

	FCC Test Report
Report No.:	RF190417D14
FCC ID:	PPQIC3S
Test Model:	IC3-32A-H-A
Series Model:	IC3-32A-N-A, SC3-32A-H, SC3-32A-N, IC3-32A-H-V, IC3-32A-N-V
Received Date:	Apr. 17, 2019
Test Date:	Apr. 26 to May 3, 2019
Issued Date:	May 7, 2019
Applicant	Lite On Technology Corporation
	Lite-On Technology Corporation
Address:	90,Chien I Road, Chung Ho, Taipei Hsien, Taiwan, R.O.C
la auto di Duu	Dursey Verites Consumer Dreducts Comises (U.K.) Itd. Technics Drench
-	Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch
Lab Address:	No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan (R.O.C.)
FCC Registration / Designation Number:	198487 / TW2021
	Testing Laboratory
	2021
only with our prior written permission. The report are not indicative or representative	copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted is report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this e of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product Our report includes all of the tests requested by you and the results thereof based upon the information that you
provided to us. You have 60 days from however, that such notice shall be in writ shall constitute your unqualified acceptar mention, the uncertainty of measurement	date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, ing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time ce of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific thas been explicitly taken into account to declare the compliance or non-compliance to the specification. The report oduct certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

Rel	leas	e Control Record	3
1	C	Certificate of Conformity	4
2	5	Summary of Test Results	5
2	2.1	Measurement Uncertainty	5
	2.2	Modification Record	
3	(General Information	6
-	8.1	General Description of EUT	
	5.1 3.2	Description of Test Modes	
-	9.2 8.2.1		
	3.3	Description of Support Units	
	,.5 3.3.1		
	3.4	General Description of Applied Standards	
4		Test Types and Results	
	.1	Radiated Emission Measurement	
		Limits of Radiated Emission Measurement	
		Test Instruments	-
		Test Procedures.	
		Deviation from Test Standard	
		Test Setup.	
		EUT Operating Conditions Test Results	
		Conducted Emission Measurement	
		Limits of Conducted Emission Measurement	
		Test Instruments	
		Test Procedures	
		Deviation from Test Standard	
		TEST SETUP	
		EUT Operating Conditions	
		Test Results	
4	.3	Frequency Stability	28
		Limits of Frequency Stability Measurement	
		Test Setup	
		Test Instruments	
-		Test Procedure	
		Deviation from Test Standard	
		EUT Operating Conditions	
		Test Result	
	.4	20dB bandwidth Limits Of 20dB Bandwidth Measurement	
		Test Setup Test Instruments	
		Test Procedures	
		Deviation from Test Standard	
		EUT Operating Conditions.	
		Test Results	
		Pictures of Test Arrangements	
5		-	
Ар	pen	dix – Information of the Testing Laboratories	33

	Release Control Record	
Issue No.	Description	Date Issued
RF190417D14	Original release.	May 7, 2019
RF190417D14	Original release.	May 7, 2019

1 **Certificate of Conformity**

Product:	Charging Station
Brand:	LITEON
Test Model:	IC3-32A-H-A
Series Model:	IC3-32A-N-A, SC3-32A-H, SC3-32A-N, IC3-32A-H-V, IC3-32A-N-V
Sample Status:	Engineering sample
Applicant:	Lite-On Technology Corporation
Test Date:	Apr. 26 to May 3, 2019
Standards:	47 CFR FCC Part 15, Subpart C (Section 15.225)
	47 CFR FCC Part 15, Subpart C (Section 15.215)
	ANSI C63.10:2013

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Prepared by :

Jessica Cheng / Senior Specialist

Date:

Date:

May 7, 2019

May 7, 2019

Approved by :

Rex Lai / Associate Technical Manager

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (SECTION 15.225, 15.215)					
FCC Clause	Test Item	Result	Remarks		
15.207	Conducted emission test	PASS	Meet the requirement of limit. Minimum passing margin is -9.98dB at 7.08984MHz.		
15.225 (a)	The field strength of any emissions within the band 13.553-13.567 MHz	PASS	Meet the requirement of limit. Minimum passing margin is -45.70dB at 13.56MHz.		
15.225 (b)	The field strength of any emissions within the bands 13.410-13.553 MHz and 13.567-13.710 MHz	PASS	Meet the requirement of limit.		
15.225 (c)	The field strength of any emissions within the bands 13.110-13.410 MHz and 13.710-14.010 MHz	PASS	Meet the requirement of limit.		
15.225 (d)	The field strength of any emissions appearing outside of the 13.110-14.010 MHz band	PASS	Meet the requirement of limit. Minimum passing margin is -1.37dB at 30.55MHz.		
15.225 (e)	The frequency tolerance	PASS	Meet the requirement of limit.		
15.215 (c)	20dB Bandwidth	PASS	Meet the requirement of limit.		
15.203	Antenna Requirement	PASS	No antenna connector is used.		

