FCC RADIO TEST REPORT FCC 47 CFR PART 15 SUBPART C

Test Standard FCC ID Product name Brand name / Model No. FCC Part 15.247

PPQ-WP8331

802.11ac Dual Band PoE Access Point

Model No.	Brand name
C-100	MOJO
	WatchGuard
WP8331	LITE-ON
AP220	WatchGuard

Test Result

Pass

The test Result was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were given in ANSI C63.10: 2013 and compliance standards.

The test results of this report relate only to the tested sample (EUT) identified in this report.

The test Report of full or partial shall not copy. Without written approval of CCS. Inc.

The sample selected for test was production product and was provided by manufacturer.

Reviewed by:

no Chen

Zeus Chen Supervisor

Approved by:

Sam Chuang

Sam Chuang Manager

Revision History

Rev.	Issue Date	Revisions	Revised By
00	November 22, 2016	Initial Issue	Angel Cheng
01	December 13, 2016	P5. Addressed calculations of the directional antenna gains. P26, Addressed calculations of the directional antenna gains P29, Addressed calculations of the directional antenna gains	Angel Cheng
02	March 29, 2017	 Modify model number Page 1, 4. (AP200 change to AP220) 	Angel Cheng

Table of contents

1.	GEN	ERAL INFORMATION	4
	1.1	EUT INFORMATION	4
	1.2	EUT CHANNEL INFORMATION	5
	1.3	ANTENNA INFORMATION	5
	1.4	MEASUREMENT UNCERTAINTY	6
	1.5	FACILITIES AND TEST LOCATION	7
	1.6	INSTRUMENT CALIBRATION	7
	1.7	SUPPORT AND EUT ACCESSORIES EQUIPMENT	8
	1.9	TABLE OF ACCREDITATIONS AND LISTINGS	8
2.	TEST	SUMMERY	9
3.	DESC	CRIPTION OF TEST MODES 1	0
	3.1	THE WORST MODE OF OPERATING CONDITION 1	0
	3.2	THE WORST MODE OF MEASUREMENT 1	1
	3.3	EUT DUTY CYCLE1	2
4.	TEST	RESULT1	3
	4.1	AC POWER LINE CONDUCTED EMISSION 1	3
	4.2	6DB BANDWIDTH AND OCCUPIED BANDWIDTH(99%)1	6
	4.3	OUTPUT POWER MEASUREMENT 2	6
	4.4	POWER SPECTRAL DENSITY	9
	4.5	CONDUCTED BANDEDGE AND SPURIOUS EMISSION	9
A	4.6 PPENI	RADIATION BANDEDGE AND SPURIOUS EMISSION6 DIX 1 - PHOTOGRAPHS OF EUT	0

1. GENERAL INFORMATION

1.1 EUT INFORMATION

Applicant	Lite-On Technology Corp. Bldg. C, 90, Chien 1 Road, Chung Ho, New Taipei City 23585, Taiwan, R.O.C		
Equipment	802.11ac Dual E	3and PoE Acces	s Point
	Model No.	Brand name	
Brand name / Model No.	C-100	WatchGuard	
	WP8331 AP220	LITE-ON WatchGuard	
Model Discrepancy	All the specification with different motion	ation and layout	are identical except they come marketing purposes.
EUT Functions	IEEE 802.11abgn+ac+BT		
Received Date	Nov 2, 2016		
Date of Test	Nov 11, 2016 ~ Nov 17, 2016		
Output Power	IEEE 802.11b mode: 0.5303 IEEE 802.11g mode: 0.7953 IEEE 802.11n HT 20 MHz mode: 0.8054 IEEE 802.11n HT 40 MHz mode: 0.6178		
Power Operation	AC 120V/60 Adapter(PoE(Not DC Type : Battery DC Powe External	Hz Not for sale) for sale) er Supply DC adapter	

Remark:

All listed models are using an identical RF module with the only differences on number of key buttons mounted for additional functions.

Due to similarity of RF product constructions of given model series, only dedicated model as described in test report with the most complexity constructions was selected for testing and record.

1.2 EUT CHANNEL INFORMATION

Frequency Range	2412MHz-2462MHz
Modulation Type	 IEEE 802.11b mode: CCK IEEE 802.11g mode: OFDM IEEE 802.11n HT 20 MHz mode: OFDM IEEE 802.11n HT 40 MHz mode: OFDM
Bandwidth	 IEEE 802.11b mode: 11 Channels IEEE 802.11g mode: 11 Channels IEEE 802.11n HT 20 MHz mode: 11 Channels IEEE 802.11n HT 40 MHz mode: 9 Channels

Remark:

Refer as ANSI 63.10:2013 clause 5.6.1 Table 4 for test channels

Number of frequencies to be tested			
Frequency range inNumber ofLocation in frequencywhich device operatesfrequenciesrange of operation			
☐ 1 MHz or less	1	Middle	
1 MHz to 10 MHz	2	1 near top and 1 near bottom	
🛛 More than 10 MHz	3	1 near top, 1 near middle, and 1 near bottom	

1.3 ANTENNA INFORMATION

Antenna Category	 Integral: antenna permanently attached External dedicated antennas External Unique antenna connector
Antenna Type	 PIFA PCB for Dipole Printed Coils
Antenna Gain	☑ Ant 1: 4.7 (dBi)☑ Ant 2: 3.3 (dBi)
Power Directional gain	4.06 (dBi)
Power Density Directional gain	7.07 (dBi)

Remark :

1. Power Directional gain

=10log(((10^(Ant1/10)+10^(Ant2/10))/2))=10log(((10^(4.7/10)+10^(3.3/10))/2))=4.06 dBi

2. Power Density Directional gain=10log(((10^(Ant1/10)+10^(Ant2/10))/2))+10log(NTX/Nss)

=10log(((10^(4.7/10)+10^(3.3/10))/2))+10log(2/1)=7.07 dBi

This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

1.4 MEASUREMENT UNCERTAINTY

PARAMETER	UNCERTAINTY
AC Powerline Conducted Emission	+/- 1.2575
Emission bandwidth, 20dB bandwidth	+/- 1.4003
RF output power, conducted	+/- 1.1372
Power density, conducted	+/- 1.4003
3M Semi Anechoic Chamber / 30M~200M	+/- 4.0138
3M Semi Anechoic Chamber / 200M~1000M	+/- 3.9483
3M Semi Anechoic Chamber / 1G~8G	+/- 2.5975
3M Semi Anechoic Chamber / 8G~18G	+/- 2.6112
3M Semi Anechoic Chamber / 18G~26G	+/- 2.7389
3M Semi Anechoic Chamber / 26G~40G	+/- 2.9683
3M Semi Anechoic Chamber / 40G~60G	+/- 1.8509
3M Semi Anechoic Chamber / 60G~75G	+/- 1.9869
3M Semi Anechoic Chamber / 75G~110G	+/- 2.9651
3M Semi Anechoic Chamber / 110G~170G	+/- 2.7807
3M Semi Anechoic Chamber / 170G~220G	+/- 3.6437
3M Semi Anechoic Chamber / 220G~325G	+/- 4.2982

Remark:

1. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of *k*=2

2. ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report.

1.5 FACILITIES AND TEST LOCATION

All measurement facilities used to collect the measurement data are located at *No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan. (R.O.C.)*

Test site	Test Engineer	Remark
AC Conduction Room	Anderson Kuo	
Radiation	Dennis Li	
RF Conducted	lan Tu	

Remark: The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

1.6 INSTRUMENT CALIBRATION

RF Conducted Test Site					
Equipment Manufacturer Model S/N Cal Due					
Spectrum Analyzer 10Hz-40GHz	R&S	FSV 40	101073	07/31/2017	

3M 966 Chamber Test Site					
Equipment	Manufacturer	Model	S/N	Cal Due	
Spectrum Analyzer	Agilent	E4446A	US42510252	12/07/2016	
Loop Ant	COM-POWER	AL-130	121051	02/24/2017	
Bilog Antenna	Sunol Sciences	JB3	A030105	07/02/2017	
Pre-Amplifier	EMEC	EM330	60609	06/07/2017	
Horn Antenna	ETC	MCTD 1209	DRH13M02003	09/01/2017	
Pre-Amplifier	MITEQ	AMF-6F-260400-40-8P	985646	01/13/2017	
Horn Antenna	EMCO	3116	26370	01/14/2017	
Antenna Tower	CCS	CC-A-1F	N/A	N.C.R	
Controller	CCS	CC-C-1F	N/A	N.C.R	
Turn Table	CCS	CC-T-1F	N/A	N.C.R	

AC Conducted Emissions Test Site					
Equipment Manufacturer Model S/N Cal Due					
LISN	R&S	ENV216	101054	05/10/2017	
Receiver	R&S	ESCI	101073	08/19/2017	

Remark: Each piece of equipment is scheduled for calibration once a year.

