

Product Name	2.4GHz ZigBee Module
Model No	WZ400T
FCC ID.	PPQ-WZ400T

Applicant	Lite-On Technology Corp.
Address	4F,90,Chien 1 Road,Chung-Ho,Taipei Hsien
	235,Taiwan,R.O.C.

Date of Receipt	Mar. 02, 2010
Issue Date	Mar. 15, 2010
Report No.	103063R-RFUSP29V01
Report Version	V1.0

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation. This report must not be used to claim product endorsement by NVLAP any agency of the U.S. Government

Test Report Certification

Issue Date: Mar. 15, 2010 Report No.: 103063R-RFUSP29V01

Accredited by NIST (NVLAP) NVLAP Lab Code: 200533-0

Product Name	2.4GHz ZigBee Module	
Applicant	Lite-On Technology Corp.	
Address	4F,90,Chien 1 Road,Chung-Ho,Taipei Hsien 235,Taiwan,R.O.C.	
Manufacturer	DONG GUAN G-COM COMPUTER CO., LTD.	
Model No.	WZ400T	
EUT Rated Voltage	DC 3V	
EUT Test Voltage	DC 3V	
Trade Name	Lite-On	
Applicable Standard	FCC CFR Title 47 Part 15 Subpart C: 2008	
	ANSI C63.4: 2003	
Test Result	Complied	

The test results relate only to the samples tested.

1

1

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation. This report must not be used to claim product endorsement by NVLAP any agency of the U.S. Government

Documented By :

Leven Huang

(Adm. Specialist / Leven Huang)

Tested By

Kung

(Engineer / Eason Hung)

Approved By

(Manager / Vincent Lin)

TABLE OF CONTENTS

Descr	iption	Page
1.	GENERAL INFORMATION	5
1.1.	EUT Description	5
1.2.	Operational Description	
1.3.	Tested System Details	
1.4.	Configuration of Tested System	
1.5.	EUT Exercise Software	
1.6.	Test Facility	
2.	Conducted Emission	11
2.1.	Test Equipment	11
2.2.	Test Setup	
2.3.	Limits	
2.4.	Test Procedure	
2.5.	Uncertainty	
2.6.	Test Result of Conducted Emission	13
3.	Peak Power Output	15
3.1.	Test Equipment	
3.2.	Test Setup	
3.3.	Limits	
3.4.	Test Procedure	
3.5.	Uncertainty	
3.6.	Test Result of Peak Power Output	16
4.	Radiated Emission	17
4.1.	Test Equipment	
4.2.	Test Setup	
4.3.	Limits	
4.4.	Test Procedure	19
4.5.	Uncertainty	
4.6.	Test Result of Radiated Emission	20
5.	RF antenna conducted test	24
5.1.	Test Equipment	24
5.2.	Test Setup	24
5.3.	Limits	24
5.4.	Test Procedure	25
5.5.	Uncertainty	25
5.6.	Test Result of RF antenna conducted test	
6.	Band Edge	
6.1.	Test Equipment	
6.2.	Test Setup	29
6.3.	Limits	29
6.4.	Test Procedure	
6.5.	Uncertainty	
6.6.	Test Result of Band Edge	

7.	Occupied Bandwidth	35
7.1.	Test Equipment	
7.2.	Test Setup	
7.3.	Limits	
7.4.	Test Procedure	
7.5.	Uncertainty	
7.6.	Test Result of Occupied Bandwidth	
8.	Power Density	
8.1.	Test Equipment	
8.2.	Test Setup	
8.3.	Limits	
8.4.	Test Procedure	
8.5.	Uncertainty	
8.6.	Test Result of Power Density	40
9.	EMI Reduction Method During Compliance Testing	43

- Attachment 1: EUT Test Photographs
- Attachment 2: EUT Detailed Photographs

1. GENERAL INFORMATION

1.1. EUT Description

Product Name	2.4GHz ZigBee Module
Trade Name	Lite-On
Model No.	WZ400T
FCC ID.	PPQ-WZ400T
Frequency Range	2405-2475MHz
Number of Channels	15CH
Channel Separation	5 MHz
Type of Modulation	DSSS (O-QPSK)
Antenna Type	Monopole Antenna
Antenna Gain	Refer to the table "Antenna List"
Channel Control	Auto

Antenna List

No.	Manufacturer	Part No.	Peak Gain
1	DONG GUAN G-COM	N/A	1.5dBi for 2.4 GHz
	COMPUTER		