Note:

Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	2.79 dB
Dedicted Emissions up to 1 CHz	9kHz ~ 30MHz	2.38 dB
Radiated Emissions up to 1 GHz	30MHz ~ 1000MHz	5.43 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	Charging Station
Brand	LITEON
Test Model	IC3-32A-H-A
Series Model	IC3-32A-N-A, SC3-32A-H, SC3-32A-N, IC3-32A-H-V, IC3-32A-N-V
Model Difference	Refer to note as below
Status of EUT	Engineering sample
Power Supply Rating	AC Input: 208 ~240V, 60Hz, 32A
Modulation Type	ASK
Transfer Rate	106Kbps
Operating Frequency	13.56MHz
Number of Channel	1
Antenna Type	Embeded antenna
Antenna Connector	N/A
Accessory Device	N/A
Data Cable Supplied	N/A

Note:

1. The EUT contains WiFi module and LTE module, they can transmit at same time. For more details please refer to as below:

Model	Contains WIFI /LTE Certified Module
SC3-32A-H, SC3-32A-N	FCC ID: PPQSC3US (WiFi)
IC3-32A-H-A, IC3-32A-N-A	FCC ID: 2ADWC-AI7688H (WiFi), FCC ID: QIPELS61-US (LTE)
IC3-32A-H-V, IC3-32A-N-V	FCC ID: PPQIC3V (WiFi & LTE)

2. The emission of the simultaneous operation has been evaluated and no non-compliance was found.

3. The EUT has six models, the RF circuit are identical for each models. For more details please refer to as below:

Model	Contains WIFI Certified Module	Contains LTE Certified Module	Hardwired Input Wiring Type	NEMA 6-50 Input Wiring Type
SC3-32A-H	0	х	0	х
SC3-32A-N	(Contains FCC ID: PPQSC3US)	х	х	0
IC3-32A-H-A	0	0	0	Х
IC3-32A-N-A	(Contains FCC ID: 2ADWC-AI7688H)	(Contains FCC ID: QIPELS61-US)	х	0
IC3-32A-H-V	O (Contains FCC I	D: PPQIC3V)	0	х

Remark:

O: with; X: without

4. The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

3.2 Description of Test Modes

One channel was provided to this EUT:

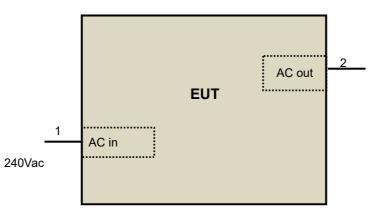
Channel	FREQ. (MHz)
1	13.56

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT Configure Maria		Applicable To			
EUT Configure Mode	RE	RE PLC FS EB		Description	
-	\checkmark		\checkmark	\checkmark	-
	diated Emission equency Stability		: Power Line Conc 20dB Bandwidth n		
adiated Emission Tes	st.				
Pre-Scan has been of between available m architecture).	conducted to dete			•	
Following channel(s) was (were) selec	cted for the fin	nal test as listed	below.	
EUT Configure Mode	Available C	Channel	Tested Cha	innel	Modulation Type
-	1		1		ASK
 between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. 					-
architecture).) was (were) selec	cted for the fin		below.	
architecture).) was (were) selec Available C	cted for the fin	Tested Cha	below.	Modulation Type
architecture). Following channel(s EUT Configure Mode -) was (were) selec	cted for the fin		below.	Modulation Type ASK
 architecture). Following channel(s EUT Configure Mode - requency Stability: This item includes al mode. Pre-Scan has been obetween available marchitecture). Following channel(s) was (were) select Available 0 1 I test value of eac conducted to dete iodulations, data r	cted for the fir Channel	Tested Cha 1 only includes sp rst-case mode enna ports (if E nal test as listed	d below. Innel Dectrum plot from all poss UT with ante d below.	ASK of worst value of each sible combinations nna diversity
 architecture). Following channel(s EUT Configure Mode - requency Stability: This item includes al mode. Pre-Scan has been obetween available marchitecture).) was (were) select Available C 1 I test value of eac conducted to dete rodulations, data r	cted for the fir Channel	Tested Cha 1 only includes sp rst-case mode enna ports (if E	d below. Innel Dectrum plot from all poss UT with ante d below.	ASK of worst value of each sible combinations
 architecture). Following channel(s EUT Configure Mode - requency Stability: This item includes al mode. Pre-Scan has been of between available marchitecture). Following channel(s EUT Configure Mode - 0dB Bandwidth:) was (were) select Available C 1 I test value of eact conducted to deter iodulations, data r) was (were) select Available C 1 I test value of eact conducted to deter iodulations, data r	cted for the fir channel	Tested Cha 1 2 <td>below.</td> <td>ASK of worst value of each sible combinations nna diversity <u>Modulation Type</u> ASK of worst value of each sible combinations</td>	below.	ASK of worst value of each sible combinations nna diversity <u>Modulation Type</u> ASK of worst value of each sible combinations
 architecture). Following channel(s EUT Configure Mode - requency Stability: This item includes al mode. Pre-Scan has been of between available marchitecture). Following channel(s EUT Configure Mode - OdB Bandwidth: This item includes al mode. Pre-Scan has been of between available marchitecture).) was (were) select Available C 1 I test value of eact conducted to deter iodulations, data r) was (were) select Available C 1 I test value of eact conducted to deter iodulations, data r	cted for the fir Channel th mode, but of rmine the wor ates and anter cted for the fir Channel th mode, but of rmine the wor ates and anter cted for the fir	Tested Cha 1 2 <td>d below. Innel Dectrum plot from all poss UT with anter d below. Innel Dectrum plot from all poss UT with anter d below.</td> <td>ASK of worst value of each sible combinations nna diversity <u>Modulation Type</u> ASK of worst value of each sible combinations</td>	d below. Innel Dectrum plot from all poss UT with anter d below. Innel Dectrum plot from all poss UT with anter d below.	ASK of worst value of each sible combinations nna diversity <u>Modulation Type</u> ASK of worst value of each sible combinations