1.7 SUPPORT AND EUT ACCESSORIES EQUIPMENT

EUT Accessories Equipment						
No.	No. Equipment Brand Model Series No. FCC ID					
1	Adapter	APD	WB-18D-12FU	N/A	N/A	
2 PoE I.T.E PW130 N/A N/A						

Support Equipment					
No. Equipment Brand Model Series No. F					FCC ID
1	Notebook	ASUS	A&J	N/A	PD9WM3945ABG
2	Notebook	ASUS	K45V	N/A	PPD-AR5B225

1.8 Test methodology and applied standards

The test methodology, setups and results comply with all requirements in accordance with ANSI C63.10:2013, FCC Part 2, FCC Part 15.247, KDB 558074 D01 v03r05,

1.9 TABLE OF ACCREDITATIONS AND LISTINGS

Country	Agency	Scope of Accreditation	Logo	
USA	FCC	3M Semi Anechoic Chamber (FCC MRA: TW1039) to perform FCC Part 15 measurements	FCC MRA: TW1039	
Canada	Industry Canada	3M Semi Anechoic Chamber (IC 2324G-1 / IC 2324G-2) to perform	Canada IC 2324G-1 IC 2324G-2	

2. TEST SUMMERY

FCC Standard Sec.	Chapter	Test Item	Result
15.203	1.2	Antenna Requirement	Pass
15.207	4.1	AC Conducted Emission	Pass
15.247(a)(2)	4.2	6 dB Bandwidth	Pass
-	4.2	Occupied Bandwidth (99%)	-
15.247(b)	4.3	Output Power Measurement	Pass
15.247(e)	4.4	Power Spectral Density	Pass
15.247(d)	4.5	Conducted Band Edge	Pass
15.247(d)	4.5	Conducted Emission	Pass
15.247(d)	4.6	Radiation Band Edge	Pass
15.247(d)	4.6	Radiation Spurious Emission	Pass

3. DESCRIPTION OF TEST MODES

3.1 THE WORST MODE OF OPERATING CONDITION

Operation mode	IEEE 802.11b mode :1Mbps IEEE 802.11g mode :6Mbps IEEE 802.11n HT20 mode :MCS0 IEEE 802.11n HT40 mode :MCS0
Test Channel Frequencies	IEEE 802.11b mode : 1. Lowest Channel : 2412MHz 2. Middle Channel : 2437MHz 3. Highest Channel : 2462MHz IEEE 802.11g mode : 1. Lowest Channel : 2412MHz 2. Middle Channel : 2437MHz 3. Highest Channel : 2462MHz IEEE 802.11n HT20 mode : 1. Lowest Channel : 2412MHz 2. Middle Channel : 2437MHz 3. Highest Channel : 2462MHz IEEE 802.11n HT40 mode : 1. Lowest Channel : 2422MHz 2. Middle Channel : 2422MHz 3. Highest Channel : 2437MHz 3. Highest Channel : 2452MHz

Remark:

1. EUT pre-scanned data rate of output power for each mode, the worst data rate were recorded in this report.

3.2 THE WORST MODE OF MEASUREMENT

AC Power Line Conducted Emission			
Test Condition	AC Power line conducted emission for line and neutral		
Voltage/Hz	120V/60Hz		
Test Mode	Mode 1:EUT power by AC adapter Mode 2:EUT power by PoE adapter via LAN cable		
Worst Mode	🔀 Mode 1 🗌 Mode 2 🗌 Mode 3 🗌 Mode 4		

Radiated Emission Measurement Above 1G			
Test Condition	Band edge, Emission for Unwanted and Fundamental		
Voltage/Hz	120V/60Hz		
Test Mode	Mode 1:EUT power by AC adapter Mode 2:EUT power by PoE adapter via LAN cable		
Worst Mode	🛛 Mode 1 🗌 Mode 2 🗌 Mode 3 🗌 Mode 4		
Worst Position	 Placed in fixed position. Placed in fixed position at X-Plane (E2-Plane) Placed in fixed position at Y-Plane (E1-Plane) Placed in fixed position at Z-Plane (H-Plane) 		
Worst Polarity	Horizontal 🗌 Vertical		

Radiated Emission Measurement Below 1G			
Test Condition Radiated Emission Below 1G			
Voltage/Hz	120V/60Hz		
Test Mode	Mode 1:EUT power by AC adapter Mode 2:EUT power by PoE adapter via LAN cable		
Worst Mode	🛛 Mode 1 🖾 Mode 2 🗌 Mode 3 🗌 Mode 4		

Remark:

1. The worst mode was record in this test report.

2. EUT pre-scanned in three axis ,X ,Y, Z and two polarity, Horizontal and Vertical for radiated measurement. The worst case were recorded in this report.

3. For below 1G AC power line conducted emission and radiation emission were performed the EUT transmit at the highest output power channel as worse case.
4. EUT power supply had two ways (Adapter and PoE, both not for sale), that EUT pre-scanned two power supply at Radiated below 1G, and the worst case was Adapter mode. Therefore EUT used adapter mode for Radiated measurement above 1G and Conduction below 1G in test report.

3.3 EUT DUTY CYCLE

Duty Cycle						
Configuration	TX ON (ms)	TX ALL (ms)	Duty Cycle (%)	Duty Factor(dB)		
802.11b	8.66	8.71	99.43%	0.03		
802.11g	1.45	1.48	97.97%	0.09		
802.11n HT20	1.36	1.44	94.44%	0.25		
802.11n HT40	0.68	0.75	90.67%	0.43		

4. TEST RESULT

4.1 AC POWER LINE CONDUCTED EMISSION

4.1.1 Test Limit

According to §15.207(a)(2),

Frequency Range	Limits(dBµV)		
(MHz)	Quasi-peak	Average	
0.15 to 0.50	66 to 56*	56 to 46*	
0.50 to 5	56	46	
5 to 30	60	50	

* Decreases with the logarithm of the frequency.

4.1.2 Test Procedure

Test method Refer as ANSI 63.10:2013 clause 6.2,

- 1. The EUT was placed on a non-conducted table, which is 0.8m above horizontal ground plane and 0.4m above vertical ground plane.
- 2. EUT connected to the line impedance stabilization network (LISN)
- 3. Receiver set RBW of 9kHz and Detector Peak, and note as quasi-peak and average.
- Maximum procedure was performed on the six highest emissions to ensure EUT 4. compliance.
- 5. Recorded Line for Neutral and Line.

4.1.3 Test Setup

<u>Test Data</u>

4.26DB BANDWIDTH AND OCCUPIED BANDWIDTH(99%)

4.2.1 Test Limit

According to §15.247(a)(2)

6 dB Bandwidth :

Limit	Shall be at least 500kHz
1	

Occupied Bandwidth(99%) : For reporting purposes only.

4.2.2 Test Procedure

Test method Refer as KDB 558074 D01 v03r05, Section 8.1 and ANSI 63.10:2013 clause 6.9.2,

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 100kHz, VBW = 300kHz and Detector = Peak, to measurement 6 dB Bandwidth and 99% Bandwidth.
- 4. Measure and record the result of 6 dB Bandwidth and 99% Bandwidth. in the test report.

4.2.3 Test Setup

4.2.4 Test Result

Test mode: IEEE 802.11b mode / 2412-2462 MHz							
Channel	Frequency (MHz)	Chain 0 OBW(99%) (MHz)	Chain 1 OBW(99%) (MHz)	Chain 0 6dB BW (MHz)	Chain 1 6dB BW (MHz)	6dB limit (kHz)	
Low	2412	12.9811	13.1548	8.0435	8.6087		
Mid	2437	12.9377	13.0680	8.5653	8.6087	≥500	
High	2462	12.8075	12.7206	8.5218	8.0435		

Test mode: IEEE 802.11g mode / 2412-2462 MHz								
Channel	Frequency (MHz) (MHz) (MHz) (MHz)		Chain 1 Chain 0 OBW(99%) 6dB BW (MHz) (MHz)		Chain 1 6dB BW (MHz)	6dB limit (kHz)		
Low	2412	16.4544	16.4544	16.3478	16.3913			
Mid	2437	17.1490	16.8885	16.3478	16.3913	≥500		
High	2462	16.4109	16.4544	16.3478	16.3913			

Test mode: IEEE 802.11n HT 20 MHz mode / 2412-2462 MHz								
Channel	Frequency (MHz) Chain 0 OBW(99% (MHz)		Chain 1 OBW(99%) (MHz)	Chain 0 6dB BW (MHz)	Chain 1 6dB BW (MHz)	6dB limit (kHz)		
Low	2412	17.6266	17.7134	17.6087	17.6088			
Mid	2437	18.0607	17.9739	17.6087	17.6522	≥500		
High	2462	17.6266	17.6700	17.6087	17.6522			

Test mode: IEEE 802.11n HT 40 MHz mode / 2422-2452 MHz									
Channel	Frequency Chain 0 Chain (MHz) OBW(99%) OBW(9 (MHz) (MHz) (MH		Chain 1 OBW(99%) (MHz)	Chain 0 6dB BW (MHz)	Chain 1 6dB BW (MHz)	6dB limit (kHz)			
Low	2422	36.1215	36.1215	36.29	36.826				
Mid	2437	36.2373	36.1215	36.29	36.594	>500			
High	2452	36.1215	36.1215	36.29	36.174				

<u>Test Data</u>

4.3 OUTPUT POWER MEASUREMENT

4.3.1 Test Limit

According to §15.247(b),

Peak output power :

For systems using digital modulation in the 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt(30 dBm), base on the use of antennas with directional gain not exceed 6 dBi If transmitting antennas of directional gain greater than 6dBi are used the peak output power the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

	Antenna not exceed 6 dBi : 30dBm
Limit	Antenna with DG greater than 6 dBi :
	[Limit = 30 – (DG – 6)]
	Point-to-point operation :

Average output power : For reporting purposes only.