Note: The antenna of EUT is conform to FCC 15.203

Center Frequency of Each Channel:

Channel Frequency Channel Frequency Channel Frequency Channel Frequency Channel O1: 2405 MHz Channel 02: 2410 MHz Channel 03: 2415 MHz Channel 04: 2420 MHz Channel 05: 2425 MHz Channel 06: 2430 MHz Channel 07: 2435 MHz Channel 08: 2440 MHz Channel 09: 2445 MHz Channel 10: 2450 MHz Channel 11: 2455 MHz Channel 12: 2460 MHz Channel 13: 2465 MHz Channel 14: 2470 MHz Channel 15: 2475 MHz

- 1. The EUT is a 2.4GHz ZigBee Module.
- 2. Regarding to the operation frequency, the lowest, middle and highest frequency are selected to perform the test.
- These tests are conducted on a sample for the purpose of demonstrating compliance of ZigBee transmitter with Part 15 Subpart C Paragraph 15.247 of spread spectrum devices
- 4. The radiation measurements are performed in X, Y, Z axis positioning. Only the worst case is shown in the report.

1.2. Operational Description

The EUT is a 2.4GHz ZigBee Module, The Number of the channels is 15 in 2405~2475MHz. The device operation in 2.4GHz Direst Sequence Spread Spectrum (DSSS) modulation is O-QPSK. The Antenna is Monopole Antenna.

Test Mode:	Mode 1: Transmit
------------	------------------

1.3. Tested System Details

The types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards) are:

Pro	oduct	Manufacturer	Model No.	Serial No.	Power Cord
1	Test Fixture	DONG GUAN G-COM	N/A	N/A	N/A
2	Notebook P.C.	DELL	PPT	N/A	Non-Shielded, 0.8m
3	DC Power Supply	Agilent	E3646A	MY40003414	Non-Shielded, 1.8m

Signal Cable Type		Signal cable Description
А	Signal Cable	Non-Shielded, 0.3m
в	USB Cable	Non-Shielded, 1.2m
С	DC Power Cable	Non-Shielded, 0.8 m

1.4. Configuration of Tested System

1.5. EUT Exercise Software

- (1) Setup the EUT as shown in section 1.4
- (2) Execute the "Smart RF" program (Ver 6.13.0.0) on the notebook.
- (3) Setup the test mode and channel.
- (4) Press OK to start the transmission.
- (5) Verify that the EUT works correctly.

1.6. Test Facility

Ambient conditions in the laboratory:

Items	Required (IEC 68-1)	Actual
Temperature (°C)	15-35	20-35
Humidity (%RH)	25-75	50-65
Barometric pressure (mbar)	860-1060	950-1000

The related certificate for our laboratories about the test site and management system can be downloaded from QuieTek Corporation's Web Site : <u>http://tw.quietek.com/tw/emc/accreditations/accreditations.htm</u> The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site : <u>http://www.quietek.com/</u>

Site Description: File on

Federal Communications Commission FCC Engineering Laboratory 7435 Oakland Mills Road Columbia, MD 21046 Registration Number: 92195

Accreditation on NVLAP NVLAP Lab Code: 200533-0

Site Name: Quietek Corporation Site Address: No. 5-22, Ruei-Shu Valley, Ruei-Ping Tsuen, Lin-Kou Shiang, Taipei, Taiwan, R.O.C. TEL: 886-2-8601-3788 / FAX : 886-2-8601-3789 E-Mail : service@quietek.com

FCC Accreditation Number: TW1014

2. Conducted Emission

2.1. Test Equipment

The following test equipment are used during the conducted emission test:

Item	Instrument	Manufacturer	Type No./Serial No	Last Cal.	Remark
1	Test Receiver	R & S	ESCS 30/825442/17	May, 2009	
2	L.I.S.N.	R & S	ESH3-Z5/825016/6	May, 2009	EUT
3	L.I.S.N.	Kyoritsu	KNW-407/8-1420-3	May, 2009	Peripherals
4	Pulse Limiter	R & S	ESH3-Z2	May, 2009	
5	No.1 Shielded Ro	N/A			

Note: All instruments are calibrated every one year.

2.2. Test Setup

2.3. Limits

FCC Part 15 Subpart C Paragraph 15.207 (dBuV) Limit					
Frequency	Limits				
MHz	QP	AVG			
0.15 - 0.50	66-56	56-46			
0.50-5.0	56	46			
5.0 - 30	60	50			

2.4. Test Procedure

The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm /50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs.) Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. Conducted emissions were invested over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.

