	267.0	21.7
943.027500	21.43	36.00	14.57	1000.0	120.000	98.0	V	97.0	24.3

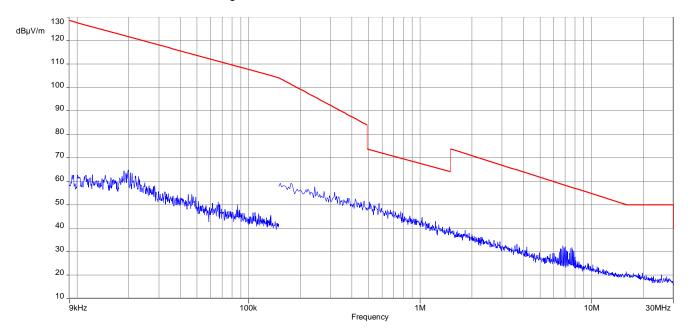
Plot 9: 1 GHz - 3.5 GHz, antenna horizontal/vertical, channel mid, lower band



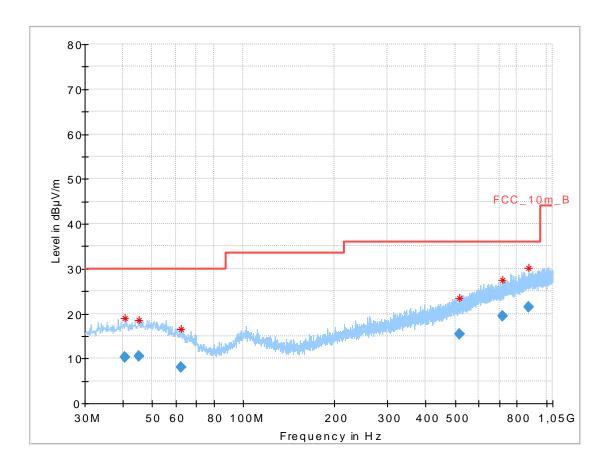
Plot 10: 3.5 GHz - 18 GHz, antenna horizontal/vertical, channel mid, lower band



Plot 11: 17.7 GHz - 18 GHz, antenna horizontal/vertical, channel mid, lower band

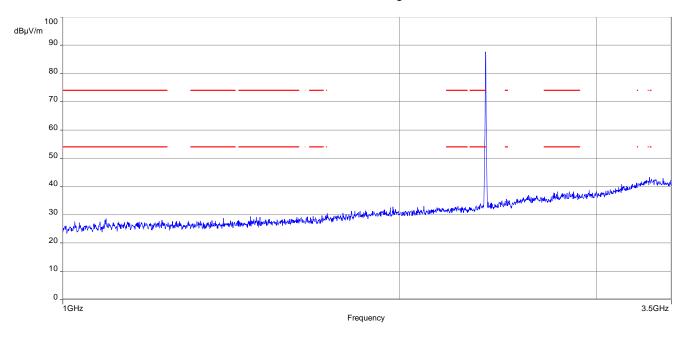


Plot 12: 18 GHz - 26 GHz, antenna horizontal/vertical, channel mid, lower band

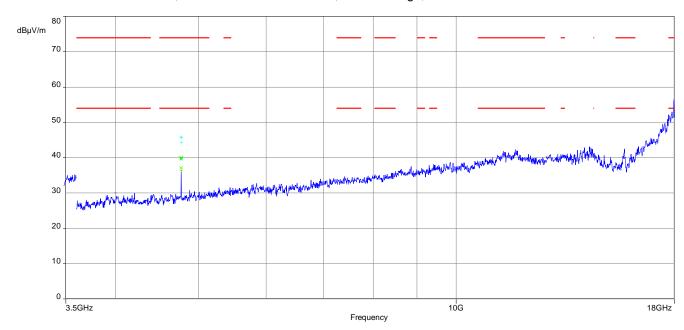


Plot 13: 9 kHz - 30 MHz, channel high, lower band

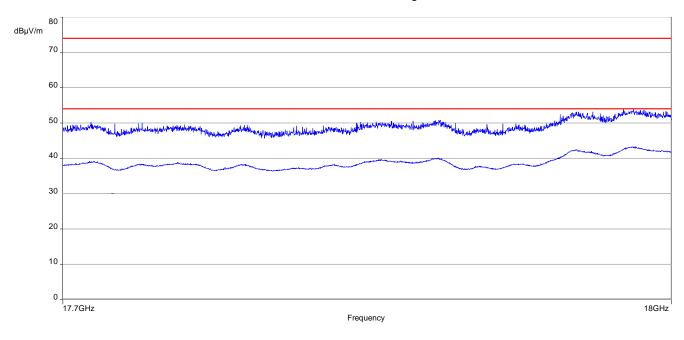
Plot 14: 30 MHz - 1 GHz, channel high, lower band