TEST CONDITION:

Applicable To	Environmental Conditions	Input Power	Tested By
RE 24deg. C, 70%RH		240Vac, 60Hz	lan Chang
PLC 25deg. C, 75%RH		240Vac, 60Hz	ED. Lin
FS 25deg. C, 76%RH		240Vac, 60Hz	Saxon Lee
EB	25deg. C, 76%RH	240Vac, 60Hz	Saxon Lee


3.3 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	AC Power Cord	1	1.6	N	0	Provided by lab
2.	AC Out charging cable	1	4.3	N	0	Supplied by client

Note: The core(s) is(are) originally attached to the cable(s).

3.3.1 Configuration of System under Test

3.4 General Description of Applied Standards

The EUT is an EVSE (Electric Vehicle Supply Equipment) with RF Module. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.225)

FCC Part 15, Subpart C (15.215) ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

4 Test Types and Results

4.1 Radiated Emission Measurement

4.1.1 Limits of Radiated Emission Measurement

(a) The field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters.

(b) Within the bands 13.410-13.553 MHz and 13.567-13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.

(c) Within the bands 13.110-13.410 MHz and 13.710-14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.

(d) The field strength of any emissions appearing outside of the 13.110-14.010 MHz band shall not exceed the general radiated emission limits in §15.209 as below table:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
HP Preamplifier	8447D	2432A03504	Feb. 20, 2019	Feb. 19, 2020
HP Preamplifier	8449B	3008A01201	Feb. 21, 2019	Feb. 20, 2020
MITEQ Preamplifier	AMF-6F-260400-33-8P	892164	Feb. 20, 2019	Feb. 19, 2020
Agilent TEST RECEIVER	N9038A	MY51210129	Mar. 05, 2019	Mar. 04, 2020
Schwarzbeck Antenna	VULB 9168	139	Nov. 26, 2018	Nov. 25, 2019
Schwarzbeck Antenna	VHBA 9123	480	May 19, 2017	May 18, 2019
Schwarzbeck Horn Antenna	BBHA-9170	212	Nov. 25, 2018	Nov. 24, 2019
Schwarzbeck Horn Antenna	BBHA 9120-D1	D130	Nov. 25, 2018	Nov. 24, 2019
ADT. Turn Table	TT100	0306	NA	NA
ADT. Tower	AT100	0306	NA	NA
Software	Radiated_V7.6.15.9.5	NA	NA	NA
SUHNER RF cable With 4dB PAD	SF102	Cable-CH6-01	Aug. 13, 2018	Aug. 12, 2019
SUHNER RF cable With 3/4dB PAD	SF102	Cable-CH8-3.6m	Aug. 13, 2018	Aug. 12, 2019
KEYSIGHT MIMO Powermeasurement Test set	U2021XA	U2021XA-001	Jun. 4, 2018	Jun. 3, 2019
KEYSIGHT Spectrum Analyzer	N9030A	MY54490260	Aug. 3, 2018	Aug. 2, 2019
Loop Antenna EMCI	LPA600	270	Aug. 11, 2017	Aug. 10, 2019
EMCO Horn Antenna	3115	00028257	Nov. 25, 2018	Nov. 24, 2019
Highpass filter Wainwright Instruments	WHK 3.1/18G-10SS	SN 8	NA	NA
ROHDE & SCHWARZ Spectrum Analyzer	FSV40	101042	Sep. 27, 2018	Sep. 26, 2019
Anritsu Power Sensor	MA2411B	0738404	Apr. 16, 2019	Apr. 15, 2020
Anritsu Power Meter	ML2495A	0842014	Apr. 16, 2019	Apr. 15, 2020
DIGITAL POWER METER IDRC	CP-240	240515	Sep. 13, 2018	Sep. 12, 2019
Temperature & Humidity Chamber	MHU-225AU	920409	May 25, 2018	May 24, 2019
AC Power Source ExTech	CFW-105	E000603	NA	NA

NOTE: 1. The calibration interval of the above test instruments is 12/24 months. And the calibrations are traceable to NML/ROC and NIST/USA.

2. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.