2.5. Uncertainty

± 2.26 dB

2.6. Test Result of Conducted Emission

Product	:	2.4GHz ZigBee Module
Test Item	:	Conducted Emission Test
Power Line	:	Line 1
Test Mode	:	Mode 1: Transmit (2440MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV	dB	dBuV
Line 1					
Quasi-Peak					
0.908	9.670	25.240	34.910	-21.090	56.000
1.576	9.680	22.420	32.100	-23.900	56.000
2.279	9.680	28.030	37.710	-18.290	56.000
4.119	9.700	26.410	36.110	-19.890	56.000
5.795	9.720	37.030	46.750	-13.250	60.000
9.478	9.810	34.020	43.830	-16.170	60.000
Average					
0.908	9.670	13.360	23.030	-22.970	46.000
1.576	9.680	17.230	26.910	-19.090	46.000
2.279	9.680	10.630	20.310	-25.690	46.000
4.119	9.700	16.390	26.090	-19.910	46.000
5.795	9.720	27.040	36.760	-13.240	50.000
9.478	9.810	24.490	34.300	-15.700	50.000

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

-

Product Test Item Power Line Test Mode	 2.4GHz ZigBee Module Conducted Emission Test Line 2 Mode 1: Transmit (2440MHz) 						
Frequency	Correct	Reading N	leasurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV	dB	dBuV		
Line 2							
Quasi-Peak							
0.923	9.670	19.980	29.650	-26.350	56.000		
1.556	9.680	23.900	33.580	-22.420	56.000		
2.341	9.680	25.980	35.660	-20.340	56.000		
4.213	9.700	28.060	37.760	-18.240	56.000		
5.595	9.720	40.090	49.810	-10.190	60.000		
9.642	9.820	33.510	43.330	-16.670	60.000		
Average							
0.923	9.670	9.720	19.390	-26.610	46.000		
1.556	9.680	17.830	27.510	-18.490	46.000		
2.341	9.680	8.480	18.160	-27.840	46.000		
4.213	9.700	18.650	28.350	-17.650	46.000		
5.595	9.720	28.090	37.810	-12.190	50.000		
9.642	9.820	25.610	35.430	-14.570	50.000		

Note:

1. All Reading Levels are Quasi-Peak and average value.

2. "means the worst emission level.

3. Measurement Level = Reading Level + Correct Factor

3. Peak Power Output

3.1. Test Equipment

The following test equipments are used during the radiated emission tests:

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Х	Power Meter	Anritsu	ML2495A/6K00003357	May, 2009
Х	Power Sensor	Anritsu	MA2411B/0738448	Jun, 2009
Note:	: 1. All instruments are calibrated every one year.			

2. The test instruments marked by "X" are used to measure the final test results.

3.2. Test Setup

Conducted Measurement

3.3. Limits

The maximum peak power shall be less 1 Watt.

3.4. Test Procedure

The EUT was tested according to DTS test procedure of Mar. 2005 KDB558074 for compliance to FCC 47CFR 15.247 requirements.

3.5. Uncertainty

 \pm 1.27 dB

3.6. Test Result of Peak Power Output

Product	:	2.4GHz ZigBee Module
Test Item	:	Peak Power Output Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit

Channel No.	Frequency	Measurement Level	Required Limit	Pocult
	(MHz)	(dBm)	(dBm)	Result
1	2405.00	18.57	<30dBm	Pass
08	2440.00	17.94	<30dBm	Pass
15	2475.00	16.89	<30dBm	Pass

Note: Peak Power Output Value =Reading value on peak power meter + cable loss

4. Radiated Emission

4.1. Test Equipment

The following test equipment are used during the radiated emission test:

Test Site		Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Site # 3	te # 3 X Bilog Antenna		Schaffner Chase	CBL6112B/2673	Sep., 2009
	Х	Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2009
	Х	Horn Antenna	Schwarzbeck	BBHA9170/208	Jul., 2009
X Pre-Amplifier Agilent		Agilent	8447D/2944A09549	Sep., 2009	
	Х	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2009
	Х	Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2009
	Х	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2010
	Х	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	Х	Coaxial Switch	Anritsu	MP59B/6200265729	N/A

Note: 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

2. The test instruments marked with "X" are used to measure the final test results.

4.2. Test Setup

Radiated Emission Below 1GHz

Radiated Emission Above 1GHz

4.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15 Subpart C Paragraph 15.209(a) Limits					
Frequency MHz	uV/m @3m	dBuV/m@3m			
30-88	100	40			
88-216	150	43.5			
216-960	200	46			
Above 960	500	54			

Remarks: E field strength (dBuV/m) = 20 log E field strength (uV/m)

4.4. Test Procedure

The EUT was setup according to ANSI C63.4, 2003 and tested according to DTS test procedure of Mar. 2005 KDB558074 for compliance to FCC 47CFR 15.247 requirements. The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned between 1 meter and 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.4:2003 on radiated measurement.