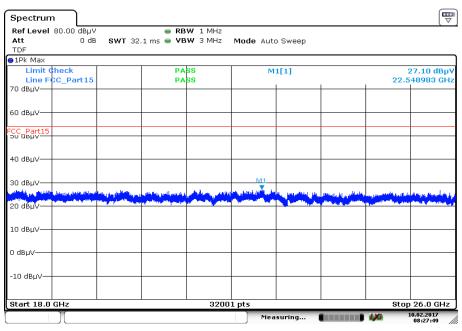
Final_Result


Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
40.626600	10.24	30.00	19.76	1000.0	120.000	101.0	V	150.0	13.3
45.328200	10.41	30.00	19.59	1000.0	120.000	101.0	٧	53.0	13.6
62.495700	8.04	30.00	21.96	1000.0	120.000	101.0	٧	67.0	11.3
515.327100	15.44	36.00	20.56	1000.0	120.000	100.0	٧	341.0	18.9
719.588400	19.35	36.00	16.65	1000.0	120.000	185.0	Н	18.0	22.0
874.794300	21.37	36.00	14.63	1000.0	120.000	98.0	Η	269.0	23.9

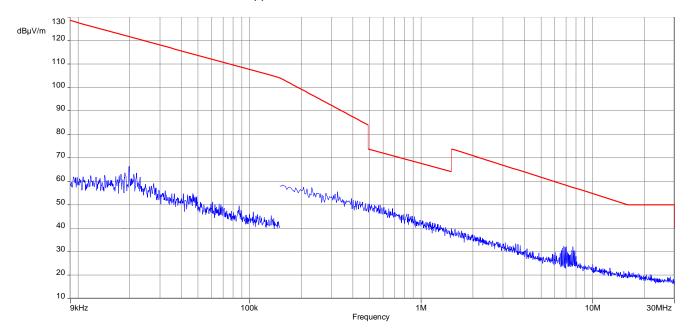
Plot 15: 1 GHz - 3.5 GHz, antenna horizontal/vertical, channel high, lower band



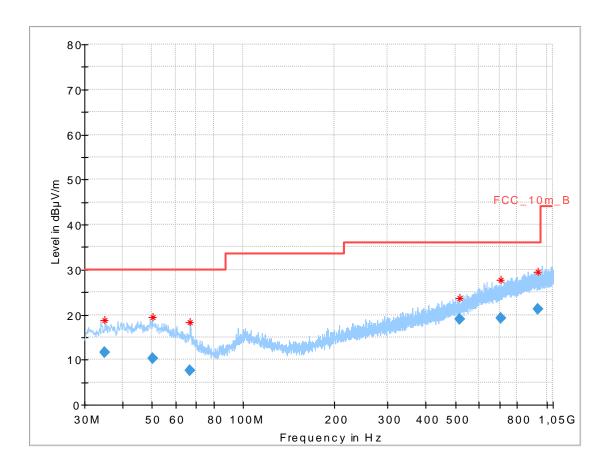
Plot 16: 3.5 GHz - 18 GHz, antenna horizontal/vertical, channel high, lower band



Plot 17: 17.7 GHz - 18 GHz, antenna horizontal/vertical, channel high, lower band