3. The test was performed in Chamber No. 6.

4.1.3 Test Procedures

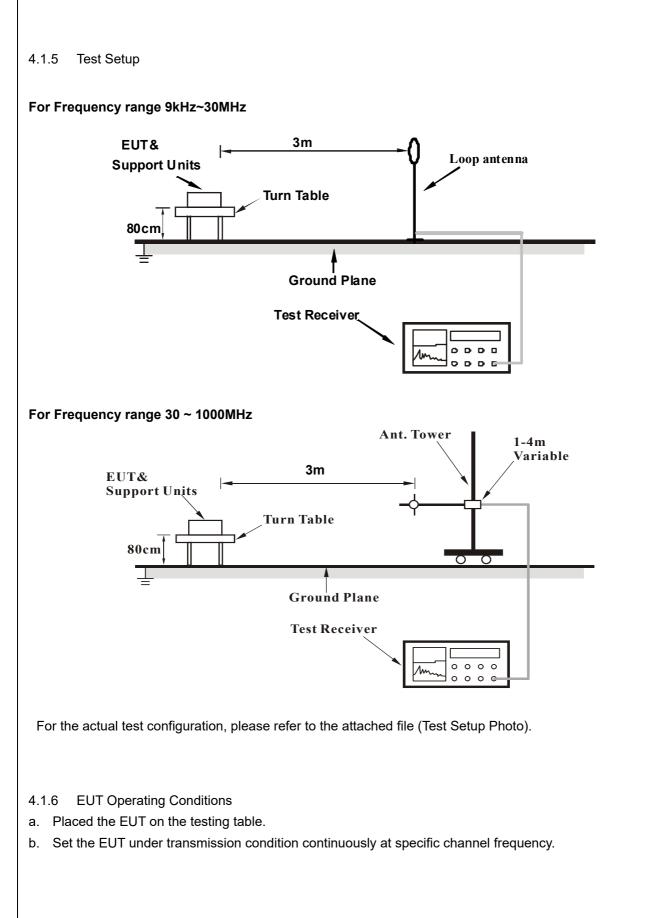
For Frequency range 9kHz~30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, Perpendicular and Ground-parallel of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

For Frequency range 30 ~ 1000MHz


- a. The EUT was placed on the top of a rotating table 0.8 meters (for below 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. All modes of operation were investigated and the worst-case emissions are reported.
- 4.1.4 Deviation from Test Standard

No deviation.

4.1.7 Test Results

		nnel 1	r	Detector Function Quasi-Peak			
Frequency Range	€ 13.5	53MHz ~ 13.					
	Antenna	Polarity & T	est Distan	ce: Loop Anteni	na Parallel At	t 3m	
	Emission			Antenna	Table	Raw	Correction
No. Freq.	Level	Limit	Margin	Height	Angle	Value	Factor
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(m)	(Degree)	(dBuV)	(dB/m)
1 *13.56	78.30 QP	124.00	-45.70	1.00	134	77.05	1.25
2. 3. 4. 5. 5. 6. The measured fiel strength varies as Example: 13.56MHz = 15 = 84 = 84	Correction F . The other er . Margin value . Above limits . " * ": Fundar ld strength wa the inverse of 5848uV/m 4dBuV/m 4+20log(30/3) 24dBuV/m	actor(dB/m) = mission levels = Emission have been tr nental freque as extrapolate listance squa 30m 30m 2 3m	= Antenna – Pre-Am s were very level – Lin ranslated b ency. ed to distant ire (40dB p	by the formula nce 30 meters,	+ Cable Fact B) e limit. using the for	or (dB) mula that the	limit of field
	Ref Level Att TDF	125.00 dBµV/m	RBW 10 k				
	● 1Pk View Limit d 120 dByy/m	heck	PASS	M1[1]	78.30 dBµ		
	110 dBµV/m	Labri	PADS		13.56000	MITZ	
	100 dBµV/m					_	
					ST 12		
	90 dBµV/m-						
				M1		_	
	90 dBµV/m-			M1		_	
	90 dBµV/m-			M		_	
	90 dBµV/m- 13.56M/V/m- 70 dBµV/m- 60 dBµV/m-			MI			
	90 dBµV/m- 13.56M ^{V/m} 70 dBµV/m- 60 dBµV/m- 50 dBµV/m-					_	
	90 dBµV/m- 13.56M/V/m- 70 dBµV/m- 60 dBµV/m-	American					
	90 dBµV/m- 13.56M/V/m- 70 dBµV/m- 60 dBµV/m- 50 dBµV/m- 40.48µ0/(m- 30 dBµV/m-						
	90 dBµV/m- 13.56M/V/m- 70 dBµV/m- 60 dBµV/m- 50 dBµV/m- 40.68µV/m-		692	1 pts	Stop 14.01 M		
	90 dBµV/m- 13.56M/V/m- 70 dBµV/m- 60 dBµV/m- 50 dBµV/m- 40.48µ0/(m- 30 dBµV/m-	MHz	693	I pts	Stop 14.01 M	HHz _	
	90 dBµV/m- 13.56M V/m- 70 dBµV/m- 50 dBµV/m- 50 dBµV/m- 30 dBµV/m- 50 dBµV/m- 50 dBµV/m- 50 dBµV/m-	n a Polarity & T		1 pts	anna g 4 49		
Freq	90 dBµV/m- 13.56M ^W /m- 70 dBµV/m- 50 dBµV/m- 50 dBµV/m- 30 dBµV/m- <u>30 dBµV/m-</u> <u>50 dBµV/m- <u>50 dBµV/m-</u> <u>50 dBµV/m-</u> <u>50 dBµV/m- <u>50 dBµV/m-</u> <u>50 dBµV/m-</u> <u>50 dBµV/m- <u>50 dBµV/m-</u> <u>50 dBµV/m- <u>50 dBµV/m-</u> <u>50 dBµV/m-</u> <u>50 dBµV/m- <u>50 dBµV/m-</u> <u>50 dBµV/m- <u>50 dBµV/m-</u> <u>50 dBµV/m-</u> <u>50 dBµV/m-</u> <u>50 dBµV/m- <u>50 dBµV/m-</u> <u>50 dBµV/m-</u> <u>50 dBµV/m- <u>50 dBµV/m-</u> <u>50 dBµV/m- <u>50 dBµV/m-</u> <u>50 dBµV/m-</u> <u>50 dBµV/m- <u>50 dBµV/m-</u> <u>50 dBµV/m-</u> <u>50 dBµV/m-</u> <u>50 dBµV/m- <u>50 dBµV/m-</u> <u>50 dBµV/m-</u> <u>50 dBµV/m- <u>50 dBµV/m-</u> <u>50 dBµV/m-</u> <u>50 dBµV/m- <u>50 dBµV/m-</u> <u>50 dBµV/m-</u> <u>50 dBµV/m- <u>50 dBµV/m-</u> <u>50 dBµV/m- <u>50 dBµV/m-</u> <u>50 dBµV/m- <u>50 dBµV/m- <u>50 dBµV/m-</u> <u>50 dBµV/m- <u>50 dBµV/m- <u>50 dBµV/m-</u> <u>50 dBµV/m-</u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u>	nission		ce: Loop Anten	anna n 4 49	30m	'n
No. Freq. (MHz)	90 dBµV/m- 13.55M/V/m- 70 dBµV/m- 50 dB	a Polarity & T nission Level		ce: Loop Anten Limit	anna n 4 49	30m Margi	
No. Freq. (MHz) 1 *13.56	90 dBµV/m- 13.56M ^{V/m-} 70 dBµV/m- 60 dBµV/m- 50 dBµV/m- 40 dBµV/m- 30 dBµV/m- <u>10 dBµV/m-</u> 50 dBµV/m- Er Chartenna Er (dl	nission		ce: Loop Anten	anna n 4 49	30m	1