The resolution bandwidth below 1GHz setting on the field strength meter is 120 kHz and above 1GHz is 1MHz.

Radiated emission measurements below 1GHz are made using broadband Bilog antenna and above 1GHz are made using Horn Antennas.

The measurement is divided into the Preliminary Measurement and the Final Measurement.

The suspected frequencies are searched for in Preliminary Measurement with the measurement antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB bandwidth of the antenna.

The worst radiated emission is measured in the Open Area Test Site on the Final Measurement.

The measurement frequency range form 30MHz - 10th Harmonic of fundamental was investigated.

4.5. Uncertainty

- ± 3.9 dB above 1GHz
- ± 3.8 dB below 1GHz

4.6. Test Result of Radiated Emission

:	2.4GHz ZigBee Module
:	Harmonic Radiated Emission Data
:	No.3 OATS
:	Mode 1: Transmit (2405MHz)
	::

Frequency	cy Correct Reading Measurement		Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4810.000	3.323	48.000	51.323	-22.677	74.000
7215.000	10.289	50.170	60.460	-13.540	74.000
9620.000	13.595	55.640	69.236	-19.786	*89.022
Average					
Detector:					
7215.000	10.289	35.040	45.330	-8.670	54.000
9620.000	13.595	45.050	58.646	-23.536	*82.000
Vertical					
Peak Detector:					
4810.000	6.591	49.780	56.371	-17.629	74.000
7215.000	11.151	51.460	62.612	-11.388	74.000
9620.000	14.014	48.990	63.005	-26.017	*89.022
Average					
Detector:					
4810.000	6.591	41.200	47.791	-6.209	54.000
7215.000	10.289	39.070	49.360	-4.640	54.000
9620.000	14.014	38.310	52.325	-29.675	*82.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "* ",The limit was calculated using the Fundamental (refer to section 6) –20dB.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: 2.4GHz ZigBee Module						
Test Item	: Harmon	: Harmonic Radiated Emission Data					
Test Site	: No.3 OA	: No.3 OATS					
Test Mode	: Mode 1:	Transmit (2440	OMHz)				
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
4880.000	41.134	5.676	46.810	-27.190	74.000		
7320.000	13.531	51.859	65.390	-8.610	74.000		
9760.000	12.470	53.609	66.080	-7.920	74.000		
Average							
Detector:							
7320.000	13.531	22.219	35.750	-18.250	54.000		
9760.000	12.470	27.689	40.160	-13.840	54.000		
Vertical							
Peak Detector:							
4880.000	43.862	6.108	49.970	-24.030	74.000		
7320.000	14.401	48.559	62.960	-11.040	74.000		
9760.000	12.942	50.648	63.590	-10.410	74.000		
Average							
Detector:							
7320.000	14.401	37.549	51.950	-2.050	54.000		
9760.000	12.942	38.778	51.720	-2.280	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "* ", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