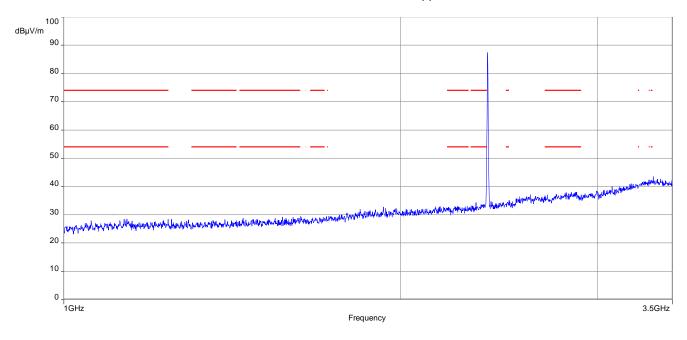

Plot 18: 18 GHz - 26 GHz, antenna horizontal/vertical, channel high, lower band

Date: 10.FEB.2017 08:27:48

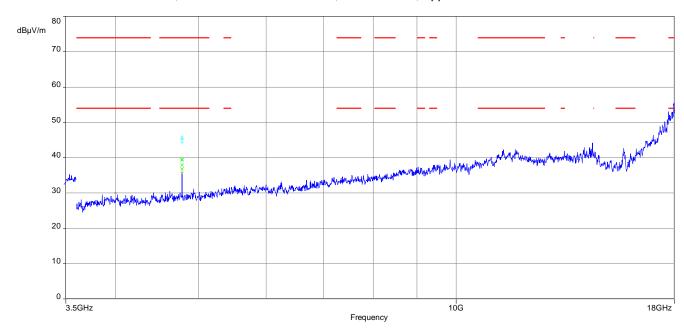


Plot 19: 9 kHz - 30 MHz, channel low, upper band

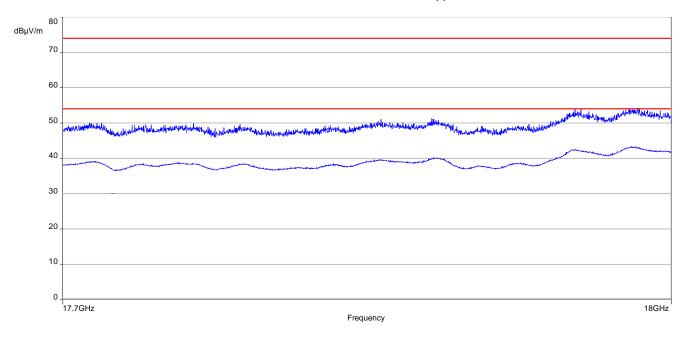
Plot 20: 30 MHz - 1 GHz, channel low, upper band



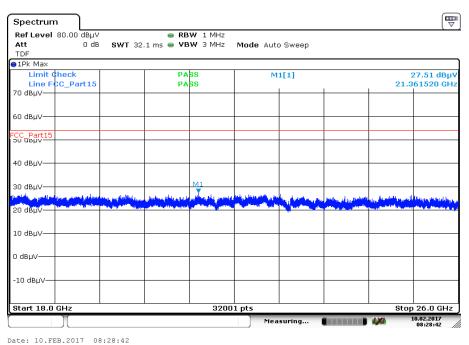
Final_Result:


Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
34.993800	11.67	30.00	18.33	1000.0	120.000	178.0	٧	144.0	12.7
50.161050	10.33	30.00	19.67	1000.0	120.000	101.0	Н	132.0	13.7
66.853500	7.59	30.00	22.41	1000.0	120.000	98.0	Н	0.0	10.4
515.380050	19.00	36.00	17.00	1000.0	120.000	101.0	Н	266.0	18.9
708.258900	19.13	36.00	16.87	1000.0	120.000	98.0	٧	291.0	21.7
934.447200	21.26	36.00	14.74	1000.0	120.000	98.0	H	120.0	24.3

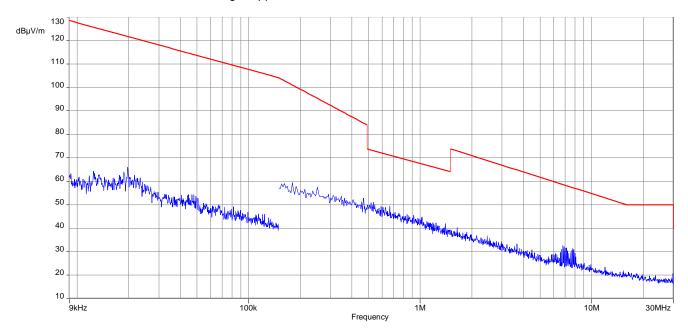
Plot 21: 1 GHz - 3.5 GHz, antenna horizontal/vertical, channel low, upper band