*Directional gain(DG) reference Page 5 for calculations.

4.3.2 Test Procedure

Test method Refer as KDB 558074 D01 v03r05, Section 9.1.2.

- 1. The EUT RF output connected to the power meter by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. The path loss was compensated to the results for each measurement.
- 4. Measure and record the result of Peak output power and Average output power. in the test report.

4.3.3 Test Setup

4.3.4 Test Result

Peak output power :

Wifi 2.4G-2Tx								
Config	CH	Freq.	PK Power(dBm)		PK Total	PK Total	DG	Limit
	Сп	(MHz)	chain0	chain1	(dBm)	(W)	(dBi)	(dBm)
IEEE	Low	2412	24.22	24.25	27.25	0.5303		
802.11b Data rate:	Mid	2437	23.37	23.07	26.23	0.4200		30
1 Mbps	High	2462	23.43	23.11	26.28	0.4249	4.06	
IEEE	Low	2412	24.34	23.44	26.92	0.4924		
802.11g Data rate:	Mid	2437	25.97	26.02	29.01	0.7953		
6Mbps	High	2462	23.71	23.37	26.55	0.4522		
IEEE 802.11n	Low	2412	22.02	21.73	24.89	0.3082		
HT20	Mid	2437	26.07	26.03	29.06	0.8054		
MCS0	High	2462	23.18	22.85	26.03	0.4007		
IEEE	Low	2422	21.47	21.27	24.38	0.2742	-	
HT40	Mid	2437	25.16	24.62	27.91	0.6178		
MCS0	High	2452	21.57	21.15	24.38	0.2739		

Average output power :

Wifi 2.4G-2Tx							
Config	СЦ	Freq.	AV Pow	er(dBm)	AV Total		
Config	Сп	(MHz)	chain0	chain1	(dBm)		
IEEE	Low	2412	21.66	21.58	24.63		
802.11b Data rate:	Mid	2437	20.72	20.23	23.50		
1Mbps	High	2462	20.69	20.38	23.55		
IEEE	Low	2412	14.10	13.15	16.66		
802.11g Data rate:	Mid	2437	21.37	20.92	24.16		
6Mbps	High	2462	13.15	12.75	15.96		
IEEE 802 11n	Low	2412	12.69	12.04	15.39		
HT20	Mid	2437	21.57	21.07	24.34		
Data rate: MCS0	High	2462	13.29	13.03	16.18		
IEEE	Low	2422	11.99	11.74	14.87		
HT40	Mid	2437	16.85	15.91	19.41		
Data rate: MCS0	High	2452	12.10	11.66	14.89		

4.4 POWER SPECTRAL DENSITY

4.4.1 Test Limit

According to §15.247(e),

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

*Directional gain(DG) reference P5 for calculations

	Antenna not exceed 6 dBi : 8dBm
Limit	Antenna with DG greater than 6 dBi ÷ 6.93dBm
	[Limit = 8 – (DG – 6) = 8-1.07 = 6.93, DG = 7.07]
	Point-to-point operation :

4.4.2 Test Procedure

Test method Refer as KDB 558074 D01 v03r05, Section 10.2

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 3kHz, VBW = 30kHz, Span = 1.5 times DTS Bandwidth (6 dB BW), Detector = Peak, Sweep Time = Auto and Trace = Max hold.
- 4. The path loss and Duty Factor were compensated to the results for each measurement by SA.
- 5. Mark the maximum level.
- 6. Measure and record the result of power spectral density. in the test report.

4.4.3 Test Setup

4.4.4 Test Result

Test mode: IEEE 802.11b mode / 2412-2462 MHz							
Channel	Frequency (MHz)	Chain 0 PPSD (dBm)	Chain 1 PPSD (dBm)	Total PSSD (dBm)	limit (dBm)		
Low	2412	-1.06	-2.39	1.34			
Mid	2437	-1.78	-2.62	0.83	6.93		
High	2462	-1.89	-1.91	1.11			

Test mode: IEEE 802.11g mode / 2412-2462 MHz							
Channel	Frequency (MHz)	Chain 0 PPSD (dBm)	Chain 1 PPSD (dBm)	Total PSSD (dBm)	limit (dBm)		
Low	2412	-11.15	-11.66	-8.39			
Mid	2437	-4.45	2.97	3.69	6.93		
High	2462	-11.81	-3.44	-2.85			

Test mode: IEEE 802.11n HT 20 MHz mode / 2412-2462 MHz							
Channel	Frequency (MHz)	Chain 0 PPSD (dBm)	Chain 1 PPSD (dBm)	Total PSSD (dBm)	limit (dBm)		
Low	2412	-12.86	-14.18	-10.46			
Mid	2437	-3.71	-2.78	-0.21	6.93		
High	2462	-10.53	-12.84	-8.52			

Test mode: IEEE 802.11n HT 40 MHz mode / 2422-2452 MHz							
Channel	Frequency (MHz)	Chain 0 PPSD (dBm)	Chain 1 PPSD (dBm)	Total PSSD (dBm)	limit (dBm)		
Low	2422	-14.31	-14.64	-11.46			
Mid	2437	-9.82	-10.83	-7.29	6.93		
High	2452	-14.7	-14.82	-11.75			

<u>Test Data</u>

4.5 CONDUCTED BANDEDGE AND SPURIOUS EMISSION

4.5.1 Test Limit

According to §15.247(d),

In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

4.5.2 Test Procedure

Test method Refer as KDB 558074 D01 v03r05, Section 11.

1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.

2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.

3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. f the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

4.5.3 Test Setup

4.5.4 Test Result

<u>Test Data</u>

4.6 RADIATION BANDEDGE AND SPURIOUS EMISSION

4.6.1 Test Limit

According to §15.247(d), §15.209 and §15.205,

In any 100 kHz bandwidth outside the authorized frequency band, all harmonic and spurious must be least 20 dB below the highest emission level with the authorized frequency band. Radiation emission which fall in the restricted bands must also follow the FCC section 15.209 as below limit in table.

Below 30 MHz

Frequency	Field Strength (microvolts/m)	Magnetic H-Field (microamperes/m)	Measurement Distance (metres)
9-490 kHz	2,400/F (F in kHz)	2,400/F (F in kHz)	300
490-1,705 kHz	24,000/F (F in kHz)	24,000/F (F in kHz)	30
1.705-30 MHz	30	N/A	30

Above 30 MHz

Frequency	Field Strength microvolts/m at 3 metres (watts, e.i.r.p.)						
(MHZ)	Transmitters	Receivers					
30-88	100 (3 nW)	100 (3 nW)					
88-216	150 (6.8 nW)	150 (6.8 nW)					
216-960	200 (12 nW)	200 (12 nW)					
Above 960	500 (75 nW)	500 (75 nW)					

4.6.2 Test Procedure

Test method Refer as KDB 558074 D01 v03r05, Section 12.1.

1. The EUT is placed on a turntable, Above 1 GHz is 1.5m and below 1 GHz is 0.8m above ground plane. The EUT Configured un accordance with ANSI C63.10, and the EUT set in a continuous mode.

2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. And EUT is set 3m away from the receiving antenna, which is scanned from 1m to 4m above the ground plane to find out the highest emissions. Measurement are made polarized in both the vertical and the horizontal positions with antenna.

3. Span shall wide enough to full capture the emission measured. The SA from 30MHz to 26.5GHz set to the low, Mid and High channels with the EUT transmit.

- 5. The SA setting following :
 - (1) Below 1G : RBW = 100kHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
 - (2) Above 1G:
 - (2.1) For Peak measurement : RBW = 1MHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
 - (2.2) For Average measurement : RBW = 1MHz, VBW

'If Duty Cycle ≥ 98%, VBW=10Hz.