-

Product	: 2.4GHz	ZigBee Module	;				
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	: Mode 1:	Transmit (247	5MHz)				
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
4950.000	41.862	2.289	44.150	-29.850	74.000		
7425.000	14.043	46.187	60.230	-13.770	74.000		
9900.000	13.033	51.477	64.510	-9.490	74.000		
Average							
Detector:							
7425.000	14.043	37.347	51.390	-2.610	54.000		
9900.000	13.033	38.787	51.820	-2.180	54.000		
Vertical							
Peak Detector:							
4950.000	44.622	6.139	50.760	-23.240	74.000		
7425.000	15.023	47.467	62.490	-11.510	74.000		
9900.000	13.626	48.724	62.350	-11.650	74.000		
Average							
Detector:							
7425.000	15.023	36.597	51.620	-2.380	54.000		
9900.000	13.626	38.144	51.770	-2.230	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 2.4GHz ZigBee Module General Radiated Emission Data No.3 OATS Mode 1: Transmit (2440MHz) 						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
55.220	-13.109	44.231	31.122	-8.878	40.000		
171.620	-10.242	47.435	37.193	-6.307	43.500		
460.680	1.589	37.228	38.817	-7.183	46.000		
503.360	0.138	38.068	38.206	-7.794	46.000		
807.940	5.006	32.373	37.378	-8.622	46.000		
1000.000	9.119	29.977	39.096	-14.904	54.000		
Vertical							
30.000	1.020	31.716	32.736	-7.264	40.000		
198.780	-8.221	42.381	34.160	-9.340	43.500		
511.120	-0.261	34.573	34.312	-11.688	46.000		
695.420	1.878	33.084	34.962	-11.038	46.000		
875.840	1.621	30.186	31.807	-14.193	46.000		
1000.000	4.329	32.141	36.470	-17.530	54.000		

Note:

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. "" means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

5. RF antenna conducted test

5.1. Test Equipment

The following test equipments are used during the radiated emission tests:

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2009
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2009
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr.,2009

Note: 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

2. The test instruments marked with "X" are used to measure the final test results.

5.2. Test Setup

RF antenna Conducted Measurement:

5.3. Limits

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

5.4. Test Procedure

The EUT was tested according to DTS test procedure of Mar. 2005 KDB558074 for compliance to FCC 47CFR 15.247 requirements.

Set RBW = 100 kHz, Set VBW> RBW, scan up through 10th harmonic.

5.5. Uncertainty

The measurement uncertainty Conducted is defined as \pm 1.27dB

5.6. Test Result of RF antenna conducted test

Product	:	2.4GHz ZigBee Module
Test Item	:	RF antenna conducted test
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit

Channel 01 (2405MHz) 30-25GHz

DAgilent Spectrum Analyzer - Swept SA	(Q)						
🗱 50 Ω Α Display Line -7.98 dBm			ALIGNAUTO Type: Log-Pwr	01:58:46 AM	Mar 05, 2010		Display
Input: RF PNO: Fast →→ IFGain:Low	#Atten: 30	dB	M	kr1 2.40 12.01	PNNNNN 2 GHz 8 dBm		Annotation►
10.0							Title►
-10.0					-7.98 dBm	<u>On</u>	Graticule Off
-20.0						<u>On</u>	Display Line -7.98 dBm Off
-40.0		an way water a farmer age	ybeen la range of a star	whether and the server	Juryant May Kray IV		
-60.0							System Display▶ Settings
Start 30 MHz #Res BW 100 kHz #VBW	1.0 MHz		Sweep	Stop 25 2.30 s (1	5.00 GHz 001 pts)		

Channel 08 (2440MHz) 30-25GHz

Channel 15 (2475MHz) 30-25GHz

6. Band Edge

6.1. Test Equipment

RF Conducted Measurement

The following test equipments are used during the band edge tests:

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.	
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2009	
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2009	
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr.,2009	

Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

RF Radiated Measurement:

The following test equipments are used during the band edge tests:

Test Site		Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Site # 3		Bilog Antenna	Schaffner Chase	CBL6112B/2673	Sep., 2009
	Х	Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2009
		Horn Antenna	Schwarzbeck	BBHA9170/208	Jul., 2009
	Х	Pre-Amplifier	Agilent	8447D/2944A09549	Sep., 2009
	Х	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2009
		Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2009
	Х	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2010
	Х	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	Х	Coaxial Switch	Anritsu	MP59B/6200265729	N/A

Note: 1. All instruments are calibrated every one year.

2. The test instruments marked by "X" are used to measure the final test results.

6.2. Test Setup

RF Conducted Measurement

6.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

6.4. Test Procedure

The EUT was setup according to ANSI C63.4, 2003 and tested according to DTS test procedure of Mar. 2005 KDB558074 for compliance to FCC 47CFR 15.247 requirements. The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.4:2003 on radiated measurement.

6.5. Uncertainty

- ± 3.9 dB above 1GHz
- ± 3.8 dB below 1GHz

6.6. **Test Result of Band Edge**

Product	:	2.4GHz ZigBee Module
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit

RF Radiated Measurement (Horizontal):

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Average Limit (dBuV/m)	Result
01 (Peak)	2390.000	-1.131	52.216	51.085	74.00	54.00	Pass
01 (Peak)	2404.600	-1.057	110.078	109.020			
01 (Average)	2390.000	-4.687	38.770	34.083	74.00	54.00	Pass
01 (Average)	2405.200	-4.652	106.653	102.000			

Horizontal (Peak)

Figure Channel 01:

Note:

1. All readings above 1GHz are performed with peak and/or average measurements as necessary.

2400,000 Frequency (MHz) 2405.000

2410.000

2415,000

2420,000

2425,000

2395.000

2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.