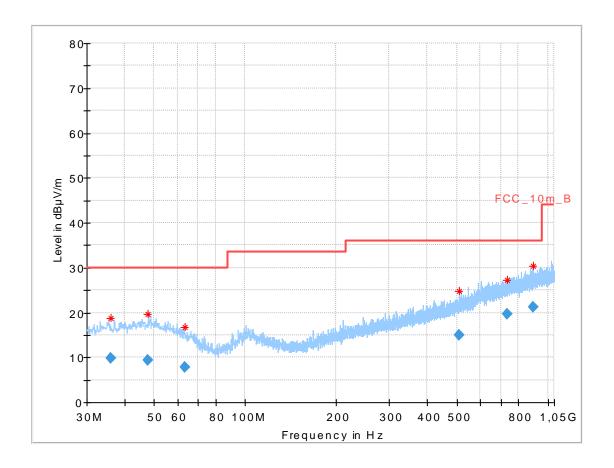
Plot 22: 3.5 GHz - 18 GHz, antenna horizontal/vertical, channel low, upper band



Plot 23: 17.7 GHz - 18 GHz, antenna horizontal/vertical, channel low, upper band

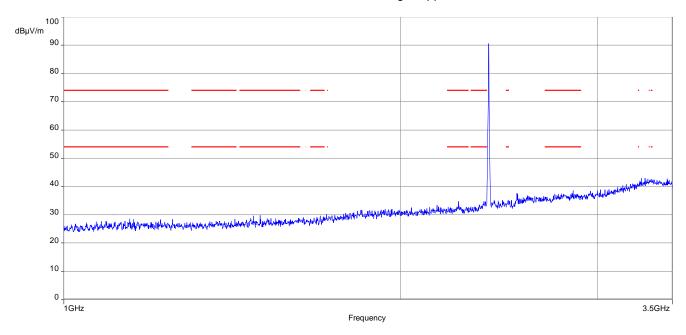


Plot 24: 18 GHz - 26 GHz, antenna horizontal/vertical, channel low, upper band

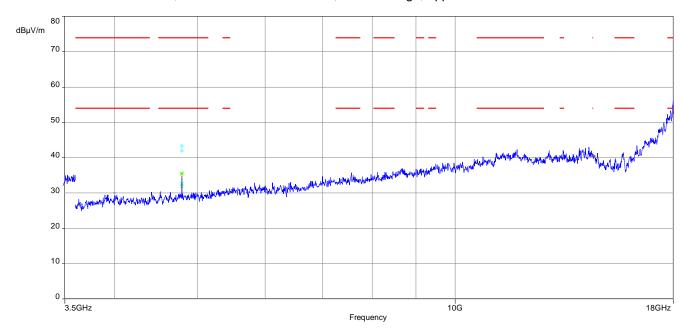


Plot 25: 9 kHz - 30 MHz, channel high, upper band

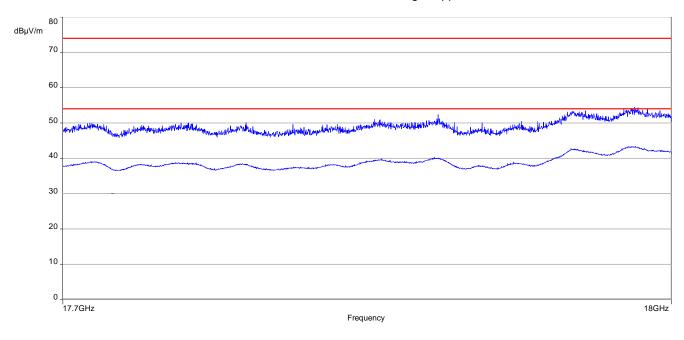
Plot 26: 30 MHz - 1 GHz, channel high, upper band



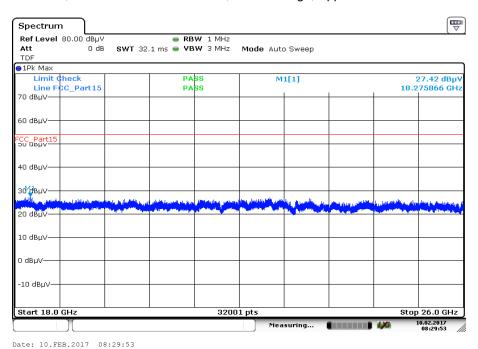
Final_Result:


Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
35.941950	9.76	30.00	20.24	1000.0	120.000	101.0	Н	72.0	12.8
47.711250	9.45	30.00	20.55	1000.0	120.000	98.0	Н	161.0	13.7
63.190650	7.80	30.00	22.20	1000.0	120.000	101.0	V	21.0	11.1
510.998250	15.02	36.00	20.98	1000.0	120.000	101.0	Н	0.0	18.8
734.578500	19.62	36.00	16.38	1000.0	120.000	185.0	Н	72.0	22.4
894.677850	21.31	36.00	14.69	1000.0	120.000	98.0	Н	21.0	24.1

Plot 27: 1 GHz - 3.5 GHz, antenna horizontal/vertical, channel high, upper band



Plot 28: 3.5 GHz - 18 GHz, antenna horizontal/vertical, channel high, upper band



Plot 29: 17.7 GHz - 18 GHz, antenna horizontal/vertical, channel high, upper band

Plot 30: 18 GHz - 26 GHz, antenna horizontal/vertical, channel high, upper band

11.3 Receiver unwanted radiation (radiated)

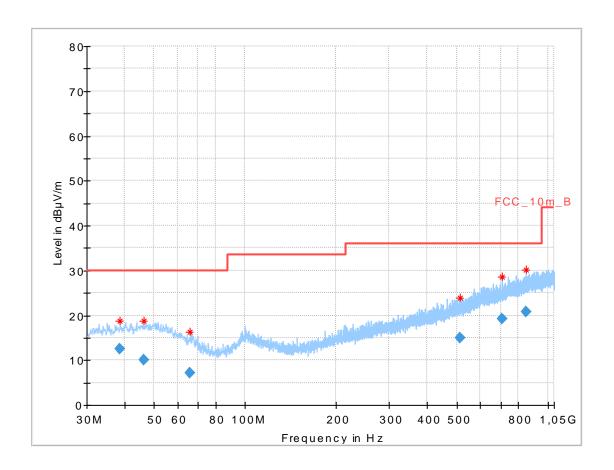
Measurement:

Measurement parameter							
	Prescan:	Peak					
Detector:	Final:	QPK below 960 MHz					
		RMS above 960 MHz					
	9 kHz – 150 kHz:	200 Hz					
Resolution bandwidth:	150 kHz – 30 MHz:	9 kHz					
Nesolution bandwidth.	30 MHz – 1 GHz:	100 kHz					
	1 GHz – 26 GHz:	1 MHz					
	9 kHz – 150 kHz:	1 kHz					
Video bandwidth:	150 kHz – 30 MHz:	30 kHz					
Video ballawidili.	30 MHz – 1 GHz:	300 kHz					
	1 GHz – 26 GHz:	3 MHz					
Span:	See plots						
Trace mode:	Max Hold						
Test setup	See sub clause 7.1 – A & 7.2 – A & 7.3 – A						
Measurement uncertainty	See su	ub clause 8					

Limits:

FCC		IC				
47 CFR § 15.10	09	-/-				
	Receiver unwanted radiation (radiat					
Frequency (MHz)	Frequency (MHz) Field strength		Measurement distance (m)			
0.009 - 0.490	2400/F	(kHz)	300			
0.490 – 1.705	24000/F	F(kHz)	30			
1.705 – 30.0	30)	30			
30 - 88	100 (40 d	lBμV/m)	3			
30 - 88	31.6 (30 c	dBμV/m)	10			
88 - 216	150 (43.5	dBμV/m)	3			
88 - 216	47.3 (33.5	dBμV/m)	10			
216 - 960	200 (46 dBμV/m)		3			
216 - 960	63.1 (36 d	dBμV/m)	10			
above 960	500 (54 d	lΒμV/m)	3			