Channel	Channel 1	Detector Function	Ouesi Deek
Frequency Range	13.553MHz ~ 13.567MHz		Quasi-Peak

	Antenna Polarity & Test Distance: Loop Antenna Perpendicular At 3m							
	Freg.	Emission	Limit	Margin	Antenna	Table	Raw	Correction
No.	(MHz)	Level	(dBuV/m)	5	Height	Angle	Value	Factor
	(IVIFIZ)	(dBuV/m)	(ubuv/iii)	(dB)	(m)	(Degree)	(dBuV)	(dB/m)
1	*13.56	76.05 QP	124.00	-47.95	1.00	351	74.80	1.25

1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)

- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
 - Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. Above limits have been translated by the formula
- 6. "*": Fundamental frequency.

The measured field strength was extrapolated to distance 30 meters, using the formula that the limit of field strength varies as the inverse distance square (40dB per decade of distance) Example:

Example: 13.56MHz

6MHz	=	15848uV/m	30m
	=	84dBuV/m	30m
	=	$84+20\log(30/3)^2$	3m

= 124 dBuV/m

Ref Level 125.00 dBµV/m	RBW 10 k		
Att 35 dB TDF	SWT 1.1 ms VBW 30 k	Hz Mode Sweep	
1Pk View			
Limit Check 120 PHU/19.56M	PASS	M1[1]	76.05 dBµV/n 13.56000 MH
Line Lood		Î Î Î	
110 dBµV/m			
100 dBµV/m			
90 dBµV/m-			
13.56M ^{W/m}		1	
13.56M		λ.	
70 dBµV/m			
60 dBµV/m-			
50 dBµV/m-			
en and a second second	man	hann	men and and
30 dBµV/m-			
Start 13.11 MHz	691	pts	Stop 14.01 MHz

	Antenna Polarity & Test Distance: Loop Antenna Open At 30m						
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)			
1	*13.56	36.05QP	84.0 QP	-47.95			

Remarks: Emission Level at 30m = Emission Level at $3m + 20log(3/30)^2$

Channel	Channel 1	Detector Function		
Frequency Range	13.553MHz ~ 13.567MHz		Quasi-Peak	

Antenna Polarity & Test Distance: Loop Antenna Ground-parallel At 3m								
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	*13.56	61.13 QP	124.00	-62.87	1.00	234	59.88	1.25

1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)

- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
 - Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. Above limits have been translated by the formula
- 6. " * ": Fundamental frequency.