If Duty Cycle < 98%, VBW=1/T.

Configuration	Duty Cycle (%)	VBW		
802.11b	99.43%	10Hz		
802.11g	97.97%	10Hz		
802.11n HT20	94.44%	750Hz		
802.11n HT40	90.67%	1.5kHz		

4.6.3 Test Setup <u>9kHz ~ 30MHz</u>

Above 1 GHz

4.6.4 Test Result

Band Edge Test Data

Test Mode	IEEE	802.11b Hi	gh CH	Temperature:			27(°∁)/ 53%RH			
Test Item		Band Edge			Test Date		Nov 08, 2016			
Polarize		Horizontal		Tes	Test Engineer		Dennis Li			
Detector		Average		Te	st Volt	age	120\	/ac / 60Hz		
110.0 dBuV/m2	110.0 dBuV/ml									
	\mathcal{A}						Limit1: Limit2:			
70	h									
		2	~	~~~~						
30.0										
2452.000 2462.00	2472.00 24	482.00 2492.00	2502.00	2512.0	0 2522	2.00 253	2.00	2552.00 MHz		
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resı (dBuV	ult //m)	Li (dBi	imit uV/m)	Margin (dB)	Remark		
2461.200	112.75	-2.10	110.0	65		-	-	AVG		
2487.600	44.82	-1.95	42.8	37	54	54.00 -11.13		AVG		
			-							

Test Mode	IEEE	802.11g Lo	w CH	Temperature:			27(°∁)/ 53%RH			
Test Item		Band Edge			Test Date		Nov 08, 2016			
Polarize		Horizontal		Test Engineer		Dennis Li				
Detector		Average		Te	st Volta	age	120V	ac / 60Hz		
110.0 dBu∀/m	110.0 dBuV/m									
70							Limit1: Limit2:			
30.0										
2310.000 2321.20	2332.40 23	343.60 2354.80	2366.00	2377.2	2388.	.40 2399	1.60	2422.UU MHz		
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resı (dBuV	ult //m)	Liı (dBı	mit ıV/m)	Margin (dB)	Remark		
2390.000	53.82	-3.28	50.5	54	54	.00	-3.46	AVG		
2409.792	103.65	-3.24	100.4	41	1 -		-	AVG		

Test Mode	IEEE	IEEE 802.11g High CH			emp/H	um	27(°∁)/ 53%RH			
Test Item		Band Edge			Test Date		Nov	08, 2016		
Polarize		Horizontal		Tes	t Engi	neer	De	nnis Li		
Detector		Peak		Tes	st Volt	age	120Va	ac / 60Hz		
120.0 dBu¥/m	120.0 dBuV/m									
							Limit1: Limit2:			
	\vee									
80										
		2								
		MWWWWWWWW	¹⁴⁴ 84-4/1-anderson Au	a to gardalana ta ta ta	ntroff the foreground	n an	mantenanta	breen, to be for		
40.0										
2452 000 2462 00	2472 00 24	182 NN 2492 NN	2502 00	2512.0	በ 2522	253	2 00	 2552 00 MHz		
2452.000 2402.00	2112.00 2		2002.00	2312.0	- 2322		2.50	2002.00 MIL		
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resı (dBuV	ult //m)	Li (dBı	mit uV/m)	Margin (dB)	Remark		
2464.700	113.16	-2.09	111.()7		-	-	peak		
2483.700	75.27	-1.99	72.2	28	74	1.00	-1.72	peak		

Test Mode	IEEE	IEEE 802.11g High CH			Temperature:			27(°C)/ 53%RH		
Test Item		Band Edge			Test Date		Nov 08, 2016			
Polarize		Horizontal		Test Engineer		Dennis Li				
Detector		Average		Tes	st Volt	age	120\	/ac / 60Hz		
120.0 dBuV/m	120.0 dBuV/m									
							Limit1: Limit2:	_		
80										
40.0 2452.000 2462.0	0 2472.00 2	2 ¥ 482.00 2492.00	2502.00	2512.0	0 2522	2.00 2532	2.00	2552.00 MHz		
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resu (dBuV	ult //m)	Li (dBi	mit uV/m)	Margin (dB)	Remark		
2464.300	102.55	-2.09	100.4	46	-		-	peak		
2483.600	50.39	-1.99	48.4	0 74.00		74.00 -25.60		peak		

Test Mode	IEEE 802.	11n HT20 L	ow CH	Temp/Hum		27(°C)/ 53%RH				
Test Item	В	and Edge		Т	Test Date		Nov 08, 2016			
Polarize	F	lorizontal		Tes	t Engine	eer	Der	nis Li		
Detector		Peak		Tes	st Voltag	ge	120Va	c / 60Hz		
120.0 dBu∀/m	120.0 dBuV/m									
							Limit1: Limit2: 2	_		
							\bigwedge	M		
80						/				
					1	rull				
					ľ	*1				
				with	hylynthinger					
proper software were and	where the second second second	enerselyn geneder Markowk	when have had had have	P-4N/MARTIN						
40.0										
2310.000 232	.20 2332.40 2	343.60 2354.80	2366.00	2377.2	0 2388.40) 2399	.60 24	22.00 MHz		
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resu (dBuV	ılt /m)	Lim (dBuV	it //m)	Margin (dB)	Remark		
2390.000	75.77	-3.28	72.4	9	74.0	0	-1.51	peak		
2415.056	111.65	-3.23	108.4	42	-		-	peak		
Test Mode	IEEE 802.	11n HT20 L	ow CH	Temperature:			27(°∁)/ 53%RH			
--------------------	-------------------	-----------------------------	---------------	--------------	-------------	--------------	----------------	-------------	--	
Test Item	Ba	and Edge		T	est Da	te	Nov 08, 2016			
Polarize	H	orizontal		Tes	t Engir	neer	De	ennis Li		
Detector		Average		Tes	st Volta	age	120\	/ac / 60Hz		
110.0 dBu∀/m										
70							Limit2:			
20.0										
2310.000 2321.2	20 2332.40 23	343.60 2354.80	2366.00	2377.2	0 2388	.40 2399	.60	2422.00 MHz		
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resı (dBuV	ult //m)	Liı (dBu	mit ıV/m)	Margin (dB)	Remark		
2390.000	52.28	-3.28	49.0	00	54	.00	-5.00	AVG		
2405.088	101.24	-3.24	98.0	00		-	-	AVG		
			-							

Test Mode	IEEE 802.1	1n HT20 Hi	gh CH	Temp/Hum			27(°C)/ 53%RH		
Test Item	Ba	nd Edge		Т	est Da	te	Nov	08, 2016	
Polarize	H	orizontal		Tes	t Engir	neer	Dennis Li		
Detector		Peak		Tes	st Volta	age	120V	ac / 60Hz	
120.0 dBuV/m									
1 marting	ment						Limit1: Limit2:	_	
80									
	W	1 Start							
			Multer m		<u>фриць — "</u>				
						and a station of the obtained on the state of the obtained of	ana waxaa ka k	an and the constraints	
40.0									
2452.000 2462	2.00 2472.00 24	482.00 2492.00	2502.00	2512.0	0 2522	.00 253	2.00	2552.00 MHz	
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resı (dBuV	ılt //m)	Li (dBu	mit ıV/m)	Margin (dB)	Remark	
2457.800	113.31	-2.11	111.2	20		-	-	peak	
2483.500	73.67	-1.99	71.6	8	74	.00	-2.32	peak	

Test Mode	IEEE 802.1	1n HT20 Hi	gh CH	Ten	nperature:	27(°C)/ 53%RH		
Test Item	Ba	nd Edge		Te	est Date	Nov C)8, 2016	
Polarize	Ho	orizontal		Tes	t Engineer	Der	nnis Li	
Detector	A	verage		Tes	st Voltage	120Va	ic / 60Hz	
110.0 dBuV/m								
	1					Limit1: Limit2:	_	
\sim								
70								
		~²						
					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
30.0								
2452.000 2462.	.00 2472.00 24	182.00 2492.00	2502.00	2512.00	) 2522.00 29	532.00 2	552.00 MHz	
Eroguopou	Pooding	Correct	Boou	.14	Limit	Morgin		
(MHz)	(dBuV)	Factor (dB/m)	(dBuV	/m)	(dBuV/m)	(dB)	Remark	
2470.100	101.62	-2.07	99.5	5	-	-	AVG	
2483.800	52.67	-1.99	50.6	8	54.00	-3.32	AVG	