2390,000

- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.

2385.000

2380,000

- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	2.4GHz ZigBee Module
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit

RF Radiated Measurement (Vertical):

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Average Limit (dBuV/m)	Result
01 (Peak)	2390.000	-1.725	52.535	50.810	74.00	54.00	Pass
01 (Peak)	2404.500	-1.723	110.746	109.022			

Figure Channel 01:

Vertical (Peak)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

QuieTer

Product	:	2.4GHz ZigBee Module
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit

RF Radiated Measurement (Horizontal):

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Average Limit (dBuV/m)	Result
15 (Peak)	2475.500	-0.610	110.943	110.334			
15 (Peak)	2483.500	-0.558	56.939	56.381	74.00	54.00	Pass
15(Average)	2475.000	-0.612	108.592	107.980			
15(Average)	2483.500	-0.558	45.609	45.051	74.00	54.00	Pass

Figure Channel 15:

Horizontal (Peak)

Figure Channel 15:

Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

QuieTer

Product	:	2.4GHz ZigBee Module
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit

RF Radiated Measurement (Vertical):

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Average Limit (dBuV/m)	Result
15 (Peak)	2474.500	-1.355	110.005	108.650			
15 (Peak)	2483.500	-1.305	56.000	54.695	74.00	54.00	Pass
15(Average)	2475.000	-1.352	107.676	106.324			
15(Average)	2483.500	-1.305	44.712	43.407	74.00	54.00	Pass

Figure Channel 15:

Vertical (Peak)

Figure Channel 15:

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

7. Occupied Bandwidth

7.1. Test Equipment

The following test equipments are used during the radiated emission tests:

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2009
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2009
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr.,2009

Note: 1. All instruments are calibrated every one year.

2. The test instruments marked by "X" are used to measure the final test results.

7.2. Test Setup

7.3. Limits

The minimum bandwidth shall be at least 500 kHz.

7.4. Test Procedure

The EUT was setup according to ANSI C63.4, 2003; tested according to DTS test procedure of Mar. 2005 KDB558074 for compliance to FCC 47CFR 15.247 requirements. Set RBW = 100 kHz, Span greater than RBW.

7.5. Uncertainty

 \pm 150Hz

7.6. Test Result of Occupied Bandwidth

Product	:	2.4GHz ZigBee Module
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (2405MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
1	2405.00	1950	>500	Pass

Figure Channel 1:

D Agilent S	Spectrum	Analyzer -	Swept SA								
₩ Marker	1 2.4	° 105250	000000 G	iHz	AC SE		Avg T	ALIGNAUTO ype: Log-Pwr	01:43:24 / TRA	AM Mar 05, 2010	Marker
		Ir	iput: RF PI	NO: Fast ⊆ Gain:Low	#Atten: 30	dB	0,810	Mkr1	2.405 2	50 GHz	Select Marker 1 ►
10 dB/div	/ Re	f 20.00	dBm				1		12.8	99 aBM	
10.0 0.00					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	X ¹ /3				6.90 dBm	Normal
-10.0					m	1			-	-	
-20.0				hard		¥	L.	~~~~			Delta
-50.0 +++++++++++++++++++++++++++++++++++	₽°₽₽₩₩₩₩₩₩	monte-en-						Vrdysen).	A Party and a second	a and the second	Fixed⊳
Center #Res Bl	2.405 W 100	00 GHz kHz	1	#VB	W 100 kHz			#Sweep	Span 2 500 ms (5.00 MHz 1001 pts)	Off
MKR MODE	TRC SC	3	X 0.405.05		40.000 df	FUN	CTION	FUNCTION WIDTH	FUNCTI	ON VALUE	
2 N 3 N 4 5 6	1 f 1 f		2.405 25 2.404 02 2.405 97	5 GHz 5 GHz	3.504 di 3.905 di	3m 3m 3m					Properties►
8 9 10 11 12											More 1 of 2
MSG								STATU	Б		

Product	:	2.4GHz ZigBee Module
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (2440MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
8	2440.00	1850	>500	Pass

Figure Channel 8:

	gilent S	Spect	trum	Analyzer - S	wept SA				12								
ы Ma	rker	1	50 s 2.4	2 402500	00000 G	Hz	AC	SEM	NSE:INT	4	vg Typ	ALIGN AUTO	01:	42:17 / TRAC	M Mar 05, 2010		Marker
				Inp	out: RF PN IFG	10: Fast Gain:Low	₽ #	Atten: 30	dB		vginoi	a: 70/100		D		Ń	Select Marker
10	dB/div	,	Ref	f 20.00 d	IBm							Mkr	1 2.4	40 2 10.8	50 GHz 73 dBm		1
Log 10.								A2m	1 3						4.87 dBm		
0.0	0		-					7	N,								Normal
-10.							m	(m						╠	
-30.							1	γ	4	-\		_					Delta
-40.	□		-			man	/			+1	-		-				
-50.	3 5740		****	the second se	have the second s							- And	w Mar was	- And the second second	m wanter	╟	
-60. -70.													1				Fixed⊳
Ce		24	400	0 GHz			- 0						Sr	an 2	5 00 MHz	╟	
#R	es B	W 1	00	kHz		#VE	BW 10	0 kHz				#Sweep	500	ms (1001 pts)		Off
MKF	MODE	TRC 1	SCL		×	1 GHz	11	Y 1 873 de	- F	UNCTIO	N F	UNCTION WID1	н	FUNCTI	ON VALUE	T	25.02
23	N	1	f		2.439 050	D GHz		2.365 dE	3m 3m							╟╴	
4																	Properties►
<u>6</u> 7			ý.													E	
89			2														More
10 11 12																	1 of 2
MSG		1	I									STAT	us			1	

Product	:	2.4GHz ZigBee Module
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (2475MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
15	2475.00	1900	>500	Pass

Figure Channel 15:

D Agile	ent S	pecti	um /	Analyzer -	Swept SA											
× Cent	er	Fre	50 ຊ	2.4750 In	100000 iput: RF	GHz PNO: Fast IFGain:Lov		SE Frig: Free Atten: 30	NSE:INT Run dB	Avg Avg H	Type lold:	ALIGN AUTO : Log-Pwr 94/100	01:41:2 T	RACE 1 TYPE M DET P	ar 05, 2010 2 3 4 5 6 WWWWW N N N N N	Recall
10 dB	s/div	1	Ref	20.00	dBm							Mkr1	2.474 9.	750 .097	dBm	State
10.0 0.00								<u>2</u> 2,	1 m						3.10 dBm	Trace (+ State)
-10.0							m	$\sqrt{-}$		n						
-30.0		1.2.68			Land and the second	mus				h	~	And the second s	atre and the		0 .	
-60.0 - -70.0 -															- 1990 - 1990 - 1	Da (Import) Trace 1
Cent #Res	er 2 s BV	2.47 V 1	'50 00	0 GHz kHz		#V	'BW 1	00 kHz	I			#Sweep	Spar 500 m	1 25.0 s (10	00 MHz 01 pts)	
MKE M 1 2 3 4 5 6 7 8 9 10 11 12		TRC 1 1 1	f f f		× 2.474 2.475	750 GHz 050 GHz 950 GHz		Y 9.097 dl 0.743 dl 1.097 dl	Bm Bm Bm Bm	NCTION	FUN	ICTION WIDTH	FUN	CTION V		

8. Power Density

8.1. Test Equipment

The following test equipments are used during the radiated emission tests:

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2009
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2009
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr.,2009

Note: 1. All equipments are calibrated every one year.

2. The test instruments marked by "X" are used to measure the final test results.

8.2. Test Setup

8.3. Limits

The transmitted power density averaged over any 1 second interval shall not be greater +8dBm in any 3kHz bandwidth.

8.4. Test Procedure

The EUT was setup according to ANSI C63.4, 2003; tested according to DTS test procedure of Mar. 2005 KDB558074 for compliance to FCC 47CFR 15.247 requirements. Set RBW= 3 kHz, VBW=10KHz, Sweep time=(SPAN/3KHz), detector=Peak detector

8.5. Uncertainty

± 1.27 dB

8.6. Test Result of Power Density

Product	:	2.4GHz ZigBee Module
Test Item	:	Power Density Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit(2405MHz)

Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result
1	2405.00	0.154	< 8dBm	Pass

Figure Channel 1:

🎾 Agilent Spe	ctrum Analyzer -	Swept SA								
Marker 1	50 Ω 2 4054454	500000 G	iHz	.c se	NSE:INT	Avg Type	ALIGNAUTO e: Log-Pwr	05:55:52 P	M Mar 10, 2010	Peak Search
	Pef 20.00	dBm	NO: Far 🍙 Gain:Low	┘ Trig: Free Atten: 30	eRun dB	Avg Hold	Mkr1 2.	405 44 0.1	5 5 GHz 54 dBm	NextPeak
				-					1	Next Right
0.00 Yuli viti -10.0	internation spaces of	yyuntuunihiilinin	₽~sft.t.Ashall	nteringly the second	rtaddwylwr (mre	nt.,4/lat.~(l/ ^{mai}	enthe start provide	hten the start	hijkurdin had ^{da} r	Next Left
-20.0										Marker Delta
-40.0										Mkr→CF
-60.0										Mkr→RefLvl
Center 2.4 #Res BW	1053000 GH 3.0 kHz	z	#VBW	10 kHz			#Sweep	Span 3) 100 s (300.0 kHz 1001 pts)	More 1 of 2
MSG							STATUS			

Product	:	2.4GHz ZigBee Module
Test Item	:	Power Density Data
Test Site	:	No.3OATS
Test Mode	:	Mode 1: Transmit (2440MHz)

Channel No.	Frequency (MHz)	Measurement Level (dBm)	Required Limit (dBm)	Result
8	2440	-0.625	< 8dBm	Pass

Figure Channel 8:

Agilent Spe	ctrum Analyzer	- Swept SA		an a						
l Iarker 1	50 Ω 2.439859	200000 G		.c SE Trig: Free	NSE:INT	Avg Type Avg Hold	ALIGNAUTO e: Log-Pwr : 1/100	05:58:46 F TRAC TYF	M Mar 10, 2010 E 1 2 3 4 5 6 E M WWWWWW	Peak Search
0 dB/div	Ref 20.00	dBm	Gain:Low	Atten: 30	dB		Mkr1 2.4	439 859 -0.6	9 2 GHz 25 dBm	Next Peal
. og 10.0								.1		Next Righ
0.00	ปรับ _{สรุโก} ประการประสุปรีบทร	h. Ununununun	Ladyrip-NU-Million	afarlassaar	a.a.luyin.opanisal	Horton Luphana	hNU/mitchevines/regime	undit for the subscription of the subscription	http://www.warp	Next Le
20.0										Marker Del
40.0										Mkr→C
60.0									[Mkr→RefL
Zenter 2.4	4397500 GH 3.0 kHz	lz	#VBW	10 kHz			#Sweep	Span (100 s (300.0 kHz 1001 pts)	Mor 1 of
SG SG	5.0 KHZ		#*64*	TO KITZ			STATUS	100 3 (1001 pt3)	

Product	:	2.4GHz ZigBee Module
Test Item	:	Power Density Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (2475MHz)

Channel No.	Frequency (MHz)	Measurement Level (dBm)	Required Limit (dBm)	Result
15	2475.00	-1.6	< 8dBm	Pass

Figure Channel 15:

🎾 Agilent Spe	ctrum Analyzer -	Swept SA	44							
Marker 1	^{50 Ω}	900000 G	iHz A	IC SE	NSE:INT	Avg Typ	ALIGNAUTO E: Log-Pwr	06:02:30 P	M Mar 10, 2010 E 1 2 3 4 5 6	Peak Search
10 dB/div	Ir Ref 20.00	nput: RF F IF dBm	NO: Far 🍙 Gain:Low	Atten: 30	dB	Avg Hold	Mkr1 2.4	474 786 -1.60	5 9 GHz 00 dBm	Next Peak
10.0										Next Right
0.00 -10.0	atu persetek i historia da	n um ridannansfa	hadesset Virdinistra	u hadan an a	yn Mrwwallwyd	intriducion and a	arkhoristransationis	Milliologian	ynykalanaurytha	Next Lef
-20.0										Marker Delta
-40.0										Mkr→CF
-60.0									[Mkr→RefLv
Center 2.4	4747500 GH 3.0 kHz	lz	#VBW	10 kHz			#Sweep	Span 3 100 s (300.0 kHz 1001 pts)	More 1 of 2
MSG							STATUS			

9. EMI Reduction Method During Compliance Testing

No modification was made during testing.