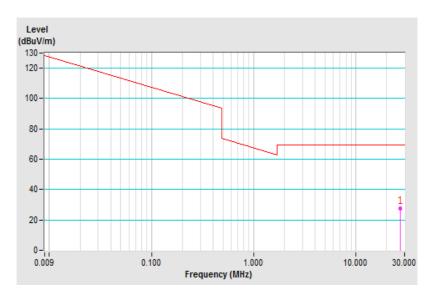
The measured field strength was extrapolated to distance 30 meters, using the formula that the limit of field strength varies as the inverse distance square (40dB per decade of distance)

Example: 13.56MHz

6MHz	=	15848uV/m	30m
	=	84dBuV/m	30m
	=	$84+20\log(30/3)^2$	3m

= 124dBuV/m

Ref Level 125.00 dBµV/m Att 35 dB TDF	RBW 10 k SWT 1.1 ms • VBW 30 k			
1Pk View		0		
Limit Check 120 PANY/19:56M	PASS PASS	M1[1]		61.13 dBµV/n 13.56000 MH
110 dBµV/m-				
100 dBµV/m				
90 dBµV/m				
3.56M ^{tV/m-}				
70 dBµV/m				
50 dBµV/m	N			_
50 dBµV/m				
ED ABUN (DD CONTINUED	manum	human	man	m
30 dBµV/m				
Start 13.11 MHz	691	pts		Stop 14.01 MHz


	Antenna Polarity & Test Distance: Loop Antenna Open At 30m							
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)				
1	*13.56	21.13QP	84.0 QP	-62.87				

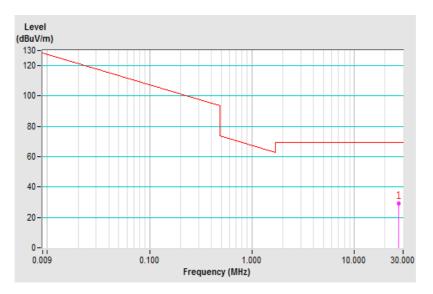
Remarks: Emission Level at $30m = Emission Level at <math>3m + 20log(3/30)^2$

Channel	Channel 1	Detector Function	Quasi Dask
Frequency Range	9 kHz ~ 30 MHz		Quasi-Peak

	Antenna Polarity & Test Distance: Loop Antenna Parallel At 3m									
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	27.12	27.40 QP	69.54	-42.14	1.00	222	29.27	-1.87		

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)
 - Pre-Amplifier Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value

Channel	Channel 1	Data dan Funatian	Quesi Desk
Frequency Range	9 kHz ~ 30 MHz	Detector Function	Quasi-Peak


	Antenna Polarity & Test Distance: Loop Antenna Perpendicular At 3m									
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	27.12	29.41 QP	69.54	-40.13	1.00	34	31.28	-1.87		

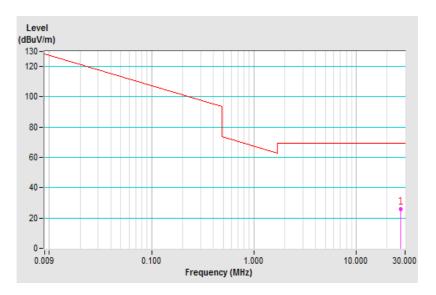
1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)

- Pre-Amplifier Factor (dB)

- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value

Channel	Channel 1	Detector Franctica	Oursei Deele
Frequency Range	9 kHz ~ 30 MHz	Detector Function	Quasi-Peak


	Antenna Polarity & Test Distance: Loop Antenna Ground-parallel At 3m									
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	27.12	26.10 QP	69.54	-43.44	1.00	65	27.97	-1.87		

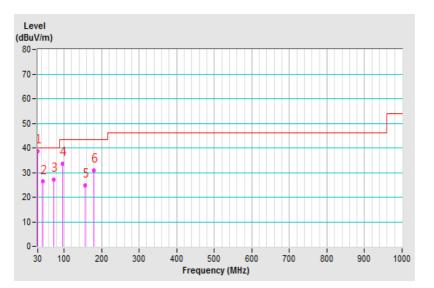
1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)

- Pre-Amplifier Factor (dB)

- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value

Channel	Channel 1	Detector Function	Quasi Dask
Frequency Range	30MHz ~ 1GHz	Detector Function	Quasi-Peak


	Antenna Polarity & Test Distance: Horizontal At 3m										
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	30.55	38.63 QP	40.00	-1.37	1.00 H	157	47.47	-8.84			
2	44.09	26.28 QP	40.00	-13.72	1.00 H	101	33.64	-7.36			
3	73.14	27.23 QP	40.00	-12.77	2.00 H	297	37.24	-10.01			
4	96.69	33.66 QP	43.50	-9.84	2.00 H	129	45.35	-11.69			
5	157.00	24.86 QP	43.50	-18.64	2.00 H	87	31.63	-6.77			
6	179.00	30.89 QP	43.50	-12.61	1.00 H	55	38.91	-8.02			

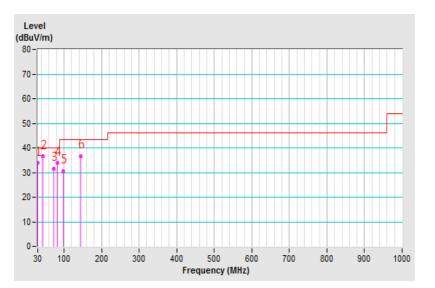
1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)

– Pre-Amplifier Factor (dB)

- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value

Channel	Channel 1	Detector Function	Quasi Dask
Frequency Range	30MHz ~ 1GHz	Detector Function	Quasi-Peak


	Antenna Polarity & Test Distance: Vertical At 3m										
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	30.53	33.76 QP	40.00	-6.24	1.00 V	176	42.60	-8.84			
2	43.92	36.51 QP	40.00	-3.49	1.00 V	0	43.88	-7.37			
3	73.12	31.64 QP	40.00	-8.36	1.00 V	277	41.64	-10.00			
4	81.43	33.80 QP	40.00	-6.20	1.00 V	109	45.69	-11.89			
5	96.93	30.63 QP	43.50	-12.87	1.00 V	205	42.33	-11.70			
6	144.00	36.64 QP	43.50	-6.86	1.00 V	74	43.70	-7.06			

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)

- Pre-Amplifier Factor (dB)

- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

Frequency (MHz)	Conducted	Limit (dBuV)
Frequency (Miriz)	Quasi-peak	Average
0.15 - 0.5	66 - 56	56 - 46
0.50 - 5.0	56	46
5.0 - 30.0	60	50

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

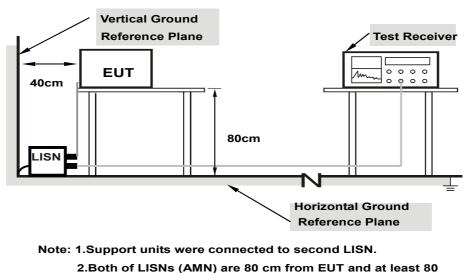
4.2.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
ROHDE & SCHWARZ TEST RECEIVER	ESR3	102414	Jan. 17, 2019	Jan. 16, 2020
ROHDE & SCHWARZ Artificial Mains Network (for EUT)	ENV216	101197	May 23, 2018	May 22, 2019
LISN With Adapter (for EUT)	AD10	C10Ada-002	May 23, 2018	May 22, 2019
ROHDE & SCHWARZ Artificial Mains Network (for peripherals)	ESH3-Z5	100218	Nov. 30, 2018	Nov. 29, 2019
SCHWARZBECK Artificial Mains Network (For EUT)	NNLK 8121	8121-808	Mar. 15, 2019	Mar. 14, 2020
Software	Cond_V7.3.7.4	NA	NA	NA
RF cable (JYEBAO) With 10dB PAD	5D-FB	Cable-C10.01	Feb. 13, 2019	Feb. 12, 2020
SUHNER Terminator (For ROHDE & SCHWARZ LISN)	65BNC-5001	E1-011484	May 8, 2018	May 7, 2019
ROHDE & SCHWARZ Artificial Mains Network (For TV EUT)	ESH3-Z5	100220	Nov. 21, 2018	Nov. 20, 2019
LISN With Adapter (for TV EUT)	100220	NA	Nov. 21, 2018	Nov. 20, 2019

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in Shielded Room No. 10.

3. The VCCI Site Registration No. C-11852.



4.2.3 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.
- **NOTE:** The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.
- 4.2.4 Deviation from Test Standard

No deviation.

4.2.5 TEST SETUP

from other units and other metal planes

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Conditions

Same as 4.1.6.

4.2.7 Test Results

Phase	9	Line	(L)		Dete	ector Fund	ction	Quasi-Peak (QP) / Average (AV)			
No	Frequency	Correction Factor		g Value uV)		on Level uV)		nit uV)	Margin (dB)		
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.15000	9.66	31.87	12.79	41.53	22.45	66.00	56.00	-24.47	-33.55	
2	0.29844	9.68	34.33	18.03	44.01	27.71	60.29	50.29	-16.28	-22.58	
3	0.36484	9.69	23.84	11.70	33.53	21.39	58.62	48.62	-25.09	-27.23	
4	5.53125	9.86	29.38	17.77	39.24	27.63	60.00	50.00	-20.76	-22.37	
5	7.04688	9.89	31.49	24.83	41.38	34.72	60.00	50.00	-18.62	-15.28	
6	14.47266	9.99	28.46	23.35	38.45	33.34	60.00	50.00	-21.55	-16.66	
7	21.57813	10.05	20.64	15.14	30.69	25.19	60.00	50.00	-29.31	-24.81	

Remarks:

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

2. The emission levels of other frequencies were very low against the limit.

3. Margin value = Emission level – Limit value

4. Correction factor = Insertion loss + Cable loss

5. Emission Level = Correction Factor + Reading Value

Phas	e		Dete	ector Fund	ction	Quasi-Peak (QP) / Average (AV)				
No	Frequency	Correction Factor		g Value uV)		on Level uV)		imit Margin BuV) (dB)		
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15781	9.68	32.72	16.26	42.40	25.94	65.58	55.58	-23.18	-29.64
2	0.29844	9.70	34.37	19.41	44.07	29.11	60.29	50.29	-16.22	-21.18
3	0.34922	9.70	25.09	11.24	34.79	20.94	58.98	48.98	-24.19	-28.04
4	5.57422	9.87	32.49	22.14	42.36	32.01	60.00	50.00	-17.64	-17.99
5	7.08984	9.91	37.47	30.11	47.38	40.02	60.00	50.00	-12.62	-9.98
6	12.08203	9.99	30.18	25.26	40.17	35.25	60.00	50.00	-19.83	-14.75
_										

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

4.3 Frequency Stability

4.3.1 Limits of Frequency Stability Measurement

The frequency tolerance of the carrier signal shall be maintained within +/-0.01% of the operating frequency over a temperature variation of -20 degrees to 50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.