Test Mode	IEEE 802.1	1n HT40 Lo	ow CH	Te	emp/Hum	27(°∁)/ 53%RH	
Test Item	Ba	nd Edge		Т	est Date	Nov 0	8, 2016
Polarize	Ho	orizontal		Tes	t Engineer	Der	nnis Li
Detector		Peak		Te	st Voltage	120Va	c / 60Hz
120.0 dBu∀/m							
						Limit1: Limit2:	_
					M	*~~	$\neg$
80							
				1			
				N/W	W1		
	1		Min Henry Par				
	agener verstagener versen eine eine seinen eine seine sei	Coldina a management and and a	ryn				
40.0							
2310.000 2323	.20 2336.40 23	349.60 2362.80	2376.00	2389.2	0 2402.40 241	5.60 24	442.00 MHz
Frequency	Pooding	Correct	Post	.14	Limit	Margin	
(MHz)	(dBuV)	Factor (dB/m)	(dBuV	//m)	(dBuV/m)	(dB)	Remark
2386.164	75.08	-2.52	72.5	56 74.00		-1.44	peak
2417.976	109.13	-2.37	106.	76	-	-	peak

Test Mode	IEEE 802.	11n HT40 L	ow CH	Ten	nperature:	27(℃)/ 53%RH	
Test Item	Ba	and Edge		Te	est Date	Nov 0	8, 2016
Polarize	H H	orizontal		Tes	t Engineer	Dennis Li	
Detector		Average		Tes	st Voltage	120Va	c / 60Hz
110.0 dBuV/m							
						Limit1: Limit2:	_
						*///	
70							
				*			
30.0							
2310.000 2323.2	20 2336.40 23	349.60 2362.80	2376.00	2389.20	) 2402.40 241	5.60 24	142.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resı (dBuV	ılt /m)	Limit (dBuV/m)	Margin (dB)	Remark
2390.000	54.26	-2.49	51.7	7	54.00	-2.23	AVG
2418.768	99.39	-2.37	97.0	2	-	-	AVG

Test Mode	IEEE 802.1	IEEE 802.11n HT40 High CH				um	27(°∁)/ 53%RH		
Test Item	Ba	nd Edge		Te	est Da	ate	Nov	08, 2016	
Polarize	Ho	orizontal		Tes	t Engi	neer	Dennis Li		
Detector		Peak		Tes	st Volt	age	120Va	ac / 60Hz	
120.0 dBuV/m									
							Limit1: Limit2:		
man	~~~*								
80									
		- Vilia	2 X						
			WANNA	M.Au					
				' "~	Warden Martine and	h-h-and-hardencon	and the manufacture of the	niepan, kryp	
40.0									
2432.000 2444	.00 2456.00 24	468.00 2480.00	2492.00	2504.0	0 251	6.00 252	8.00	2552.00 MHz	
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resı (dBuV	ılt /m)	L (dB	imit uV/m)	Margin (dB)	Remark	
2464.040	109.37	-2.09	107.2	28		-	-	peak	
2485.640	74.23	-1.97	72.2	6	74	1.00	-1.74	peak	

Test Mode	IEEE 802.1	1n HT40 Hi	gh CH	Ten	nperature:	<b>27(</b> ℃	)/ 53%RH
Test Item	Ba	nd Edge		Te	est Date	Nov	08, 2016
Polarize	Ho	orizontal		Tes	t Engineer	De	ennis Li
Detector	A	verage		Tes	st Voltage	120V	/ac / 60Hz
110.0 dBuV/m							
						Limit1: Limit2:	
70							
30.0							
2432.000 2444	.00 2456.00 24	468.00 2480.00	2492.00	2504.0	0 2516.00	2528.00	2552.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resu (dBuV/	ılt /m)	Limit (dBuV/m)	Margin (dB)	Remark
2461.760	98.68	-2.10	96.5	8	-	-	AVG
2483.600	53.78	-1.99	51.7	9	54.00	-2.21	AVG
	-						

# Below 1G Test Data

Test Mode		Mode 1		Te	emp/Hum	<b>27(</b> °C).	/ 53%RH
Test Item	3	0MHz-1GH	z	Т	est Date	Nov 1	7, 2016
Polarize		Vertical		Tes	t Engineer	Der	nnis Li
Detector	Peal	c and Qusi-	peak	Te	st Voltage	120Va	c / 60Hz
80.0 dBuV/m						Limit1: Margin:	_
40			2	×		5	
30.000 127.00	224.00 32	21.00 418.00	515.00	612.00	709.00	806.00 10	000.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resı (dBuV	ılt '/m)	Limit (dBuV/m)	Margin (dB)	Remark
120.2100	45.74	-15.50	30.2	4	43.50	-13.26	peak
450.9800	48.87	-10.17	38.7	0	46.00	-7.30	peak
533.4300	43.13	-8.74	34.3	9	46.00	-11.61	peak
600.3600	45.49	-7.75	37.74		46.00	-8.26	peak
800 1900	42.94	-4.50	38.44		46.00	-7.56	peak
000.1000	-						







# Above 1G Test Data

Test Mode		IEEE	IEEE 802.11b Low CH Temp/Hum				um	27(°C)/ 53%RH		
Test Item			Harmonic		Т	est Da	te	Nov 1	7, 2016	
Polarize			Vertical		Tes	st Engii	neer	Der	nis Li	
Detector		Pea	ak and Ave	rage	Те	st Volta	age	120Va	c / 60Hz	
120.0 dBuV/m										
80	1							Limit1: Limit2:		
40.0		×	×							
1000.000 3550	.00 61	00.00 86	650.00 <b>11200</b> .0	00 13750.00	16300	.00 1885	0.00 2140	0.00 20	5500.00 MHz	
Frequency (MHz)	Re (d	ading BuV)	Correct Factor (dB/m)	Resi (dBuV	ult //m)	Li (dBı	mit JV/m)	Margin (dB)	Remark	
4827.000	48	8.68	5.11	53.7	'9	74	.00	-20.21	peak	
4827.000	40	6.69	5.11	51.8	80	54	.00	-2.20	AVG	
7236.000	39	9.47	12.71	52.1	8	74	.00	-21.82	peak	

# Remark:

9648.000

33.66

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

17.60

2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

51.26

74.00

-22.74

peak

Test Mode	•	IEEE	IEEE 802.11b Low CH			Temp/Hum			)/ 53%RH
Test Item			Harmonic		Т	est Da	te	Nov	08, 2016
Polarize			Horizontal		Tes	st Engii	neer	De	ennis Li
Detector		Pea	k and Ave	rage	Те	st Volta	age	120V	ac / 60Hz
120.0 dBuV/m								Limit1:	—
80		3							
40.0		×	F0.00 11000.0	10 10750.00	10000	00 1005	0.00 014	10.00	25500.00 MIL
1000.000 3550	J.OO 6	100.00 86	50.00 11200.0	13750.00	16300.	.00 1885	0.00 2140	JU.UU	26500.00 MHz
Frequency (MHz)	Re (C	eading IBuV)	Correct Factor (dB/m)	Resi (dBuV	ult //m)	Li (dBı	mit ıV/m)	Margin (dB)	Remark
4827.000	4	9.70	5.11	54.8	81	74	.00	-19.19	peak
4827.000	4	7.28	5.11	52.3	39	54	.00	-1.61	AVG
7236.000	3	3.26	12.71	45.9	97	74	.00	-28.03	peak
9648.000	3	2.89	17.60	50.4	9	74	.00	-23.51	peak

- Remark:
  - 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
  - 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode		IEEE	802.11b N	1id CH	Temp/Hum		um	<b>27(</b> °C	)/ <u>53%</u> RH	
Test Item			Harmonic	;	Т	fest Da	ate	Nov	08, 2016	
Polarize			Vertical		Tes	st Engi	ineer	De	ennis Li	
Detector		Pea	ak and Ave	rage	le	est Volt	age	120V	ac / 60Hz	
120.0 dBuV/m										
								Limit1: —		
								Limit2:	—	
80										
	3	3	5							
		×	Å							
40.0		×								
1000.000 3550	).00 61	100.00 86	650.00 11200.	00 13750.00	16300	.00 188	50.00 2140	DO.OO	26500.00 MHz	
			-	1		<b></b>				
Frequency (MHz)	Re (d	ading BuV)	Correct Factor (dB/m)	Resu (dBuV	ult //m)	L (dB	imit uV/m)	Margin (dB)	Remark	
4876.000	4	8.35	5.24	53.5	59	74	4.00	-20.41	peak	
4876.000	4	7.22	5.24	52.4	6	54	4.00	-1.54	AVG	
7312.000	3	7.33	12.94	50.2	27	74	4.00	-23.73	peak	
7312.000	3	2.42	12.94	45.3	86	54	4.00	-8.64	AVG	
9748.000	3	4.19	17.60	51.7	'9	74	4.00	-22.21	peak	
								•		
mark:	urina	froquor	noioc from	1 CUz to	tha 1	Oth he	ormonio	of highor	<b>\</b> #	
1. IVICAS	mont	al from						ornighes		

2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode	IEEE	IEEE 802.11b Mid CH Temp/Hum			um	27(℃)/ 53%RH		
Test Item		Harmonic		Т	est Da	ite	Nov	08, 2016
Polarize		Horizontal		Tes	st Engi	neer	De	ennis Li
Detector	Pea	ak and Aver	age	Те	st Volt	age	120V	ac / 60Hz
110.0 dBu¥/m							Limit1: Limit2:	-
70								
30.0		5						
1000.000 3550.00	6100.00 8	650.00 11200.0	0 13750.00	16300.	.00 1885	0.00 214	00.00	26500.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Rest (dBuV	ult //m)	Li (dBi	mit uV/m)	Margin (dB)	Remark
4876.000	49.83	5.24	55.0	)7	74	.00	-18.93	peak
4876.000	47.23	5.24	52.4	7	54	.00	-1.53	AVG
7312.000	36.91	12.94	49.8	5	74	.00	-24.15	peak
7312.000	32.41	12.94	45.3	5	54	.00	-8.65	AVG
9748.000	31.70	17.60	49.3	0	74	l.00	-24.70	peak

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode	;	IEEE	802.11b H	ligh CH	Temp/Hum			27(°∁)/ 53%RH		
Test Item			Harmonio	0	Т	lest Da	ate	Nov	08, 2016	
Polarize			Vertical		Tes	st Engi	neer	De	nnis Li	
Detector		Pea	ak and Ave	erage	le	est Volt	age	120Va	ac / 60Hz	
120.0 dBuV/m										
								Limit1:	—	
								Lillintz.		
80										
	1 2									
	X	3) A	5 X							
		×								
40.0	0.00 61	100.00 8/	50 00 11200	00 13750 00	16300	00 188	50.00 21.4	00.00 2	26500.00 MHz	
1000.000 000	0.00 0	00.00	11200		10000		DOLOG LIT			
			<b>a</b> (							
Frequency (MHz)	Re (d	ading IBuV)	Correct Factor (dB/m)	Resu (dBuV	ult //m)	L (dB	imit uV/m)	Margin (dB)	Remark	
4925.000	5	0.69	5.37	56.0	6	74	4.00	-17.94	peak	
4925.000	4	7.59	5.37	52.9	6	54	4.00	-1.04	AVG	
7382.000	3	7.17	13.15	50.3	32	74	4.00	-23.68	peak	
7382.000	3	4.21	13.15	47.3	6	54	4.00	-6.64	AVG	
9848.000	3	1.81	17.60	49.4	1	74	4.00	-24.59	peak	
mark										
1. Meas	surina	freauer	ncies from	1 GHz to	the 1	0th ha	armonic	of hiahes	t	
funda	amenta	al frequ	ency.			561110		er ingrioo	•	

2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode	IEEE	gh CH	Te	)/ 53%RH				
Test Item		Harmonic		Т	est Date		Nov (	08, 2016
Polarize	_	Horizontal		Tes	st Engine	er	De	nnis Li
Detector	Pea	ak and Aver	age	Te	st Voltag	е	120Va	ac / 60Hz
120.0 dBuV/m							Limit1:	_
80								
40.0								
1000.000 3550.00	6100.00 80	650.00 11200.0	0 13750.00	16300.	.00 18850.0	D 2140	00.00 2	26500.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resı (dBuV	ult //m)	Limi (dBuV/	t ′m)	Margin (dB)	Remark
4925.000	50.32	5.37	55.6	69	74.0	0	-18.31	peak
4925.000	47.35	5.37	52.7	'2	54.0	0	-1.28	AVG
7382.000	37.07	13.15	50.2	22	74.0	0	-23.78	peak
7382.000	35.21	13.15	48.3	86	54.0	0	-5.64	AVG
9848.000	32.48	17.60	50.0	)8	74.0	0	-23.92	peak
Remark:								

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Item				v CH Temp/Hum 27(°C)/ 53					
		Harmonic		Tes	t Date	Nov 0	8, 2016		
Polarize	Dee	Vertical		Test E	Ingineer	Der	nis Li		
Detector	Pea	k and Aver	age	lest	voltage	120Va	C / 60HZ		
110.0 dBuV/m						Limit1: Limit2:	_		
70									
30.0 1000.000 3550.00	\$ 6100.00 86	350.00 11200.00	D 13750.00	16300.00	18850.00 214	00.00 26	500.00 MHz		
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resu (dBuV	lt /m)	Limit (dBuV/m)	Margin (dB)	Remark		
4824.000	39.12	5.10	44.2	2	74.00	-29.78	peak		
4824.000	35.14	5.10	40.2	4	54.00	-13.76	AVG		
7236.000	33.57	12.71	46.2	8	74.00	-27.72	peak		
	· · · · · · · · · · · · · · · · · · ·			-					

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test	Mode		IEEE 8	802.11g	Low	СН	Т	emp/H	um	27(°C)/ 53%RH			
Test	Item			Harmor	nic		-	Test Da	ate	No	v 08	, 2016	
Pola	arize			Horizon	tal		Те	st Engi	neer	Dennis Li			
Dete	ector		Pea	k and Av	verag	e	Te	est Volt	age	120	120Vac / 60Hz		
110.0	dBu¥/m												
										Limit	11: · •2: ·		
70												_	
			3 X	4 ×									
		X											
30.0													
1000.1	000 3550.0	0 6100.	.00 865	50.00 112	200.00	13750.00	1630	0.00 188	50.00 2140	)0.00	2650	0.00 MHz	
<b>F</b> ire area		Deed	line er	Correct	t	Deer	.14		i 14	Manai			
Freque (MHz	z)	dBu	eading Correct Re JBuV) (dB/m) (dB				/m)	(dB	uV/m)	(dB)	n	Remark	
4824.0	000	38.0	06	5.10		43.1	6	74	4.00	-30.84	4	peak	
4824.0	000	35.0	01	5.10		40.1	1	54	4.00	-13.89	9	AVG	
7236.0	000	34.6	67	12.71		47.3	8	74	4.00	-26.62	2	peak	
9648.0	000	32.6	2.64 17.60 50.2			50.2	4	74	4.00	-23.76	6	peak	

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode IEEE 802.11g Mid CH					H Temp/Hum 27(°C)/ 53%F					
Test Item			Harmonio		T	est Da	ite	Nov (	08, 2016	
Polarize			Vertical		Tes	st Engi	neer	Dennis Li		
Detector		Pea	ik and Ave	erage	Те	st Volt	age	120Va	ac / 60Hz	
110.0 dBu¥/m								Limit1:	_	
								Limit2:		
70	1	3								
	2 X	*	X							
30.0										
1000.000 3550.0	UU 6	100.00 86	50.00 11200	.00 13750.00	16300.	.00 1885	0.00 214	UU.UU 2	(6500.00 MHz	
Frequency (MHz)	Re (d	ading IBuV)	Correct Factor (dB/m)	Resi (dBuV	ult //m)	Li (dBi	mit uV/m)	Margin (dB)	Remark	
4869.000	5	2.30	5.22	57.5	52	74	1.00	-16.48	peak	
4869.000	3	9.56	5.22	44.7	'8	54	.00	-9.22	AVG	
7312.000	4	2.51	12.94	55.4	5	74	l.00	-18.55	peak	
7312.000	3	4.27	12.94	47.2	21	54	.00	-6.79	AVG	
9748.000	3	4.23	17.60	51.8	3	74	.00	-22.17	peak	
emark: 1. Measi	urina	frequer	ncies from	1 GHz to	the 1	0th ha	rmonic	of highes	+	

- fundamental frequency. 2. For above 1GHz,the EUT peak value was under average limit, therefore the
- For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode	Test Mode IEEE 802.11g Mid CH					<b>Temp/Hum</b> 27(°C)/ 53%				
Test Item		Harmonic		٦	lest Da	ite	Nov	08, 2016		
Polarize		Horizontal		Tes	st Engi	neer	De	ennis Li		
Detector	Pea	k and Aver	age	le	est Volta	age	120V	ac / 60Hz		
110.0 dBuV/m							Limit1: Limit2:			
70		5								
30.0	4 × 5100.00 86	50.00 11200.0	0 13750.00	16300	.00 1885	0.00 214	00.00	26500.00 MHz		
Frequency R (MHz) (	eading dBuV)	Correct Factor (dB/m)	Resı (dBuV	ult //m)	Li (dBı	mit uV/m)	Margin (dB)	Remark		
4869.000	50.55	5.22	55.7	7	74	1.00	-18.23	peak		
4869.000	37.85	5.22	43.0	7	54	.00	-10.93	AVG		
7312.000	38.32	12.94	51.2	:6	74	.00	-22.74	peak		
7312.000	29.31	12.94	42.2	:5	54	l.00	-11.75	AVG		
9748.000	9748.000 32.91 17.60 5			51	74	l.00	-23.49	peak		
Pomorki										