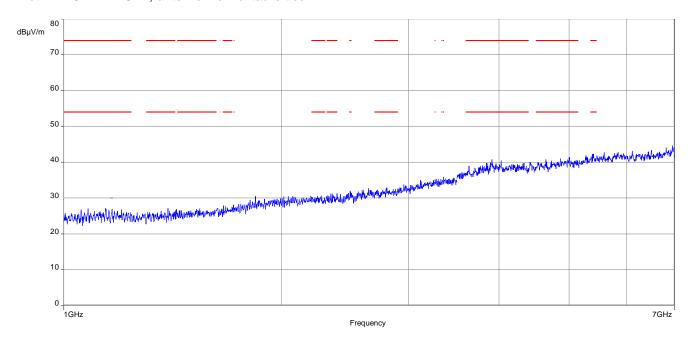
¹ Measurements in the 9 to 90 kHz, 110 to 490 kHz and above 1000 MHz ranges employ an average detector. Otherwise a quasi-peak detector is used.


Results: Receiver mode

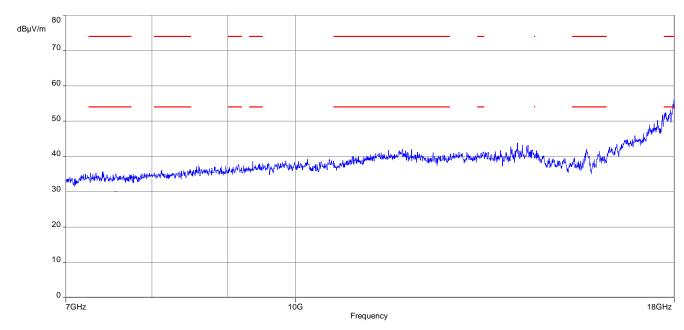
Receiver unwanted radiation [dBµV/m]									
F [MHz]	Detector	Level [dBµV/m]							
For emissi	For emissions below 1 GHz, please look at the table below the 1 GHz plot.								
	No emissions detected above 1 GHz.								
-/-	Peak	-/-							
- /-	AVG	-/-							
-/-	Peak	-/-							
- /-	AVG	-/-							
,	Peak	-/-							
-/-	AVG	-/-							

Plot:

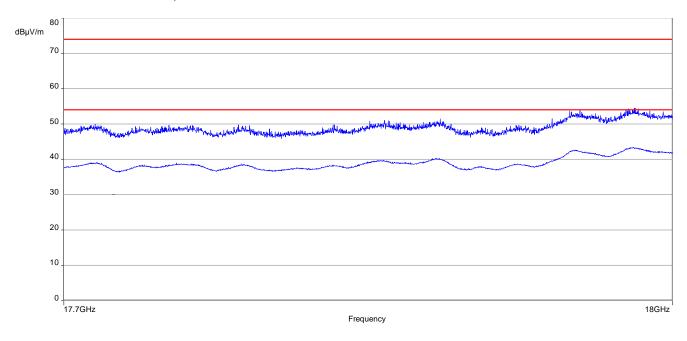
Plot 1: 30 MHz – 1 GHz



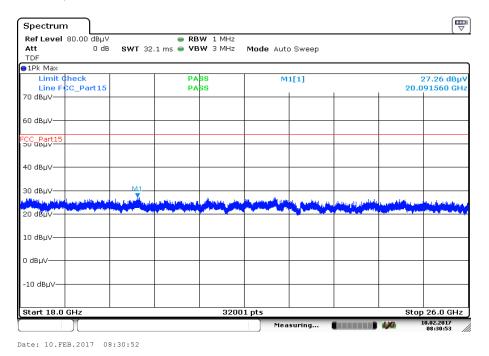
Final_Result


Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
38.665350	12.42	30.00	17.58	1000.0	120.000	98.0	٧	96.0	13.1
46.367550	10.01	30.00	19.99	1000.0	120.000	98.0	Н	54.0	13.7
65.761200	7.24	30.00	22.76	1000.0	120.000	179.0	Н	353.0	10.6
514.070400	15.04	36.00	20.96	1000.0	120.000	98.0	Н	205.0	18.9
707.322300	19.13	36.00	16.87	1000.0	120.000	178.0	٧	205.0	21.7
847.663500	20.79	36.00	15.21	1000.0	120.000	179.0	٧	353.0	23.5

Plot 2: 1 GHz - 7 GHz, antenna horizontal/vertical



Plot 3: 7 GHz - 18 GHz, antenna horizontal/vertical



Plot 4: 17.7 GHz - 18 GHz, antenna horizontal/vertical

Plot 5: 18 GHz - 26 GHz, antenna horizontal/vertical

Page 45 of 47

12 Observations

No observations except those reported with the single test cases have been made.

Annex A Document history

Version	Applied changes	Date of release
	Initial release	2017-02-23
А	Editorial changes in chapter 10	2017-09-27

Annex B Further information

Glossary

AVG - Average

DUT - Device under test

EMC - Electromagnetic Compatibility

EN - European Standard
EUT - Equipment under test

ETSI - European Telecommunications Standard Institute

FCC - Federal Communication Commission

FCC ID - Company Identifier at FCC

HW - Hardware

IC - Industry Canada
Inv. No. - Inventory number
N/A - Not applicable
PP - Positive peak
QP - Quasi peak
S/N - Serial number
SW - Software

PMN - Product marketing name HMN - Host marketing name

HVIN - Hardware version identification number FVIN - Firmware version identification number

OBW Occupied Bandwidth OC Operating Channel

OCW Operating Channel Bandwidth

OOB Out Of Band

Annex C Accreditation Certificate

first page

DAkkS

Deutsche Akkreditierungsstelle GmbH

Beliehene gemäß § 8 Absatz 1 AkkStelleG I.V.m. § 1 Absatz 1 AkkStelleGBV Unterzeichnerin der Multilateralen Abkommen von EA, ILAC und IAF zur gegenseitigen Anerkennung

Akkreditierung

Die Deutsche Akkreditierungsstelle GmbH bestätigt hiermit, dass das Prüflaboratorium

CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken

die Kompetenz nach DIN EN ISO/IEC 17025:2005 besitzt, Prüfungen in folgenden Bereichen durchzuführen:

Funk
Mobiliunk (GSM / DCS) + OTA
Elektromagnetische Verträglichkeit (EMV)
Produktsicherheit
SAR / EMF
Umwelt
Umwelt
Smart Card Technology
Bluetooth*
Automotive
Wi-Fi-Services
Kanadische Anforderungen
Us-Anforderungen

Die Akkreditierungsurkunde gilt nur in Verbindung mit dem Bescheid vom 25.11.2016 mit der Akkreditierungsnummer O-PL-12076-01 und ist gültig bis 17.01.2018. Sie besteht aus diesem Deckblatt, der Rückseite des Deckblatts und der folgenden Anlage mit Insgesamt 63 Seiten.

Registrierungsnummer der Urkunde: D-PL-12076-01-01

Frankfurt, 25.11.2016

last page

Deutsche Akkreditierungsstelle GmbH

Standort Frankfurt am Main Europa-Allee 52 60327 Frankfurt am Main

Standort Braunschweig Bundesallee 100 38116 Braunschweig

Die auszugsweise Veröffentlichung der Akkreditierungsurkunde bedarf der vorherigen schriftliches Zustimmung der Deutsche Akkreditierungsstelle GmbH (DAKS). Ausgenommen davon ist die sept Weiterverbreitung des Deckblattes durch die umseltig genannte Konformtätübewertungsstelle in unweränderter Fond.

Die Akkreditierung erfolgte gemäß des Gesetzes über die Akkreditierungsstelle (AkkStelleG) vom 31. Juli 2009 (BGBI, I. S. 2625) sowie der Verordnung (EG) Nr. 765/2008 des Europäischen Parlaments und des Rates vom 9. Juli 2008 Werbe die Vorschriften für die Akkrediterung und Marktüberwachung im Zusammenhang mit der Vermarktung von Produkten (Abl. 1,218 vom 9. Juli 2008, S. 30). Die DAAKS ist Unterzeichernin der Wultistarelan Abhommen zur gegenseitigen Anerkennung der European co-operation for Accreditation (EA), des International Accreditation Forum (IAF) und der International Laboratory Accreditation (Cooperation (ILAC), Die Unterzeichner dieser Abkommen erkennen ihre Akkreditierungen gegenseitig an.

Der aktuelle Stand der Mitgliedschaft kann folgenden Webseiten entnommen werden: EA: www.european-accreditation.org ILAC: www.lac.org IAF: www.iaf.nu

Note:

The current certificate including annex can be received on request.