4.3.2 Test Setup

4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedure

- a. The EUT was placed inside the environmental test chamber and powered by nominal AC voltage.
- b. Turned the EUT on and coupled its output to a spectrum analyzer.
- c. Turned the EUT off and set the chamber to the highest temperature specified.
- d. Allowed sufficient time (approximately 30 min) for the temperature of the chamber to stabilize then turned the EUT on and measured the operating frequency.
- e. Repeated step c and d with the temperature chamber set to the lowest temperature.
- f. The test chamber was allowed to stabilize at +25 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.
- 4.3.5 Deviation from Test Standard

No deviation.

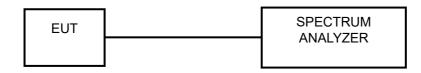
4.3.6 EUT Operating Conditions

Same as Item 4.1.6.

4.3.7 Test Result

	Frequency Stability Versus Temp.														
	Power		0 Minute			2 Minute			5 Minute			10 Minute			
Temp. (°C)	Supply (Vac)	Measured Frequency (MHz)	Drift (MHz)	Drift (%)											
50	240	13.5593	-0.0007	-0.0054	13.5603	0.0003	0.0021	13.5607	0.0007	0.0051	13.5597	-0.0003	-0.0026		
40	240	13.5604	0.0004	0.0028	13.5596	-0.0004	-0.0032	13.5604	0.0004	0.0030	13.5602	0.0002	0.0015		
30	240	13.5607	0.0007	0.0052	13.5599	-0.0001	-0.0010	13.5600	0.0000	0.0000	13.5609	0.0009	0.0063		
20	240	13.5597	-0.0003	-0.0025	13.5597	-0.0003	-0.0025	13.5597	-0.0003	-0.0025	13.5597	-0.0003	-0.0025		
10	240	13.5613	0.0013	0.0095	13.5591	-0.0009	-0.0064	13.5610	0.0010	0.0074	13.5609	0.0009	0.0064		
0	240	13.5617	0.0017	0.0128	13.5594	-0.0006	-0.0048	13.5608	0.0008	0.0060	13.5593	-0.0007	-0.0052		
-10	240	13.5618	0.0018	0.0133	13.5596	-0.0004	-0.0029	13.5607	0.0007	0.0052	13.5596	-0.0004	-0.0029		
-20	240	13.5623	0.0023	0.0170	13.5598	-0.0002	-0.0015	13.5609	0.0009	0.0066	13.5595	-0.0005	-0.0037		

	Frequency Stability Versus Voltage														
	Power		0 Minute		2 Minute			5 Minute			10 Minute				
Temp. (℃)	Supply	Measured Frequency (MHz)	Drift (MHz)	Drift (%)											
	264	13.5615	0.0015	0.0108	13.5597	-0.0003	-0.0021	13.5606	0.0006	0.0042	13.5611	0.0011	0.0082		
20	240	13.5597	-0.0003	-0.0025	13.5612	0.0012	0.0085	13.5593	-0.0007	-0.0049	13.5612	0.0012	0.0091		
	216	13.5600	0.0000	0.0003	13.5595	-0.0005	-0.0037	13.5618	0.0018	0.0133	13.5595	-0.0005	-0.0037		



4.4 20dB bandwidth

4.4.1 Limits Of 20dB Bandwidth Measurement

The 20dB bandwidth shall be specified in operating frequency band.

4.4.2 Test Setup

4.4.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.4.4 Test Procedures

The bandwidth of the fundamental frequency was measured by spectrum analyzer with 1kHz RBW and 3kHz VBW. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

4.4.5 Deviation from Test Standard

No deviation.

4.4.6 EUT Operating Conditions

Same as Item 4.1.6.

4.4.7 Test Results

Frequency (MHz)	20dBc point (Low)(MHz)	20dBc point (High) (MHz)
13.56	13.546980	13.5726

Spectrum Ref Level 9	7.00 dBu	v	🚔 R	вw	10 kHz						
Att	0 d		ms 🥃 V			Mode Swee	ep				
1Pk View											
						D	2[1]			-0.04 d
90 dBµV								Ļ			25.620 kH
						IV IV	11[1	1			58.45 dBµ 46980 MH
	78,300 (ID: N (
	70.500 (лору									
70 dBµV——					/	\rightarrow					
					r						
50 dBµV——			M	¥			1	2			
		300 dBµV—					1				
50 dвµV——		7.				_		\rightarrow			
			1					\cdot			
40 dBµV											
30 dBµV			1			_					
		/							1		
20 dBµV											
10 dBµV		/									
	~	\sim					E	2	1		
) dBµV	\sim		F	1					5		
CF 13.56 MH	878	01)1 pts				_	 100.0 kHz

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ----