Channel No.	Frequency (MHz)	Measurement Level (dB)	Required Limit (dB)	Result
38	5190	12.341	<13	Pass
46	5230	11.524	<13	Pass
54	5270	11.249	<13	Pass
62	5310	11.787	<13	Pass
102	5510	12.046	<13	Pass
118	5590	12.433	<13	Pass
134	5670	12.407	<13	Pass

Chain C

Channel 38:

💴 Agilent S	pectrum	Analyzer -	Swept SA								
w⊥∟ Marker	50 s 2 5.1	2 900000	00000 G	iHz	AC SE	NSE:INT	Avg Ty	ALIGNAUTO	05:40:06 P TRAC	M May 22, 2012	Marker
		Inj	put: RF PI IF(NO: Fast (Gain:Low	Atten: 30	e Run ≀dB	AVgiHo	Mkr:	2 5.190		Select Marker
10 dB/div	Rei	f 20.00 c	lBm						-8.1	63 dBm	
10.0		Presidenter	1 1		water we had	2 horate	water of the state of the state	er hall at his stars all a	Jeff's and a way		Normal
-20.0 -30.0	North M	/*							<u></u> М	WWW WWW	Delta
-50.0 -60.0 -70.0											Fixed⊳
Center (#Res B)	5.1900 V 1.0 I	0 GHz VHz	×	#VB	W 1.0 MHz		UNCTION	#Sweep	Span 5 500 ms (0.00 MHz 1001 pts) NVALUE	Off
1 N 2 N 3 4 5 6	1 f 2 f		5.1780	0 GHZ	4.178 d -8.163 d	Bm					Properties▶
1 8 9 10 11 12											More 1 of 2
MSG								STATUS			

💯 Agilent Spectrum Analyzer - Swept SA				
ໝ ∟ <u>50 Ω</u> Marker 2 5.230100000000 G	HZ AC SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr	05:47:24 PM May 22, 2012 TRACE 1 2 3 4 5 6	Peak Search
Input: RF Pf IFC	IO: Fast 😱 Trig. Free Run ain:Low Atten: 30 dB	Mkr2	DET P SNNNN	Next Peak
10 dB/div Ref 20.00 dBm			-7.043 dBm	
10.0 0.00	Variation of the state of the s	┨ ╺ ┨┷ ╾╢┟┺╾╘ ┨╼╌┝╍╝╗╢ [╌] ╍┙┥╋┇╽╡		Next Right
-10.0 -20.0 -30.0			Walter Hartington	Next Leff
-40.0				Next Len
-50.0				Marker Delta
-70.0				
Center 5.23000 GHz #Res BW 1.0 MHz	#VBW 1.0 MHz	#Sweep	Span 50.00 MHZ 500 ms (1001 pts)	Mkr→CF
MKR MODE TRC SCL X 1 N 1 f 5.218 3*	FUN D GHz 4.481 dBm	CTION FUNCTION WIDTH	FUNCTION VALUE	9798.00.00.00097 - 322.0977
2 N 2 f 5.230 1 3 4 5 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0 GHz -7.043 dBm			Mkr→RefLv
7 8 9 10				More
11		STATUS		1 01 2

Channel 46:

Channel 54:

D Agilen	t Spect	rum .	Analyzer - Sv	wept SA		n.e.						
w⊥⊥ Marke	er 2	50 s	6970000)0000 G	iHz	AC SE	NSE:INT	Avg Typ	ALIGN AUTO De: Log-Pwr	05:50:12 F	M May 22, 2012 CE 1 2 3 4 5 6	Trace/Det
10 dB/c	div	Ref	Inpu 20.00 dl	It: RF PI	NO: Fast G Gain:Low	Atten: 30	dB		Mkr	2 5.269 -1.1	70 GHz 89 dBm	Select Trace
Log 10.0 - 0.00 - -10.0 -		All Parts	andrida-wir	1 Mangalar sign first	han Ward		2 atrialen	in a state of the second s	ien frankeren an	and the second second	Alamb	Clear Write
-20.0 🕮 -30.0 — -40.0 —												Trace Average
-50.0 — -60.0 — -70.0 —												Max Hold
Cente #Res MKE MO	r 5.27 BW 1	700 .0 N SC	0 GHz /IHz	× 5 258 1	#VB	N 1.0 MHz	3m	JNCTION	#Sweep	Span 5 500 ms (0.00 MHz 1001 pts)	Min Hold
2 N 3 4 5 6	2	f		5.269 7	0 GHz	-1.189 dl	3m					View/Blank ∨iew
7 8 9 10 11 12												More 1 of 3
MSG									STATUS	6		

			U	namici	04.					
🎾 Agilent Sp	ectrum Analyzer	- Swept SA								
w⊥⊥ Marker 2	^{50 Ω} 2 5.309650	0000000 G	Hz	AC SEN	SE:INT	Avg Typ AvgHold	ALIGNAUTO e: Log-Pwr I > 100/100	05:52:21 P TRAC	M May 22, 2012	Marker
		Input: RF PN IFG	0: Fast 🕞 ain:Low	Atten: 30	dB	Arginok		D	PSNNNN	Select Marker
10 dB/div	Ref 20.00) dBm					Mkr:	2 5.309 -6.9	65 GHz 42 dBm	2
10.0		1								
-10.00	all manual	-Hard Land and a straight of the straight of t	and discontractions	April Marthal	2 // //////////////////////////////////	high the states of the states		and mary		Norma
-20.0	William Mark							<u>۱</u>	White Wheel	
-30.0 Median									M.,	Delta
-40.0										
-60.0		_								Fixed⊳
-70.0										
Center 5.	.31000 GHz		#\/B\A	1.0 MHz			#Sween	Span 5	0.00 MHz	
MKR MODE T	RC SCL	X	#V0V	1.0 IVII 12	FUI	NCTION F	INCTION WIDTH	FUNCTI	IN VALUE	Off
1 N 2 N :	1 f 2 f	5.298 20 5.309 65) GHz 5 GHz	4.845 dB -6.942 dB	m m	1				
3										Properties►
6			2							
8										More
10 11										1 of 2
MSG			l				STATUS			

Channel 62:

Channel 102:

🗊 Agilent Spectrum Analyzer - Swept SA	
OW L S0 Ω AC SENSE:INT ALIGN AUTO D5:59:15 PM May 22, 2012 Marker 2 5.510050000000 GHz Avg Type: Log-Pwr TRACE 12/3 4.5 6	Trace/Det
Input: RF PNO: Fast C Ing. Free Run IFGain:Low Atten: 30 dB DEF PSNNNN Mkr2 5.510 05 GHZ	Select Trace
10 dB/div Ref 20.00 dBm -6.072 dBm _	
0.00 provide and and an and a state of the s	Clear Write
-10.0	
-20.0 000 000 000 000 000 000 000 000 000	Notes and a second second
-30.0	Trace Average
-400	
60.0	
.70.0	Max Hold
Canter 5 51000 CHz Span 50 00 MHz	
#Res BW 1.0 MHz #VBW 1.0 MHz #Sweep 500 ms (1001 pts)	Min Hold
MKR MODE TRC SCL X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE	WIITTIOIG
1 N 1 f 5.498 20 GHz 5.974 dBm 2 N 2 f 5.510 05 GHz -6.072 dBm	
4	View/Blank
6	View
	More
	1 of 3
MSG STATUS	

D Ag	jilent S	Spect	rum	Analyzer -	Swept SA	6	20				12							
ιxı Maı	⊥ rker	2	50 s	899000	00000	0 Gł	Hz	AC	SE	INSE:IN	VT	Avg T	∆ ype:	LIGNAUTO Log-Pwr	06:01:25 TR	PM May 22, 21	5 6	Trace/Det
				In	put: RF	PN IFG:	0: Fast ain:Low	_	Atten: 30	dB	1					DET PSNN	NN	Select Trace
10 d	MKr2 5.589 90 GHz D dB/div Ref 20.00 dBm -1.805 dBm													lz m	Trace 2			
10.0 0.00)			Patronit	Wannya Magan	< ∕ 1 ₩₩./hc./	and the second	MINAN	And and and a second second	2,77	Musipalit	Philip de and	and a	ndryn drifyndir ffa	and the second of the			Clear Write
-10.0	Hep-La	with	tern -	8												Thurstynahust	New YPh	
-30.0 -40.0																		Trace Average
-50.0 -60.0																		Max Hold
-70.0																		
Cer #Re	nter es Bl	5.59 W 1	900 .0 M	0 GHz /IHz			#VE	3W 1	.0 MHz				#	Sweep	Span 500 ms	50.00 MI (1001 pt	Hz :s)	Min Hold
MKR 1	MODE N	TRC 1	SCL f		× 5.5	78 45	GHz		Y 10.628 d	Bm	FUN	CTION	FUNC	TION WIDTH	FUNC	TION VALUE		
2 3 4 5 6	N	2	f		5.5	89 90) GHz		-1.805 d	Bm								View/Blank View
7 8 9 10 11																		More 1 of 3
<u>12</u> мsg										_				STATUS	3			

Channel 118:

Channel 134:

DAgilent Spectrum Analyzer - Swe	ept SA		
μν L <u>50 Ω</u> Marker 2: 5.669800000	AC SENSE:INT	ALIGN AUTO 06:14:31 PM May 22, Avg Type: Log-Pwr TRACE 1 2 3 4	2012 4 5 6 Marker
Input:	RF PNO: Fast 😱 Trig. Free Run IFGain:Low Atten: 30 dB		Select Marker
10 dB/div Ref 20.00 dB	m	Mkr2 5.669 80 G -0.771 dE	Hz 2 [°] Bm
10.0	1	at o shi watar a shi to a shi to a shi to a shi	_
0.00		A CONTRACTOR OF	Norma
-20.0			-10-#
-30.0			— Delta
-40.0			
-60.0			
-70.0			
Center 5.67000 GHz #Res BW 1.0 MHz	#VBW 1.0 MHz	Span 50.00 M #Sween 500 ms (1001 r	1Hz
MKR MODE TRC SCL	X Y FUI	NCTION FUNCTION WIDTH FUNCTION VALUE	Off
1 N 1 f 2 N 2 f	5.658 35 GHz 11.636 dBm 5.669 80 GHz -0.771 dBm		
3 4			Properties►
5 6 7			
8			More
10 11			1 of 2
MSG		STATUS	

6. Radiated Emission

6.1. Test Equipment

The following test equipments are used during the radiated emission test:

Test Site		Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Site # 3	X Bilog Antenna S		Schaffner Chase	CBL6112B/2673	Sep., 2011
	Х	Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2011
	Х	Horn Antenna	Schwarzbeck	BBHA9170/208	Jul., 2011
	Х	Pre-Amplifier	QTK	QTK-AMP-03 / 0003	May, 2012
	Х	Pre-Amplifier	QTK	AP-180C / CHM_0906076	Sep., 2011
	Х	Pre-Amplifier	MITEQ	AMF-4D-180400-45-6P/ 925975	Mar, 2012
	Х	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2012
	Х	Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2011
	Х	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2012
	X	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	Χ	Coaxial Switch	Anritsu	MP59B/6200265729	N/A

Note: 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

2. The test instruments marked with "X" are used to measure the final test results.

6.2. Test Setup

Radiated Emission Below 1GHz

Radiated Emission Above 1GHz

6.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15 Subpart C Paragraph 15.209(a) Limits								
Frequency MHz	uV/m @3m	dBuV/m@3m						
30-88	100	40						
88-216	150	43.5						
216-960	200	46						
Above 960	500	54						

Remarks: E field strength $(dBuV/m) = 20 \log E$ field strength (uV/m)

6.4. Test Procedure

The EUT was setup according to ANSI C63.4, 2009 and tested according to FCC KDB-789033 test procedure for compliance to FCC 47CFR 15. 407 requirements.

The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.4:2009 on radiated measurement.

The resolution bandwidth below 1GHz setting on the field strength meter is 120 kHz and above 1GHz is 1MHz.

Radiated emission measurements below 1GHz are made using broadband Bilog antenna and above 1GHz are made using Horn Antennas.

The measurement is divided into the Preliminary Measurement and the Final Measurement. The suspected frequencies are searched for in Preliminary Measurement with the measurement antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB bandwidth of the antenna. The worst radiated emission is measured in the Open Area Test Site on the Final Measurement. The measurement frequency range form 30MHz - 10th Harmonic of fundamental was investigated.

6.5. Uncertainty

- ± 3.8 dB below 1GHz
- ± 3.9 dB above 1GHz

6.6. Test Result of Radiated Emission

Product	:	802.11 a/b/g/n, 2.4G/5G 3T3R Wireless Module
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmitter (802.11a-6Mbps) (5180MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
10360.000	12.930	36.510	49.440	-24.560	74.000
15540.000	*	*	*	*	74.000
20720.000	*	*	*	*	74.000
25900.000	*	*	*	*	74.000
31080.000	*	*	*	*	74.000
36260.000	*	*	*	*	74.000
Average					
Detector:					
Vortical					
Pools Dotootory					
10260 000	12 020	26 510	40.440	24 560	74 000
10500.000	12.930	50.510	49.440	-24.300	74.000
15540.000	Ϋ́.	*	*	*	74.000
20720.000	*	*	*	*	74.000
25900.000	*	*	*	*	74.000
31080.000	*	*	*	*	74.000
36260.000	*	*	*	*	74.000

Average

Detector:

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

_

Product	: 802.11 a/b/g/n, 2.4G/5G 3T3R Wireless Module								
Test Item	 Harmonic Radiated Emission Data No.3 OATS 								
Test Site									
Test Mode	: Mode 1	: Mode 1: Transmitter (802.11a-6Mbps) (5220MHz)							
Frequency	Correct	Reading	Measurement	Margin	Limit				
	Factor	Level	Level	C					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m				
Horizontal									
Peak Detector:									
10440.000	7.725	40.240	47.965	-26.035	74.000				
15600.000	*	*	*	*	74.000				
20800.000	*	*	*	*	74.000				
26000.000	*	*	*	*	74.000				
31200.000	*	*	*	*	74.000				
36400.000	*	*	*	*	74.000				
Average									
Detector:									
Vertical									
Peak Detector:									
10440.000	9.505	40.010	49.515	-24.485	74.000				
15600.000	*	*	*	*	74.000				
20800.000	*	*	*	*	74.000				
26000.000	*	*	*	*	74.000				
31200.000	*	*	*	*	74.000				
36400.000	*	*	*	*	74.000				
Average									
Detector:									

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: 802.11 a/b/g/n, 2.4G/5G 3T3R Wireless Module							
Test Item	: Harmonic Radiated Emission Data							
Test Site	e : No.3 OATS							
Test Mode	: Mode 1	: Transmitter (802	2.11a-6Mbps) (5240M	Hz)				
	a .				.			
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector:								
10480.000	8.464	40.160	48.623	-25.377	74.000			
15720.000	*	*	*	*	74.000			
20960.000	*	*	*	*	74.000			
26200.000	*	*	*	*	74.000			
31440000	*	*	*	*	74.000			
36680.000	*	*	*	*	74.000			
Average								
Detector:								
Vertical								
Peak Detector:								
10480.000	8.464	40.160	48.623	-25.377	74.000			
15720.000	*	*	*	*	74.000			
20960.000	*	*	*	*	74.000			
26200.000	*	*	*	*	74.000			
31440000	*	*	*	*	74.000			
36680.000	*	*	*	*	74.000			
Average								
Detector:								

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

-

Product	: 802.11 a/b/g/n, 2.4G/5G 3T3R Wireless Module						
Test Item	 Harmonic Radiated Emission Data No.3 OATS 						
Test Site							
Test Mode	: Mode 1	: Transmitter (802	2.11a-6Mbps) (5260M	Hz)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level	-			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
10520.000	14.015	35.990	50.005	-23.995	74.000		
15780.000	*	*	*	*	74.000		
21040.000	*	*	*	*	74.000		
26300.000	*	*	*	*	74.000		
31560.000	*	*	*	*	74.000		
36820.000	*	*	*	*	74.000		
Average							
Detector:							
Vertical							
Peak Detector:							
10520.000	14.818	36.200	51.018	-22.982	74.000		
15780.000	*	*	*	*	74.000		
21040.000	*	*	*	*	74.000		
26300.000	*	*	*	*	74.000		
31560.000	*	*	*	*	74.000		
36820.000	*	*	*	*	74.000		
Average							
Detector:							

Note:

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: 802.11 a/b/g/n, 2.4G/5G 3T3R Wireless Module						
Test Item	: Harmonic Radiated Emission Data						
Test Site : No.3 OATS							
Test Mode	: Mode 1	: Transmitter (802	2.11a-6Mbps) (5300M	Hz)			
E.		יו ת			T • • •		
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
10600.000	11.182	39.130	50.312	-23.688	74.000		
15900.000	*	*	*	*	74.000		
21200.000	*	*	*	*	74.000		
26500.000	*	*	*	*	74.000		
31800.000	*	*	*	*	74.000		
37100.000	*	*	*	*	74.000		
Average							
Detector:							
Vertical							
Peak Detector:							
10600.000	12.717	39.090	51.807	-22.193	74.000		
15900.000	*	*	*	*	74.000		
21200.000	*	*	*	*	74.000		
26500.000	*	*	*	*	74.000		
31800.000	*	*	*	*	74.000		
37100.000	*	*	*	*	74.000		
Average							
Detector:							

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: 802.11 a/b/g/n, 2.4G/5G 3T3R Wireless Module						
Test Item	: Harmonic Radiated Emission Data						
Test Site	Test Site : No.3 OATS						
Test Mode	: Mode 1	: Transmitter (802	.11a-6Mbps) (5320M	(Hz)			
	9				.		
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
10640.000	10.912	38.400	49.312	-24.688	74.000		
15960.000	*	*	*	*	74.000		
21280.000	*	*	*	*	74.000		
26600.000	*	*	*	*	74.000		
31920.000	*	*	*	*	74.000		
37240.000	*	*	*	*	74.000		
Average							
Detector:							
Vertical							
Peak Detector:							
10640.000	12.585	38.440	51.025	-22.975	74.000		
15960.000	*	*	*	*	74.000		
21280.000	*	*	*	*	74.000		
26600.000	*	*	*	*	74.000		
31920.000	*	*	*	*	74.000		
37240.000	*	*	*	*	74.000		
Average							
Detector:							

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: 802.11 a	a/b/g/n, 2.4G/5G 3	3T3R Wireless Modul	e					
Test Item	: Harmon	: Harmonic Radiated Emission Data							
Test Site	: No.3 OA	: No.3 OATS							
Test Mode	: Mode 2	: Transmitter (802	.11n-20BW 21.7Mbp	s) (5180MHz)					
Frequency	Correct	Reading	Measurement	Margin	I imit				
I requeite y	Factor	Level	Level	Wargin	Linit				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m				
Horizontal									
Peak Detector:									
10360.000	12.930	36.820	49.750	-24.250	74.000				
15540.000	*	*	*	*	74.000				
20720.000	*	*	*	*	74.000				
25900.000	*	*	*	*	74.000				
31080.000	*	*	*	*	74.000				
36260.000	*	*	*	*	74.000				
Average									
Detector:									
T 7 / 1 T									
Vertical									
Peak Detector:	10 70 4	26.470	50.104	22.005	74.000				
10360.000	13.724	36.470	50.194	-23.806	74.000				
15540.000	*	*	*	*	74.000				
20720.000	*	*	*	*	74.000				
25900.000	*	*	*	*	74.000				
31080.000	*	*	*	*	74.000				
36260.000	*	*	*	*	74.000				
Average									
Detector									

Detector:

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

_

Product	: 802.11 a/b/g/n, 2.4G/5G 3T3R Wireless Module						
Test Item	 Harmonic Radiated Emission Data No.3 OATS 						
Test Site							
Test Mode	e : Mode 2: Transmitter (802.11n-20BW 21.7Mbps) (5220MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level	-			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
10440.000	7.725	39.980	47.705	-26.295	74.000		
15660.000	*	*	*	*	74.000		
20880.000	*	*	*	*	74.000		
26100.000	*	*	*	*	74.000		
31320.000	*	*	*	*	74.000		
36540.000	*	*	*	*	74.000		
Average							
Detector:							
Vertical							
Peak Detector:							
10440.000	9.505	39.880	49.385	-24.615	74.000		
15660.000	*	*	*	*	74.000		
20880.000	*	*	*	*	74.000		
26100.000	*	*	*	*	74.000		
31320.000	*	*	*	*	74.000		
36540.000	*	*	*	*	74.000		
Average							
Detector:							

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

_

Product Test Item Test Site Test Mode	: 802.11 a : Harmon : No.3 O	a/b/g/n, 2.4G/5G 3T3R Wireless Module onic Radiated Emission Data OATS					
lest wode	. Whole 2	. Transmitter (802		s) (324010112)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
10480.000	8.464	39.970	48.433	-25.567	74.000		
15720.000	*	*	*	*	74.000		
20960.000	*	*	*	*	74.000		
26200.000	*	*	*	*	74.000		
31440.000	*	*	*	*	74.000		
36680.000	*	*	*	*	74.000		
Average							
Detector:							
Vertical							
Peak Detector:							
10480.000	10.399	40.430	50.829	-23.171	74.000		
15720.000	*	*	*	*	74.000		
20960.000	*	*	*	*	74.000		
26200.000	*	*	*	*	74.000		
31440.000	*	*	*	*	74.000		
36680.000	*	*	*	*	74.000		
Average							
Detector:							

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

-

Product	: 802.11 a/b/g/n, 2.4G/5G 3T3R Wireless Module						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	: Mode 2	: Transmitter (802	.11n-20BW 21.7Mbp	os) (5260MHz)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
10520.000	14.015	43.830	57.845	-16.155	74.000		
15780.000	*	*	*	*	74.000		
21040.000	*	*	*	*	74.000		
26300.000	*	*	*	*	74.000		
31560.000	*	*	*	*	74.000		
36820.000	*	*	*	*	74.000		
Average							
Detector:							
10520.000	14.015	28.250	42.265	-11.735	54.000		
Vertical							
Peak Detector:							
10520.000	14.818	41.780	56.598	-17.402	74.000		
15780.000	*	*	*	*	74.000		
21040.000	*	*	*	*	74.000		
26300.000	*	*	*	*	74.000		
31560.000	*	*	*	*	74.000		
36820.000	*	*	*	*	74.000		
Average							
Detector:							
10520.000	14.818	26.860	41.678	-12.322	54.000		
_							

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: 802.11 a	a/b/g/n, 2.4G/5G 3	T3R Wireless Modul	e				
Test Item	: Harmon	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS							
Test Mode	: Mode 2:							
Eraguarau	Compat	Deading	Magguranant	Monain	Limit			
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level	-				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector:								
10600.000	9.868	39.400	49.268	-24.732	74.000			
15900.000	*	*	*	*	74.000			
21200.000	*	*	*	*	74.000			
26500000	*	*	*	*	74.000			
31800.000	*	*	*	*	74.000			
37100.000	*	*	*	*	74.000			
Average								
Detector:								
Vertical								
Peak Detector:								
10600.000	11.403	41.260	52.663	-21.337	74.000			
15900.000	*	*	*	*	74.000			
21200.000	*	*	*	*	74.000			
26500000	*	*	*	*	74.000			
31800.000	*	*	*	*	74.000			
37100.000	*	*	*	*	74.000			
Average								
Detector:								
					54.000			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: 802.11 a/b/g/n, 2.4G/5G 3T3R Wireless Module						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	: Mode 2	: Transmitter (802	.11n-20BW 21.7Mbp	os) (5320MHz)			
Eraguarau	Compost	Deading	Maagunamant	Mongin	Limit		
Frequency	Correct	Keading	l secol	wargin	LIIIIIt		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
10640.000	9.844	39.400	49.244	-24.756	74.000		
15960.000	*	*	*	*	74.000		
21280.000	*	*	*	*	74.000		
26600.000	*	*	*	*	74.000		
31920.000	*	*	*	*	74.000		
37240.000	*	*	*	*	74.000		
Average							
Detector:							
Vertical							
Peak Detector							
10640.000	11.517	40.830	52.347	-21.653	74.000		
15960.000	*	*	*	*	74.000		
21280.000	*	*	*	*	74.000		
26600.000	*	*	*	*	74.000		
31920.000	*	*	*	*	74.000		
37240.000	*	*	*	*	74.000		
Average							
Detector:							

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

-

Product Test Item Test Site Test Mode	 802.11 a/b/g/n, 2.4G/5G 3T3R Wireless Module Harmonic Radiated Emission Data No.3 OATS 					
Test Widde	. Whole J	. Transmitter (802		(31)01/112)		
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m	
Horizontal						
Peak Detector:						
10380.000	12.939	37.270	50.209	-23.791	74.000	
15570.000	*	*	*	*	74.000	
20760.000	*	*	*	*	74.000	
25950.000	*	*	*	*	74.000	
31140.000	*	*	*	*	74.000	
36330.000	*	*	*	*	74.000	
Average						
Detector:						
Vertical						
Peak Detector:						
10380.000	13.796	36.680	50.476	-23.524	74.000	
15570.000	*	*	*	*	74.000	
20760.000	*	*	*	*	74.000	
25950.000	*	*	*	*	74.000	
31140.000	*	*	*	*	74.000	
36330.000	*	*	*	*	74.000	
Average						
Detector:						

Note:

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: 802.11 a/b/g/n, 2.4G/5G 3T3R Wireless Module					
Test Item	: Harmonic Radiated Emission Data					
Test Site	 No.3 OATS Mode 3: Transmitter (802.11n-40BW 45Mbps) (5230MHz) 					
Test Mode						
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m	
Horizontal						
Peak Detector:						
10460.000	7.932	39.990	47.922	-26.078	74.000	
15690.000	*	*	*	*	74.000	
20920.000	*	*	*	*	74.000	
26150.000	*	*	*	*	74.000	
31380.000	*	*	*	*	74.000	
36610.000	*	*	*	*	74.000	
Average						
Detector:						
Vertical						
Peak Detector:						
10460.000	9.790	40.300	50.090	-23.910	74.000	
15690.000	*	*	*	*	74.000	
20920.000	*	*	*	*	74.000	
26150.000	*	*	*	*	74.000	
31380.000	*	*	*	*	74.000	
36610.000	*	*	*	*	74.000	
Average						
Detector:						

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

-

Product	: 802.11 a/b/g/n, 2.4G/5G 3T3R Wireless Module						
Test Item	Test Item:Harmonic Radiated Emission DataTest Site:No.3 OATS						
Test Site							
Test Mode	: Mode 3	: Transmitter (802	.11n-40BW 45Mbps)	(5270MHz)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
10540.000	14.151	37.320	51.470	-22.530	74.000		
15810.000	*	*	*	*	74.000		
21080.000	*	*	*	*	74.000		
26350.000	*	*	*	*	74.000		
31620.000	*	*	*	*	74.000		
36890.000	*	*	*	*	74.000		
Average							
Detector:							
Vertical							
Peak Detector:							
10540.000	14.829	40.900	55.728	-18.272	74.000		
15810.000	*	*	*	*	74.000		
21080.000	*	*	*	*	74.000		
26350.000	*	*	*	*	74.000		
31620.000	*	*	*	*	74.000		
36890.000	*	*	*	*	74.000		
Average							
Detector:							
10540.000	14.829	26.090	40.918	-13.082	54.000		
Jote:							

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: 802.11 a/b/g/n, 2.4G/5G 3T3R Wireless Module						
Test Item	: Harmonic Radiated Emission Data						
Test Site	Test Site : No.3 OATS						
Test Mode	: Mode 3	: Transmitter (802	.11n-40BW 45Mbps)	(5310MHz)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
10620.000	9.862	38.730	48.592	-25.408	74.000		
15930.000	*	*	*	*	74.000		
21240.000	*	*	*	*	74.000		
26550.000	*	*	*	*	74.000		
31860.000	*	*	*	*	74.000		
37170.000	*	*	*	*	74.000		
Average							
Detector:							
Vertical							
Peak Detector:							
10620.000	11.449	38.770	50.219	-23.781	74.000		
15930.000	*	*	*	*	74.000		
21240.000	*	*	*	*	74.000		
26550.000	*	*	*	*	74.000		
31860.000	*	*	*	*	74.000		
37170.000	*	*	*	*	74.000		
Average							
Detector:							

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: 802.11 a/b/g/n, 2.4G/5G 3T3R Wireless Module						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	e : Mode 3: Transmitter (802.11n-40BW 45Mbps) (5510MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
11020.000	16.474	35.850	52.323	-21.677	74.000		
15930.000	*	*	*	*	74.000		
21240.000	*	*	*	*	74.000		
26550.000	*	*	*	*	74.000		
31860.000	*	*	*	*	74.000		
37170.000	*	*	*	*	74.000		
Average							
Detector:							
Vertical							
Peak Detector:							
11020.000	17.224	35.990	53.214	-20.786	74.000		
15930.000	*	*	*	*	74.000		
21240.000	*	*	*	*	74.000		
26550.000	*	*	*	*	74.000		
31860.000	*	*	*	*	74.000		
37170.000	*	*	*	*	74.000		
Average							
Detector:							

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: 802.11 a/b/g/n, 2.4G/5G 3T3R Wireless Module						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OA	ATS					
Test Mode	: Mode 3	: Transmitter (802	.11n-40BW 45Mbps)	(5590MHz)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
Trequency	Factor	Level	Level	Margin	Linit		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
11180.000	10.239	40.660	50.899	-23.101	74.000		
15930.000	*	*	*	*	74.000		
21240.000	*	*	*	*	74.000		
26550.000	*	*	*	*	74.000		
31860.000	*	*	*	*	74.000		
37170.000	*	*	*	*	74.000		
Average							
Detector:							
Vertical							
Peak Detector:							
11180.000	12.478	41.170	53.648	-20.352	74.000		
15930.000	*	*	*	*	74.000		
21240.000	*	*	*	*	74.000		
26550.000	*	*	*	*	74.000		
31860.000	*	*	*	*	74.000		
37170.000	*	*	*	*	74.000		
Average							
Detector:							
	*	*	*	*			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

_

Product	: 802.11 a	a/b/g/n, 2.4G/5G 3	3T3R Wireless Modul	e					
Test Item	Test Item:Harmonic Radiated Emission DataTest Site:No.3 OATS								
Test Site									
Test Mode	: Mode 3	: Mode 3: Transmitter (802.11n-40BW 45Mbps) (5670MHz)							
Frequency	Correct	Reading	Measurement	Margin	I imit				
requercy	Eactor	Level	Level	Margin	Lillit				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m				
Horizontal									
Peak Detector:									
11340.000	10.852	40.420	51.271	-22.729	74.000				
15930.000	*	*	*	*	74.000				
21240.000	*	*	*	*	74.000				
26550.000	*	*	*	*	74.000				
31860.000	*	*	*	*	74.000				
37170.000	*	*	*	*	74.000				
Average									
Detector:									
Vertical									
Peak Detector:									
11340.000	12.594	44.950	57.544	-16.456	74.000				
15930.000	*	*	*	*	74.000				
21240.000	*	*	*	*	74.000				
26550.000	*	*	*	*	74.000				
31860.000	*	*	*	*	74.000				
37170.000	*	*	*	*	74.000				
Average									
Detector:									
11340.000	12.594	27.780	40.374	-13.626	54.000				
lote.									

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: 802.11 a/b/g/n, 2.4G/5G 3T3R Wireless Module							
Test Item	: General	Radiated Emissio	n					
Test Site	: No.3 OATS							
Test Mode	: Mode 1:	: Mode 1: Transmitter (802.11a-6Mbps) (5220MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector								
134.760	-7.473	44.916	37.443	-6.057	43.500			
431.580	0.757	39.122	39.879	-6.121	46.000			
598.420	3.524	34.334	37.858	-8.142	46.000			
666.320	1.879	37.015	38.894	-7.106	46.000			
831.220	7.121	31.737	38.858	-7.142	46.000			
957.320	6.615	30.773	37.388	-8.612	46.000			
Vertical								
Peak Detector								
111.480	-3.439	41.289	37.851	-5.649	43.500			
299.660	-4.061	42.013	37.952	-8.048	46.000			
600.360	1.302	32.889	34.191	-11.809	46.000			
747.800	1.665	33.168	34.833	-11.167	46.000			
802.120	2.966	34.177	37.143	-8.857	46.000			
967.020	3.889	32.359	36.248	-17.752	54.000			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: 802.11 a/b/g/n, 2.4G/5G 3T3R Wireless Module								
Test Item	: General Radiated Emission								
Test Site	: No.3 OATS								
Test Mode	le : Mode 1: Transmitter (802.11a-6Mbps) (5300MHz)								
	-								
Frequency	Correct	Reading	Measurement	Margin	Limit				
	Factor	Level	Level						
MHz	dB	dBuV	dBuV/m	dB	dBuV/m				
Horizontal									
Peak Detector									
134.760	-7.473	44.691	37.218	-6.282	43.500				
462.620	3.589	36.422	40.011	-5.989	46.000				
600.360	3.472	35.589	39.061	-6.939	46.000				
666.320	1.879	37.079	38.958	-7.042	46.000				
800.180	6.417	32.375	38.792	-7.208	46.000				
959.260	6.640	31.295	37.935	-8.065	46.000				
Vertical									
Peak Detector									
107.600	-4.027	42.127	38.100	-5.400	43.500				
299.660	-4.061	42.204	38.143	-7.857	46.000				
538.280	1.996	31.755	33.751	-12.249	46.000				
749.740	2.023	34.255	36.278	-9.722	46.000				
798.240	2.629	34.228	36.856	-9.144	46.000				
897.180	0.937	36.571	37.508	-8.492	46.000				

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: 802.11 a/b/g/n, 2.4G/5G 3T3R Wireless Module							
Test Item	: General Radiated Emission							
Test Site	 No.3 OATS Mode 1: Transmitter (802.11a-6Mbps) (5600MHz) 							
Test Mode								
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector								
134.760	-7.473	44.450	36.977	-6.523	43.500			
449.040	0.386	39.178	39.564	-6.436	46.000			
524.700	3.140	38.061	41.201	-4.799	46.000			
598.420	3.524	36.136	39.660	-6.340	46.000			
854.500	7.380	32.511	39.891	-6.109	46.000			
959.260	6.640	31.455	38.095	-7.905	46.000			
Vertical								
Peak Detector								
111.480	-3.439	41.735	38.297	-5.203	43.500			
299.660	-4.061	41.765	37.704	-8.296	46.000			
398.600	-2.371	44.309	41.938	-4.062	46.000			
749.740	2.023	33.760	35.783	-10.217	46.000			
831.220	2.041	34.459	36.500	-9.500	46.000			
955.380	2.956	32.160	35.116	-10.884	46.000			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: 802.11 a/b/g/n, 2.4G/5G 3T3R Wireless Module							
Test Item	: General	: General Radiated Emission						
Test Site	: No.3 OA	: No.3 OATS						
Test Mode	: Mode 2:	Transmitter (802.	11n-20BW 21.7Mbp	s) (5220MHz)				
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector								
132.820	-7.442	44.328	36.886	-6.614	43.500			
524.700	3.140	37.811	40.951	-5.049	46.000			
600.360	3.472	35.642	39.114	-6.886	46.000			
798.240	6.409	32.662	39.070	-6.930	46.000			
831.220	7.121	32.870	39.991	-6.009	46.000			
930.160	7.530	30.326	37.856	-8.144	46.000			
Vertical								
Peak Detector								
111.480	-3.439	41.602	38.164	-5.336	43.500			
299.660	-4.061	42.448	38.387	-7.613	46.000			
600.360	1.302	34.239	35.541	-10.459	46.000			
749.740	2.023	34.133	36.156	-9.844	46.000			
798.240	2.629	33.493	36.121	-9.879	46.000			
951.500	3.083	32.154	35.237	-10.763	46.000			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: 802.11 a/b/g/n, 2.4G/5G 3T3R Wireless Module						
Test Item	: General Radiated Emission						
Test Site	: No.3 OATS						
Test Mode	: Mode 2: Transmitter (802.11n-20BW 21.7Mbps) (5300MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector							
134.760	-7.473	45.301	37.828	-5.672	43.500		
460.680	4.030	37.268	41.298	-4.702	46.000		
530.520	3.062	38.123	41.185	-4.815	46.000		
598.420	3.524	35.364	38.888	-7.112	46.000		
831.220	7.121	32.802	39.923	-6.077	46.000		
959.260	6.640	29.336	35.976	-10.024	46.000		
Vertical							
Peak Detector							
111.480	-3.439	40.818	37.380	-6.120	43.500		
365.620	0.282	36.030	36.312	-9.688	46.000		
532.460	1.209	32.731	33.940	-12.060	46.000		
600.360	1.302	32.760	34.062	-11.938	46.000		
798.240	2.629	34.052	36.680	-9.320	46.000		
959.260	3.100	30.124	33.224	-12.776	46.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: 802.11 a/b/g/n, 2.4G/5G 3T3R Wireless Module						
Test Item	: General Radiated Emission						
Test Site	: No.3 OATS						
Test Mode	: Mode 2: Transmitter (802.11n-20BW 21.7Mbps) (5600MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector							
134.760	-7.473	45.821	38.348	-5.152	43.500		
431.580	0.757	38.790	39.547	-6.453	46.000		
534.400	3.162	38.265	41.427	-4.573	46.000		
600.360	3.472	35.243	38.715	-7.285	46.000		
798.240	6.409	32.743	39.151	-6.849	46.000		
941.800	6.790	30.031	36.821	-9.179	46.000		
Vertical							
Peak Detector							
111.480	-3.439	41.162	37.724	-5.776	43.500		
297.720	-4.356	42.326	37.970	-8.030	46.000		
747.800	1.665	33.672	35.337	-10.663	46.000		
800.180	2.637	32.870	35.507	-10.493	46.000		
897.180	0.937	36.761	37.698	-8.302	46.000		
957.320	3.015	30.450	33.465	-12.535	46.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: 802.11 a/b/g/n, 2.4G/5G 3T3R Wireless Module					
Test Item	: General Radiated Emission					
Test Site	: No.3 OATS					
Test Mode	: Mode 3: Transmitter (802.11n-40BW 45Mbps) (5190MHz)					
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m	
Horizontal						
Peak Detector						
134.760	-7.473	44.741	37.268	-6.232	43.500	
534.400	3.162	38.680	41.842	-4.158	46.000	
600.360	3.472	34.925	38.397	-7.603	46.000	
664.380	1.882	36.296	38.178	-7.822	46.000	
796.300	6.389	32.423	38.812	-7.188	46.000	
951.500	6.993	28.546	35.539	-10.461	46.000	
Vertical						
Peak Detector						
111.480	-3.439	40.713	37.275	-6.225	43.500	
299.660	-4.061	42.386	38.325	-7.675	46.000	
608.120	2.175	33.399	35.574	-10.426	46.000	
749.740	2.023	33.633	35.656	-10.344	46.000	
798.240	2.629	33.511	36.139	-9.861	46.000	
961.200	3.310	31.213	34.523	-19.477	54.000	

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: 802.11 a/b/g/n, 2.4G/5G 3T3R Wireless Module					
Test Item	: General Radiated Emission					
Test Site	: No.3 OATS					
Test Mode	: Mode 3: Transmitter (802.11n-40BW 45Mbps) (5270MHz)					
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor		Level			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m	
Horizontal						
Peak Detector						
136.700	-7.491	44.122	36.631	-6.869	43.500	
530.520	3.062	38.891	41.953	-4.047	46.000	
600.360	3.472	35.693	39.165	-6.835	46.000	
666.320	1.879	37.697	39.576	-6.424	46.000	
794.360	6.387	32.824	39.211	-6.789	46.000	
945.680	6.910	29.205	36.115	-9.885	46.000	
Vertical						
Peak Detector						
111.480	-3.439	40.328	36.890	-6.610	43.500	
299.660	-4.061	41.570	37.509	-8.491	46.000	
598.420	1.114	33.472	34.586	-11.414	46.000	
747.800	1.665	34.459	36.124	-9.876	46.000	
798.240	2.629	34.448	37.076	-8.924	46.000	
955.380	2.956	31.051	34.007	-11.993	46.000	

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: 802.11 a/b/g/n, 2.4G/5G 3T3R Wireless Module					
Test Item	: General Radiated Emission					
Test Site	: No.3 OATS					
Test Mode	: Mode 3: Transmitter (802.11n-40BW 45Mbps) (5590MHz)					
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m	
Horizontal						
Peak Detector						
132.820	-7.442	45.052	37.610	-5.890	43.500	
383.080	1.305	37.376	38.681	-7.319	46.000	
532.460	3.099	38.894	41.993	-4.007	46.000	
598.420	3.524	35.352	38.876	-7.124	46.000	
800.180	6.417	32.588	39.005	-6.995	46.000	
961.200	6.810	29.095	35.905	-18.095	54.000	
Vertical						
Peak Detector						
109.540	-3.507	41.922	38.414	-5.086	43.500	
299.660	-4.061	42.347	38.286	-7.714	46.000	
600.360	1.302	32.594	33.896	-12.104	46.000	
747.800	1.665	35.260	36.925	-9.075	46.000	
796.300	2.639	34.283	36.922	-9.078	46.000	
937.920	3.110	30.859	33.969	-12.031	46.000	

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

7. Band Edge

7.1. Test Equipment

RF Conducted Measurement

The following test equipments are used during the band edge tests:

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2012
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2012
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2012

Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

RF Radiated Measurement:

The following test equipments are used during the band edge tests:

Test Site		Equipment	Monufacturar	Model No /Seriel No	Lost Col
Test Site		Equipment	Manufacturer	Would No./Serial No.	Last Cal.
\boxtimes Site # 3		Bilog Antenna	Schaffner Chase	CBL6112B/2673	Sep., 2011
	Х	Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2011
		Horn Antenna	Schwarzbeck	BBHA9170/208	Jul., 2011
		Pre-Amplifier	QTK	QTK-AMP-03 / 0003	May, 2011
	Х	Pre-Amplifier	QTK	AP-180C / CHM_0906076	Sep., 2011
		Pre-Amplifier	MITEQ	AMF-4D-180400-45-6P/ 925975	Mar, 2012
	Х	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2012
		Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2011
	X	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2012
	Х	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	X	Coaxial Switch	Anritsu	MP59B/6200265729	N/A

Note:

1. All instruments are calibrated every one year.

2. The test instruments marked by "X" are used to measure the final test results.
7.2. Test Setup

RF Conducted Measurement

RF Radiated Measurement:

7.3. Limits

The provisions of Section 15.205 of this part apply to intentional radiators operating under this section.

Radiated emissions which fall in the restricted bands, as defined in Section 15.205, must also comply with the radiated emission limits specified in Section 15.209:

FCC Part 15 Subpart C Paragraph 15.209 Limits								
Frequency MHz	uV/m @3m	dBuV/m@3m						
30-88	100	40						
88-216	150	43.5						
216-960	200	46						
Above 960	500	54						

Remarks : 1. RF Voltage $(dBuV) = 20 \log RF$ Voltage (uV)

2. In the Above Table, the tighter limit applies at the band edges.

3. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

7.4. Test Procedure

The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters. The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level.

Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.4:2009 on radiated measurement.

The bandwidth below 1GHz setting on the field strength meter is 120 kHz, above 1GHz are 1 MHz. The EUT was setup to ANSI C63.4, 2009; tested to DTS test procedure of FCC KDB-789033 for compliance to FCC 47CFR Subpart E requirements.

7.5. Uncertainty

- \pm 3.8 dB below 1GHz
- \pm 3.9 dB above 1GHz

7.6. Test Result of Band Edge

Product	:	802.11 a/b/g/n, 2.4G/5G 3T3R Wireless Module
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmitter (802.11a-6Mbps)-Channel 36

RF Radiated Measurement (Horizontal):

	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Decult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
36 (Peak)	5149.400	3.342	40.467	43.810	74.00	54.00	Pass
36 (Peak)	5150.000	3.340	37.547	40.887	74.00	54.00	Pass
36 (Peak)	5186.800	3.210	88.116	91.326			Pass
36 (Average)	5150.000	3.340	25.822	29.162	74.00	54.00	Pass
36 (Average)	5186.800	3.210	77.061	80.271			Pass

Figure Channel 36:

Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product :	802.11 a/b/g/n, 2.4G/5G 3T3R Wireless Module
-----------	--

Test Item	:	Band	Edge	Data
-----------	---	------	------	------

Test Site : No.3 OATS

Test Mode : Mode 1: Transmitter (802.11a-6Mbps)-Channel 36

RF Radiated Measurement (Vertical):

	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Docult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
36 (Peak)	5149.200	5.258	60.880	66.138	74.00	54.00	Pass
36 (Peak)	5150.000	5.260	58.482	63.742	74.00	54.00	Pass
36 (Peak)	5186.200	5.360	102.833	108.192			Pass
36 (Average)	5150.000	5.260	38.792	44.052	74.00	54.00	Pass
36 (Average)	5186.000	5.359	90.111	95.469			Pass

Figure Channel 36:

Vertical (Peak)

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	802.11 a/b/g/n, $2.4G/5G$ $313R$ Wireless Module
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmitter (802.11a-6Mbps) -Channel 64

	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Docult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
64 (Peak)	5326.200	3.793	91.750	95.543			Pass
64 (Peak)	5350.000	3.716	53.971	57.688	74.00	54.00	Pass
64 (Average)	5326.000	3.793	79.379	83.172			Pass
64 (Average)	5350.000	3.716	33.715	37.432	74.00	54.00	Pass

. .

Figure Channel 64:

Horizontal (Peak)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	802.11 a/b/g/n, 2.4G/5G 3T3R Wireless Module
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmitter (802.11a-6Mbps) -Channel 64

	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Docult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
64 (Peak)	5313.800	5.737	104.109	109.846			Pass
64 (Peak)	5350.000	5.691	64.214	69.906	74.00	54.00	Pass
64 (Average)	5326.200	5.721	91.894	97.615			Pass
64 (Average)	5350.000	5.691	45.216	50.908	74.00	54.00	Pass

Figure Channel 64:

Vertical (Peak)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	802.11 a/b/g/n, 2.4G/5G 3T3R Wireless Module
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmitter (802.11a-6Mbps) -Channel 100

	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Docult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
100 (Peak)	5460.000	4.354	49.822	54.176			Pass
100 (Peak)	5494.000	4.773	93.040	97.813	74.00	54.00	Pass
100 (Average)	5460.000	4.354	31.662	36.016			Pass
100 (Average)	5493.800	4.771	80.918	85.690	74.00	54.00	Pass

Figure Channel 100:

Horizontal (Peak)

Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	802.11 a/b/g/n, 2.4G/5G 3T3R Wireless Module
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmitter (802.11a-6Mbps) -Channel 100

	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Degult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
100 (Peak)	5457.600	6.024	61.369	67.393	74.00	54.00	Pass
100 (Peak)	5460.000	6.041	57.000	63.041	74.00	54.00	Pass
100 (Peak)	5497.800	6.268	104.290	110.558			Pass
100 (Average)	5460.000	6.041	39.606	45.647	74.00	54.00	Pass
100 (Average)	5494.000	6.256	92.173	98.430			Pass

Figure Channel 100:

Vertical (Peak)

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	802.11 a/b/g/n, 2.4G/5G 3T3R Wireless Module
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmitter (802.11a-6Mbps) -Channel 100

<u>RF</u> Radiated Measurement:

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizontal	5470.000	13.958	-66.260	-52.302	-25.302	-27.000	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertical	5470.000	14.324	-60.010	-45.686	-18.686	-27.000	Pass

Product	:	802.11 a/b/g/n, 2.4G/5G 3T3R Wireless Module
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmitter (802.11a-6Mbps) -Channel 140

<u>RF</u> Radiated Measurement:

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizontal	5725.000	12.135	-63.690	-51.555	-24.555	-27.000	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertical	5725.000	12.243	-61.150	-48.907	-21.907	-27.000	Pass

36

Product	:	802.11 a/b/g/n, 2.4G/5G 3T3R Wireless Module
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmitter (802.11n-20BW 21.7Mbps) -Channel

RF Radiated Measurement (Horizontal):

Channel Ma	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Docult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Kesult
36 (Peak)	5138.400	3.380	52.842	56.223			Pass
36 (Peak)	5150.000	3.340	51.604	54.944	74.00	54.00	Pass
36 (Peak)	5185.600	3.215	91.206	94.420			Pass
36 (Average)	5150.000	3.340	39.175	42.515	74.00	54.00	Pass
36 (Average)	5186.600	3.211	74.499	77.710			Pass

Horizontal (Peak)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

36

Product	:	802.11 a/b/g/n, 2.4G/5G 3T3R Wireless Module
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmitter (802.11n-20BW 21.7Mbps) -Channel

RF Radiated Measurement (Vertical):

	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Docult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
36 (Peak)	5148.400	5.256	57.525	62.781	74.00	54.00	Pass
36 (Peak)	5150.000	5.260	56.075	61.335	74.00	54.00	Pass
36 (Peak)	5187.200	5.361	105.882	111.244			Pass
36 (Average)	5150.000	5.260	41.937	47.197	74.00	54.00	Pass
36 (Average)	5183.200	5.350	88.727	94.077			Pass

Figure Channel 36:

Vertical (Peak)

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	802.11 a/b/g/n, 2.4G/5G 3T3R Wireless Module
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmitter (802.11n-20BW 21.7Mbps) -Channel 64

	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Docult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
64 (Peak)	5324.600	3.798	92.367	96.165			Pass
64 (Peak)	5350.000	3.716	51.110	54.827	74.00	54.00	Pass
64 (Peak)	5353.800	3.704	52.696	56.400	74.00	54.00	Pass
64 (Average)	5325.400	3.795	77.127	80.922			Pass
64 (Average)	5350.000	3.716	39.692	43.409	74.00	54.00	Pass

Figure Channel 64:

Horizontal (Peak)

Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	802.11 a/b/g/n, 2.4G/5G 3T3R Wireless Module
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmitter (802.11n-20BW 21.7Mbps) -Channel 64

	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Degult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
64 (Peak)	5316.400	5.733	108.511	114.245			Pass
64 (Peak)	5350.000	5.691	62.677	68.369	74.00	54.00	Pass
64 (Peak)	5354.400	5.686	65.973	71.659	74.00	54.00	Pass
64 (Average)	5313.800	5.737	91.368	97.105			Pass
64 (Average)	5350.000	5.691	46.007	51.699	74.00	54.00	Pass

Figure Channel 64:

Vertical (Peak)

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	802.11 a/b/g/n, 2.4G/5G 3T3R Wireless Module
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmitter (802.11n-20BW 21.7Mbps) -Channel 100

	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Dogult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
100 (Peak)	5457.400	4.320	51.492	55.811	74.00	54.00	Pass
100 (Peak)	5460.000	4.354	51.434	55.788	74.00	54.00	Pass
100 (Peak)	5493.000	4.766	93.110	97.876			Pass
100 (Average)	5460.000	4.354	39.265	43.619	74.00	54.00	Pass
100 (Average)	5493.800	4.771	77.808	82.580			Pass

Figure Channel 100:

Horizontal (Peak)

Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product :	802.11 a/b/g/n, 2.4G/5G 3T3R Wireless Module
-----------	--

Test Item : Band Edge Data

Test Site : No.3 OATS

Test Mode : Mode 2: Transmitter (802.11n-20BW 21.7Mbps) -Channel 100

RF Radiated Measurement (Vertical):

Channel No	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
100 (Peak)	5458.200	6.028	60.816	66.844	74.00	54.00	Pass
100 (Peak)	5460.000	6.041	60.584	66.625	74.00	54.00	Pass
100 (Peak)	5505.000	6.290	108.195	114.485			Pass
100 (Average)	5460.000	6.041	43.803	49.844	74.00	54.00	Pass
100 (Average)	5493.800	6.256	90.853	97.109			Pass

Figure Channel 100:

Vertical (Peak)

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	802.11 a/b/g/n, 2.4G/5G 3T3R Wireless Module
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmitter (802.11n-20BW 21.7Mbps) -Channel 100

RF Radiated Measurement:

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizontal	5470.000	13.958	-63.110	-49.152	-22.152	-27.000	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertical	5470.000	14.324	-57.770	-43.446	-16.446	-27.000	Pass

Product	:	802.11 a/b/g/n, 2.4G/5G 3T3R Wireless Module
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmitter (802.11n-20BW 21.7Mbps) -Channel 140

RF Radiated Measurement:

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizontal	5725.000	12.135	-56.380	-44.245	-17.245	-27.000	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertical	5725.000	12.243	-52.480	-40.237	-13.237	-27.000	Pass

Product	:	802.11 a/b/g/n, 2.4G/5G 3T3R Wireless Module
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmitter (802.11n-40BW 45Mbps) -Channel 38

	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Dogult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
38 (Peak)	5148.400	3.346	52.491	55.837	74.00	54.00	Pass
38 (Peak)	5150.000	3.340	51.371	54.711	74.00	54.00	Pass
38 (Peak)	5199.000	3.156	84.682	87.838			Pass
38 (Average)	5150.000	3.340	39.680	43.020	74.00	54.00	Pass
38 (Average)	5198.600	3.157	70.354	73.512	74.00	54.00	Pass

Figure Channel 38:

Horizontal (Peak)

Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	802.11 a/b/g/n, 2.4G/5G 3T3R Wireless Module
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmitter (802.11n-40BW 45Mbps) -Channel 38

	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Dogult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
38 (Peak)	5148.200	5.255	62.709	67.964			Pass
38 (Peak)	5150.000	5.260	61.805	67.065	74.00	54.00	Pass
38 (Peak)	5199.800	5.387	102.312	107.700			Pass
38 (Average)	5150.000	5.260	45.766	51.026	74.00	54.00	Pass
38 (Average)	5198.800	5.383	84.574	89.957			Pass

Figure Channel 38:

Vertical (Peak)

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	802.11 a/b/g/n, 2.4G/5G 3T3R Wireless Module
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmitter (802.11n-40BW 45Mbps) -Channel 62

	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Docult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
62 (Peak)	5321.600	3.807	86.405	90.212			Pass
62 (Peak)	5350.000	3.716	51.735	55.452	74.00	54.00	Pass
62 (Peak)	5350.800	3.714	52.605	56.319	74.00	54.00	Pass
62 (Average)	5323.400	3.802	70.885	74.687			Pass
62 (Average)	5350.000	3.716	39.483	43.200	74.00	54.00	Pass

Figure Channel 62:

Horizontal (Peak)

- All readings above 1GHz are performed with peak and/or average measurements as necessary. 1.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto. 3.
- "*", means this data is the worst emission level. 4.
- 5. Measurement Level = Reading Level + Correct Factor.
- The average measurement was not performed when the peak measured data under the limit of average 6. detection.

Product	:	802.11 a/b/g/n, 2.4G/5G 3T3R Wireless Module
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmitter (802.11n-40BW 45Mbps) -Channel 62

	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Degult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
62 (Peak)	5319.600	5.730	101.974	107.704			Pass
62 (Peak)	5350.000	5.691	63.784	69.476	74.00	54.00	Pass
62 (Peak)	5351.000	5.690	66.178	71.868	74.00	54.00	Pass
62 (Average)	5323.200	5.725	85.085	90.810			Pass
62 (Average)	5350.000	5.691	46.834	52.526	74.00	54.00	Pass

Figure Channel 62:

Vertical (Peak)

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	802.11 a/b/g/n, 2.4G/5G 3T3R Wireless Module
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmitter (802.11n-40BW 45Mbps) -Channel 102

	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Dogult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
102 (Peak)	5458.400	4.332	52.079	56.411	74.00	54.00	Pass
102 (Peak)	5460.000	4.354	51.705	56.059	74.00	54.00	Pass
102 (Peak)	5494.600	4.777	86.698	91.475			Pass
102 (Average)	5460.000	4.354	39.534	43.888	74.00	54.00	Pass
102 (Average)	5498.800	4.806	71.167	75.973			Pass

Figure Channel 102:

Horizontal (Peak)

Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	802.11 a/b/g/n, 2.4G/5G 3T3R Wireless Module
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmitter (802.11n-40BW 45Mbps) -Channel 102

	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Dogult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
102 (Peak)	5460.000	6.041	62.983	69.024	74.00	54.00	Pass
102 (Peak)	5494.000	6.256	102.386	108.643			Pass
102 (Average)	5460.000	6.041	45.862	51.903	74.00	54.00	Pass
102 (Average)	5493.400	6.255	85.099	91.354			Pass

Figure Channel 102:

Vertical (Peak)

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	802.11 a/b/g/n, 2.4G/5G 3T3R Wireless Module
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmitter (802.11n-40BW 45Mbps) -Channel 102

RF Radiated Measurement:

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizontal	5470.000	13.958	-65.520	-51.562	-24.562	-27.000	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertical	5470.000	14.324	-58.740	-44.416	-17.416	-27.000	Pass

Product	:	802.11 a/b/g/n, 2.4G/5G 3T3R Wireless Module
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmitter (802.11n-40BW 45Mbps) -Channel 134

RF Radiated Measurement:

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizontal	5725.000	12.135	-66.790	-54.655	-27.655	-27.000	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertical	5725.000	12.243	-62.620	-50.377	-23.377	-27.000	Pass

8. Frequency Stability

8.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2012
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2012
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2012

Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

8.2. Test Setup

8.3. Limits

Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified

8.4. Test Procedure

The EUT was setup to ANSI C63.4, 2009; tested to DTS test procedure of FCC KDB-789033 for compliance to FCC 47CFR Subpart E requirements.

8.5. Uncertainty

± 150 Hz

8.6. Test Result of Frequency Stability

Product	:	802.11 a/b/g/n, 2.4G/5G 3T3R Wireless Module
Test Item	:	Frequency Stability
Test Site	:	Temperature Chamber
Test Mode	:	Carrier Wave

Chain A

Test C	onditions	Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
		36	5180.0000	5180.0064	-0.0064
		38	5190.0000	5190.0089	-0.0089
		44	5220.0000	5220.0095	-0.0095
		46	5230.0000	5230.0085	-0.0085
		48	5240.0000	5240.0099	-0.0099
	Vnom (110)V	52	5260.0000	5260.0085	-0.0085
		54	5270.0000	5270.0098	-0.0098
		60	5300.0000	5300.0089	-0.0089
$1 \operatorname{nom}(20)$ °C		62	5310.0000	5310.0100	-0.0100
		64	5320.0000	5320.0100	-0.0100
		100	5500.0000	5500.0096	-0.0096
		102	5510.0000	5510.0100	-0.0100
		118	5590.0000	5590.0100	-0.0100
		120	5600.0000	5600.0099	-0.0099
		134	5670.0000	5670.0100	-0.0100
		140	5700.0000	5700.0095	-0.0095

Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
		36	5180.0000	5180.0058	-0.0058
		38	5190.0000	5190.0099	-0.0099
		44	5220.0000	5220.0095	-0.0095
		46	5230.0000	5230.0085	-0.0085
		48	5240.0000	5240.0098	-0.0098
		52	5260.0000	5260.0085	-0.0085
		54	5270.0000	5270.0098	-0.0098
T (50) %G		60	5300.0000	5300.0085	-0.0085
Tmax (50) °C	Vmax (126.5)V	62	5310.0000	5310.0100	-0.0100
		64	5320.0000	5320.0100	-0.0100
		100	5500.0000	5500.0068	-0.0068
		102	5510.0000	5510.0100	-0.0100
		118	5590.0000	5590.0098	-0.0098
		120	5600.0000	5600.0087	-0.0087
		134	5670.0000	5670.0099	-0.0099
		140	5700.0000	5700.0095	-0.0095
Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	$\wedge \mathbf{F}(\mathbf{MH}_{7})$
		Chamier	r requeries (writz)	requerey (mill)	
		36	5180.0000	5180.0058	-0.0058
		36 38	5180.0000 5190.0000	5180.0058 5190.0099	-0.0058 -0.0099
		36 38 44	5180.0000 5190.0000 5220.0000	5180.0058 5190.0099 5220.0095	-0.0058 -0.0099 -0.0095
		36 38 44 46	5180.0000 5190.0000 5220.0000 5230.0000	5180.0058 5190.0099 5220.0095 5230.0085	-0.0058 -0.0099 -0.0095 -0.0085
		36 38 44 46 48	5180.0000 5190.0000 5220.0000 5230.0000 5240.0000	5180.0058 5190.0099 5220.0095 5230.0085 5240.0098	-0.0058 -0.0099 -0.0095 -0.0085 -0.0098
		36 38 44 46 48 52	5180.0000 5190.0000 5220.0000 5230.0000 5240.0000 5260.0000	5180.0058 5190.0099 5220.0095 5230.0085 5240.0098 5260.0085	-0.0058 -0.0099 -0.0095 -0.0085 -0.0098 -0.0085
		36 38 44 46 48 52 54	5180.0000 5190.0000 5220.0000 5230.0000 5240.0000 5260.0000 5270.0000	5180.0058 5190.0099 5220.0095 5230.0085 5240.0098 5260.0085 5270.0098	-0.0058 -0.0099 -0.0095 -0.0085 -0.0098 -0.0085 -0.0098
T. (50) %C		36 38 44 46 48 52 54 60	5180.0000 5190.0000 5220.0000 5230.0000 5240.0000 5260.0000 5270.0000 5300.0000	5180.0058 5190.0099 5220.0095 5230.0085 5240.0098 5260.0085 5270.0098 5300.0085	-0.0058 -0.0099 -0.0095 -0.0085 -0.0085 -0.0085 -0.0098 -0.0085
Tmax (50) °C	Vmin (93.5)V	36 38 44 46 48 52 54 60 62	5180.0000 5190.0000 5220.0000 5230.0000 5240.0000 5260.0000 5270.0000 5310.0000	5180.0058 5190.0099 5220.0095 5230.0085 5240.0098 5260.0085 5270.0098 5300.0085 5310.0100	-0.0058 -0.0099 -0.0095 -0.0085 -0.0085 -0.0098 -0.0098 -0.0085 -0.0085 -0.0100
Tmax (50) °C	Vmin (93.5)V	36 38 44 46 48 52 54 60 62 64	5180.0000 5190.0000 5220.0000 5230.0000 5240.0000 5260.0000 5270.0000 5300.0000 5310.0000 5320.0000	5180.0058 5190.0099 5220.0095 5230.0085 5240.0098 5260.0085 5270.0098 5300.0085 5310.0100 5320.0100	-0.0058 -0.0099 -0.0095 -0.0085 -0.0085 -0.0085 -0.0098 -0.0085 -0.0085 -0.0085 -0.0085 -0.0100 -0.0100
Tmax (50) °C	Vmin (93.5)V	36 38 44 46 48 52 54 60 62 64 100	5180.0000 5190.0000 5220.0000 5220.0000 5230.0000 5240.0000 5270.0000 5300.0000 5310.0000 5320.0000 5320.0000	5180.0058 5190.0099 5220.0095 5230.0085 5240.0098 5260.0085 5270.0098 5300.0085 5310.0100 5320.0100 5500.0068	-0.0058 -0.0099 -0.0095 -0.0085 -0.0085 -0.0085 -0.0098 -0.0085 -0.0085 -0.0085 -0.0085 -0.0100 -0.0100 -0.0100
Tmax (50) °C	Vmin (93.5)V	36 38 44 46 48 52 54 60 62 64 100 102	5180.0000 5180.0000 5190.0000 5220.0000 5230.0000 5240.0000 5260.0000 5270.0000 5310.0000 5320.0000 5320.0000 5310.0000 5510.0000	5180.0058 5190.0099 5220.0095 5230.0085 5240.0098 5260.0085 5270.0098 5300.0085 5310.0100 5320.0100 5500.0068 5510.0100	-0.0058 -0.0099 -0.0095 -0.0095 -0.0085 -0.0098 -0.0085 -0.0098 -0.0085 -0.0098 -0.0085 -0.0100 -0.0100 -0.0100
Tmax (50) °C	Vmin (93.5)V	36 38 44 46 48 52 54 60 62 64 100 102 118	5180.0000 5190.0000 5220.0000 5220.0000 5230.0000 5240.0000 5260.0000 5270.0000 5310.0000 5320.0000 5320.0000 5310.0000 5510.0000 5590.0000	5180.0058 5190.0099 5220.0095 5230.0085 5240.0098 5260.0085 5270.0098 5310.0100 5320.0100 5500.0068 5510.0100 5590.0580	-0.0058 -0.0099 -0.0095 -0.0085 -0.0085 -0.0085 -0.0085 -0.0085 -0.0085 -0.0100 -0.0100 -0.0100 -0.0100 -0.0580
Tmax (50) °C	Vmin (93.5)V	36 36 38 44 46 48 52 54 60 62 64 100 102 118 120	5180.0000 5190.0000 5220.0000 5220.0000 5220.0000 5240.0000 5260.0000 5270.0000 5310.0000 5320.0000 5320.0000 5310.0000 5510.0000 5590.0000 5600.0000	5180.0058 5190.0099 5220.0095 5230.0085 5240.0098 5260.0085 5270.0098 5300.0085 5310.0100 5520.0068 5510.0100 5590.0580 5600.0097	-0.0058 -0.0099 -0.0095 -0.0085 -0.0085 -0.0085 -0.0098 -0.0085 -0.0085 -0.0100 -0.0100 -0.0100 -0.0068 -0.0100 -0.0580 -0.0097
Tmax (50) °C	Vmin (93.5)V	36 36 38 44 46 48 52 54 60 62 64 100 102 118 120 134	5180.0000 5190.0000 5220.0000 5220.0000 5220.0000 5220.0000 5220.0000 5220.0000 5240.0000 5260.0000 5270.0000 5300.0000 5310.0000 5500.0000 5590.0000 5600.0000 5670.0000	5180.0058 5190.0099 5220.0095 5230.0085 5240.0098 5260.0085 5270.0098 5300.0085 5310.0100 5520.0068 5510.0100 5590.0580 5600.0097 5670.0099	-0.0058 -0.0099 -0.0095 -0.0085 -0.0085 -0.0085 -0.0098 -0.0085 -0.0098 -0.0100 -0.0100 -0.0100 -0.0100 -0.0580 -0.0097 -0.0099

Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
		36	5180.0000	5180.0100	-0.0100
		38	5190.0000	5190.0089	-0.0089
		44	5220.0000	5220.0095	-0.0095
		46	5230.0000	5230.0098	-0.0098
		48	5240.0000	5240.0094	-0.0094
		52	5260.0000	5260.0085	-0.0085
		54	5270.0000	5270.0098	-0.0098
E : (0) ⁰ C		60	5300.0000	5300.0089	-0.0089
Tmin (0) °C	Vmax (126.5)V	62	5310.0000	5310.0100	-0.0100
		64	5320.0000	5320.0100	-0.0100
		100	5500.0000	5500.0093	-0.0093
		102	5510.0000	5510.0096	-0.0096
		118	5590.0000	5590.0100	-0.0100
		120	5600.0000	5600.0098	-0.0098
		134	5670.0000	5670.0100	-0.0100
		140	5700.0000	5700.0095	-0.0095
Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
		36	5180.0000	5180.0100	-0.0100
		38	5190.0000	5190.0089	-0.0089
		44	5220.0000	5220.0095	-0.0095
		46			
			5230.0000	5230.0098	-0.0098
		48	5230.0000 5240.0000	5230.0098 5240.0094	-0.0098 -0.0094
		48 52	5230.0000 5240.0000 5260.0000	5230.0098 5240.0094 5260.0085	-0.0098 -0.0094 -0.0085
		48 52 54	5230.0000 5240.0000 5260.0000 5270.0000	5230.0098 5240.0094 5260.0085 5270.0098	-0.0098 -0.0094 -0.0085 -0.0098
	V	48 52 54 60	5230.0000 5240.0000 5260.0000 5270.0000 5300.0000	5230.0098 5240.0094 5260.0085 5270.0098 5300.0089	-0.0098 -0.0094 -0.0085 -0.0098 -0.0089
Tmin (0) °C	Vmin (93.5)V	48 52 54 60 62	5230.0000 5240.0000 5260.0000 5270.0000 5300.0000 5310.0000	5230.0098 5240.0094 5260.0085 5270.0098 5300.0089 5310.0100	-0.0098 -0.0094 -0.0085 -0.0098 -0.0089 -0.0100
Tmin (0) °C	Vmin (93.5)V	48 52 54 60 62 64	5230.0000 5240.0000 5260.0000 5270.0000 5300.0000 5310.0000 5320.0000	5230.0098 5240.0094 5260.0085 5270.0098 5300.0089 5310.0100 5320.0100	-0.0098 -0.0094 -0.0085 -0.0098 -0.0089 -0.0100 -0.0100
Tmin (0) ⁰C	Vmin (93.5)V	48 52 54 60 62 64 100	5230.0000 5240.0000 5260.0000 5270.0000 5300.0000 5310.0000 5320.0000 5500.0000	5230.0098 5240.0094 5260.0085 5270.0098 5300.0089 5310.0100 5320.0100 5500.0093	-0.0098 -0.0094 -0.0085 -0.0098 -0.0089 -0.0100 -0.0100 -0.0093
Tmin (0) °C	Vmin (93.5)V	48 52 54 60 62 64 100 102	5230.0000 5240.0000 5260.0000 5270.0000 5300.0000 5310.0000 5320.0000 5510.0000	5230.0098 5240.0094 5260.0085 5270.0098 5300.0089 5310.0100 5320.0100 5500.0093 5510.0096	-0.0098 -0.0094 -0.0085 -0.0098 -0.0089 -0.0100 -0.0100 -0.0093 -0.0096
Tmin (0) °C	Vmin (93.5)V	48 52 54 60 62 64 100 102 118	5230.0000 5240.0000 5260.0000 5270.0000 5300.0000 5310.0000 5320.0000 55500.0000 5510.0000 5590.0000	5230.0098 5240.0094 5260.0085 5270.0098 5300.0089 5310.0100 5320.0100 5500.0093 5510.0096 5590.0100	-0.0098 -0.0094 -0.0085 -0.0098 -0.0089 -0.0100 -0.0100 -0.0093 -0.0096 -0.0100
Tmin (0) °C	Vmin (93.5)V	48 52 54 60 62 64 100 102 118 120	5230.0000 5240.0000 5260.0000 5270.0000 5300.0000 5310.0000 5320.0000 55500.0000 5510.0000 5590.0000 5600.0000	5230.0098 5240.0094 5260.0085 5270.0098 5300.0089 5310.0100 5320.0100 55500.0093 55510.0096 5590.0100 5600.0097	-0.0098 -0.0094 -0.0085 -0.0098 -0.0089 -0.0100 -0.0100 -0.0093 -0.0096 -0.0100 -0.0097
Tmin (0) °C	Vmin (93.5)V	48 52 54 60 62 64 100 102 118 120 134	5230.0000 5240.0000 5260.0000 5270.0000 5300.0000 5310.0000 5320.0000 55500.0000 55590.0000 5600.0000 5670.0000	5230.0098 5240.0094 5260.0085 5270.0098 5300.0089 5310.0100 5320.0100 55500.0093 5510.0096 5590.0100 5600.0097 5670.0100	-0.0098 -0.0094 -0.0085 -0.0098 -0.0089 -0.0100 -0.0100 -0.0093 -0.0096 -0.0100 -0.0097 -0.0100

Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
		36	5180.0000	5180.0065	-0.0065
		38	5190.0000	5190.0091	-0.0091
		44	5220.0000	5220.0098	-0.0098
		46	5230.0000	5230.0087	-0.0087
		48	5240.0000	5240.0101	-0.0101
		52	5260.0000	5260.0086	-0.0086
	Vnom (110)V	54	5270.0000	5270.0101	-0.0101
$T_{max}(20)^{0}C$		60	5300.0000	5300.0090	-0.0090
$1 \operatorname{nom}(20) C$		62	5310.0000	5310.0103	-0.0103
		64	5320.0000	5320.0102	-0.0102
		100	5500.0000	5500.0098	-0.0098
		102	5510.0000	5510.0103	-0.0103
		118	5590.0000	5590.0102	-0.0102
		120	5600.0000	5600.0102	-0.0102
		134	5670.0000	5670.0102	-0.0102
		140	5700.0000	5700.0097	-0.0097

Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
		36	5180.0000	5180.0059	-0.0059
		38	5190.0000	5190.0101	-0.0101
		44	5220.0000	5220.0098	-0.0098
		46	5230.0000	5230.0087	-0.0087
		48	5240.0000	5240.0100	-0.0100
		52	5260.0000	5260.0086	-0.0086
		54	5270.0000	5270.0101	-0.0101
T (50) %G		60	5300.0000	5300.0086	-0.0086
Tmax (50) °C	Vmax (126.5)V	62	5310.0000	5310.0103	-0.0103
		64	5320.0000	5320.0102	-0.0102
		100	5500.0000	5500.0070	-0.0070
		102	5510.0000	5510.0103	-0.0103
		118	5590.0000	5590.0100	-0.0100
		120	5600.0000	5600.0100	-0.0100
		134	5670.0000	5670.0101	-0.0101
		140	5700.0000	5700.0097	-0.0097
Test Conditions					
Test C	conditions	Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
Test C	Conditions	Channel 36	Frequency (MHz) 5180.0000	Frequency (MHz) 5180.0059	△F (MHz) -0.0059
Test C	Conditions	Channel 36 38	Frequency (MHz) 5180.0000 5190.0000	Frequency (MHz) 5180.0059 5190.0101	△F (MHz) -0.0059 -0.0101
Test C	Conditions	Channel 36 38 44	Frequency (MHz) 5180.0000 5190.0000 5220.0000	Frequency (MHz) 5180.0059 5190.0101 5220.0098	△F (MHz) -0.0059 -0.0101 -0.0098
Test C	Conditions	Channel 36 38 44 46	Frequency (MHz) 5180.0000 5190.0000 5220.0000 5230.0000	Frequency (MHz) 5180.0059 5190.0101 5220.0098 5230.0087	△F (MHz) -0.0059 -0.0101 -0.0098 -0.0087
Test C	Conditions	Channel 36 38 44 46 48	Frequency (MHz) 5180.0000 5190.0000 5220.0000 5230.0000 5240.0000	Frequency (MHz) 5180.0059 5190.0101 5220.0098 5230.0087 5240.0100	 △F (MHz) -0.0059 -0.0101 -0.0098 -0.0087 -0.0100
Test C	Conditions	Channel 36 38 44 46 48 52	Frequency (MHz) 5180.0000 5190.0000 5220.0000 5230.0000 5240.0000 5260.0000	Frequency (MHz) 5180.0059 5190.0101 5220.0098 5230.0087 5240.0100 5260.0086	 △F (MHz) -0.0059 -0.0101 -0.0098 -0.0087 -0.0100 -0.0086
Test C	Conditions	Channel 36 38 44 46 48 52 54	Frequency (MHz) 5180.0000 5190.0000 5220.0000 5230.0000 5240.0000 5260.0000 5270.0000	Frequency (MHz) 5180.0059 5190.0101 5220.0098 5230.0087 5240.0100 5260.0086 5270.0101	 △F (MHz) -0.0059 -0.0101 -0.0098 -0.0087 -0.0100 -0.0086 -0.0101
Test C	Conditions	Channel 36 38 44 46 48 52 54 60	Frequency (MHz) 5180.0000 5190.0000 5220.0000 5220.0000 5240.0000 5260.0000 5270.0000 5300.0000	Frequency (MHz) 5180.0059 5190.0101 5220.0098 5230.0087 5240.0100 5260.0086 5270.0101 5300.0086	 △F (MHz) -0.0059 -0.0101 -0.0098 -0.0087 -0.0100 -0.0086 -0.0101 -0.0086
Test C Tmax (50) °C	Vmin (93.5)V	Channel 36 38 44 46 48 52 54 60 62	Frequency (MHz) 5180.0000 5190.0000 5220.0000 5230.0000 5240.0000 5260.0000 5270.0000 5300.0000 5310.0000	Frequency (MHz) 5180.0059 5190.0101 5220.0098 5230.0087 5240.0100 5260.0086 5270.0101 5300.0086 5310.0103	 △F (MHz) -0.0059 -0.0101 -0.0098 -0.0087 -0.0100 -0.0086 -0.0103
Test C Tmax (50) °C	Conditions	Channel 36 38 44 46 48 52 54 60 62 64	Frequency (MHz) 5180.0000 5190.0000 5220.0000 5220.0000 5230.0000 5260.0000 5270.0000 5310.0000 5310.0000 5320.0000	Frequency (MHz) 5180.0059 5190.0101 5220.0098 5230.0087 5240.0100 5260.0086 5270.0101 5300.0086 5310.0103 5320.0102	 △F (MHz) -0.0059 -0.0101 -0.0098 -0.0087 -0.0100 -0.0086 -0.0101 -0.0086 -0.0103 -0.0102
Test C Tmax (50) °C	Conditions	Channel 36 38 44 46 48 52 54 60 62 64 100	Frequency (MHz) 5180.0000 5190.0000 5220.0000 5230.0000 5240.0000 5260.0000 5270.0000 5310.0000 5320.0000 5310.0000 5320.0000	Frequency (MHz) 5180.0059 5190.0101 5220.0098 5230.0087 5240.0100 5260.0086 5270.0101 5300.0086 5310.0103 5320.0102 5500.0070	 △F (MHz) -0.0059 -0.0101 -0.0098 -0.0087 -0.0100 -0.0086 -0.0101 -0.0086 -0.0103 -0.0102 -0.0070
Test C Tmax (50) °C	Conditions	Channel 36 38 44 46 48 52 54 60 62 64 100 102	Frequency (MHz) 5180.0000 5190.0000 5220.0000 5220.0000 5230.0000 5240.0000 5260.0000 5270.0000 5310.0000 5320.0000 5320.0000 5310.0000 5510.0000	Frequency (MHz) 5180.0059 5190.0101 5220.0098 5230.0087 5240.0100 5260.0086 5270.0101 5300.0086 5310.0103 5320.0102 5500.0070 5510.0103	 △F (MHz) -0.0059 -0.0101 -0.0098 -0.0087 -0.0100 -0.0086 -0.0101 -0.0086 -0.0103 -0.0102 -0.0070 -0.0103
Test C Tmax (50) °C	Vmin (93.5)V	Channel 36 38 44 46 48 52 54 60 62 64 100 102 118	Frequency (MHz) 5180.0000 5190.0000 5220.0000 5220.0000 5230.0000 5240.0000 5260.0000 5270.0000 5310.0000 5320.0000 5310.0000 5510.0000 5510.0000 5590.0000	Frequency (MHz) 5180.0059 5190.0101 5220.0098 5230.0087 5240.0100 5260.0086 5270.0101 5300.0086 5310.0103 5320.0102 5500.0070 5510.0103	 △F (MHz) -0.0059 -0.0101 -0.0098 -0.0087 -0.0100 -0.0086 -0.0101 -0.0086 -0.0103 -0.0102 -0.0070 -0.0103 -0.0103 -0.0100
Test C Tmax (50) °C	Vmin (93.5)V	Channel 36 38 44 46 48 52 54 60 62 64 100 102 118 120	Frequency (MHz) 5180.0000 5190.0000 5190.0000 5220.0000 5220.0000 5230.0000 5240.0000 5260.0000 5270.0000 5300.0000 5310.0000 5320.0000 5510.0000 5590.0000 5600.0000	Frequency (MHz) 5180.0059 5190.0101 5220.0098 5230.0087 5240.0100 5260.0086 5270.0101 5300.0086 5310.0103 5320.0102 5500.0070 5510.0103 5590.0100	 △F (MHz) -0.0059 -0.0101 -0.0098 -0.0087 -0.0100 -0.0086 -0.0101 -0.0086 -0.0103 -0.0102 -0.0103 -0.0103 -0.0100 99.9900
Test C Tmax (50) °C	Vmin (93.5)V	Channel 36 38 44 46 48 52 54 60 62 64 100 102 118 120 134	Frequency (MHz) 5180.0000 5190.0000 5190.0000 5220.0000 5220.0000 5220.0000 5230.0000 5240.0000 5260.0000 5270.0000 5310.0000 5310.0000 5510.0000 5590.0000 5600.0000 5670.0000	Frequency (MHz) 5180.0059 5190.0101 5220.0098 5230.0087 5240.0100 5260.0086 5270.0101 5300.0086 5310.0103 5320.0102 5500.0070 5510.0103 5590.0100 5500.0100 5670.0101	 △F (MHz) -0.0059 -0.0101 -0.0098 -0.0087 -0.0100 -0.0086 -0.0101 -0.0086 -0.0103 -0.0102 -0.0103 -0.0103 -0.0103 -0.0103 -0.0100 99.9900 -0.0101

Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
		36	5180.0000	5180.0101	-0.0101
		38	5190.0000	5190.0091	-0.0091
		44	5220.0000	5220.0098	-0.0098
		46	5230.0000	5230.0100	-0.0100
		48	5240.0000	5240.0096	-0.0096
		52	5260.0000	5260.0086	-0.0086
		54	5270.0000	5270.0101	-0.0101
$T_{min}(0)$ ^o C	V	60	5300.0000	5300.0090	-0.0090
$1 \min(0) C$	$v \max(120.3)v$	62	5310.0000	5310.0103	-0.0103
		64	5320.0000	5320.0102	-0.0102
		100	5500.0000	5500.0095	-0.0095
		102	5510.0000	5510.0099	-0.0099
		118	5590.0000	5590.0102	-0.0102
		120	5600.0000	5600.0100	-0.0100
		134	5670.0000	5670.0102	-0.0102
		140	5700.0000	5700.0097	-0.0097
Test Conditions					
Test C	Conditions	Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
Test C	Conditions	Channel 36	Frequency (MHz) 5180.0000	Frequency (MHz) 5180.0101	△F (MHz) -0.0101
Test C	Conditions	Channel 36 38	Frequency (MHz) 5180.0000 5190.0000	Frequency (MHz) 5180.0101 5190.0091	△F (MHz) -0.0101 -0.0091
Test C	Conditions	Channel 36 38 44	Frequency (MHz) 5180.0000 5190.0000 5220.0000	Frequency (MHz) 5180.0101 5190.0091 5220.0098	△F (MHz) -0.0101 -0.0091 -0.0098
Test C	Conditions	Channel 36 38 44 46	Frequency (MHz) 5180.0000 5190.0000 5220.0000 5230.0000	Frequency (MHz) 5180.0101 5190.0091 5220.0098 5230.0100	△F (MHz) -0.0101 -0.0091 -0.0098 -0.0100
Test C	Conditions	Channel 36 38 44 46 48	Frequency (MHz) 5180.0000 5190.0000 5220.0000 5230.0000 5240.0000	Frequency (MHz) 5180.0101 5190.0091 5220.0098 5230.0100 5240.0096	 △F (MHz) -0.0101 -0.0091 -0.0098 -0.0100 -0.0096
Test C	Conditions	Channel 36 38 44 46 48 52	Frequency (MHz) 5180.0000 5190.0000 5220.0000 5230.0000 5240.0000 5260.0000	Frequency (MHz) 5180.0101 5190.0091 5220.0098 5230.0100 5240.0096 5260.0086	 △F (MHz) -0.0101 -0.0091 -0.0098 -0.0100 -0.0096 -0.0086
Test C	Conditions	Channel 36 38 44 46 48 52 54	Frequency (MHz) 5180.0000 5190.0000 5220.0000 5230.0000 5240.0000 5260.0000 5270.0000	Frequency (MHz) 5180.0101 5190.0091 5220.0098 5230.0100 5240.0096 5260.0086 5270.0101	 △F (MHz) -0.0101 -0.0091 -0.0098 -0.0100 -0.0096 -0.0086 -0.0101
Test C	Conditions	Channel 36 38 44 46 48 52 54 60	Frequency (MHz) 5180.0000 5190.0000 5220.0000 5230.0000 5240.0000 5260.0000 5270.0000 5300.0000	Frequency (MHz) 5180.0101 5190.0091 5220.0098 5230.0100 5240.0096 5260.0086 5270.0101 5300.0090	 △F (MHz) -0.0101 -0.0091 -0.0098 -0.0100 -0.0096 -0.0086 -0.0101 -0.0090
Test C Tmin (0) °C	Conditions Vmin (93.5)V	Channel 36 38 44 46 48 52 54 60 62	Frequency (MHz) 5180.0000 5190.0000 5220.0000 5230.0000 5240.0000 5260.0000 5270.0000 5300.0000 5310.0000	Frequency (MHz) 5180.0101 5190.0091 5220.0098 5230.0100 5240.0096 5260.0086 5270.0101 5300.0090 5310.0103	 △F (MHz) -0.0101 -0.0091 -0.0098 -0.0100 -0.0096 -0.0086 -0.0101 -0.0090 -0.0103
Test C Tmin (0) °C	Conditions Vmin (93.5)V	Channel 36 38 44 46 48 52 54 60 62 64	Frequency (MHz) 5180.0000 5190.0000 5220.0000 5220.0000 5240.0000 5260.0000 5270.0000 5310.0000 5310.0000	Frequency (MHz) 5180.0101 5190.0091 5220.0098 5230.0100 5240.0096 5260.0086 5270.0101 5300.0090 5310.0103 5320.0102	 △F (MHz) -0.0101 -0.0091 -0.0098 -0.0100 -0.0096 -0.0086 -0.0101 -0.0090 -0.0103 -0.0102
Test C Tmin (0) °C	Conditions Vmin (93.5)V	Channel 36 38 44 46 48 52 54 60 62 64 100	Frequency (MHz) 5180.0000 5190.0000 5220.0000 5220.0000 5240.0000 5260.0000 5270.0000 5310.0000 5310.0000 5320.0000	Frequency (MHz) 5180.0101 5190.0091 5220.0098 5230.0100 5240.0096 5260.0086 5270.0101 5300.0090 5310.0103 5320.0102 55500.0095	 △F (MHz) -0.0101 -0.0091 -0.0098 -0.0100 -0.0096 -0.0096 -0.0101 -0.0090 -0.0103 -0.0102 -0.0095
Test C	Conditions Vmin (93.5)V	Channel 36 38 44 46 48 52 54 60 62 64 100 102	Frequency (MHz) 5180.0000 5190.0000 5220.0000 5220.0000 5240.0000 5240.0000 5270.0000 5310.0000 5310.0000 5320.0000 5510.0000	Frequency (MHz) 5180.0101 5190.0091 5220.0098 5230.0100 5240.0096 5260.0086 5270.0101 5300.0090 5310.0103 5320.0102 5500.0095 5510.0099	 △F (MHz) -0.0101 -0.0091 -0.0098 -0.0100 -0.0096 -0.0096 -0.0086 -0.0101 -0.0090 -0.0103 -0.0102 -0.0095 -0.0099
Test C Tmin (0) °C	Conditions Vmin (93.5)V	Channel 36 38 44 46 48 52 54 60 62 64 100 102 118	Frequency (MHz) 5180.0000 5190.0000 5220.0000 5230.0000 5240.0000 5260.0000 5270.0000 5310.0000 5310.0000 55500.0000 55500.0000 55590.0000	Frequency (MHz) 5180.0101 5190.0091 5220.0098 5230.0100 5240.0096 5260.0086 5270.0101 5300.0090 5310.0103 5320.0102 55500.0095 5510.0099 55590.0102	 △F (MHz) -0.0101 -0.0091 -0.0098 -0.0100 -0.0096 -0.0096 -0.0086 -0.0101 -0.0090 -0.0103 -0.0102 -0.0095 -0.0099 -0.0102
Test C Tmin (0) °C	Vmin (93.5)V	Channel 36 38 44 46 48 52 54 60 62 64 100 102 118 120	Frequency (MHz) 5180.0000 5190.0000 5220.0000 5230.0000 5240.0000 5260.0000 5270.0000 5310.0000 5310.0000 55500.0000 55510.0000 55590.0000	Frequency (MHz) 5180.0101 5190.0091 5220.0098 5230.0100 5240.0096 5260.0086 5270.0101 5300.0090 5310.0103 5320.0102 55500.0095 55510.0099 55590.0102	 △F (MHz) -0.0101 -0.0091 -0.0098 -0.0100 -0.0096 -0.0086 -0.0101 -0.0090 -0.0103 -0.0102 -0.0095 -0.0102
Test C Tmin (0) °C	Vmin (93.5)V	Channel 36 38 44 46 48 52 54 60 62 64 100 102 118 120 134	Frequency (MHz) 5180.0000 5190.0000 5220.0000 5220.0000 5220.0000 5240.0000 5260.0000 5310.0000 5310.0000 5510.0000 55500.0000 55590.0000 56600.0000	Frequency (MHz) 5180.0101 5190.0091 5220.0098 5220.0098 5230.0100 5240.0096 5260.0086 5270.0101 5300.0090 5310.0103 5320.0102 55500.0095 55510.0099 55590.0102 56600.0100 56670.0102	 △F (MHz) -0.0101 -0.0091 -0.0098 -0.0100 -0.0096 -0.0086 -0.0101 -0.0090 -0.0103 -0.0102

Chain	С
-------	---

Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
	36	5180.0000	5180.0066	-0.0066	
		38	5190.0000	5190.0089	-0.0089
		44	5220.0000	5220.0095	-0.0095
		46	5230.0000	5230.0085	-0.0085
		48	5240.0000	5240.0099	-0.0099
		52	5260.0000	5260.0085	-0.0085
	Vnom (110)V	54	5270.0000	5270.0098	-0.0098
		60	5300.0000	5300.0089	-0.0089
1 nom (20) °C		62	5310.0000	5310.0100	-0.0100
		64	5320.0000	5320.0100	-0.0100
		100	5500.0000	5500.0096	-0.0096
		102	5510.0000	5510.0100	-0.0100
		118	5590.0000	5590.0100	-0.0100
		120	5600.0000	5600.0099	-0.0099
		134	5670.0000	5670.0100	-0.0100
	140	5700.0000	5700.0095	-0.0095	

Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
		36	5180.0000	5180.0063	-0.0063
		38	5190.0000	5190.0092	-0.0092
		44	5220.0000	5220.0101	-0.0101
		46	5230.0000	5230.0085	-0.0085
		48	5240.0000	5240.0103	-0.0103
		52	5260.0000	5260.0089	-0.0089
		54	5270.0000	5270.0100	-0.0100
$T_{max}(50)^{0}C$	V	60	5300.0000	5300.0089	-0.0089
$1 \max(50)$ C	$v \max(126.5)v$	62	5310.0000	5310.0106	-0.0106
		64	5320.0000	5320.0100	-0.0100
		100	5500.0000	5500.0099	-0.0099
		102	5510.0000	5510.0105	-0.0105
		118	5590.0000	5590.0099	-0.0099
		120	5600.0000	5600.0104	-0.0104
		134	5670.0000	5670.0101	-0.0101
		140	5700.0000	5700.0098	-0.0098
Test Conditions					
Test C	onditions	Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
Test C	onditions	Channel 36	Frequency (MHz) 5180.0000	Frequency (MHz) 5180.0068	△F (MHz) -0.0068
Test C	conditions	Channel 36 38	Frequency (MHz) 5180.0000 5190.0000	Frequency (MHz) 5180.0068 5190.0089	△F (MHz) -0.0068 -0.0089
Test C	onditions	Channel 36 38 44	Frequency (MHz) 5180.0000 5190.0000 5220.0000	Frequency (MHz) 5180.0068 5190.0089 5220.0100	△F (MHz) -0.0068 -0.0089 -0.0100
Test C	Conditions	Channel 36 38 44 46	Frequency (MHz) 5180.0000 5190.0000 5220.0000 5230.0000	Frequency (MHz) 5180.0068 5190.0089 5220.0100 5230.0088	△F (MHz) -0.0068 -0.0089 -0.0100 -0.0088
Test C	Conditions	Channel 36 38 44 46 48	Frequency (MHz) 5180.0000 5190.0000 5220.0000 5230.0000 5240.0000	Frequency (MHz) 5180.0068 5190.0089 5220.0100 5230.0088 5240.0098	 △F (MHz) -0.0068 -0.0089 -0.0100 -0.0088 -0.0098
Test C	Conditions	Channel 36 38 44 46 48 52	Frequency (MHz) 5180.0000 5190.0000 5220.0000 5230.0000 5240.0000 5260.0000	Frequency (MHz) 5180.0068 5190.0089 5220.0100 5230.0088 5240.0098 5260.0089	 △F (MHz) -0.0068 -0.0089 -0.0100 -0.0088 -0.0098 -0.0089
Test C	Conditions	Channel 36 38 44 46 48 52 54	Frequency (MHz) 5180.0000 5190.0000 5220.0000 5230.0000 5240.0000 5260.0000 5270.0000	Frequency (MHz) 5180.0068 5190.0089 5220.0100 5230.0088 5240.0098 5260.0089 5270.0099	 △F (MHz) -0.0068 -0.0089 -0.0100 -0.0088 -0.0098 -0.0089 -0.0099
Test C	Conditions	Channel 36 38 44 46 48 52 54 60	Frequency (MHz) 5180.0000 5190.0000 5220.0000 5220.0000 5240.0000 5260.0000 5270.0000 5300.0000	Frequency (MHz) 5180.0068 5190.0089 5220.0100 5230.0088 5240.0098 5260.0089 5270.0099 5300.0091	 △F (MHz) -0.0068 -0.0089 -0.0100 -0.0088 -0.0098 -0.0089 -0.0099 -0.0091
Test C Tmax (50) °C	Conditions Vmin (93.5)V	Channel 36 38 44 46 48 52 54 60 62	Frequency (MHz) 5180.0000 5190.0000 5220.0000 5230.0000 5240.0000 5260.0000 5270.0000 5300.0000 5310.0000	Frequency (MHz) 5180.0068 5190.0089 5220.0100 5230.0088 5240.0098 5260.0089 5270.0099 5300.0091 5310.0100	 △F (MHz) -0.0068 -0.0089 -0.0100 -0.0088 -0.0098 -0.0099 -0.0091 -0.0100
Test C Tmax (50) °C	Conditions Vmin (93.5)V	Channel 36 38 44 46 48 52 54 60 62 64	Frequency (MHz) 5180.0000 5190.0000 5220.0000 5220.0000 5230.0000 5260.0000 5270.0000 5310.0000 5310.0000 5320.0000	Frequency (MHz) 5180.0068 5190.0089 5220.0100 5230.0088 5240.0098 5260.0089 5270.0099 5300.0091 5310.0100 5320.0100	 △F (MHz) -0.0068 -0.0089 -0.0100 -0.0088 -0.0098 -0.0099 -0.0099 -0.0091 -0.0100 -0.0100
Test C Tmax (50) °C	Conditions Vmin (93.5)V	Channel 36 38 44 46 48 52 54 60 62 64 100	Frequency (MHz) 5180.0000 5190.0000 5220.0000 5220.0000 5240.0000 5260.0000 5270.0000 5310.0000 5310.0000 5320.0000 5320.0000	Frequency (MHz) 5180.0068 5190.0089 5220.0100 5230.0088 5240.0098 5260.0089 5270.0099 5310.0100 5310.0100 5320.0101	 △F (MHz) -0.0068 -0.0089 -0.0100 -0.0098 -0.0098 -0.0099 -0.0091 -0.0100 -0.0100 -0.0101
Test C Tmax (50) °C	Vmin (93.5)V	Channel 36 38 44 46 48 52 54 60 62 64 100 102	Frequency (MHz) 5180.0000 5190.0000 5220.0000 5220.0000 5230.0000 5240.0000 5270.0000 5310.0000 5310.0000 5320.0000 5510.0000 5510.0000	Frequency (MHz) 5180.0068 5190.0089 5220.0100 5230.0088 5240.0098 5260.0089 5270.0099 5300.0091 5310.0100 5320.0100 55500.0101 55510.0105	 △F (MHz) -0.0068 -0.0089 -0.0100 -0.0098 -0.0098 -0.0099 -0.0091 -0.0100 -0.0100 -0.0101 -0.0105
Test C Tmax (50) °C	Vmin (93.5)V	Channel 36 38 44 46 48 52 54 60 62 64 100 102 118	Frequency (MHz) 5180.0000 5190.0000 5220.0000 5220.0000 5240.0000 5240.0000 5270.0000 5310.0000 5310.0000 5320.0000 55500.0000 55510.0000 55590.0000	Frequency (MHz) 5180.0068 5190.0089 5220.0100 5230.0088 5240.0098 5260.0089 5270.0099 5300.0091 5310.0100 5320.0100 55500.0101 5510.0105 5590.0101	 △F (MHz) -0.0068 -0.0089 -0.0100 -0.0098 -0.0099 -0.0099 -0.0091 -0.0100 -0.0100 -0.0101 -0.0105 -0.0101
Test C Tmax (50) °C	Vmin (93.5)V	Channel 36 38 44 46 48 52 54 60 62 64 100 102 118 120	Frequency (MHz) 5180.0000 5190.0000 5220.0000 5220.0000 5230.0000 5240.0000 5260.0000 5270.0000 5300.0000 5310.0000 5320.0000 5310.0000 5510.0000 5590.0000 5600.0000	Frequency (MHz) 5180.0068 5190.0089 5220.0100 5230.0088 5240.0098 5260.0089 5270.0099 5300.0091 5310.0100 5320.0100 55500.0101 55590.0101 5600.0104	 △F (MHz) -0.0068 -0.0089 -0.0100 -0.0088 -0.0098 -0.0099 -0.0099 -0.0091 -0.0100 -0.0100 -0.0101 -0.0105 -0.0104
Test C Tmax (50) °C	Vmin (93.5)V	Channel 36 38 44 46 48 52 54 60 62 64 100 102 118 120 134	Frequency (MHz) 5180.0000 5190.0000 5220.0000 5220.0000 5220.0000 5240.0000 5260.0000 5270.0000 5310.0000 5310.0000 5320.0000 55500.0000 55590.0000 55690.0000 56600.0000 56670.0000	Frequency (MHz) 5180.0068 5190.0089 5220.0100 5230.0088 5240.0098 5260.0089 5270.0099 5300.0091 5310.0100 5320.0100 55500.0101 55510.0105 5590.0101 56600.0104 56670.0103	 △F (MHz) -0.0068 -0.0089 -0.0100 -0.0098 -0.0099 -0.0099 -0.0091 -0.0100 -0.0100 -0.0101 -0.0105 -0.0104 -0.0103
Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
-----------------	---------------	--	---	---	--
		36	5180.0000	5180.0063	-0.0063
Tmin (0) °C	Vmax (126.5)V	38	5190.0000	5190.0092	-0.0092
		44	5220.0000	5220.0100	-0.0100
		46	5230.0000	5230.0086	-0.0086
		48	5240.0000	5240.0100	-0.0100
		52	5260.0000	5260.0088	-0.0088
		54	5270.0000	5270.0099	-0.0099
		60	5300.0000	5300.0091	-0.0091
		62	5310.0000	5310.0106	-0.0106
		64	5320.0000	5320.0100	-0.0100
		100	5500.0000	5500.0099	-0.0099
		102	5510.0000	5510.0105	-0.0105
		118	5590.0000	5590.0101	-0.0101
		120	5600.0000	5600.0103	-0.0103
		134	5670.0000	5670.0104	-0.0104
		140	5700.0000	5700.0094	-0.0094
Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
		36	5180.0000	5180.0063	-0.0063
		36 38	5180.0000 5190.0000	5180.0063 5190.0093	-0.0063
		36 38 44	5180.0000 5190.0000 5220.0000	5180.0063 5190.0093 5220.0097	-0.0063 -0.0093 -0.0097
		36 38 44 46	5180.0000 5190.0000 5220.0000 5230.0000	5180.0063 5190.0093 5220.0097 5230.0086	-0.0063 -0.0093 -0.0097 -0.0086
		36 38 44 46 48	5180.0000 5190.0000 5220.0000 5230.0000 5240.0000	5180.0063 5190.0093 5220.0097 5230.0086 5240.0104	-0.0063 -0.0093 -0.0097 -0.0086 -0.0104
		36 38 44 46 48 52	5180.0000 5190.0000 5220.0000 5230.0000 5240.0000 5260.0000	5180.0063 5190.0093 5220.0097 5230.0086 5240.0104 5260.0083	-0.0063 -0.0093 -0.0097 -0.0086 -0.0104 -0.0083
		36 38 44 46 48 52 54	5180.0000 5190.0000 5220.0000 5230.0000 5240.0000 5260.0000 5270.0000	5180.0063 5190.0093 5220.0097 5230.0086 5240.0104 5260.0083 5270.0098	-0.0063 -0.0093 -0.0097 -0.0086 -0.0104 -0.0083 -0.0098
		36 38 44 46 48 52 54 60	5180.0000 5190.0000 5220.0000 5230.0000 5240.0000 5260.0000 5270.0000 5300.0000	5180.0063 5190.0093 5220.0097 5230.0086 5240.0104 5260.0083 5270.0098 5300.0091	-0.0063 -0.0093 -0.0097 -0.0086 -0.0104 -0.0083 -0.0098 -0.0091
Tmin (0) °C	Vmin (93.5)V	36 38 44 46 48 52 54 60 62	5180.0000 5190.0000 5220.0000 5230.0000 5240.0000 5260.0000 5270.0000 5300.0000 5310.0000	5180.0063 5190.0093 5220.0097 5230.0086 5240.0104 5260.0083 5270.0098 5300.0091 5310.0102	-0.0063 -0.0093 -0.0097 -0.0086 -0.0104 -0.0083 -0.0098 -0.0091 -0.0102
Tmin (0) °C	Vmin (93.5)V	$ \begin{array}{r} 36 \\ 38 \\ 44 \\ 46 \\ 48 \\ 52 \\ 54 \\ 60 \\ 62 \\ 64 \\ \end{array} $	5180.0000 5190.0000 5220.0000 5230.0000 5240.0000 5260.0000 5270.0000 5300.0000 5310.0000 5320.0000	5180.0063 5190.0093 5220.0097 5230.0086 5240.0104 5260.0083 5270.0098 5300.0091 5310.0102 5320.0104	-0.0063 -0.0093 -0.0097 -0.0086 -0.0104 -0.0083 -0.0098 -0.0091 -0.0091 -0.0102 -0.0104
Tmin (0) °C	Vmin (93.5)V	$ \begin{array}{r} 36 \\ 38 \\ 44 \\ 46 \\ 48 \\ 52 \\ 54 \\ 60 \\ 62 \\ 64 \\ 100 \\ \end{array} $	5180.0000 5190.0000 5220.0000 5230.0000 5240.0000 5260.0000 5270.0000 5310.0000 5320.0000 5320.0000 5310.0000 5320.0000	5180.0063 5190.0093 5220.0097 5230.0086 5240.0104 5260.0083 5270.0098 5300.0091 5310.0102 5320.0104 5500.0097	-0.0063 -0.0093 -0.0097 -0.0086 -0.0104 -0.0083 -0.0098 -0.0091 -0.0102 -0.0104 -0.0097
Tmin (0) °C	Vmin (93.5)V	$ \begin{array}{r} 36 \\ 38 \\ 44 \\ 46 \\ 48 \\ 52 \\ 54 \\ 60 \\ 62 \\ 64 \\ 100 \\ 102 \\ \end{array} $	5180.0000 5190.0000 5220.0000 5220.0000 5230.0000 5240.0000 5260.0000 5270.0000 5310.0000 5320.0000 5310.0000 5500.0000 5510.0000	5180.0063 5190.0093 5220.0097 5230.0086 5240.0104 5260.0083 5270.0098 5300.0091 5310.0102 5320.0104 5500.0097 5510.0105	-0.0063 -0.0093 -0.0097 -0.0086 -0.0104 -0.0083 -0.0098 -0.0091 -0.0102 -0.0104 -0.0097 -0.0105
Tmin (0) °C	Vmin (93.5)V	$ \begin{array}{r} 36 \\ 38 \\ 44 \\ 46 \\ 48 \\ 52 \\ 54 \\ 60 \\ 62 \\ 64 \\ 100 \\ 102 \\ 118 \\ \end{array} $	5180.0000 5190.0000 5220.0000 5220.0000 5230.0000 5240.0000 5260.0000 5270.0000 5300.0000 5310.0000 5320.0000 5510.0000 5590.0000	5180.0063 5190.0093 5220.0097 5230.0086 5240.0104 5260.0083 5270.0098 5300.0091 5310.0102 5320.0104 55500.0097 5510.0105 5590.0100	-0.0063 -0.0093 -0.0097 -0.0086 -0.0104 -0.0083 -0.0098 -0.0091 -0.0102 -0.0104 -0.0097 -0.0105 -0.0100
Tmin (0) °C	Vmin (93.5)V	$ \begin{array}{r} 36 \\ 38 \\ 44 \\ 46 \\ 48 \\ 52 \\ 54 \\ 60 \\ 62 \\ 64 \\ 100 \\ 102 \\ 118 \\ 120 \\ \end{array} $	5180.0000 5190.0000 5220.0000 5220.0000 5230.0000 5240.0000 5260.0000 5270.0000 5300.0000 5310.0000 5320.0000 5510.0000 5590.0000 5600.0000	5180.0063 5190.0093 5220.0097 5230.0086 5240.0104 5260.0083 5270.0098 5300.0091 5310.0102 5320.0104 5500.0097 5510.0105 5590.0100 5600.0105	-0.0063 -0.0093 -0.0097 -0.0086 -0.0104 -0.0083 -0.0098 -0.0091 -0.0091 -0.0102 -0.0104 -0.0097 -0.0105 -0.0100 -0.0105
Tmin (0) °C	Vmin (93.5)V	$ \begin{array}{r} 36 \\ 38 \\ 44 \\ 46 \\ 48 \\ 52 \\ 54 \\ 60 \\ 62 \\ 64 \\ 100 \\ 102 \\ 118 \\ 120 \\ 134 \end{array} $	5180.0000 5190.0000 5220.0000 5220.0000 5230.0000 5240.0000 5260.0000 5270.0000 5300.0000 5310.0000 5320.0000 5510.0000 5590.0000 5600.0000 5670.0000	5180.0063 5190.0093 5220.0097 5230.0086 5240.0104 5260.0083 5270.0098 5300.0091 5310.0102 5320.0104 5500.0097 5510.0105 5590.0100 5600.0105 5670.0105	-0.0063 -0.0093 -0.0097 -0.0086 -0.0104 -0.0083 -0.0098 -0.0091 -0.0091 -0.0102 -0.0104 -0.0097 -0.0105 -0.0105 -0.0105 -0.0105

9. EMI Reduction Method During Compliance Testing

No modification was made during testing.

Attachment 1: EUT Test Photographs

Attachment 2: EUT Detailed Photographs