

Partial FCC Test Report (Part 90)

Report No.: RFBHTZ-WTW-P22090089-5

FCC ID: PPQ202008EG91NAXD

Test Model: EG91NAXD

Received Date: Sep. 16, 2022

Test Date: Feb. 09, 2023

Issued Date: Mar. 15, 2023

Applicant: LITE-ON Technology Corp.

Address: Bldg. C, 90, Chien 1 Rd., Chung-Ho, New Taipei City 23585, Taiwan (R.O.C.)

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Lin Kou Laboratories

Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan

Test Location: No.19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City

33383, Taiwan

FCC Registration /

788550 / TW0003 **Designation Number:**

This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/cur/business/cps/about-us/terms-conditions/ and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

Report No.: RFBHTZ-WTW-P22090089-5 Page No. 1 / 22 Report Format Version: 6.1.1

Table of Contents

R	Release Control Record3							
1	(Certificate of Conformity4						
2	;	Summary of Test Results	. 5					
	2.1 2.2	Measurement UncertaintyTest Site and Instruments						
3	(General Information	. 7					
	3.1 3.2 3.2.1 3.3 3.4 3.5	General Description of EUT Configuration of System under Test Description of Support Units Test Mode Applicability and Tested Channel Detail EUT Operating Conditions General Description of Applied Standards and References	. 8 . 8 . 9 10					
4	•	Test Types and Results	11					
	4.1.3	Output Power Measurement Limits of Output Power Measurement Test Procedures Test Setup Test Results	11 11 11					
		Test Procedure	16 16					
	4.2.4	Deviation from Test Standard	17					
5	ļ	Pictures of Test Arrangements	21					
Α	ppen	dix – Information of the Testing Laboratories	22					

Release Control Record

Issue No.	Description	Date Issued
RFBHTZ-WTW-P22090089-5	Original Release	Mar. 15, 2023

1 Certificate of Conformity

Product: EG91NAXD

Brand: LITEON

Test Model: EG91NAXD

Sample Status: Engineering Sample

Applicant: LITE-ON Technology Corp.

Test Date: Feb. 09, 2023

Standards: FCC Part 90, Subpart I, S, R

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

	Grina Wu			
Prepared by :		, Date:	Mar. 15, 2023	
	Gina Liu / Specialist	<u></u>		

Approved by : _______, Date: ______, Mar. 15, 2023

Jeremy Lin / Project Engineer

2 Summary of Test Results

	Applied Standard: FCC Part 90 & Part 2							
FCC Clause	Test Item	Result	Remarks					
2.1046 90.635 (b)	Effective Radiated Power	Pass	Meet the requirement of limit.					
2.1047	Modulation Characteristics	N/A	Refer to Note					
2.1055 90.213	Frequency Stability	N/A	Refer to Note					
2.1049 90.209	Occupied Bandwidth	N/A	Refer to Note					
90.691	Emission Mask	N/A	Refer to Note					
2.1051 90.691	Conducted Spurious Emissions	N/A	Refer to Note					
2.1053 90.691	Radiated Spurious Emissions	Pass	Meet the requirement of limit. Minimum passing margin is -21.67dB at 44.55MHz.					

Note:

- 1. This report is a partial report, only test item of Effective Radiated Power & Radiated Emissions were performed for this report. Other testing data please refer to TA Technology (Shanghai) Co., Ltd. report no.: R2006A0379-R3.
- 2. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
	9 kHz ~ 30 MHz	2.44 dB
Radiated Emissions up to 1 GHz	30 MHz ~ 200 MHz	2.95 dB
	200 MHz ~ 1000 MHz	2.95 dB
Radiated Emissions above 1 GHz	1 GHz ~ 18 GHz	2.26 dB
Radiated Emissions above 1 GHz	18 GHz ~ 40 GHz	1.94 dB

2.2 Test Site and Instruments

Description & Manufacturer	Model No.	Serial No.	Date of Calibration	Due Date of Calibration
Software BV ADT	ADT_Radiated_ V7.6.15.9.5	NA	NA	NA
Antenna Tower &Turn Max-Full	MFA-440H	AT93021705	NA	NA
Turn Table Max-Full	MFT-201SS	NA	NA	NA
Turn Table Controller Max-Full	MG-7802	NA	NA	NA
Test Receiver KEYSIGHT	N9038A	MY55420137	Apr. 27, 2022	Apr. 26, 2023
Signal Analyzer Agilent	N9010A	MY52220207	Jan. 03, 2023	Jan. 02, 2024
Pre-amplifier EMCI	EMC001340	980201	Sep. 23, 2022	Sep. 22, 2023
RF Coaxial Cable EMCI	5D-NM-BM	140903+140902	Jan. 07, 2023	Jan. 06, 2024
Pre-Ammlifier EMCI	EMC 330H	980112	Oct. 01, 2022	Sep. 30, 2023
Bi_Log Antenna Schwarzbeck	VULB9168	9168-472	Oct. 21, 2022	Oct. 20, 2023
RF Coaxial Cable WORKEN	8D-FB	Cable-Ch10-01	Oct. 01, 2022	Sep. 30, 2023
Horn Antenna Schwarzbeck	BBHA 9120D	9120D-969	Nov. 13, 2022	Nov. 12, 2023
Pre-Amplifier EMCI	EMC 012645	980115	Oct. 01, 2022	Sep. 30, 2023
RF Coaxial Cable EMCI	EMC104-SM-SM-800 0+3000	171005	Oct. 01, 2022	Sep. 30, 2023
RF Coaxial Cable HUBER SUHNER	SUCOFLEX 104	EMC104-SM-SM- 1000(140807)	Oct. 01, 2022	Sep. 30, 2023
RF FLITER MICRO-TRONICS	BRM50716	060	Jan. 11, 2023	Jan. 10, 2024
RF FLITER MICRO-TRONICS	BRM17690	004	Jan. 11, 2023	Jan. 10, 2024
Boresight antenna tower fixture BV	BAF-02	7	NA	NA
Pre-Ammlifier EMCI	EMC 184045	980116	Oct. 01, 2022	Sep. 30, 2023
Horn Antenna Schwarzbeck	BBHA 9170	148	Nov. 13, 2022	Nov. 12, 2023
RF Coaxial Cable EMCI	EMC102-KM-KM-600	150928	Jul. 09, 2022	Jul. 08, 2023
RF Coaxial Cable EMCI	EMC102-KM-KM-300 0	150929	Jul. 09, 2022	Jul. 08, 2023
Radio Communication Analyzer Anritsu	MT8820C	6201300640	Aug. 26, 2021	Aug. 25, 2023

Note: 1. The calibration interval of the above test instruments is 12 / 24 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in HY - 966 chamber 5.

3 General Information

3.1 General Description of EUT

Product	EG91NAXD					
Brand	LITEON					
Test Model	EG91NAXD					
Status of EUT	Engineering Sample					
Power Supply Rating	208- 240Vac					
Modulation Type	QPSK, 16QAM					
	LTE Band 26 (Channel Bandwidth 1.4MHz)	814.7MHz ~ 823.3MHz				
Operating Frequency	LTE Band 26 (Channel Bandwidth 3MHz)	815.5MHz ~ 822.5MHz				
Operating Frequency	LTE Band 26 (Channel Bandwidth 5MHz)	816.5MHz ~ 821.5MHz				
	LTE Band 26 (Channel Bandwidth 10MHz)	819.0MHz				
	LTE Band 26 (Channel Bandwidth 1.4MHz)	167.109 mW (22.23dBm)				
Max. ERP Power	LTE Band 26 (Channel Bandwidth 3MHz)	181.552 mW (22.59dBm)				
Max. ERP Power	LTE Band 26 (Channel Bandwidth 5MHz)	196.789 mW (22.94dBm)				
	LTE Band 26 (Channel Bandwidth 10MHz)	206.063 mW (23.14dBm)				
Antenna Type Monopole Coupling with 1.9 dBi gain						
Accessory Device Refer to Note as below						
Cable Supplied	Refer to Note as below					

Note:

- 1. This report is prepared for FCC class II permissive change. This report is issued as a supplementary report to TA Technology (Shanghai) Co., Ltd. report no.: R2006A0379-R3. The difference compared with original report are adding end-product and antenna (Brand: Auden / Model: D32788-30). Therefore, only test item of Effective Radiated Power & Radiated Emissions were performed for this report. Other testing data please refer to original report.
- 2. The EUT is authorized for use in specific End-product. Please refer to below for more details.

Model	W1-UC168-0MK1ER
LTE module (FCC: PPQ202008EG91NAXD)	✓
Wi-Fi module (FCC: PPQLILYW131)	✓
RFID module (FCC: PPQRYORR2L)	✓
Ethernet	✓
LCD module	√

- 3. Detail antenna specification please refer to antenna datasheet and/or antenna measurement report.
- 4. The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

3.2 Configuration of System under Test

EUT

AC charging station (C)

LOAD (A)

Radio Communication Analyzer (B)

3.2.1 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α	LOAD	NA	NA	NA	NA	Provided by Lab
В	Radio Communication Analyzer	Anritsu	MT8820C	6201300640	N/A	Provided by Lab
С	AC charging station	LITEON	EX-1193-M,	NA	NA	Provided by Client

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	RJ-45 Cable	2	1.8	N	0	Provided by Lab

Note:

- 1. All power cords of the above support units are non-shielded (1.8m).
- 2. Items B acted as communication partners to transfer data.

3.3 Test Mode Applicability and Tested Channel Detail

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis for tablet mode, and NB mode. The worst case was found when positioned as the table below. Following channel(s) was (were) selected for the final test as listed below:

Band	Radiated Emission
LTE Band 26	Z-Axis

LTE Band 26

EUT Configure Mode	Test item	Available channel	Tested channel	Channel Bandwidth	Modulation	Mode			
		26697 to 26783	26697, 26740, 26783	1.4MHz	QPSK, 16QAM	1 RB / 0 RB Offset			
	EDD	26705 to 26775	26705, 26740, 26775	3MHz	QPSK, 16QAM	1 RB / 0 RB Offset			
-	ERP	26715 to 26765	26715, 26740, 26765	5MHz	QPSK, 16QAM	1 RB / 0 RB Offset			
		26740	26740	10MHz	QPSK, 16QAM	1 RB / 0 RB Offset			
-	Radiated Emission	26740	26740	10MHz	QPSK	1 RB / 0 RB Offset			

Note:

- 1. This device was tested under all bandwidths, RB configurations and modulations. The worst case was found in QPSK modulation.
- 2. For radiated emission, select the worst radiated emission channel (original report) for final testing.

Test Condition:

Test Item	Environmental Conditions	Input Power	Tested By
ERP	25 deg. C, 60 % RH	120 Vac, 60 Hz	Vincent Chen
Radiated Emission	25 deg. C, 72 % RH	120 Vac, 60 Hz	Vincent Chen

3.4 EUT Operating Conditions

The EUT makes a call to the communication simulator. The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency

3.5 General Description of Applied Standards and References

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

Test Standard:

FCC 47 CFR Part 2 FCC 47 CFR Part 90

ANSI 63.26-2015

All test items have been performed and recorded as per the above standards.

References Test Guidance:

KDB 971168 D01 Power Meas License Digital Systems v03r01 KDB 971168 D02 Misc Rev Approv License Devices v02r01 ANSI/TIA/EIA-603-E 2016

All test items have been performed as a reference to the above KDB test guidance.

4 Test Types and Results

4.1 Output Power Measurement

4.1.1 Limits of Output Power Measurement

For LTE Band 14:

Control stations and mobile stations transmitting in the 758-768 MHz band and the 788-798 MHz band are limited to 30 watts ERP. Portable stations (hand-held devices) transmitting in the 758-768 MHz band and the 788-798 MHz band are limited to 3 watts ERP.

For LTE Band 26:

The output power shall be according to the specific rule Part 90.635 that "Mobile station are limited to 100 watts e.r.p".

4.1.2 Test Procedures

Conducted Power Measurement:

The EUT was set up for the maximum power with LTE link data modulation and link up with simulator. Set the EUT to transmit under low, middle and high channel and record the power level shown on simulator.

Maximum EIRP / ERP

The relevant equation for determining the maximum ERP or EIRP from the measured RF output power is given in Equation as follows:

 $EIRP = P_{Meas} + G_{T}$

 $ERP = P_{Meas} + G_T - 2.15$

where

ERP or EIRP effective radiated power or equivalent isotropically radiated power, respectively

(expressed in the same units as P_{Meas}, e.g., dBm or dBW)

P_{Meas} measured transmitter output power or PSD, in dBm or dBW G_T gain of the transmitting antenna, in dBd (ERP) or dBi (EIRP)

4.1.3 Test Setup

Conducted Power Measurement:

4.1.4 Test Results

Conducted Output Power (dBm)

			LTE Ba	nd 26			
		RB Size	RB Offset		Mid		
BW	MCS	Cha	Channel		26740		
	Index	Frequen	cy (MHz)		819		
		1	0		23.39		
		1	24		23.29		
		1	49		23.11		
10M	QPSK	25	0		22.28		
		25	12		22.08		
		25	25		21.97		
		50	0		22.24		
		1	0		22.37		
		1	24		22.17		
		1	49		22.04		
10M	16QAM	25	0	21.18			
		25	12	21.06			
		25	25	20.92			
		50	0		21.13		
		RB Size	RB Offset	Low	Mid	High	
BW	MCS Index	Cha	nnel	26715	26740	26765	
	lildex	Frequen	cy (MHz)	816.5	819	821.5	
		1	0	23.12	23.19	23.05	
		1	12	22.97	23.09	22.93	
		1	24	22.91	22.95	22.80	
5M	QPSK	12	0	21.97	22.05	21.92	
		12	6	21.78	21.88	21.73	
		12	13	21.65	21.71	21.61	
		25	0	21.95	21.98	21.84	
		1	0	22.03	22.18	21.97	
		1	12	21.94	22.01	21.89	
		1	24	21.75	21.85	21.75	
5M	16QAM	12	0	20.92	20.99	20.89	
		12	6	20.71	20.89	20.69	
		12	13	20.57	20.80	20.58	
		25	0	21.00	21.03	20.83	

			LTE Ba	nd 26		
		RB Size	RB Offset	Low	Mid	High
BW	MCS	Cha	innel	26705	26740	26775
	Index	Frequen	cy (MHz)	815.5	819	822.5
		1	0	22.78	22.84	22.72
		1	7	22.62	22.75	22.60
		1	14	22.58	22.58	22.47
ЗМ	QPSK	8	0	21.64	21.69	21.57
		8	3	21.44	21.54	21.40
		8	7	21.33	21.38	21.29
		15	0	21.61	21.63	21.52
		1	0	21.69	21.82	21.63
		1	7	21.57	21.68	21.54
		1	14	21.43	21.50	21.42
ЗМ	16QAM	8	0	20.57	20.63	20.56
		8	3	20.37	20.54	20.37
		8	7	20.22	20.47	20.25
		15	0	20.66	20.69	20.46
		RB Size	RB Offset	Low	Mid	High
BW	MCS	Cha	innel	26697	26740	26783
	Index	Frequen	cy (MHz)	814.7	819	823.3
		1	0	22.42	22.48	22.32
		1	2	22.27	22.40	22.24
		1	5	22.19	22.25	22.10
1.4M	QPSK	3	0	21.27	21.37	21.23
		3	1	21.10	21.20	21.04
		3	3	20.94	20.99	20.91
		6	0	21.29	21.25	21.15
		1	0	21.31	21.50	21.28
		1	2	21.21	21.31	21.21
		1	5	21.02	21.17	21.08
1.4M	16QAM	3	0	20.20	20.26	20.18
		3	1	20.01	20.15	19.98
		3	3	19.93	20.08	19.91
		6	0	20.27	20.39	20.16

ERP Power (dBm)

LTE Band 26									
	MOG	RB Size	RB Offset	Mid					
BW	MCS Index	Channel		26740					
	IIIdex	Frequen	cy (MHz)		819				
		1	0		23.14				
		1	24		23.04				
		1	49		22.86				
10M	QPSK	25	0		22.03				
		25	12		21.83				
		25	25		21.72				
		50	0		21.99				
		1	0		22.12				
		1	24		21.92				
		1	49		21.79				
10M	16QAM	25	0	20.93					
		25	12	20.81					
		25	25	20.67					
		50	0		20.88				
	MCS	RB Size	RB Offset	Low	Mid	High			
BW	Index	Channel		26715	26740	26765			
	maax	Frequen	cy (MHz)	816.5	819	821.5			
		1	0	22.87	22.94	22.80			
		1	12	22.72	22.84	22.68			
		1	24	22.66	22.70	22.55			
5M	QPSK	12	0	21.72	21.80	21.67			
		12	6	21.53	21.63	21.48			
		12	13	21.40	21.46	21.36			
		25	0	21.70	21.73	21.59			
		1	0	21.78	21.93	21.72			
		1	12	21.69	21.76	21.64			
		1	24	21.50	21.60	21.50			
5M	16QAM	12	0	20.67	20.74	20.64			
		12	6	20.46	20.64	20.44			
		12	13	20.32	20.55	20.33			
		25	0	20.75	20.78	20.58			

^{*}ERP (dBm) = Conducted Output Power (dBm) + Antenna Gain (dBi) - 2.15

			LTE Ba	nd 26		
	1400	RB Size	RB Offset	Low	Mid	High
BW	MCS Index	Cha	innel	26705	26740	26775
	ilidex	Frequen	cy (MHz)	815.5	819	822.5
		1	0	22.53	22.59	22.47
		1	7	22.37	22.50	22.35
		1	14	22.33	22.33	22.22
3M	QPSK	8	0	21.39	21.44	21.32
		8	3	21.19	21.29	21.15
		8	7	21.08	21.13	21.04
		15	0	21.36	21.38	21.27
		1	0	21.44	21.57	21.38
		1	7	21.32	21.43	21.29
		1	14	21.18	21.25	21.17
3M	16QAM	8	0	20.32	20.38	20.31
		8	3	20.12	20.29	20.12
		8	7	19.97	20.22	20.00
		15	0	20.41	20.44	20.21
	1400	RB Size	RB Offset	Low	Mid	High
BW	MCS Index	Channel		26697	26740	26783
		Frequen	cy (MHz)	814.7	819	823.3
		1	0	22.17	22.23	22.07
		1	2	22.02	22.15	21.99
		1	5	21.94	22.00	21.85
1.4M	QPSK	3	0	21.02	21.12	20.98
		3	1	20.85	20.95	20.79
		3	3	20.69	20.74	20.66
		6	0	21.04	21.00	20.90
		1	0	21.06	21.25	21.03
		1	2	20.96	21.06	20.96
		1	5	20.77	20.92	20.83
	16QAM		0	19.95	20.01	19.93
1.4M	16QAM	3	U	10.00	20.01	10.00
1.4M	16QAM	3	1	19.76	19.90	19.73
1.4M	16QAM					

^{*}ERP (dBm) = Conducted Output Power (dBm) + Antenna Gain (dBi) - 2.15

4.2 Radiated Emission Measurement

4.2.1 Limits of Radiated Emission Measurement

The power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least 43 +10 $\log_{10}(P)$ dB. The limit of emission equal to -13dBm.

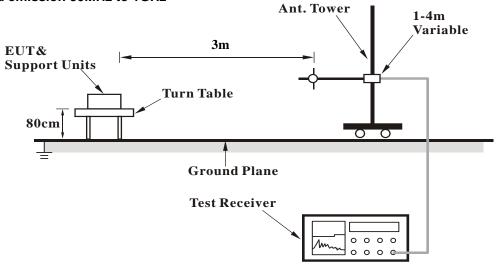
For operations in the 758-775 MHz and 788-805 MHz bands, all emissions including harmonics in the band 1559-1610 MHz shall be limited to -70 dBW/MHz. The limit of emissions is equal to -40 dBm.

4.2.2 Test Procedure

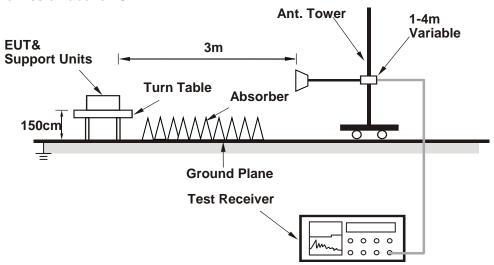
- a. In the semi-anechoic chamber, EUT placed on the 0.8 m (below or equal 1 GHz) and/or 1.5 m (above 1 GHz) height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1 m to 4 m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- b. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- c. Perform a field strength measurement and record the worse read value, is the field strength value via a spectrum reading obtained corrected for antenna factor, cable loss and pre-amplifier factor and then mathematically convert the measured field strength level to EIRP/ERP level.
- d. Following C63.26 section 5.5 and 5.2.7.
 - EIRP (dBm) = E (dB μ V/m) + 20log (D) 104.8; where D is the measurement distance (in the far field region) in m.
 - ERP (dBm) = E (dB μ V/m) + 20log (D) 104.8 2.15; where D is the measurement distance (in the far field region) in m.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1MHz/3MHz.
- 2. The emission levels were against the limit of frequency range 9 kHz ~ 30 MHz: The amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required to be report.


4.2.3 Deviation from Test Standard

No deviation.



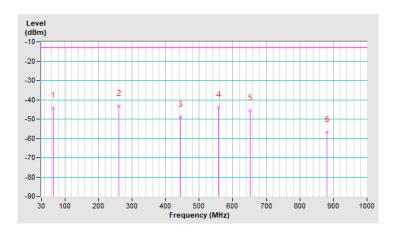
4.2.4 Test Setup

For radiated emission 30MHz to 1GHz

For radiated emission above 1GHz

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.5 Test Results

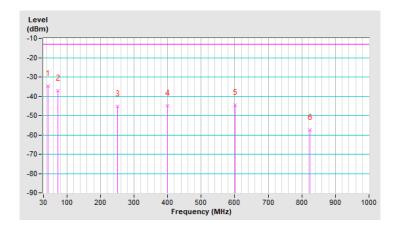

Below 1GHz

RF Mode	RF Mode TX LTE Band 26-10MHz		CH 26740: 819 MHz
Frequency Range	30MHz ~ 1GHz		

	Antenna Polarity & Test Distance : Horizontal at 3 m										
No	Frequency (MHz)	ERP (dBm)	Limit (dBm)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	65.89	-44.11	-13.00	-31.11	1.50 H	325	67.06	-111.17			
2	260.86	-43.37	-13.00	-30.37	1.00 H	198	67.22	-110.59			
3	444.19	-49.10	-13.00	-36.10	2.00 H	188	56.53	-105.63			
4	557.68	-43.76	-13.00	-30.76	2.00 H	289	59.85	-103.61			
5	651.77	-45.46	-13.00	-32.46	1.00 H	27	56.30	-101.76			
6	881.66	-56.65	-13.00	-43.65	1.00 H	62	42.01	-98.66			

Remarks:

- 1. ERP(dBm) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) + 20log(D) 104.8 2.15
- 3. Margin value = ERP Limit value
- 4. The other ERP levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
- 5. The ERP levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.



RF Mode	TX LTE Band 26-10MHz	Channel	CH 26740: 819 MHz	
Frequency Range	30MHz ~ 1GHz			

	Antenna Polarity & Test Distance : Vertical at 3 m										
No	Frequency (MHz)	ERP (dBm)	Limit (dBm)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	44.55	-34.67	-13.00	-21.67	1.50 V	239	75.03	-109.70			
2	73.65	-36.99	-13.00	-23.99	1.00 V	94	75.53	-112.52			
3	251.16	-45.11	-13.00	-32.11	2.00 V	47	65.88	-110.99			
4	399.57	-44.90	-13.00	-31.90	1.00 V	267	62.04	-106.94			
5	600.36	-44.50	-13.00	-31.50	1.50 V	2	58.28	-102.78			
6	824.43	-57.60	-13.00	-44.60	1.00 V	11	41.29	-98.89			

Remarks:

- 1. ERP(dBm) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) + 20log(D) 104.8 2.15
- 3. Margin value = ERP Limit value
- 4. The other ERP levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
- 5. The ERP levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

Above 1GHz

RF Mode	LTE Band 26 Channel Bandwidth: 10MHz	Channel	CH 26740 : 819 MHz
Frequency Range	1 GHz ~ 18 GHz		

	Antenna Polarity & Test Distance : Horizontal at 3 m									
No	Frequency (MHz)	ERP (dBm)	Limit (dBm)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	1638.00	-39.86	-13.00	-26.86	1.45 H	123	78.13	-117.99		
		An	tenna Polari	ty & Test Dis	stance : Verti	ical at 3 m				
No	Frequency (MHz)	ERP (dBm)	Limit (dBm)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	1638.00	-37.92	-13.00	-24.92	3.25 V	178	80.07	-117.99		

Remarks:

- 1. ERP(dBm) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) + 20log(D) 104.8 2.15
- 3. Margin value = ERP Limit value
- 4. The other ERP levels were very low against the limit.

5 Pictures of Test Arrangements	
Please refer to the attached file (Test Setup Photo).	

Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab

Hsin Chu EMC/RF/Telecom Lab

Tel: 886-2-26052180 Fax: 886-2-26051924

Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@bureauveritas.com. two Site: http://ee.bureauveritas.com.tw

The address and road map of all our labs can be found in our web site also.

--- END ---