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode		IEEE 8	302.11g H	igh CH	Te	emp/Hum	27(°C)/ 53%RH		
Test Item			Harmonic	;	Т	est Date	Nov 0	8, 2016	
Polarize			Vertical		Tes	st Engineer	Der	nis Li	
Detector		Pea	k and Ave	rage	Те	st Voltage	120Va	c / 60Hz	
110.0 dBuV/m							Limit1: Limit2:		
30.0	1	3 4 * 100.00 86	5.00 11200.	00 13750.00	16300	.00 18850.00 21	400.00 25	5500.00 MHz	
Frequency (MHz)	Re (c	eading IBuV)	Correct Factor (dB/m)	Resu (dBuV	ılt /m)	Limit (dBuV/m)	Margin (dB)	Remark	
4925.000	3	8.01	5.37	43.3	8	74.00	-30.62	peak	
	3	4.86	5.37	40.2	3	54.00	-13.77	AVG	
4925.000	Ŭ						06.76	neak	
4925.000 7382.000	3	4.09	13.15	47.2	4	74.00	-20.70	реак	
4925.000 7382.000 7382.000	3	4.09 0.21	13.15 13.15	47.2 43.3	6	74.00 54.00	-20.76	AVG	

- fundamental frequency. 2. For above 1GHz,the EUT peak value was under average limit, therefore the
  - Average value compliance with the average limit

Test Mode	IEEE	802.11g Hi	gh CH	I Temp/Hum			<b>27(</b> °C)	)/ 53%RH
Test Item		Harmonic		T	est Da	ite	Nov	08, 2016
Polarize	_	Horizontal		Tes	st Engi	neer	De	nnis Li
Detector	Pea	ak and Aver	age	Te	st Volt	age	120Va	ac / 60Hz
110.0 dBuV/m							Limit1: Limit2:	
30.0	3 * * *	5	0 13750.00	16300	.00 1885	0.00 214	00.00	26500.00 MHz
<b>F</b>	Deeding	Correct	Deer	.14			Manain	
(MHz)	(dBuV)	Factor (dB/m)	(dBuV	//m)	(dBi	uV/m)	(dB)	Remark
4925.000	38.29	5.37	43.6	6	74	.00	-30.34	peak
4925.000	35.88	5.37	41.2	25	54	.00	-12.75	AVG
7382.000	34.41	13.15	47.5	6	74	.00	-26.44	peak
7382.000	30.10	13.15	43.2	25	54	.00	-10.75	AVG
9848.000	31.83 17.60 49.			3	74	.00	-24.57	peak

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mod	de	IEEE	802.1	1n HT20	Low CH	Temp/Hum			27(°C)/ 53%RH		
Test Iter	n		Ha	armonic		T	est Dat	e	Nov	08, 2016	
Polarize	e		١	/ertical		Tes	st Engin	eer	Dennis Li		
Detecto	r		Peak a	and Avera	ge	Те	st Volta	ge	120V	ac / 60Hz	
110.0 dB	}u∀/m								l imit1·		
									Limit2:		
70											
		1	3	*							
30.0 1000.00	)0 3550.	00 610	D.00 86	50.00 1120	0.00 13750.00	16300	.00 18850	.00 214(	)0.00	26500.00 MHz	
Frequen (MHz)	су	Rea (dB	ding uV)	Correct Factor (dB/m)	Resi (dBuV	ult //m)	Lin (dBu	nit V/m)	Margin (dB)	Remark	
4824.00	00	39	74	5.10	44.8	34	74.	00	-29.16	peak	
4824.00	00	35.	.04	5.10	40.1	4	54.	00	-13.86	AVG	
7236.00	00	34.	42	12.71	47.1	3	74.	00	-26.87	peak	
9648.00	00	33.	.37	17.60	50.9	97	74.	00	-23.03	peak	

- Remark:
  - 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
  - 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test	Mode	IEEE	E 802.	11n	HT20	Low C	ЭН	H Temp/Hum			27(°C)/ 53%RH		
Test	Item		F	larm	ionic				Test Da	ate	Nov 08, 2016		
Pola	arize		H	oriz	ontal			Te	st Eng	ineer	Dennis Li		
Det	ector		Peak	and	Avera	age		Te	est Voli	age	120	Vac / 6	0Hz
110.0	) dBu∀/m										Limit	1: —	
70		1			4								
30.0 10	000.000 3550.0	0 610	D.00 8	650.00	11200	.00 137	50.00	1630	0.00 188	50.00 2140	)0.00	26500.00	MHz
Freq (N	luency IHz)	Rea (dB	ding uV)	C F (0	orrect actor dB/m)	 (d	Resu BuV	ılt /m)	L (dB	imit uV/m)	Margir (dB)	¹ Re	emark
482	4.000	38.	.56	ļ	5.10		43.6	6	74	4.00	-30.34	h k	beak
482	4.000	35.	.00	ļ	5.10		40.1	0	54	4.00	-13.90	) /	AVG
723	6.000	33.	.67	1	2.71		46.3	8	74	4.00	-27.62	2 p	beak
964	8.000	31	31.78 17.60 49				49.3	8	74	4.00	-24.62	2 F	beak

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode	IEEE 802.7	11n HT20 N	/lid CH	Te	emp/Hur	n	27(°C)/ 53%RH		
Test Item	H	armonic		Т	est Date	;	Nov	08, 2016	
Polarize	``	Vertical		Tes	t Engine	eer	Dennis Li		
Detector	Peak	and Averag	ge	Те	st Voltag	ge	120V	ac / 60Hz	
110.0 dBu∀/m							Limit1:	_	
70		5x							
30.0									
1000.000 3550.0 Frequency (MHz)	0 6100.00 86 Reading (dBuV)	50.00 11200.00 Correct Factor (dB/m)	0 13750.00 Resu (dBuV	16300. Ilt /m)	00 18850.( Lim (dBuV	00 214 it '/m)	00.00 Margin (dB)	Remark	
4869.000	54.48	5.22	59.7	0	74.0	0	-14.30	peak	
4869.000	39.44	5.22	44.6	6	54.0	0	-9.34	AVG	
7312.000	43.01	12.94	55.9	5	74.0	0	-18.05	peak	
7312.000	35.10	12.94	48.0	4	54.0	0	-5.96	AVG	
9741.000	37.36	17.60	54.9	6	74.0	0	-19.04	peak	
emark:									

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode	IEEE 802.1	1n HT20 M	lid CH	Te	emp/Hum	27(°∁)/ 53%RH		
Test Item	H	armonic		Т	est Date	Nov 0	8, 2016	
Polarize	Ho	orizontal		Tes	st Engineer	Der	nnis Li	
Detector	Peak a	and Average	е	Те	st Voltage	120Va	c / 60Hz	
110.0 dBuV/m						Limit1: Limit2:		
30.0	1 3 2 4 X X 1.00 6100.00 80	550.00 11200.00	0 13750.00	16300	.00 18850.00 214	100.00 28	5500.00 MHz	
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resı (dBuV	ılt //m)	Limit (dBuV/m)	Margin (dB)	Remark	
4869.000	50.95	5.22	56.1	7	74.00	-17.83	peak	
4869.000	38.31	5.22	43.5	3	54.00	-10.47	AVG	
7312.000	41.57	12.94	54.5	51	74.00	-19.49	peak	
7312.000	30.31	12.94	43.2	25	54.00	-10.75	AVG	
9741.000	1.000 33.75 17.60 51				74.00	-22.65	peak	
Romark:								

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode	IEEE 80	02.11n ⊦	IT20 Hig	gh CH	Temp/Hum			<b>27(</b> °∁)/ 53%RH	
Test Item		Harmo	onic		Test Date			Nov	08, 2016
Polarize		Verti	cal		Tes	st Engi	neer	D	ennis Li
Detector	Pe	eak and a	Average	;	Те	st Volt	age	120\	/ac / 60Hz
110.0 dBuV/	m								
								Limit1: Limit2:	
70									
	1	3	5 X						
	×	* *							
30.0									
1000.000 3	550.00 6100.0	00 8650.00	11200.0	0 13750.00	16300.	.00 188	50.00 214	00.00	26500.00 MHz
Frequency (MHz)	Readi (dBu	ing I V) (	Factor dB/m)	Resu (dBuV	ılt /m)	Li (dB	imit uV/m)	Margin (dB)	Remark
4924.000	39.2	22	5.37	44.5	9	74	1.00	-29.41	peak
4924.000	35.8	8	5.37	41.2	5	54	4.00	-12.75	AVG
7386.000	33.4	3	13.17	46.6	0	74	1.00	-27.40	peak
7386.000	30.1	9	13.17	43.3	6	54	4.00	-10.64	AVG
9848.000	31.2	29	17.60	48.8	9	74	1.00	-25.11	peak
	<b>I</b>			<u> </u>					<u> </u>
Romark ·									
1. Me	asuring fre	equencie	s from 1	GHz to	the 1	0th ha	rmonic	of highe	st
fun	damental i	frequenc	;y.					Ū	

 For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode	IEEE 802.1	1n HT20 Hi	gh CH	Temp/Hum			27(℃)/ 53%RH			
Test Item	H	armonic		Т	est Dat	e	Nov 08, 2016			
Polarize	Ho	orizontal		Tes	st Engir	leer	Dei	nnis Li		
Detector	Peak a	and Average	е	Te	st Volta	ige	120Va	ac / 60Hz		
110.0 dBu¥/m							Limit1:			
70										
30.0 1000.000 3550	30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0									
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resı (dBuV	ult //m)	Lir (dBu	nit V/m)	Margin (dB)	Remark		
4924.000	37.71	5.37	43.0	8	74.	00	-30.92	peak		
4924.000	34.84	5.37	40.2	21	54.	00	-13.79	AVG		
7386.000	34.14	13.17	47.3	81	74.	00	-26.69	peak		
7386.000	32.19	13.17	45.3	86	54	00	-8.64	AVG		
9848.000	32.93	17.60	50.5	53	74	00	-23.47	peak		

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

est Mode	IEEE 802.1	1n HT40 Lo	w CH	Temp/Hum	า 27	27(°C)/ 53%RH		
Test Item	Ha	armonic		Test Date	N	Nov 08, 2016		
Polarize	<u>\</u>	/ertical		Test Engine	er	Dennis l	_i	
Detector	Peak a	and Average	3	Test Voltag	e   12	20Vac / 6	0Hz	
110.0 dBu¥/m								
					L	imit1: — imit2: —		
70								
	3	5						
30.0 1000.000 3550		350.00 11200.00	13750.00 1	6300.00 18850.00	) 21400.00	26500.00	MHz	
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limi (dBuV/	t Mar m) (dl	gin B) Re	emark	
4844.000	36.42	5.15	41.57	74.00	32	.43 p	beak	
4844.000	34.20	5.15	39.35	54.00	0 -14	.65 /	٩VG	
	33.46	12.80	46.26	74.00	) -27	.74 p	eak	
7266.000	55.40			· · · · · · · · · · · · · · · · · · ·		0.4		
7266.000 7266.000	29.56	12.80	42.36	54.00	) -11.	.64 /	٩VG	

- fundamental frequency. 2. For above 1GHz,the EUT peak value was under average limit, therefore the
  - Average value compliance with the average limit

est Mode	IEEE 802.1	1n HT40 Lo	w CH	Temp/Hum	<b>27(°</b> ℃)/	27(°C)/ 53%RH		
Test Item	Ha	armonic		Test Date	Nov 0	8, 2016		
Polarize	Ho	orizontal	Т	est Engineer	Den	inis Li		
Detector	Peak a	and Average	<b>;</b>	Test Voltage	120Va	c / 60Hz		
110.0 dBuV/m				1				
					Limit1: Limit2:			
70								
	3	5						
	1 4 * *							
30.0								
1000.000 3550.	.00 6100.00 86	50.00 11200.00	13750.00 16	300.00 18850.00 2	1400.00 26	500.00 MHz		
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark		
4844.000	36.83	5.15	41.98	74.00	-32.02	peak		
4844.000	34.20	5.15	39.35	54.00	-14.65	AVG		
	33.79	12.80	46.59	74.00	-27.41	peak		
7266.000				54.00	-11 75	AVG		
7266.000 7266.000	29.45	12.80	42.25	54.00	11.70	7.00		

- fundamental frequency.2. For above 1GHz, the EUT peak value was under average limit, therefore the
  - Average value compliance with the average limit

est Mode	IEEE 802.1	1n HT40 Mi	d CH	Temp/Hur	n 27	<b>27(</b> °C)/ 53%RH		
Test Item	Ha Ha	armonic		Test Date	• •	Nov 08, 20	16	
Polarize	\\	/ertical	7	Test Engine	er	Dennis L	.i	
Detector	Peak a	and Average	;	Test Voltag	je 1	20Vac / 60	)Hz	
110.0 dBuV/m	· · · · · ·			- i i				
						.imit1: —		
70								
	3 1 4 X X	5						
30.0								
1000.000 3550	1.00 6100.00 86	50.00 11200.00	13750.00 16	\$300.00 18850.0	JO 21400.00	26500.00 M	lHz	
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Lim (dBuV	it Mar //m) (d	rgin B) Re	mark	
4874.000	38.28	5.23	43.51	74.0	00 -30	.49 pe	eak	
4874.000	34.98	5.23	40.21	54.0	.00 -13	.79 A	NG	
7311.000	34.30	12.94	47.24	74.0	)0 -26	.76 pe	eak	
	30.42	12.94	43.36	54.0	)0 -10	.64 A	NG	
7311.000	00.42	·						

- fundamental frequency.2. For above 1GHz, the EUT peak value was under average limit, therefore the
  - Average value compliance with the average limit

Test Mode	IEEE 802.	11n HT40 N	/lid CH	Temp/Hum			27(°∁)/ 53%RH			
Test Item	F	larmonic		Test Date			Nov 08, 2016			
Polarize	H	orizontal		Test Engineer			De	nnis Li		
Detector	Peak	and Average	ge	Test Voltage			120Va	ac / 60Hz		
110.0 dBuV/m							Limit1: Limit2:			
70	3) <b>*</b>	5. 								
30.0										
1000.000 3550.	00 6100.00 80	650.00 11200.0	0 13750.00	16300.	.00 18850	.00 2140	0.00	26500.00 MHz		
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resi (dBuV	ult //m)	Lin (dBu\	nit V/m)	Margin (dB)	Remark		
4874.000	37.42	5.23	42.6	65	74.	00	-31.35	peak		
4874.000	35.02	5.23	40.2	25	54.	00	-13.75	AVG		
7311.000	34.99	12.94	47.9	93	74.	00	-26.07	peak		
7311.000	32.29	12.94	45.2	23	54.	00	-8.77	AVG		
9748.000	32.38	17.60	49.9	8	74.	00	-24.02	peak		

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Item Polarize Detector  110.0 dBuV/m  70 70	Ha V Peak a	armonic /ertical ind Average	e	Tes Tes	est Date Engineer t Voltage	Nov 0/ Den 120Va( Limit1: Limit2:	8, 2016 nis Li c / 60Hz
Polarize Detector  110.0 dBuV/m  70 70	V Peak a	<u>ertical</u>	e	Test Tes	Engineer t Voltage	Den 120Va Limit1: Limit2:	nis Li c / 60Hz
Detector         Image: Control of the second s	Peak a	Ind Average	e	Tes	t Voltage	Limit1: Limit2:	<u>c / 60Hz</u>
110.0 dBu¥/m						Limit1: Limit2:	
70						Limit2:	
70							
70							
70							
	3	5 X					
30.0	C100.00 0CF	E0 00 11200 0	0 13750.00	10200.00	0 10050 00 2140	10 00 JC	500 00 MU -
1000.000 3330.00	6100.00 003	00.00 TT200.00	U 13750.00	10300.00	U 10030.00 2140	10.00 20-	300.00 Minz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resu (dBuV/	lt ′m)	Limit (dBuV/m)	Margin (dB)	Remark
4904.000	36.81	5.31	42.12	2	74.00	-31.88	peak
4904.000	33.94	5.31	39.25	5	54.00	-14.75	AVG
7356.000	34.42	13.08	47.50	0	74.00	-26.50	peak
7356.000	30.46	13.08	43.54	4	54.00	-10.46	AVG
9808.000	31.79	17.60	49.39	9	74.00	-24.61	peak

fundamental frequency.2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode	IEEE 802.1	1n HT40 Hi	gh CH	Te	emp/Hum	<b>27(</b> °C)/	/ 53%RH
Test Item	H	armonic		Т	est Date	Nov 0	8, 2016
Polarize	Ho	prizontal		Tes	st Engineer	Der	inis Li
Detector	Peak a	and Average	е	le	st Voltage	120Va	<u>c / 60Hz</u>
110.0 dBuV/m						Limit1: Limit2:	_
70		5.					
30.0 1000.000 3550	0.00 6100.00 8	550.00 11200.00	D 13750.00	16300	.00 18850.00 2	400.00 26	3500.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resı (dBuV	ult //m)	Limit (dBuV/m)	Margin (dB)	Remark
4904.000	36.01	5.31	41.3	32	74.00	-32.68	peak
4904.000	33.05	5.31	38.3	6	54.00	-15.64	AVG
7356.000	34.49	13.08	47.5	57	74.00	-26.43	peak
7356.000	32.28	13.08	45.3	6	54.00	-8.64	AVG
9808.000	32.21	17.60	49.8	81	74.00	-24.19	peak
_							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit